NCBI Taxonomy: 198768

Harungana madagascariensis (ncbi_taxid: 198768)

found 230 associated metabolites at species taxonomy rank level.

Ancestor: Harungana

Child Taxonomies: none taxonomy data.

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.11620619999997)


Astilbin is a flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as a radical scavenger, an anti-inflammatory agent and a plant metabolite. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a flavanone glycoside, a monosaccharide derivative and a member of 4-hydroxyflavanones. It is functionally related to a (+)-taxifolin. It is an enantiomer of a neoastilbin. Astilbin is a natural product found in Smilax corbularia, Rhododendron simsii, and other organisms with data available. Astilbin is a metabolite found in or produced by Saccharomyces cerevisiae. Astilbin is found in alcoholic beverages. Astilbin is a constituent of Vitis vinifera (wine grape).Astilbin is a flavanonol, a type of flavonoid. It can be found in St Johns wort (Hypericum perforatum, Clusiaceae, subfamily Hypericoideae, formerly often considered a full family Hypericaceae), in Dimorphandra mollis (Fava danta, Fabaceae), in the the leaves of Harungana madagascariensis (Hypericaceae), in the rhizome of Astilbe thunbergii, in the root of Astilbe odontophylla(Saxifragaceae) and in the rhizone of Smilax glabra (Chinaroot, Smilacaceae). A flavanone glycoside that is (+)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Constituent of Vitis vinifera (wine grape) Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3].

   

Parietin

1,8-Dihydroxy-3-methoxy-6-methylanthraquinone, Emodin-3-methyl ether

C16H12O5 (284.0684702)


Physcion is a dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. It has a role as an apoptosis inducer, an antineoplastic agent, a hepatoprotective agent, an anti-inflammatory agent, an antibacterial agent, an antifungal agent and a metabolite. It is functionally related to a 2-methylanthraquinone. Physcion is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. [Raw Data] CBA82_Physcion_pos_10eV.txt [Raw Data] CBA82_Physcion_pos_30eV.txt [Raw Data] CBA82_Physcion_pos_50eV.txt [Raw Data] CBA82_Physcion_pos_40eV.txt [Raw Data] CBA82_Physcion_pos_20eV.txt

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.386145)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Betulinic acid

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

   

Astilbin

(2S,3S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3-dihydrochromen-4-one

C21H22O11 (450.11620619999997)


Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.

   

Chrysophanol

1,8-DIHYDROXY-3-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C15H10O4 (254.057906)


Chrysophanic acid appears as golden yellow plates or brown powder. Melting point 196 °C. Slightly soluble in water. Pale yellow aqueous solutions turn red on addition of alkali. Solutions in concentrated sulfuric acid are red. (NTP, 1992) Chrysophanol is a trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. It has a role as an antiviral agent, an anti-inflammatory agent and a plant metabolite. It is functionally related to a chrysazin. Chrysophanol is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. Constituent of Rumex, Rheum subspecies Chrysophanol is found in dock, garden rhubarb, and sorrel. Chrysophanol is found in dock. Chrysophanol is a constituent of Rumex, Rheum species D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Euxanthone

1,7-Dihydroxy-9H-xanthen-9-one, 9CI

C13H8O4 (228.0422568)


Occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango). Euxanthone is found in fruits and mammee apple. Euxanthone is found in fruits. Euxanthone occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango

   

Xanthone

InChI=1/C13H8O2/c14-13-9-5-1-3-7-11(9)15-12-8-4-2-6-10(12)13/h1-8

C13H8O2 (196.0524268)


Xanthone is the parent compound of the xanthone class consisting of xanthene bearing a single oxo substituent at position 9. It has a role as an insecticide. Xanthone is a natural product found in Harungana madagascariensis, Garcinia dulcis, and other organisms with data available. Xanthone is isolated from Mangosteen and is known to control cell division and growth, apoptosis, inflammation, and metastasis in different stages of carcinogenesis. Xanthone has anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities[1]. Xanthone is isolated from Mangosteen and is known to control cell division and growth, apoptosis, inflammation, and metastasis in different stages of carcinogenesis. Xanthone has anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities[1].

   

Aloe emodin w-acetate

(4,5-Dihydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl)methyl acetic acid

C17H12O6 (312.06338519999997)


Aloe emodin w-acetate is found in herbs and spices. Aloe emodin w-acetate is isolated from roots of Rumex acetosa (sorrel). Isolated from roots of Rumex acetosa (sorrel). Aloe emodin w-acetate is found in herbs and spices.

   

Neoisoastilbin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-3,4-dihydro-2H-1-benzopyran-4-one

C21H22O11 (450.11620619999997)


Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.386145)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

XANTHONE

Dibenzo[b,e]pyran-10-one

C13H8O2 (196.0524268)


Xanthone is isolated from Mangosteen and is known to control cell division and growth, apoptosis, inflammation, and metastasis in different stages of carcinogenesis. Xanthone has anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities[1]. Xanthone is isolated from Mangosteen and is known to control cell division and growth, apoptosis, inflammation, and metastasis in different stages of carcinogenesis. Xanthone has anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities[1].

   

KENGANTHRANOL C

KENGANTHRANOL C

C26H30O6 (438.204228)


   
   
   

Methyl haematommate

Methyl 3-formyl-2,4-dihydroxy-6-methylbenzoate

C10H10O5 (210.052821)


   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

physcion

9,10-Anthracenedione, 1,8-dihydroxy-3-methoxy-6-methyl- (9CI)

C16H12O5 (284.0684702)


Physcion, also known as emodin monomethyl ether or parienin, is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Physcion can be synthesized from 2-methylanthraquinone. Physcion can also be synthesized into torososide B and physcion 8-gentiobioside. Physcion can be found in common sage, garden rhubarb, and sorrel, which makes physcion a potential biomarker for the consumption of these food products. Physcion has also been shown to protect lichens against UV-B light, at high altitudes in Alpine regions. The UV-B light stimulates production of parietin and the parietin protects the lichens from damage. Lichens in arctic regions such as Svarlbard retain this capability though they do not encounter damaging levels of UV-B, a capability that could help protect the lichens in case of Ozone layer thinning .

   

Astilbin

(2R,3R)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-chroman-4-one

C21H22O11 (450.11620619999997)


Neoisoastilbin is a natural product found in Smilax corbularia, Neolitsea sericea, and other organisms with data available. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Astilbin is a flavonoid compound and enhances NRF2 activation. Astilbin also suppresses TNF-α expression and NF-κB activation. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Xanthone

Xanthone

C13H8O2 (196.0524268)


CONFIDENCE standard compound; INTERNAL_ID 198; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9192; ORIGINAL_PRECURSOR_SCAN_NO 9189 CONFIDENCE standard compound; INTERNAL_ID 198; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9263; ORIGINAL_PRECURSOR_SCAN_NO 9262 CONFIDENCE standard compound; INTERNAL_ID 198; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9233; ORIGINAL_PRECURSOR_SCAN_NO 9231 CONFIDENCE standard compound; INTERNAL_ID 198; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9258; ORIGINAL_PRECURSOR_SCAN_NO 9255 CONFIDENCE standard compound; INTERNAL_ID 198; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9245; ORIGINAL_PRECURSOR_SCAN_NO 9242 CONFIDENCE standard compound; INTERNAL_ID 198; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9280; ORIGINAL_PRECURSOR_SCAN_NO 9279 Xanthone is isolated from Mangosteen and is known to control cell division and growth, apoptosis, inflammation, and metastasis in different stages of carcinogenesis. Xanthone has anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities[1]. Xanthone is isolated from Mangosteen and is known to control cell division and growth, apoptosis, inflammation, and metastasis in different stages of carcinogenesis. Xanthone has anti-oxidant, anti-tumor, anti-allergic, anti-inflammatory, anti-bacterial, anti-fungal, and anti-viral activities[1].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   
   

Harunmadagacarin B

Harunmadagacarin B

C35H42O4 (526.3082932)


   
   

betulinic acid

betulinic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

2,3-Dihydro-6,8-dihydroxy-4,11,11,15,15-pentamethyl-5-(3-methyl-2-butenyl)-7H-13c,2-(epoxymethano)-11H-1,10-dioxa-1H-dibenzo[a,kl]anthracene-7-one

2,3-Dihydro-6,8-dihydroxy-4,11,11,15,15-pentamethyl-5-(3-methyl-2-butenyl)-7H-13c,2-(epoxymethano)-11H-1,10-dioxa-1H-dibenzo[a,kl]anthracene-7-one

C30H32O6 (488.2198772)


   

Euxanthone

Xanthen-9-one, 1,7-dihydroxy- ; 1,7-Dihydroxy-9H-xanthen-9-one; 1,7-Dihydroxyxanthone; DX 1

C13H8O4 (228.0422568)


Euxanthone is a member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1 and 7 and an oxo group at position 9. It has been isolated from Cratoxylum cochinchinense. It has a role as a plant metabolite and a metabolite. It is a member of xanthones and a member of phenols. Euxanthone is a natural product found in Garcinia oblongifolia, Hypericum scabrum, and other organisms with data available. A member of the class of xanthones that is 9H-xanthene substituted by hydroxy group at positions 1 and 7 and an oxo group at position 9. It has been isolated from Cratoxylum cochinchinense. Occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango). Euxanthone is found in fruits and mammee apple. Euxanthone is found in fruits. Euxanthone occurs in Mammea americana (mamey), Platonia insignis (bakuri) and Mangifera indica (mango

   

Chrysophanic acid

Chrysophanic acid

C15H10O4 (254.057906)


relative retention time with respect to 9-anthracene Carboxylic Acid is 1.321 D009676 - Noxae > D009153 - Mutagens relative retention time with respect to 9-anthracene Carboxylic Acid is 1.322 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.318 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Aloe emodin w-acetate

(4,5-dihydroxy-9,10-dioxo-9,10-dihydroanthracen-2-yl)methyl acetate

C17H12O6 (312.06338519999997)


   
   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Mairin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-Hydroxy-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-eicosahydro-cyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Crysophanol

Chrysophanic acid (1,8-dihydroxy-3-methylanthraquinone)

C15H10O4 (254.057906)


D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Euxanthone

9H-Xanthen-9-one, 1,7-dihydroxy-

C13H8O4 (228.0422568)


A natural product found in Cratoxylum cochinchinense.

   

Methyl 3-formyl-2,4-dihydroxy-6-methylbenzoate

Methyl 3-formyl-2,4-dihydroxy-6-methylbenzoate

C10H10O5 (210.052821)


   

1,3,8-trihydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

1,3,8-trihydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C25H28O4 (392.19874880000003)


   

3,8,9-trihydroxy-6-methyl-2,5-bis(3-methylbut-2-en-1-yl)anthracene-1,4-dione

3,8,9-trihydroxy-6-methyl-2,5-bis(3-methylbut-2-en-1-yl)anthracene-1,4-dione

C25H26O5 (406.17801460000004)


   

1,8-dihydroxy-3-methoxy-6-methyl-2-[(1e)-3-methylbut-1-en-1-yl]-10h-anthracen-9-one

1,8-dihydroxy-3-methoxy-6-methyl-2-[(1e)-3-methylbut-1-en-1-yl]-10h-anthracen-9-one

C21H22O4 (338.1518012)


   

(4s)-3,8,9-trihydroxy-6-methyl-4,5,7-tris(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

(4s)-3,8,9-trihydroxy-6-methyl-4,5,7-tris(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

C30H36O4 (460.2613456)


   

1,8-dihydroxy-3-methoxy-6-methyl-2-(3-methyl-2-oxobutyl)anthracene-9,10-dione

1,8-dihydroxy-3-methoxy-6-methyl-2-(3-methyl-2-oxobutyl)anthracene-9,10-dione

C21H20O6 (368.125982)


   

1,7-dihydroxy-4a,9a-dihydroxanthen-9-one

1,7-dihydroxy-4a,9a-dihydroxanthen-9-one

C13H10O4 (230.057906)


   

1,3,8,10-tetrahydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

1,3,8,10-tetrahydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C30H36O5 (476.2562606)


   

(10r)-1,3,8,10-tetrahydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

(10r)-1,3,8,10-tetrahydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C30H36O5 (476.2562606)


   

(1s,19r)-10,14-dihydroxy-6,6,16,20,20-pentamethyl-15-(3-methylbut-2-en-1-yl)-7,21,23-trioxahexacyclo[11.8.1.1¹,¹⁹.0²,¹¹.0³,⁸.0¹⁷,²²]tricosa-2,4,8,10,13,15,17(22)-heptaen-12-one

(1s,19r)-10,14-dihydroxy-6,6,16,20,20-pentamethyl-15-(3-methylbut-2-en-1-yl)-7,21,23-trioxahexacyclo[11.8.1.1¹,¹⁹.0²,¹¹.0³,⁸.0¹⁷,²²]tricosa-2,4,8,10,13,15,17(22)-heptaen-12-one

C30H32O6 (488.2198772)


   

5,6-dihydroxy-2,2,3,8-tetramethyl-11,11-bis(3-methylbut-2-en-1-yl)-3h-anthra[2,3-b]furan-4-one

5,6-dihydroxy-2,2,3,8-tetramethyl-11,11-bis(3-methylbut-2-en-1-yl)-3h-anthra[2,3-b]furan-4-one

C30H36O4 (460.2613456)


   

1,8-dihydroxy-3-methyl-6-[(3-methylbut-2-en-1-yl)oxy]anthracene-9,10-dione

1,8-dihydroxy-3-methyl-6-[(3-methylbut-2-en-1-yl)oxy]anthracene-9,10-dione

C20H18O5 (338.1154178)


   

1,1',3,6',8,8'-hexahydroxy-3',6-dimethyl-[2,2'-bianthracene]-9,9',10,10'-tetrone

1,1',3,6',8,8'-hexahydroxy-3',6-dimethyl-[2,2'-bianthracene]-9,9',10,10'-tetrone

C30H18O10 (538.0899928)


   

1,5,6-trihydroxy-7-methoxyxanthen-9-one

1,5,6-trihydroxy-7-methoxyxanthen-9-one

C14H10O6 (274.047736)


   

1,3,8-trihydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

1,3,8-trihydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C30H36O4 (460.2613456)


   

(4s)-3,8,9-trihydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

(4s)-3,8,9-trihydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

C25H28O4 (392.19874880000003)


   

3,5,8,9-tetrahydroxy-6-methyl-2,4,4-tris(3-methylbut-2-en-1-yl)anthracen-1-one

3,5,8,9-tetrahydroxy-6-methyl-2,4,4-tris(3-methylbut-2-en-1-yl)anthracen-1-one

C30H36O5 (476.2562606)


   

3,8,9-trihydroxy-6-methyl-4,4,7-tris(3-methylbut-2-en-1-yl)anthracen-1-one

3,8,9-trihydroxy-6-methyl-4,4,7-tris(3-methylbut-2-en-1-yl)anthracen-1-one

C30H36O4 (460.2613456)


   

6,7-dihydroxy-2,2,9-trimethyl-12,12-bis(3-methylbut-2-en-1-yl)-1-oxatetracen-5-one

6,7-dihydroxy-2,2,9-trimethyl-12,12-bis(3-methylbut-2-en-1-yl)-1-oxatetracen-5-one

C30H34O4 (458.24569640000004)


   

1,8-dihydroxy-3-methoxy-6-methyl-2-(3-methylbut-1-en-1-yl)-10h-anthracen-9-one

1,8-dihydroxy-3-methoxy-6-methyl-2-(3-methylbut-1-en-1-yl)-10h-anthracen-9-one

C21H22O4 (338.1518012)


   

10,14-dihydroxy-6,6,16,20,20-pentamethyl-15-(3-methylbut-2-en-1-yl)-7,21,23-trioxahexacyclo[11.8.1.1¹,¹⁹.0²,¹¹.0³,⁸.0¹⁷,²²]tricosa-2,4,8,10,13,15,17(22)-heptaen-12-one

10,14-dihydroxy-6,6,16,20,20-pentamethyl-15-(3-methylbut-2-en-1-yl)-7,21,23-trioxahexacyclo[11.8.1.1¹,¹⁹.0²,¹¹.0³,⁸.0¹⁷,²²]tricosa-2,4,8,10,13,15,17(22)-heptaen-12-one

C30H32O6 (488.2198772)


   

(3r)-5,6-dihydroxy-2,2,3,8-tetramethyl-11,11-bis(3-methylbut-2-en-1-yl)-3h-anthra[2,3-b]furan-4-one

(3r)-5,6-dihydroxy-2,2,3,8-tetramethyl-11,11-bis(3-methylbut-2-en-1-yl)-3h-anthra[2,3-b]furan-4-one

C30H36O4 (460.2613456)


   

9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


   

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


   

8,10,15-trihydroxy-6,14,14-trimethyl-1,5-bis(3-methylbut-2-en-1-yl)tetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),3,5,7,9-pentaene-12,17-dione

8,10,15-trihydroxy-6,14,14-trimethyl-1,5-bis(3-methylbut-2-en-1-yl)tetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),3,5,7,9-pentaene-12,17-dione

C30H36O5 (476.2562606)


   

(1r,19r)-10,14-dihydroxy-6,6,16,20,20-pentamethyl-15-(3-methylbut-2-en-1-yl)-7,21,23-trioxahexacyclo[11.8.1.1¹,¹⁹.0²,¹¹.0³,⁸.0¹⁷,²²]tricosa-2(11),4,9,13,15,17(22)-hexaen-12-one

(1r,19r)-10,14-dihydroxy-6,6,16,20,20-pentamethyl-15-(3-methylbut-2-en-1-yl)-7,21,23-trioxahexacyclo[11.8.1.1¹,¹⁹.0²,¹¹.0³,⁸.0¹⁷,²²]tricosa-2(11),4,9,13,15,17(22)-hexaen-12-one

C30H34O6 (490.2355264)


   

(1s,13r,15s)-8,10,15-trihydroxy-6,14,14-trimethyl-1,5-bis(3-methylbut-2-en-1-yl)tetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),3,5,7,9-pentaene-12,17-dione

(1s,13r,15s)-8,10,15-trihydroxy-6,14,14-trimethyl-1,5-bis(3-methylbut-2-en-1-yl)tetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),3,5,7,9-pentaene-12,17-dione

C30H36O5 (476.2562606)


   

3,8,9-trihydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

3,8,9-trihydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

C25H28O4 (392.19874880000003)


   

6,7-dihydroxy-2,2,9-trimethyl-10,12,12-tris(3-methylbut-2-en-1-yl)-1-oxatetracen-5-one

6,7-dihydroxy-2,2,9-trimethyl-10,12,12-tris(3-methylbut-2-en-1-yl)-1-oxatetracen-5-one

C35H42O4 (526.3082932)


   

1,3,8,10-tetrahydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

1,3,8,10-tetrahydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C25H28O5 (408.1936638)


   

(3s)-5,6-dihydroxy-2,2,3,8-tetramethyl-11,11-bis(3-methylbut-2-en-1-yl)-3h-anthra[2,3-b]furan-4-one

(3s)-5,6-dihydroxy-2,2,3,8-tetramethyl-11,11-bis(3-methylbut-2-en-1-yl)-3h-anthra[2,3-b]furan-4-one

C30H36O4 (460.2613456)


   

(2s,11s)-5,7-dihydroxy-2-(2-hydroxypropan-2-yl)-11-methoxy-9-methyl-10-(3-methylbut-2-en-1-yl)-1h,2h,11h-anthra[2,1-b]furan-6-one

(2s,11s)-5,7-dihydroxy-2-(2-hydroxypropan-2-yl)-11-methoxy-9-methyl-10-(3-methylbut-2-en-1-yl)-1h,2h,11h-anthra[2,1-b]furan-6-one

C26H30O6 (438.204228)


   

(4as,9as)-1,7-dihydroxy-4a,9a-dihydroxanthen-9-one

(4as,9as)-1,7-dihydroxy-4a,9a-dihydroxanthen-9-one

C13H10O4 (230.057906)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   

(10s)-1,3,8,10-tetrahydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

(10s)-1,3,8,10-tetrahydroxy-6-methyl-4,5-bis(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C25H28O5 (408.1936638)


   

4,5,10-trihydroxy-7-methyl-1,1,8-tris(3-methylbut-2-en-1-yl)anthracen-2-one

4,5,10-trihydroxy-7-methyl-1,1,8-tris(3-methylbut-2-en-1-yl)anthracen-2-one

C30H36O4 (460.2613456)


   

1,8-dihydroxy-3-methoxy-6-methyl-2-(3-methylbut-1-en-1-yl)anthracene-9,10-dione

1,8-dihydroxy-3-methoxy-6-methyl-2-(3-methylbut-1-en-1-yl)anthracene-9,10-dione

C21H20O5 (352.13106700000003)


   

5,7-dihydroxy-2-(2-hydroxypropan-2-yl)-11-methoxy-9-methyl-10-(3-methylbut-2-en-1-yl)-1h,2h,11h-anthra[2,1-b]furan-6-one

5,7-dihydroxy-2-(2-hydroxypropan-2-yl)-11-methoxy-9-methyl-10-(3-methylbut-2-en-1-yl)-1h,2h,11h-anthra[2,1-b]furan-6-one

C26H30O6 (438.204228)


   

3,8,9-trihydroxy-6-methyl-4,5,7-tris(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

3,8,9-trihydroxy-6-methyl-4,5,7-tris(3-methylbut-2-en-1-yl)-4h-anthracen-1-one

C30H36O4 (460.2613456)


   

(1s,13s,15s)-8,10,15-trihydroxy-6,14,14-trimethyl-1,5-bis(3-methylbut-2-en-1-yl)tetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),3,5,7,9-pentaene-12,17-dione

(1s,13s,15s)-8,10,15-trihydroxy-6,14,14-trimethyl-1,5-bis(3-methylbut-2-en-1-yl)tetracyclo[11.3.1.0²,¹¹.0⁴,⁹]heptadeca-2(11),3,5,7,9-pentaene-12,17-dione

C30H36O5 (476.2562606)


   

3,8,9-trihydroxy-6-methyl-4,4,5-tris(3-methylbut-2-en-1-yl)anthracen-1-one

3,8,9-trihydroxy-6-methyl-4,4,5-tris(3-methylbut-2-en-1-yl)anthracen-1-one

C30H36O4 (460.2613456)


   

1,6,8-trihydroxy-3-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

1,6,8-trihydroxy-3-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C30H36O4 (460.2613456)


   

(10s)-1,3,8,10-tetrahydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

(10s)-1,3,8,10-tetrahydroxy-6-methyl-2,4,5-tris(3-methylbut-2-en-1-yl)-10h-anthracen-9-one

C30H36O5 (476.2562606)


   

(2r,3r)-9-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-12-methoxy-2,3-dihydro-1,4,5-trioxatetraphen-10-one

(2r,3r)-9-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-3-(hydroxymethyl)-12-methoxy-2,3-dihydro-1,4,5-trioxatetraphen-10-one

C25H22O10 (482.1212912)


   

1,8-dihydroxy-3-methoxy-6-methyl-2-[(1e)-3-methylbut-1-en-1-yl]anthracene-9,10-dione

1,8-dihydroxy-3-methoxy-6-methyl-2-[(1e)-3-methylbut-1-en-1-yl]anthracene-9,10-dione

C21H20O5 (352.13106700000003)