NCBI Taxonomy: 241838

Excoecaria agallocha (ncbi_taxid: 241838)

found 209 associated metabolites at species taxonomy rank level.

Ancestor: Excoecaria

Child Taxonomies: none taxonomy data.

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Catechin

(2R,3S)-2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-1-benzopyran-3,5,7-triol

C15H14O6 (290.079)


Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

1,2,3,4,6-Pentagalloyl_glucose

(2S,3R,4S,5R,6R)-6-(((3,4,5-Trihydroxybenzoyl)oxy)methyl)tetrahydro-2H-pyran-2,3,4,5-tetrayl tetrakis(3,4,5-trihydroxybenzoate)

C41H32O26 (940.1182)


1,2,3,4,6-pentakis-O-galloyl-beta-D-glucose is a galloyl-beta-D-glucose compound having five galloyl groups in the 1-, 2-, 3-, 4- and 6-positions. It has a role as a geroprotector, a radiation protective agent, an antineoplastic agent, a radical scavenger, an anti-inflammatory agent, a plant metabolite and a hepatoprotective agent. It is a gallate ester and a galloyl beta-D-glucose. It is a conjugate acid of a 1,2,3,4,6-pentakis-O-galloyl-beta-D-glucose(1-). Pentagalloylglucose is a natural product found in Quercus aliena, Cercidiphyllum japonicum, and other organisms with data available. See also: Paeonia lactiflora root (part of); Lagerstroemia speciosa leaf (part of). A galloyl-beta-D-glucose compound having five galloyl groups in the 1-, 2-, 3-, 4- and 6-positions. Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity. Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity.

   

Geraniin

.beta.-D-Glucopyranose, cyclic 2.fwdarw.7:4.fwdarw.5-(3,6-dihydro-2,9,10,11,11-pentahydroxy-3-oxo-2,6-methano-2H-1-benzoxocin-5,7-dicarboxylate)cyclic 3,6-(4,4,5,5,6,6-hexahydroxy[1,1-biphenyl]-2,2-dicarboxylate) 1-(3,4,5-trihydroxybenzoate), stereoisomer

C41H28O27 (952.0818)


Geraniin is a tannin. Geraniin is a natural product found in Euphorbia makinoi, Macaranga tanarius, and other organisms with data available. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM. Geraniin is a TNF-α releasing inhibitor with numerous activities including anticancer, anti-inflammatory, and anti-hyperglycemic activities, with an IC50 of 43 μM.

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Isoquercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-glucopyranoside is a quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells It has a role as an antineoplastic agent, a plant metabolite, a bone density conservation agent, an osteogenesis regulator, an antioxidant, a histamine antagonist, an antipruritic drug and a geroprotector. It is a quercetin O-glucoside, a tetrahydroxyflavone, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a beta-D-glucose. It is a conjugate acid of a quercetin 3-O-beta-D-glucopyranoside(1-). Isoquercetin has been used in trials studying the treatment of Kidney Cancer, Renal cell carcinoma, Advanced Renal Cell Carcinoma, Thromboembolism of Vein in Pancreatic Cancer, and Thromboembolism of Vein VTE in Colorectal Cancer, among others. Isoquercitrin is a natural product found in Ficus auriculata, Lotus ucrainicus, and other organisms with data available. Isoquercetin is an orally bioavailable, glucoside derivative of the flavonoid quercetin and protein disulfide isomerase (PDI) inhibitor, with antioxidant and potential antithrombotic activity. As an antioxidant, isoquercetin scavenges free radicals and inhibits oxidative damage to cells. As a PDI inhibitor, this agent blocks PDI-mediated platelet activation, and fibrin generation, which prevents thrombus formation after vascular injury. In addition, isoquercetin is an alpha-glucosidase inhibitor. PDI, an oxidoreductase secreted by activated endothelial cells and platelets, plays a key role in the initiation of the coagulation cascade. Cancer, in addition to other thrombotic disorders, increases the risk of thrombus formation. Isoquercitrin is found in alcoholic beverages. Isoquercitrin occurs widely in plants. Isoquercitrin is present in red wine.Isoquercitin can be isolated from mangoes and from Rheum nobile, the Noble rhubarb or Sikkim rhubarb, a giant herbaceous plant native to the Himalaya. Quercetin glycosides are also present in tea. (Wikipedia A quercetin O-glucoside that is quercetin with a beta-D-glucosyl residue attached at position 3. Isolated from Lepisorus contortus, it exhibits antineoplastic activityand has been found to decrease the rate of polymerization and sickling of red blood cells [Raw Data] CB053_Isoquercitrin_pos_10eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_30eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_50eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_40eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_pos_20eV_CB000025.txt [Raw Data] CB053_Isoquercitrin_neg_40eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_20eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_50eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_30eV_000017.txt [Raw Data] CB053_Isoquercitrin_neg_10eV_000017.txt Quercetin 3-glucoside. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=482-35-9 (retrieved 2024-07-09) (CAS RN: 482-35-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one;Rutin

C27H30O16 (610.1534)


Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

L-Quebrachitol

(1R,2S,3S,4S,5R,6R)-6-Methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


L-Quebrachitol is a member of cyclohexanols. L-Quebrachitol is a natural product found in Croton cortesianus, Hippophae rhamnoides, and other organisms with data available. Widely distributed in plants. L-Quebrachitol is found in mugwort and sea-buckthornberry. L-Quebrachitol is found in mugwort. L-Quebrachitol is widely distributed in plant L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1]. L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Cycloartenol

(3R,6S,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

(+)-Gallocatechin

(2R,3S)-3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-2H-1-benzopyran-3,5,7-triol

C15H14O7 (306.0739)


Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Corilagin

(1S,19R,21S,22R,23R)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0^{4,9}.0^{10,15}]tricosa-4,6,8,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806)


Corilagin is a member of the class of compounds known as ellagitannins, a class of hydrolyzable tannins. Hydrolyzable tannins are tannins with a structure characterized by either of the following models: (1) a structure containing galloyl units (in some cases, shikimic acid units) linked to diverse polyol carbohydrate, catechin, or triterpenoid units, or (2) a structure containing at least two galloyl units C-C coupled to each other and not containing a glycosidically linked catechin unit. Corilagin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Corilagin can be found in pomegranate, which makes corilagin a potential biomarker for the consumption of this food product. Corilagin was first isolated in 1951 from Dividivi extract and from Caesalpinia coriaria, hence the name of the molecule. It can also be found in Alchornea glandulosa and in the leaves of Punica granatum (pomegranate) (Wikipedia). Corilagin has been shown to exhibit thrombolytic function (PMID: 14750026). Corilagin is an ellagitannin with a hexahydroxydiphenoyl group bridging over the 3-O and 6-O of the glucose core. It has a role as an antihypertensive agent, an EC 3.4.15.1 (peptidyl-dipeptidase A) inhibitor, a non-steroidal anti-inflammatory drug and an antioxidant. It is an ellagitannin and a gallate ester. Corilagin is a natural product found in Euphorbia fischeriana, Euphorbia hyssopifolia, and other organisms with data available. Corilagin is a gallotannin. It can be found in Alchornea glandulosa. [Wikipedia] Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3]. Corilagin, a gallotannin, has anti-tumor, anti-inflammatory and hepatoprotective activities. Corilagin inhibits activity of reverse transcriptase of RNA tumor viruses. Corilagin also inhibits the growth of Staphylococcus aureus with a MIC of 25 μg/mL. Corilagin shows anti-tumor activity on hepatocellular carcinoma and ovarian cancer model. Corilagin shows low toxicity to normal cells and tissues[1][2][3].

   

Chebulagic acid

chebulagic acid

C41H30O27 (954.0974)


D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors D004791 - Enzyme Inhibitors > D016859 - Lipoxygenase Inhibitors Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid is a COX-LOX dual inhibitor isolated from the fruits of Terminalia chebula Retz, on angiogenesis. Chebulagic acid is a M2 serine to asparagine 31 mutation (S31N) inhibitor and influenza antiviral. Chebulagic acid also against SARS-CoV-2 viral replication with an EC50 of 9.76 μM. Chebulagic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=23094-71-5 (retrieved 2024-09-27) (CAS RN: 23094-71-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

1,2,6-Trigalloyl-beta-D-glucopyranose

4,5-dihydroxy-2-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-3-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0963)


Isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry). 1,2,6-Trigalloyl-beta-D-glucopyranose is found in many foods, some of which are fruits, pomegranate, garden rhubarb, and red raspberry. 1,2,6-Trigalloyl-beta-D-glucopyranose is found in fruits. 1,2,6-Trigalloyl-beta-D-glucopyranose is isolated from Rubus fruticosus (blackberry) and Rubus idaeus (raspberry).

   

Excoecariatoxin

22,23,24,25-Tetradehydro-simplexin

C30H40O8 (528.2723)


   

Manool oxide

Labd-14-ene, 8,13-epoxy-, (13R)-

C20H34O (290.261)


   

Quercetin 3-galactoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside. Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of). Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort) Acquisition and generation of the data is financially supported in part by CREST/JST. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Labd-14-ene, 8,13-epoxy-, (13S)-

Labd-14-ene, 8,13-epoxy-, (13S)-

C20H34O (290.261)


   

Methyl_gallate

InChI=1/C8H8O5/c1-13-8(12)4-2-5(9)7(11)6(10)3-4/h2-3,9-11H,1H

C8H8O5 (184.0372)


Methyl 3,4,5-trihydroxybenzoate is a gallate ester obtained by the formal condensation of gallic acid with methanol. It exhibits anti-oxidant, anti-tumor, anti-microbial and anti-inflammatory properties. It has a role as a plant metabolite, an anti-inflammatory agent and an antioxidant. Methyl gallate is a natural product found in Euphorbia teheranica, Euphorbia hyssopifolia, and other organisms with data available. See also: Paeonia lactiflora root (part of). A gallate ester obtained by the formal condensation of gallic acid with methanol. It exhibits anti-oxidant, anti-tumor, anti-microbial and anti-inflammatory properties. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Ethyl gallate

2-([(4-CHLOROPHENYL)SULFONYL]AMINO)PROPANOICACID

C9H10O5 (198.0528)


Ethyl gallate is a gallate ester obtained by the formal condensation of gallic acid with ethanol. It has a role as a plant metabolite. Ethyl gallate is a natural product found in Limonium axillare, Dimocarpus longan, and other organisms with data available. Ethyl gallate occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which include grape wine, fruits, guava, and vinegar. Occurs, inter alia, in Indian gooseberry (Phyllanthus emblica). Ethyl gallate is found in many foods, some of which are grape wine, fruits, guava, and vinegar. A gallate ester obtained by the formal condensation of gallic acid with ethanol. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.

   

Pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


D-pinitol is the D-enantiomer of pinitol. It has a role as a geroprotector and a member of compatible osmolytes. It is functionally related to a 1D-chiro-inositol. It is an enantiomer of a L-pinitol. Methylinositol has been used in trials studying the treatment of Dementia and Alzheimers Disease. D-Pinitol is a natural product found in Aegialitis annulata, Senna macranthera var. micans, and other organisms with data available. A member of the class of methyl myo-inositols that is cyclohexane-1,2,3,4,5-pentol substituted by a methoxy group at position 6 (the 1R,2S,3S,4S,5S,6S-isomer). D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Epicatechin 3-glucoside

2-{[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O11 (452.1319)


Epicatechin 3-glucoside is found in chinese cinnamon. Epicatechin 3-glucoside is isolated from Chinese cinnamon (Cinnamomum cassia) bark. Isolated from Chinese cinnamon (Cinnamomum cassia) bark. Epicatechin 3-glucoside is found in chinese cinnamon and herbs and spices.

   

Catechin 7-glucoside

2-{[2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-3,4-dihydro-2H-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O11 (452.1319)


Isolated from commercial rhubarb (Rheum subspecies,) and azuki bean (Vigna angularis). Catechin 7-glucoside is found in many foods, some of which are barley, green vegetables, adzuki bean, and pulses. Catechin 7-glucoside is found in adzuki bean. Catechin 7-glucoside is isolated from commercial rhubarb (Rheum species,) and azuki bean (Vigna angularis).

   

7-Glucosyl-luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O10 (432.1056)


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Methyl gallate

345-Trihydroxy-benzoic acid methyl ester

C8H8O5 (184.0372)


Methyl gallate, also known as methyl 3 or methyl galloic acid, is a member of the class of compounds known as galloyl esters. Galloyl esters are organic compounds that contain an ester derivative of 3,4,5-trihydroxybenzoic acid. Methyl gallate is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Methyl gallate can be found in peach and pomegranate, which makes methyl gallate a potential biomarker for the consumption of these food products. Methyl gallate is a phenolic compound. It is the methyl ester of gallic acid . Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

Quercetin 3-O-rhamnoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O11 (448.1006)


   

Quercetin-3-o-rutinose

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-4H-chromen-4-one

C27H30O16 (610.1534)


   

Taraxerone

4,4,6a,8a,11,11,12b,14b-Octamethyl-1,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-octadecahydro-3(2H)-picenone

C30H48O (424.3705)


   

Manoyl oxide

(3R,4aS,6aR,10aR,10bS)-3-ethenyl-3,4a,7,7,10a-pentamethyl-dodecahydro-1H-naphtho[2,1-b]pyran

C20H34O (290.261)


Manoyl oxide, also known as (-)-ent-13-epi-manoyl oxide, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Manoyl oxide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Manoyl oxide can be found in pot marjoram, which makes manoyl oxide a potential biomarker for the consumption of this food product.

   

beta-Amyrenone

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-one

C30H48O (424.3705)


Beta-amyrenone is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrenone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrenone can be found in rosemary and shea tree, which makes beta-amyrenone a potential biomarker for the consumption of these food products.

   

Juglanin

3-{[(2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C20H18O10 (418.09)


Isolated from walnuts (Juglans regia). Juglanin is found in many foods, some of which are nuts, common hazelnut, fennel, and sweet bay. Juglanin, a natural occurring flavonoid, is a JNK acticator, with inflammation and anti-tumor activities. Juglanin can induce apoptosis and autophagy on human breast cancer cells[1]. Juglanin, a natural occurring flavonoid, is a JNK acticator, with inflammation and anti-tumor activities. Juglanin can induce apoptosis and autophagy on human breast cancer cells[1].

   

(+)-Gallocatechin

4-{1-Butyl-9-[1-(4,6-dimethyl-pyrimidine-5-carbonyl)-4-methyl-piperidin-4-yl]-2-oxo-3,0-diaza-spiro[5.5]undec-3-ylmethyl}-piperidine-1-carboxylic acid methyl ester

C15H14O7 (306.0739)


Gallocatechin is a catechin that is a flavan substituted by hydroxy groups at positions 3, 3, 4, 5, 5 and 7 (the trans isomer). It is isolated from Acacia mearnsii. It has a role as a metabolite. It is a catechin and a flavan-3,3,4,5,5,7-hexol. (+)-Gallocatechin is a natural product found in Saxifraga cuneifolia, Quercus dentata, and other organisms with data available. See also: Cianidanol (related); Crofelemer (monomer of); Green tea leaf (part of). Widespread in plants; found especies in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. Gallocatechin is found in many foods, some of which are broad bean, broccoli, quince, and common grape. (+)-Gallocatechin is found in adzuki bean. (+)-Gallocatechin is widespread in plants; found especially in green tea, redcurrants, gooseberries and marrowfat peas. Potential nutriceutical. A gallocatechin that has (2R,3S)-configuration. It is found in green tea and bananas. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Methyl gallate

methyl 3,4,5-trihydroxybenzoate

C8H8O5 (184.0372)


Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Hirsutrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

hyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O12 (464.0955)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Juglanin

3-(((2S,3R,4R,5S)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)oxy)-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C20H18O10 (418.09)


Kaempferol 3-arabinofuranoside is a member of flavonoids and a glycoside. Juglanin is a natural product found in Saxifraga tricuspidata, Hedyotis herbacea, and other organisms with data available. Juglanin, a natural occurring flavonoid, is a JNK acticator, with inflammation and anti-tumor activities. Juglanin can induce apoptosis and autophagy on human breast cancer cells[1]. Juglanin, a natural occurring flavonoid, is a JNK acticator, with inflammation and anti-tumor activities. Juglanin can induce apoptosis and autophagy on human breast cancer cells[1].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Catechin

(+)-Catechin Hydrate

C15H14O6 (290.079)


Annotation level-1 Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

gallocatechol

2H-1-Benzopyran-3,5,7-triol, 3,4-dihydro-2-(3,4,5-trihydroxyphenyl)-, (2R,3S)-rel-

C15H14O7 (306.0739)


(-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (-)-Gallocatechin, an epimer of (-)-Epigallocatechin (EGC), is contained in various tea products. (-)-Gallocatechin has antioxidant activities[1][2][3]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1]. (+)-Gallocatechin is a polyphenol compound from green tea, possesses anticancer activity[1].

   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.0955)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Cycloartenol

9beta,19-cyclolanost-24-en-3beta-ol

C30H50O (426.3861)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Taraxerone

Taraxerone

C30H48O (424.3705)


   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.

   

Rutin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]-4-chromenone

C27H30O16 (610.1534)


C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2352 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.724 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.728 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1921; CONFIDENCE confident structure Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.0955)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Catechol

(+)-Catechin Hydrate

C15H14O6 (290.079)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

Epigallocatechin

(-)-Epigallocatechin

C15H14O7 (306.0739)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 28 INTERNAL_ID 28; CONFIDENCE Reference Standard (Level 1) (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils. (-)-Epigallocatechin (Epigallocatechin) is the most abundant flavonoid in green tea, can bind to unfolded native polypeptides and prevent conversion to amyloid fibrils.

   

3,4-Dihydroxybenzoic acid

3,4-Dihydroxybenzoic acid

C7H6O4 (154.0266)


   

Catechin 7-O-beta-D-glucopyranoside

Catechin 7-O-beta-D-glucopyranoside

C21H24O11 (452.1319)


   

Euglanin

3-{[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]oxy}-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C20H18O10 (418.09)


Juglanin, a natural occurring flavonoid, is a JNK acticator, with inflammation and anti-tumor activities. Juglanin can induce apoptosis and autophagy on human breast cancer cells[1]. Juglanin, a natural occurring flavonoid, is a JNK acticator, with inflammation and anti-tumor activities. Juglanin can induce apoptosis and autophagy on human breast cancer cells[1].

   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Progallin A

Benzoic acid, 3,4,5-trihydroxy-, ethyl ester

C9H10O5 (198.0528)


Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide. Ethyl gallate is a nonflavonoid phenolic compound and also a scavenger of hydrogen peroxide.

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

2-{[14-(5-ethyl-6-methylheptan-2-yl)-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

pinitol

(1R,2S,3R,4S,5S,6S)-6-methoxycyclohexane-1,2,3,4,5-pentol

C7H14O6 (194.079)


D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3]. D-pinitol (3-O-Methyl-D-chiro-inositol) is a natural compound presented in several plants, like Pinaceae and Leguminosae plants. D-pinitol exerts hypoglycemic activity and protective effects in the cardiovascular system[1][2]. D-pinitol has antiviral and larvicidal activities[3].

   

Epicatechin 3-glucoside

2-{[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2H-1-benzopyran-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C21H24O11 (452.1319)


   

3''-O-Acetylafzelin

2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-4H-chromen-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl acetate

C23H22O11 (474.1162)


   

ST 29:1;O;Hex

stigmast-5-en-3beta-yl beta-D-galactopyranoside

C35H60O6 (576.439)


   

epilupeol

epilupeol

C30H50O (426.3861)


   

99-50-3

InChI=1\C7H6O4\c8-5-2-1-4(7(10)11)3-6(5)9\h1-3,8-9H,(H,10,11

C7H6O4 (154.0266)


D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

KB-53

2H-1-Benzopyran-3,5,7-triol, 2-(3,4-dihydroxyphenyl)-3,4-dihydro-, (2R-trans)-

C15H14O6 (290.079)


Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

99-24-1

InChI=1\C8H8O5\c1-13-8(12)4-2-5(9)7(11)6(10)3-4\h2-3,9-11H,1H

C8H8O5 (184.0372)


Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities. Methyl gallate is a plant phenolic with antioxidant, anticancer, and anti-inflammatory activities. Methyl gallate also shows bacterial inhibition activity. Methyl gallate also has anti-HIV-1 and HIV-1 enzyme inhibitory activities.

   

AIDS-070887

3,4,5-trihydroxybenzoic acid [(2S,3R,4S,5R,6R)-2,3,5-tris[oxo-(3,4,5-trihydroxyphenyl)methoxy]-6-[[oxo-(3,4,5-trihydroxyphenyl)methoxy]methyl]-4-tetrahydropyranyl] ester

C41H32O26 (940.1182)


Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity. Pentagalloylglucose (Penta-O-galloyl-β-D-glucose) is a gallotannin isolated from various plants. It suppressed interleukin (IL)-4 induced signal pathway in B cell, and inhibited IgE production partially caused by increasing a population of Treg cells in conjunction with Treg-inducing factors. Pentagalloylglucose possesses significant anti-rabies virus (RABV) activity.

   

Quebrachitol

(1R,2S,3S,4S,5R,6R)-6-Methoxycyclohexane-1,2,3,4,5-pentaol

C7H14O6 (194.079)


L-Quebrachitol is a member of cyclohexanols. L-Quebrachitol is a natural product found in Croton cortesianus, Hippophae rhamnoides, and other organisms with data available. L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1]. L-Quebrachitol is a natural product isolated from many plants, promotes osteoblastogenesis by uppregulation of BMP-2, runt-related transcription factor-2 (Runx2), MAPK (ERK, JNK, p38α), and Wnt/β-catenin signaling pathway[1].

   

1,2,6-Trigalloylglucose

1,2,6-Trigalloylglucose

C27H24O18 (636.0963)


   

(13R)-epi-8,13-epoxylabd-14-ene

Labd-14-ene, 8,13-epoxy-, (13R)-

C20H34O (290.261)


A tricyclic diterpenoid that is isolated from plants and fungi and exhibits anti-bacterial protperties.

   

[(2r,3s,4s,5r,6s)-6-{[5,7-dihydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)chromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3s,4s,5r,6s)-6-{[5,7-dihydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)chromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C28H24O17 (632.1013)


   

(3r,4as,6as,6br,8ar,12as,14ar,14bs)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

(3r,4as,6as,6br,8ar,12as,14ar,14bs)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(1r,19r,21s,22r,23r)-6,7,8,11,12,13,22-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl 3,4,5-trihydroxybenzoate

(1r,19r,21s,22r,23r)-6,7,8,11,12,13,22-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl 3,4,5-trihydroxybenzoate

C34H26O22 (786.0916)


   

[(2r,3s,4s,5r,6s)-6-{[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxochromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3s,4s,5r,6s)-6-{[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4-oxochromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C28H24O16 (616.1064)


   

(1s,2s,5r,8s,11r,13s)-5,12,12-trimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-en-13-ol

(1s,2s,5r,8s,11r,13s)-5,12,12-trimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-en-13-ol

C20H30O2 (302.2246)


   

12-ethenyl-2,6,6,10,12-pentamethyl-5-oxo-4,11-dioxatricyclo[8.4.0.0²,⁷]tetradecane-3-carboxylic acid

12-ethenyl-2,6,6,10,12-pentamethyl-5-oxo-4,11-dioxatricyclo[8.4.0.0²,⁷]tetradecane-3-carboxylic acid

C20H30O5 (350.2093)


   

(2e)-5-[(1r,4as,5r,8as)-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

(2e)-5-[(1r,4as,5r,8as)-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

C20H34O2 (306.2559)


   

(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0963)


   

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,23-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-22-yl 3,4,5-trihydroxybenzoate

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,23-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-22-yl 3,4,5-trihydroxybenzoate

C34H26O22 (786.0916)


   

2-[(2r,4as,5r,6s,8as)-2-[(1r)-2-({2-[(2s,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[(2r,4as,5r,6s,8as)-2-[(1r)-2-({2-[(2s,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoyl}oxy)-1-hydroxyethyl]-5-(carboxymethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C40H64O11 (720.4448)


   

(3r,4as,6as,8r,10ar,10br)-3,4a,7,7,10a-pentamethyl-3-[(2r)-oxiran-2-yl]-octahydro-1h-naphtho[2,1-b]pyran-8-ol

(3r,4as,6as,8r,10ar,10br)-3,4a,7,7,10a-pentamethyl-3-[(2r)-oxiran-2-yl]-octahydro-1h-naphtho[2,1-b]pyran-8-ol

C20H34O3 (322.2508)


   

(1s,4s,9s,10r,12s,13s)-13-hydroxy-5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecan-6-one

(1s,4s,9s,10r,12s,13s)-13-hydroxy-5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecan-6-one

C20H32O2 (304.2402)


   

3-[(1r,4r,5r,6r,8s,9s)-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[(1r,4r,5r,6r,8s,9s)-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O3 (320.2351)


   

3-[(4-{[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]methyl}-3,4-dihydroxyoxolan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-[(4-{[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]methyl}-3,4-dihydroxyoxolan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C27H30O15 (594.1585)


   

5,5,9,13-tetramethyl-15-oxapentacyclo[11.3.1.0¹,¹⁰.0⁴,⁹.0¹⁴,¹⁶]heptadecan-6-ol

5,5,9,13-tetramethyl-15-oxapentacyclo[11.3.1.0¹,¹⁰.0⁴,⁹.0¹⁴,¹⁶]heptadecan-6-ol

C20H32O2 (304.2402)


   

[(2r,4as,5r,6s,8as)-2-ethenyl-6-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]acetic acid

[(2r,4as,5r,6s,8as)-2-ethenyl-6-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]acetic acid

C21H34O5 (366.2406)


   

2-[(1s,4s,5s,6r,9r)-5-(carboxymethyl)-5-methyl-10-methylidenetricyclo[7.2.1.0¹,⁶]dodecan-4-yl]-2-methylpropanoic acid

2-[(1s,4s,5s,6r,9r)-5-(carboxymethyl)-5-methyl-10-methylidenetricyclo[7.2.1.0¹,⁶]dodecan-4-yl]-2-methylpropanoic acid

C20H30O4 (334.2144)


   

(1s,2r,4r,5r,8r,9r)-4-[(3r)-3,4-dihydroxy-4-methylpentyl]-4,8-dimethyltricyclo[6.3.1.0²,⁵]dodecane-1,9-diol

(1s,2r,4r,5r,8r,9r)-4-[(3r)-3,4-dihydroxy-4-methylpentyl]-4,8-dimethyltricyclo[6.3.1.0²,⁵]dodecane-1,9-diol

C20H36O4 (340.2613)


   

(2r,3s)-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

(2r,3s)-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}-2-(3,4,5-trihydroxyphenyl)-3,4-dihydro-2h-1-benzopyran-3,5,7-triol

C21H24O12S (500.0988)


   

3-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

3-[(3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl)oxy]-2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromen-4-one

C22H22O11 (462.1162)


   

3-[(2r,4ar,5r,6s,8as)-2-ethenyl-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoic acid

3-[(2r,4ar,5r,6s,8as)-2-ethenyl-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoic acid

C20H34O4 (338.2457)


   

(2s,3r,4r,5r,6r)-3-hydroxy-4,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

(2s,3r,4r,5r,6r)-3-hydroxy-4,5-bis(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C34H28O22 (788.1072)


   

3-[(1r,4r,5r,6r,8s)-5-methyl-9-methylidene-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[(1r,4r,5r,6r,8s)-5-methyl-9-methylidene-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H30O2 (302.2246)


   

3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran

3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran

C20H34O (290.261)


   

2-[5-(carboxymethyl)-2,5,8a-trimethyl-2-(oxiran-2-yl)-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[5-(carboxymethyl)-2,5,8a-trimethyl-2-(oxiran-2-yl)-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C20H32O6 (368.2199)


   

3-[(1s,4r,5r,6r,8s,9r)-9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[(1s,4r,5r,6r,8s,9r)-9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O4 (336.23)


   

3,4a,7,7,10a-pentamethyl-3-(oxiran-2-yl)-octahydronaphtho[2,1-b]pyran-8-one

3,4a,7,7,10a-pentamethyl-3-(oxiran-2-yl)-octahydronaphtho[2,1-b]pyran-8-one

C20H32O3 (320.2351)


   

3-[9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O3 (320.2351)


   

(1s,4s,6r,9s,10r,12s,13s)-5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-6,13-diol

(1s,4s,6r,9s,10r,12s,13s)-5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-6,13-diol

C20H34O2 (306.2559)


   

6-hydroxy-5,5,9,13-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-7-one

6-hydroxy-5,5,9,13-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-7-one

C20H30O2 (302.2246)


   

(1s,2r,7s,10s,12r)-12-ethenyl-2,6,6,10,12-pentamethyl-5,11-dioxatricyclo[8.4.0.0²,⁷]tetradecan-4-one

(1s,2r,7s,10s,12r)-12-ethenyl-2,6,6,10,12-pentamethyl-5,11-dioxatricyclo[8.4.0.0²,⁷]tetradecan-4-one

C19H30O3 (306.2195)


   

(3r,4as,6as,10as,10bs)-3-ethenyl-9-hydroxy-3,4a,7,7,10a-pentamethyl-1h,2h,5h,6h,6ah,10bh-naphtho[2,1-b]pyran-8-one

(3r,4as,6as,10as,10bs)-3-ethenyl-9-hydroxy-3,4a,7,7,10a-pentamethyl-1h,2h,5h,6h,6ah,10bh-naphtho[2,1-b]pyran-8-one

C20H30O3 (318.2195)


   

(1r,3ar,5ar,5br,7ar,9r,11ar,11br,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,7ar,9r,11ar,11br,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


   

(4as,4br,5r,7r,10ar)-7-ethenyl-5-hydroxy-1,1,4a,7-tetramethyl-3,4,4b,5,6,9,10,10a-octahydrophenanthren-2-one

(4as,4br,5r,7r,10ar)-7-ethenyl-5-hydroxy-1,1,4a,7-tetramethyl-3,4,4b,5,6,9,10,10a-octahydrophenanthren-2-one

C20H30O2 (302.2246)


   

(1s,2r,5r,6r,8s,9r,12r,14s)-5,13,13-trimethyl-7,15-dioxahexacyclo[12.2.2.1⁵,⁹.0¹,¹².0²,⁹.0⁶,⁸]nonadecan-14-ol

(1s,2r,5r,6r,8s,9r,12r,14s)-5,13,13-trimethyl-7,15-dioxahexacyclo[12.2.2.1⁵,⁹.0¹,¹².0²,⁹.0⁶,⁸]nonadecan-14-ol

C20H30O3 (318.2195)


   

5-(5-chloro-3,4-dihydroxy-3-methylpentyl)-1,1,4a,6-tetramethyl-4,7,8,8a-tetrahydro-3h-naphthalen-2-one

5-(5-chloro-3,4-dihydroxy-3-methylpentyl)-1,1,4a,6-tetramethyl-4,7,8,8a-tetrahydro-3h-naphthalen-2-one

C20H33ClO3 (356.2118)


   

2-[5-(carboxymethyl)-5-methyl-10-methylidenetricyclo[7.2.1.0¹,⁶]dodecan-4-yl]-2-methylpropanoic acid

2-[5-(carboxymethyl)-5-methyl-10-methylidenetricyclo[7.2.1.0¹,⁶]dodecan-4-yl]-2-methylpropanoic acid

C20H30O4 (334.2144)


   

(3r,4as,10ar,10bs)-3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran

(3r,4as,10ar,10bs)-3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran

C20H34O (290.261)


   

2-[5-(carboxymethyl)-5,9-dimethyltricyclo[7.2.1.0¹,⁶]dodec-10-en-4-yl]-2-methylpropanoic acid

2-[5-(carboxymethyl)-5,9-dimethyltricyclo[7.2.1.0¹,⁶]dodec-10-en-4-yl]-2-methylpropanoic acid

C20H30O4 (334.2144)


   

methyl 2-[(1s,3r,5s,9r,10s,13r)-3-ethenyl-1,3,9-trimethyl-7-oxo-2,6-dioxatricyclo[7.3.1.0⁵,¹³]tridecan-10-yl]-2-methylpropanoate

methyl 2-[(1s,3r,5s,9r,10s,13r)-3-ethenyl-1,3,9-trimethyl-7-oxo-2,6-dioxatricyclo[7.3.1.0⁵,¹³]tridecan-10-yl]-2-methylpropanoate

C21H32O5 (364.225)


   

13-hydroxy-5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecan-6-one

13-hydroxy-5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecan-6-one

C20H32O2 (304.2402)


   

(1s,2s,5r,8s,11r,12r,13r,17r)-12-(hydroxymethyl)-5,12-dimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-ene-13,17-diol

(1s,2s,5r,8s,11r,12r,13r,17r)-12-(hydroxymethyl)-5,12-dimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-ene-13,17-diol

C20H30O4 (334.2144)


   

2-ethenyl-1,7-dihydroxy-2,4b,8,8-tetramethyl-1,3,5,6,7,8a,9,10-octahydrophenanthren-4-one

2-ethenyl-1,7-dihydroxy-2,4b,8,8-tetramethyl-1,3,5,6,7,8a,9,10-octahydrophenanthren-4-one

C20H30O3 (318.2195)


   

(4as,5r,8as)-1,1,4a-trimethyl-6-methylidene-5-[(3r,4r)-3,4,5-trihydroxy-3-methylpentyl]-hexahydronaphthalen-2-one

(4as,5r,8as)-1,1,4a-trimethyl-6-methylidene-5-[(3r,4r)-3,4,5-trihydroxy-3-methylpentyl]-hexahydronaphthalen-2-one

C20H34O4 (338.2457)


   

12,12-dimethyl-6-methylidene-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-10,13-diol

12,12-dimethyl-6-methylidene-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-10,13-diol

C20H30O3 (318.2195)


   

2-{[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-methyloxane-3,4,5-triol

2-{[2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-methyloxane-3,4,5-triol

C21H24O10 (436.1369)


   

6,7,8,11,12,13,22-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl 3,4,5-trihydroxybenzoate

6,7,8,11,12,13,22-heptahydroxy-3,16-dioxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl 3,4,5-trihydroxybenzoate

C34H26O22 (786.0916)


   

(2e)-5-[(1r,4as,5s,8as)-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

(2e)-5-[(1r,4as,5s,8as)-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

C20H34O2 (306.2559)


   

[2-ethenyl-6-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]acetic acid

[2-ethenyl-6-(1-methoxy-2-methyl-1-oxopropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]acetic acid

C21H34O5 (366.2406)


   

(3r,4as,6as,8r,10ar,10bs)-3,4a,7,7,10a-pentamethyl-3-[(2s)-oxiran-2-yl]-octahydro-1h-naphtho[2,1-b]pyran-8-ol

(3r,4as,6as,8r,10ar,10bs)-3,4a,7,7,10a-pentamethyl-3-[(2s)-oxiran-2-yl]-octahydro-1h-naphtho[2,1-b]pyran-8-ol

C20H34O3 (322.2508)


   

methyl 3-[2-ethenyl-7-hydroxy-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoate

methyl 3-[2-ethenyl-7-hydroxy-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoate

C21H36O5 (368.2563)


   

14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-ol

14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-ol

C20H32O2 (304.2402)


   

5-[(1r,4as,5r,8as)-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

5-[(1r,4as,5r,8as)-5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

C20H34O2 (306.2559)


   

3-[(1r,4r,5s,6r,8s,9s)-9-hydroxy-5,9-dimethyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[(1r,4r,5s,6r,8s,9s)-9-hydroxy-5,9-dimethyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O3 (320.2351)


   

(4as,5r,8as)-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,1,4a-trimethyl-6-methylidene-hexahydronaphthalen-2-one

(4as,5r,8as)-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,1,4a-trimethyl-6-methylidene-hexahydronaphthalen-2-one

C20H32O2 (304.2402)


   

3-[(1s,4r,5r,6r,8r)-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodec-9-en-5-yl]propanoic acid

3-[(1s,4r,5r,6r,8r)-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodec-9-en-5-yl]propanoic acid

C20H30O3 (318.2195)


   

3-(2-chloro-1-hydroxyethyl)-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

3-(2-chloro-1-hydroxyethyl)-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

C20H33ClO3 (356.2118)


   

4,5-dihydroxy-3-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

4,5-dihydroxy-3-(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C27H24O18 (636.0963)


   

5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-6,13-diol

5,5,9,13-tetramethyltetracyclo[10.2.2.0¹,¹⁰.0⁴,⁹]hexadecane-6,13-diol

C20H34O2 (306.2559)


   

(1r,2s,4s,5s,8s,9s)-4,8-dimethyl-4-(4-methylpent-3-en-1-yl)tricyclo[6.3.1.0²,⁵]dodecane-1,9-diol

(1r,2s,4s,5s,8s,9s)-4,8-dimethyl-4-(4-methylpent-3-en-1-yl)tricyclo[6.3.1.0²,⁵]dodecane-1,9-diol

C20H34O2 (306.2559)


   

(1r,4s,6s,7r,10s,12r,15r,16s,34r,36s,37r,46r)-1,2,2,3,3,7,10,21,22,27,28,42,43-tridecahydroxy-13,18,31,39-tetraoxo-5,9,14,17,32,35,38,47,48-nonaoxaundecacyclo[42.2.1.1²³,²⁶.0⁴,¹².0⁶,¹⁰.0¹²,⁴⁶.0¹⁵,³⁴.0¹⁶,³⁷.0¹⁹,²⁴.0²⁵,³⁰.0⁴⁰,⁴⁵]octatetraconta-19,21,23,25,27,29,40,42,44-nonaen-36-yl 3,4,5-trihydroxybenzoate

(1r,4s,6s,7r,10s,12r,15r,16s,34r,36s,37r,46r)-1,2,2,3,3,7,10,21,22,27,28,42,43-tridecahydroxy-13,18,31,39-tetraoxo-5,9,14,17,32,35,38,47,48-nonaoxaundecacyclo[42.2.1.1²³,²⁶.0⁴,¹².0⁶,¹⁰.0¹²,⁴⁶.0¹⁵,³⁴.0¹⁶,³⁷.0¹⁹,²⁴.0²⁵,³⁰.0⁴⁰,⁴⁵]octatetraconta-19,21,23,25,27,29,40,42,44-nonaen-36-yl 3,4,5-trihydroxybenzoate

C46H36O31 (1084.1241)


   

2-[5-(carboxymethyl)-2-(2-chloro-1-hydroxyethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[5-(carboxymethyl)-2-(2-chloro-1-hydroxyethyl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C20H33ClO6 (404.1966)


   

3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

C20H32O2 (304.2402)


   

(3r,4as,6as,8r,10ar,10bs)-3-ethenyl-8-hydroxy-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-9-one

(3r,4as,6as,8r,10ar,10bs)-3-ethenyl-8-hydroxy-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-9-one

C20H32O3 (320.2351)


   

(1r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(1r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11(16),12,14,17,19,21,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

methyl 3-[(2r,4as,5s,6r,7r,8as)-2-ethenyl-7-hydroxy-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoate

methyl 3-[(2r,4as,5s,6r,7r,8as)-2-ethenyl-7-hydroxy-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoate

C21H36O5 (368.2563)


   

methyl 3-[(1s,4r,5r,6s,9s)-10-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[7.2.1.0¹,⁶]dodec-10-en-5-yl]propanoate

methyl 3-[(1s,4r,5r,6s,9s)-10-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[7.2.1.0¹,⁶]dodec-10-en-5-yl]propanoate

C21H32O3 (332.2351)


   

3-[(2r,4as,5r,6s,8as)-2-ethenyl-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoic acid

3-[(2r,4as,5r,6s,8as)-2-ethenyl-6-(2-hydroxypropan-2-yl)-2,5,8a-trimethyl-hexahydro-1-benzopyran-5-yl]propanoic acid

C20H34O4 (338.2457)


   

(1r,19r,21s,22r,23r)-6,7,8,11,12,13,22-heptahydroxy-16-oxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl 3,4,5-trihydroxybenzoate

(1r,19r,21s,22r,23r)-6,7,8,11,12,13,22-heptahydroxy-16-oxo-21-(3,4,5-trihydroxybenzoyloxy)-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-23-yl 3,4,5-trihydroxybenzoate

C34H28O21 (772.1123)


   

3-[(1r,4r,5r,6s,8r,9r)-9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[(1r,4r,5r,6s,8r,9r)-9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O4 (336.23)


   

(2s,3r,4r,5s,6s)-2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl acetate

(2s,3r,4r,5s,6s)-2-{[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxochromen-3-yl]oxy}-3,5-dihydroxy-6-methyloxan-4-yl acetate

C23H22O11 (474.1162)


   

5-(5-hydroxy-3-methylpent-3-en-1-yl)-1,1,4a-trimethyl-6-methylidene-hexahydronaphthalen-2-one

5-(5-hydroxy-3-methylpent-3-en-1-yl)-1,1,4a-trimethyl-6-methylidene-hexahydronaphthalen-2-one

C20H32O2 (304.2402)


   

3,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

3,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C41H32O26 (940.1182)


   

(1s,4r,9r,10s,13r)-5,5,9,13-tetramethyl-6,12-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadeca-7,14-dien-7-yl acetate

(1s,4r,9r,10s,13r)-5,5,9,13-tetramethyl-6,12-dioxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadeca-7,14-dien-7-yl acetate

C22H28O4 (356.1987)


   

(2r,4as,4bs,5r,7s,10ar)-7-[(1s)-1,2-dihydroxyethyl]-2,5-dihydroxy-1,1,4a,7-tetramethyl-2,4,4b,5,6,9,10,10a-octahydrophenanthren-3-one

(2r,4as,4bs,5r,7s,10ar)-7-[(1s)-1,2-dihydroxyethyl]-2,5-dihydroxy-1,1,4a,7-tetramethyl-2,4,4b,5,6,9,10,10a-octahydrophenanthren-3-one

C20H32O5 (352.225)


   

3-[9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[9-hydroxy-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O4 (336.23)


   

(1s,2r,5s,6s,8r,9r,12r,14s)-5,13,13-trimethyl-7,15-dioxahexacyclo[12.2.2.1⁵,⁹.0¹,¹².0²,⁹.0⁶,⁸]nonadecan-14-ol

(1s,2r,5s,6s,8r,9r,12r,14s)-5,13,13-trimethyl-7,15-dioxahexacyclo[12.2.2.1⁵,⁹.0¹,¹².0²,⁹.0⁶,⁸]nonadecan-14-ol

C20H30O3 (318.2195)


   

2-[(1r,4s,5s,6s,9s)-5-(carboxymethyl)-5,9-dimethyltricyclo[7.2.1.0¹,⁶]dodec-10-en-4-yl]-2-methylpropanoic acid

2-[(1r,4s,5s,6s,9s)-5-(carboxymethyl)-5,9-dimethyltricyclo[7.2.1.0¹,⁶]dodec-10-en-4-yl]-2-methylpropanoic acid

C20H30O4 (334.2144)


   

5,5,9,13-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-ol

5,5,9,13-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-ol

C20H32O (288.2453)


   

(4ar,8as)-5-[(3s)-5-chloro-3,4-dihydroxy-3-methylpentyl]-1,1,4a,6-tetramethyl-4,7,8,8a-tetrahydro-3h-naphthalen-2-one

(4ar,8as)-5-[(3s)-5-chloro-3,4-dihydroxy-3-methylpentyl]-1,1,4a,6-tetramethyl-4,7,8,8a-tetrahydro-3h-naphthalen-2-one

C20H33ClO3 (356.2118)


   

(6-{[5,7-dihydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)chromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 3,4,5-trihydroxybenzoate

(6-{[5,7-dihydroxy-4-oxo-2-(3,4,5-trihydroxyphenyl)chromen-3-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 3,4,5-trihydroxybenzoate

C28H24O17 (632.1013)


   

1-chloro-5-(6-hydroxy-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpentane-2,3-diol

1-chloro-5-(6-hydroxy-2,5,5,8a-tetramethyl-3,4,4a,6,7,8-hexahydronaphthalen-1-yl)-3-methylpentane-2,3-diol

C20H35ClO3 (358.2275)


   

7-(1,2-dihydroxyethyl)-2,5-dihydroxy-1,1,4a,7-tetramethyl-2,4,4b,5,6,9,10,10a-octahydrophenanthren-3-one

7-(1,2-dihydroxyethyl)-2,5-dihydroxy-1,1,4a,7-tetramethyl-2,4,4b,5,6,9,10,10a-octahydrophenanthren-3-one

C20H32O5 (352.225)


   

(1s,4r,6r,9r,10r,13r)-6-hydroxy-5,5,9,13-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-ene-7,12-dione

(1s,4r,6r,9r,10r,13r)-6-hydroxy-5,5,9,13-tetramethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-ene-7,12-dione

C20H28O3 (316.2038)


   

(2s,3r,4s,5r,6r)-3,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

(2s,3r,4s,5r,6r)-3,4,5-tris(3,4,5-trihydroxybenzoyloxy)-6-[(3,4,5-trihydroxybenzoyloxy)methyl]oxan-2-yl 3,4,5-trihydroxybenzoate

C41H32O26 (940.1182)


   

(1r,7r,8s,26r,28s,29r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

(1r,7r,8s,26r,28s,29r,38r)-1,13,14,15,18,19,20,34,35,39,39-undecahydroxy-2,5,10,23,31-pentaoxo-6,9,24,27,30,40-hexaoxaoctacyclo[34.3.1.0⁴,³⁸.0⁷,²⁶.0⁸,²⁹.0¹¹,¹⁶.0¹⁷,²².0³²,³⁷]tetraconta-3,11,13,15,17(22),18,20,32,34,36-decaen-28-yl 3,4,5-trihydroxybenzoate

C41H28O27 (952.0818)


   

(3r,4as,6ar,10ar,10br)-3-ethenyl-3-(hydroxymethyl)-4a,7,7,10a-tetramethyl-octahydronaphtho[2,1-b]pyran-8-one

(3r,4as,6ar,10ar,10br)-3-ethenyl-3-(hydroxymethyl)-4a,7,7,10a-tetramethyl-octahydronaphtho[2,1-b]pyran-8-one

C20H32O3 (320.2351)


   

12-ethenyl-2,6,6,10,12-pentamethyl-5,11-dioxatricyclo[8.4.0.0²,⁷]tetradecan-4-one

12-ethenyl-2,6,6,10,12-pentamethyl-5,11-dioxatricyclo[8.4.0.0²,⁷]tetradecan-4-one

C19H30O3 (306.2195)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(3,4,5-trimethoxyphenoxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(3,4,5-trimethoxyphenoxy)oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C22H26O13 (498.1373)


   

(2r,3r)-2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

(2r,3r)-2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C21H22O11 (450.1162)


   

5,13,13-trimethyl-7,15-dioxahexacyclo[12.2.2.1⁵,⁹.0¹,¹².0²,⁹.0⁶,⁸]nonadecan-14-ol

5,13,13-trimethyl-7,15-dioxahexacyclo[12.2.2.1⁵,⁹.0¹,¹².0²,⁹.0⁶,⁸]nonadecan-14-ol

C20H30O3 (318.2195)


   

[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17(22),18,20,34(38),35-nonaen-29-yl]acetic acid

[13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11,13,15,17(22),18,20,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.0974)


   

3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran-8-ol

3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran-8-ol

C20H34O2 (306.2559)


   

(1s,2r,3s,7s,10s,12r)-12-ethenyl-2,6,6,10,12-pentamethyl-5-oxo-4,11-dioxatricyclo[8.4.0.0²,⁷]tetradecane-3-carboxylic acid

(1s,2r,3s,7s,10s,12r)-12-ethenyl-2,6,6,10,12-pentamethyl-5-oxo-4,11-dioxatricyclo[8.4.0.0²,⁷]tetradecane-3-carboxylic acid

C20H30O5 (350.2093)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[5-(hydroxymethyl)-2-methoxyphenoxy]oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-[5-(hydroxymethyl)-2-methoxyphenoxy]oxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C21H24O12 (468.1268)


   

(3r,4ar,6as,10as,10br)-3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran

(3r,4ar,6as,10as,10br)-3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydro-1h-naphtho[2,1-b]pyran

C20H34O (290.261)


   

2-[5-(carboxymethyl)-2-ethenyl-3-hydroxy-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[5-(carboxymethyl)-2-ethenyl-3-hydroxy-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C20H32O6 (368.2199)


   

3-[(1s,4r,5r,6s,9r)-5,10-dimethyl-4-(prop-1-en-2-yl)tricyclo[7.2.1.0¹,⁶]dodec-10-en-5-yl]propanoic acid

3-[(1s,4r,5r,6s,9r)-5,10-dimethyl-4-(prop-1-en-2-yl)tricyclo[7.2.1.0¹,⁶]dodec-10-en-5-yl]propanoic acid

C20H30O2 (302.2246)


   

3-[9-hydroxy-5,9-dimethyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[9-hydroxy-5,9-dimethyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O3 (320.2351)


   

methyl 3-[10-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[7.2.1.0¹,⁶]dodec-10-en-5-yl]propanoate

methyl 3-[10-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[7.2.1.0¹,⁶]dodec-10-en-5-yl]propanoate

C21H32O3 (332.2351)


   

(1s,4s,6r,9s,10s,13r)-14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-ol

(1s,4s,6r,9s,10s,13r)-14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-ol

C20H32O2 (304.2402)


   

(1s,4s,6s,9s,10s,13r)-6-hydroxy-14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-7-one

(1s,4s,6s,9s,10s,13r)-6-hydroxy-14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-7-one

C20H30O3 (318.2195)


   

2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3-dihydro-1-benzopyran-4-one

2-(3,5-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3-dihydro-1-benzopyran-4-one

C21H22O11 (450.1162)


   

catechin-7-o-glucoside

catechin-7-o-glucoside

C21H24O11 (452.1319)


   

(1r,4s,10s,11r,13s,14s)-14-hydroxy-5,5,10,14-tetramethyl-6-oxatetracyclo[11.2.2.0¹,¹¹.0⁴,¹⁰]heptadecan-7-one

(1r,4s,10s,11r,13s,14s)-14-hydroxy-5,5,10,14-tetramethyl-6-oxatetracyclo[11.2.2.0¹,¹¹.0⁴,¹⁰]heptadecan-7-one

C20H32O3 (320.2351)


   

3-[(1s,4r,5r,6s,8r,9s)-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

3-[(1s,4r,5r,6s,8r,9s)-9-(hydroxymethyl)-5-methyl-4-(prop-1-en-2-yl)tricyclo[6.2.2.0¹,⁶]dodecan-5-yl]propanoic acid

C20H32O3 (320.2351)


   

2-[10-(carboxymethyl)-3,10-dimethyl-7-oxo-6-oxatricyclo[7.4.0.0¹,⁵]tridec-3-en-11-yl]-2-methylpropanoic acid

2-[10-(carboxymethyl)-3,10-dimethyl-7-oxo-6-oxatricyclo[7.4.0.0¹,⁵]tridec-3-en-11-yl]-2-methylpropanoic acid

C20H28O6 (364.1886)


   

(2s,3r,4r,5r,6s)-2-{[(2r,3s)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-methyloxane-3,4,5-triol

(2s,3r,4r,5r,6s)-2-{[(2r,3s)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-methyloxane-3,4,5-triol

C21H24O10 (436.1369)


   

(1s,4s,9s,10s,13r)-14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-one

(1s,4s,9s,10s,13r)-14-(hydroxymethyl)-5,5,9-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-6-one

C20H30O2 (302.2246)


   

(1r,3r,4as,6as,10ar,10br)-3-ethenyl-1-hydroxy-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

(1r,3r,4as,6as,10ar,10br)-3-ethenyl-1-hydroxy-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

C20H32O3 (320.2351)


   

(2r,3r,4s,5s,6r)-2-[(4-hydroxy-3,5-dimethoxyphenyl)methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-[(4-hydroxy-3,5-dimethoxyphenyl)methoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C15H22O9 (346.1264)


   

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

(1s,19r,21s,22r,23r)-6,7,8,11,12,13,22,23-octahydroxy-3,16-dioxo-2,17,20-trioxatetracyclo[17.3.1.0⁴,⁹.0¹⁰,¹⁵]tricosa-4(9),5,7,10,12,14-hexaen-21-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806)


   

6,7,14-trihydroxy-13-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

6,7,14-trihydroxy-13-[(3,4,5-trihydroxyoxan-2-yl)oxy]-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

C19H14O12 (434.0485)


   

(3r,4as,6as,10ar,10br)-3,4a,7,7,10a-pentamethyl-3-[(2r)-oxiran-2-yl]-octahydronaphtho[2,1-b]pyran-8-one

(3r,4as,6as,10ar,10br)-3,4a,7,7,10a-pentamethyl-3-[(2r)-oxiran-2-yl]-octahydronaphtho[2,1-b]pyran-8-one

C20H32O3 (320.2351)


   

5,12-dimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-ene-10,13-diol

5,12-dimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-ene-10,13-diol

C19H28O3 (304.2038)


   

(2s,4as,5r,8as)-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,1,4a-trimethyl-6-methylidene-hexahydro-2h-naphthalen-2-ol

(2s,4as,5r,8as)-5-[(3e)-5-hydroxy-3-methylpent-3-en-1-yl]-1,1,4a-trimethyl-6-methylidene-hexahydro-2h-naphthalen-2-ol

C20H34O2 (306.2559)


   

2-[(1s,5s,9s,10s,11s)-10-(carboxymethyl)-3,10-dimethyl-7-oxo-6-oxatricyclo[7.4.0.0¹,⁵]tridec-3-en-11-yl]-2-methylpropanoic acid

2-[(1s,5s,9s,10s,11s)-10-(carboxymethyl)-3,10-dimethyl-7-oxo-6-oxatricyclo[7.4.0.0¹,⁵]tridec-3-en-11-yl]-2-methylpropanoic acid

C20H28O6 (364.1886)


   

(4as,4br,5r,7s,8r,10ar)-7-[(1s)-1,2-dihydroxyethyl]-5,8-dihydroxy-1,1,4a,7-tetramethyl-3,4,4b,5,6,8,10,10a-octahydrophenanthren-2-one

(4as,4br,5r,7s,8r,10ar)-7-[(1s)-1,2-dihydroxyethyl]-5,8-dihydroxy-1,1,4a,7-tetramethyl-3,4,4b,5,6,8,10,10a-octahydrophenanthren-2-one

C20H32O5 (352.225)


   

2-[(2s,3r,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-3-hydroxy-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

2-[(2s,3r,4as,5r,6s,8as)-5-(carboxymethyl)-2-ethenyl-3-hydroxy-2,5,8a-trimethyl-hexahydro-1-benzopyran-6-yl]-2-methylpropanoic acid

C20H32O6 (368.2199)


   

[(4r,5s,7r,25s,26r,29s,30s,31s)-13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11(16),12,14,17,19,21,34(38),35-nonaen-29-yl]acetic acid

[(4r,5s,7r,25s,26r,29s,30s,31s)-13,14,15,18,19,20,31,35,36-nonahydroxy-2,10,23,28,32-pentaoxo-5-(3,4,5-trihydroxybenzoyloxy)-3,6,9,24,27,33-hexaoxaheptacyclo[28.7.1.0⁴,²⁵.0⁷,²⁶.0¹¹,¹⁶.0¹⁷,²².0³⁴,³⁸]octatriaconta-1(37),11(16),12,14,17,19,21,34(38),35-nonaen-29-yl]acetic acid

C41H30O27 (954.0974)


   

(1s,3r,4as,6as,10ar,10br)-3-ethenyl-1-hydroxy-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

(1s,3r,4as,6as,10ar,10br)-3-ethenyl-1-hydroxy-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

C20H32O3 (320.2351)


   

6,7,14-trihydroxy-13-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

6,7,14-trihydroxy-13-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

C19H14O12 (434.0485)


   

5-[5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

5-[5-(hydroxymethyl)-5,8a-dimethyl-2-methylidene-hexahydro-1h-naphthalen-1-yl]-3-methylpent-2-en-1-ol

C20H34O2 (306.2559)


   

(3r,4as,6ar,10ar,10br)-3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

(3r,4as,6ar,10ar,10br)-3-ethenyl-3,4a,7,7,10a-pentamethyl-octahydronaphtho[2,1-b]pyran-8-one

C20H32O2 (304.2402)


   

(1r,2r,5r,8s,10r,11s,13r)-12,12-dimethyl-6-methylidene-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-10,13-diol

(1r,2r,5r,8s,10r,11s,13r)-12,12-dimethyl-6-methylidene-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecane-10,13-diol

C20H30O3 (318.2195)


   

(3r,4ar,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3r,4ar,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(1s,2s,5r,8r,10s,11s,12r,13s)-5,12-dimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-ene-10,13-diol

(1s,2s,5r,8r,10s,11s,12r,13s)-5,12-dimethyl-14-oxapentacyclo[11.2.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadec-6-ene-10,13-diol

C19H28O3 (304.2038)