Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Arbutin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-hydroxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C12H16O7 (272.0896)


Hydroquinone O-beta-D-glucopyranoside is a monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It has a role as a plant metabolite and an Escherichia coli metabolite. It is a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a hydroquinone. Extracted from the dried leaves of bearberry plant in the genus Arctostaphylos and other plants commonly in the Ericaceae family, arbutin is a beta-D-glucopyranoside of [DB09526]. It is found in foods, over-the-counter drugs, and herbal dietary supplements. Most commonly, it is an active ingredient in skincare and cosmetic products as a skin-lightening agent for the prevention of melanin formation in various skin conditions that involve cutaneous hyperpigmentation or hyperactive melanocyte function. It has also been used as an anti-infective for the urinary system as well as a diuretic. Arbutin is available in both natural and synthetic forms; it can be synthesized from acetobromglucose and [DB09526]. Arbutin is a competitive inhibitor of tyrosinase (E.C.1.14.18.1) in melanocytes, and the inhibition of melanin synthesis at non-toxic concentrations was observed in vitro. Arbutin was shown to be less cytotoxic to melanocytes in culture compared to [DB09526]. Arbutin is a natural product found in Grevillea robusta, Halocarpus biformis, and other organisms with data available. See also: Arctostaphylos uva-ursi leaf (part of); Arbutin; octinoxate (component of); Adenosine; arbutin (component of) ... View More ... Arbutin, also known as hydroquinone-O-beta-D-glucopyranoside or P-hydroxyphenyl beta-D-glucopyranoside, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Arbutin is soluble (in water) and a very weakly acidic compound (based on its pKa). Arbutin can be found in a number of food items such as guava, lingonberry, irish moss, and rowal, which makes arbutin a potential biomarker for the consumption of these food products. Arbutin is a glycoside; a glycosylated hydroquinone extracted from the bearberry plant in the genus Arctostaphylos among many other medicinal plants, primarily in the Ericaceae family. Applied topically, it inhibits tyrosinase and thus prevents the formation of melanin. Arbutin is therefore used as a skin-lightening agent. Very tiny amounts of arbutin are found in wheat, pear skins, and some other foods. It is also found in Bergenia crassifolia. Arbutin was also produced by an in vitro culture of Schisandra chinensis . A monosaccharide derivative that is hydroquinone attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. Arbutin is found in apple. Glucoside in pear leaves (Pyrus communis C471 - Enzyme Inhibitor CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6126; ORIGINAL_PRECURSOR_SCAN_NO 6123 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6107; ORIGINAL_PRECURSOR_SCAN_NO 6104 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 811; ORIGINAL_PRECURSOR_SCAN_NO 808 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 806; ORIGINAL_PRECURSOR_SCAN_NO 804 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 813; ORIGINAL_PRECURSOR_SCAN_NO 811 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 832; ORIGINAL_PRECURSOR_SCAN_NO 828 CONFIDENCE standard compound; INTERNAL_ID 1335; DATASET 20200303_ENTACT_RP_MIX504; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 817; ORIGINAL_PRECURSOR_SCAN_NO 816 Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3]. Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3].

   

Uridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,2,3,4-tetrahydropyrimidine-2,4-dione

C9H12N2O6 (244.0695)


Uridine, also known as beta-uridine or 1-beta-D-ribofuranosylpyrimidine-2,4(1H,3H)-dione, is a member of the class of compounds known as pyrimidine nucleosides. Pyrimidine nucleosides are compounds comprising a pyrimidine base attached to a ribosyl or deoxyribosyl moiety. More specifically, uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Uridine can be synthesized from uracil. It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. Uridine is also a parent compound for other transformation products, including but not limited to, nikkomycin Z, 3-(enolpyruvyl)uridine 5-monophosphate, and 5-aminomethyl-2-thiouridine. Uridine can be found in most biofluids, including urine, breast milk, cerebrospinal fluid (CSF), and blood. Within the cell, uridine is primarily located in the mitochondria, in the nucleus and the lysosome. It can also be found in the extracellular space. As an essential nucleoside, uridine exists in all living species, ranging from bacteria to humans. In humans, uridine is involved in several metabolic disorders, some of which include dhydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and beta-ureidopropionase deficiency. Moreover, uridine is found to be associated with Lesch-Nyhan syndrome, which is an inborn error of metabolism. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine plays a role in the glycolysis pathway of galactose. In humans there is no catabolic process to metabolize galactose. Therefore, galactose is converted to glucose and metabolized via the normal glucose metabolism pathways. More specifically, consumed galactose is converted into galactose 1-phosphate (Gal-1-P). This molecule is a substrate for the enzyme galactose-1-phosphate uridyl transferase which transfers a UDP molecule to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose. Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate blood uridine levels. On the other hand, consumption of RNA-rich foods may lead to high levels of purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout. Uridine is a ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a fundamental metabolite and a drug metabolite. It is functionally related to a uracil. Uridine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Uridine is a Pyrimidine Analog. The chemical classification of uridine is Pyrimidines, and Analogs/Derivatives. Uridine is a natural product found in Ulva australis, Synechocystis, and other organisms with data available. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine has been studied as a rescue agent to reduce the toxicities associated with 5-fluorouracil (5-FU), thereby allowing the administration of higher doses of 5-FU in chemotherapy regimens. (NCI04) Uridine is a metabolite found in or produced by Saccharomyces cerevisiae. A ribonucleoside in which RIBOSE is linked to URACIL. Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a b-N1-glycosidic bond. ; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Uridine is found in many foods, some of which are celery leaves, canola, common hazelnut, and hickory nut. A ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. [Spectral] Uridine (exact mass = 244.06954) and Adenosine (exact mass = 267.09675) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Uridine (exact mass = 244.06954) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Uridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-96-8 (retrieved 2024-06-29) (CAS RN: 58-96-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Dicentrine

(12S)-16,17-dimethoxy-11-methyl-3,5-dioxa-11-azapentacyclo[10.7.1.02,6.08,20.014,19]icosa-1(20),2(6),7,14,16,18-hexaene

C20H21NO4 (339.1471)


Dicentrine is an aporphine alkaloid. Dicentrine is a natural product found in Cissampelos pareira, Stephania abyssinica, and other organisms with data available. Dicentrine is an anticancer compound isolated from Lindera, a species of flowering plants. Dicentrine is a natural product isolated from the plant Stephania epigaea Lo with antihypertensive effect. Dicentrine is an α1-adrenoceptor antagonist which has effective against human hyperplastic prostates[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. Acquisition and generation of the data is financially supported in part by CREST/JST. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Betulinic acid

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.3603)


Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Alphitolsaure

(1R,3aS,5aR,5bR,7aR,9R,10R,11aR,11bR,13aR,13bR)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O4 (472.3552)


2alpha,3beta-dihydroxy-20(29)-lupen-28-oic acid is a pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a dihydroxy monocarboxylic acid. It is functionally related to a betulinic acid. It derives from a hydride of a lupane. Alphitolic acid is a natural product found in Quercus aliena, Alphitonia petriei, and other organisms with data available. A pentacyclic triterpenoid that is betulinic acid carrying an additional alpha-hydroxy group at position 2. It has been isolated from Breynia fruticosa.

   

4-O-beta-Glucopyranosyl-cis-coumaric acid

(Z)-3-(4-(((2S,3R,4S,5S,6R)-3,4,5-Trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)acrylic acid

C15H18O8 (326.1002)


4-O-beta-D-glucosyl-cis-p-coumaric acid is a 4-O-beta-D-glucosyl-4-coumaric acid. It is a conjugate acid of a 4-O-beta-D-glucosyl-cis-p-coumarate. 4-O-beta-D-glucosyl-cis-p-coumaric acid is a natural product found in Kunzea ambigua, Breynia rostrata, and other organisms with data available.

   

Papaverine

1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxy isoquinoline

C20H21NO4 (339.1471)


Papaverine is an alkaloid found in opium but not closely related to the other opium alkaloids in its structure or pharmacological actions. It is a direct-acting smooth muscle relaxant used in the treatment of impotence and as a vasodilator, especially for cerebral vasodilation. The mechanism of its pharmacological actions is not clear, but it apparently can inhibit phosphodiesterases and it may have direct actions on calcium channels. [PubChem]. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D000089162 - Genitourinary Agents > D064804 - Urological Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2252 Alkaloid from Papaver somniferum (opium poppy)

   

(+)-Syringaresinol

4-[(1S,3aR,4S,6aR)-4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1628)


(+)-syringaresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-syringaresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-syringaresinol can be found in a number of food items such as radish (variety), grape wine, oat, and ginkgo nuts, which makes (+)-syringaresinol a potential biomarker for the consumption of these food products.

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[2-[6-[2,4-dimethoxy-3,6-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]phenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

12-Hydroxyjasmonic acid glucoside

2-[(1R,2R)-3-oxo-2-[(2Z)-5-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pent-2-en-1-yl]cyclopentyl]acetic acid

C18H28O9 (388.1733)


12-hydroxyjasmonic acid glucoside, also known as tuberonic acid beta-D-glucoside, is a member of the class of compounds known as fatty acyl glycosides of mono- and disaccharides. Fatty acyl glycosides of mono- and disaccharides are compounds composed of a mono- or disaccharide moiety linked to one hydroxyl group of a fatty alcohol or of a phosphorylated alcohol (phosphoprenols), a hydroxy fatty acid or to one carboxyl group of a fatty acid (ester linkage) or to an amino alcohol. 12-hydroxyjasmonic acid glucoside is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 12-hydroxyjasmonic acid glucoside can be found in potato, which makes 12-hydroxyjasmonic acid glucoside a potential biomarker for the consumption of this food product.

   

Quercetin 7-glucoside

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 7-glucoside, also known as quercimeritrin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Quercetin 7-glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Quercetin 7-glucoside can be found in a number of food items such as roman camomile, okra, dandelion, and cottonseed, which makes quercetin 7-glucoside a potential biomarker for the consumption of these food products. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Dihydrophaseic acid

(2Z,4E)-3-Methyl-5-[(1S)-1alpha-hydroxy-2,6-dimethyl-2alpha,6alpha-(epoxymethano)-4beta-hydroxycyclohexane-1-yl]-2,4-pentadienoic acid

C15H22O5 (282.1467)


Dihydrophaseic acid is an apo carotenoid sesquiterpenoid that is phaseic acid in which the keto group has been reduced to the corresponding alcohol such that the two hydroxy groups are on opposite sides of the 6-membered ring. It has a role as a metabolite. It is a 6-hydroxy monocarboxylic acid, a cyclic ether, a tertiary alcohol, a secondary alcohol, an apo carotenoid sesquiterpenoid and an alpha,beta-unsaturated monocarboxylic acid. It is functionally related to a phaseic acid. Dihydrophaseic acid is a natural product found in Breynia rostrata, Sophora alopecuroides, and other organisms with data available. Dihydrophaseic acid (DPA), also known as 4-dihydrophaseic acid, belongs to the class of organic compounds known as abscisic acid and derivatives. These are terpene compounds containing the abscisic acid moiety, which is characterized by a 3-methylpenta-2,4-dienoic acid attached to the C1 carbon of a 4-oxocyclohex-2-ene moiety. Dihydrophaseic acid is found in coconut. Dihydrophaseic acid is isolated from French beans. An apo carotenoid sesquiterpenoid that is phaseic acid in which the keto group has been reduced to the corresponding alcohol such that the two hydroxy groups are on opposite sides of the 6-membered ring. Isolated from French beans. Dihydrophaseic acid is found in many foods, some of which are sunflower, corn, pulses, and coconut.

   

Pinoresinol

Phenol,4-(tetrahydro-1H,3H-furo[3,4-c]furan-1,4-diyl)bis[2-methoxy-, [1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.)]-

C20H22O6 (358.1416)


4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Pentadecanol

InChI=1/C15H32O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16/h16H,2-15H2,1H

C15H32O (228.2453)


Pentadecanol is a C-15 fatty alcohol. Very long chain fatty alcohols (VLCFA), obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans. They can be found in unrefined cereal grains, beeswax, and many plant-derived foods. Reports suggest that 5–20 mg per day of mixed C24–C34 alcohols, including octacosanol and triacontanol, lower low-density lipoprotein (LDL) cholesterol by 21\\\\%–29\\\\% and raise high-density lipoprotein cholesterol by 8\\\\%–15\\\\%. Wax esters are hydrolyzed by a bile salt-dependent pancreatic carboxyl esterase, releasing long chain alcohols and fatty acids that are absorbed in the gastrointestinal tract. Studies of fatty alcohol metabolism in fibroblasts suggest that very long chain fatty alcohols, fatty aldehydes, and fatty acids are reversibly inter-converted in a fatty alcohol cycle. The metabolism of these compounds is impaired in several inherited human peroxisomal disorders, including adrenoleukodystrophy and Sjögren-Larsson syndrome. Pentadecanol is a colorless liquid with a faint odor of alcohol. Floats on water. (USCG, 1999) Pentadecan-1-ol is a long-chain fatty alcohol that is pentadecane in which one of the terminal methyl hydrogens is replaced by a hydroxy group It is a long-chain primary fatty alcohol and a pentadecanol. 1-Pentadecanol is a natural product found in Curcuma amada, Cichorium endivia, and other organisms with data available. A long-chain fatty alcohol that is pentadecane in which one of the terminal methyl hydrogens is replaced by a hydroxy group Pentadecanol is a C-15 fatty alcohol 1-Pentadecanol is a naturally occurring antiacne agent[1]. 1-Pentadecanol is a naturally occurring antiacne agent[1].

   

Ergosterol peroxide

5-[(3E)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

C28H44O3 (428.329)


Ergosterol peroxide is found in fruits. Ergosterol peroxide is obtained from leaves of Ananas comosus (pineapple obtained from leaves of Ananas comosus (pineapple). Ergosterol peroxide is found in pineapple and fruits.

   

2-Phenylethyl beta-D-glucopyranoside

2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.126)


2-Phenylethyl alpha-D-glucopyranoside is found in alcoholic beverages. 2-Phenylethyl alpha-D-glucopyranoside is isolated from Riesling grapes. 2-Phenylethyl beta-D-glucopyranoside is a constituent of Rosa damascena bulgaria (damask rose) and Vitis vinifera (wine grape).

   

Isolariciresinol 9'-O-beta-D-glucoside

2-{[7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


Isolariciresinol 9-O-beta-D-glucoside is a constituent of Scots pine (Pinus sylvestris) needles. Constituent of Scots pine (Pinus sylvestris) needles

   

Kaempferol 3-gentiobioside 7-rhamnoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C33H40O20 (756.2113)


Kaempferol 3-gentiobioside 7-rhamnoside is found in green vegetables. Kaempferol 3-gentiobioside 7-rhamnoside is a constituent of Sauropus androgynus (katuk) Constituent of Sauropus androgynus (katuk). Kaempferol 3-gentiobioside 7-rhamnoside is found in green vegetables.

   

7-Epi-12-hydroxyjasmonic acid glucoside

2-{3-oxo-2-[(2E)-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pent-2-en-1-yl]cyclopentyl}acetic acid

C18H28O9 (388.1733)


7-Epi-12-hydroxyjasmonic acid glucoside is found in alcoholic beverages. 7-Epi-12-hydroxyjasmonic acid glucoside is isolated from potato leaves (Solanum tuberosum). Isolated from potato leaves (Solanum tuberosum). 7-Epi-12-hydroxyjasmonic acid glucoside is found in alcoholic beverages and potato.

   

Quercimeritrin

Quercetin 7-O-beta-D-glucoside

C21H20O12 (464.0955)


Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Blumenol C glucoside

3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)cyclohex-2-en-1-one

C19H32O7 (372.2148)


Blumenol C glucoside is found in alcoholic beverages. Blumenol C glucoside is isolated from wine grape Vitis vinifera. Isolated from wine grape Vitis vinifera. Blumenol C O-glucoside is found in alcoholic beverages and fruits. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(7'R,8'R)-4,7'-Epoxy-3'-methoxy-4',5,9,9'-lignanetetrol 9'-glucoside

2-{[7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C25H32O11 (508.1945)


(7R,8R)-4,7-Epoxy-3-methoxy-4,5,9,9-lignanetetrol 9-glucoside is found in alcoholic beverages. (7R,8R)-4,7-Epoxy-3-methoxy-4,5,9,9-lignanetetrol 9-glucoside is isolated from Riesling wine. Isolated from Riesling wine. (7R,8R)-4,7-Epoxy-3-methoxy-4,5,9,9-lignanetetrol 9-glucoside is found in alcoholic beverages.

   

Sitoindoside I

(6-{[14-(5-ethyl-6-methylheptan-2-yl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-5-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl hexadecanoic acid

C51H90O7 (814.6686)


Sitoindoside I is found in fruits. Sitoindoside I is a constituent of fruits of banana (Musa paradisiaca) Constituent of fruits of banana (Musa paradisiaca). Sitoindoside I is found in spearmint and fruits.

   

1-[(2R,3S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dione

1-[3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-4-hydroxy-1,2-dihydropyrimidin-2-one

C9H12N2O6 (244.0695)


1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2]. 1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2]. 1-beta-D-Arabinofuranosyluracil (Uracil 1-β-D-arabinofuranoside) isolated from the Caribbean sponge Tectitethya crypta, is a methoxyadenosine derivative. 1-beta-D-Arabinofuranosyluracil has demonstrated a diverse bioactivity profile including anti-inflammatory activity, analgesic and vasodilation properties[1]. 1-beta-D-Arabinofuranosyluracil reduces a proliferation of mouse lymphoma cells[2].

   

9-beta-d-Arabinofuranosylguanine

2-(6-hydroxy-2-imino-3,9-dihydro-2H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O5 (283.0917)


   

9-Arabinofuranosyladenine

2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


   

Epipinoresinol

4-[4-(4-hydroxy-3-methoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2-methoxyphenol

C20H22O6 (358.1416)


(+)-pinoresinol is a member of the class of compounds known as furanoid lignans. Furanoid lignans are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units (+)-pinoresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-pinoresinol can be found in a number of food items such as chanterelle, pecan nut, pine nut, and common hazelnut, which makes (+)-pinoresinol a potential biomarker for the consumption of these food products. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Kaempferol 3-coumaroyl-triglucoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C33H40O20 (756.2113)


Kaempferol 3-coumaroyl-triglucoside, also known as kaempferol 3-gentiobioside-7-rhamnoside, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Kaempferol 3-coumaroyl-triglucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-coumaroyl-triglucoside can be found in common pea, which makes kaempferol 3-coumaroyl-triglucoside a potential biomarker for the consumption of this food product.

   

Benzyl 6-O-beta-D-apiofuranosyl-beta-D-glucoside

(2R,3R,4S,5S,6R)-2-(benzyloxy)-6-({[(2R,3R,4R)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol

C18H26O10 (402.1526)


Benzyl 6-o-beta-d-apiofuranosyl-beta-d-glucoside, also known as benzyl acuminose, is a member of the class of compounds known as O-glycosyl compounds. O-glycosyl compounds are glycoside in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Benzyl 6-o-beta-d-apiofuranosyl-beta-d-glucoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Benzyl 6-o-beta-d-apiofuranosyl-beta-d-glucoside can be found in common grape, which makes benzyl 6-o-beta-d-apiofuranosyl-beta-d-glucoside a potential biomarker for the consumption of this food product.

   

Kaempferol 3-gentiobioside

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O16 (610.1534)


Kaempferol 3-gentiobioside is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-gentiobioside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-gentiobioside can be found in soy bean, which makes kaempferol 3-gentiobioside a potential biomarker for the consumption of this food product.

   

dihydroxyphaseic acid

5-{3,8-dihydroxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl}-3-methylpenta-2,4-dienoic acid

C15H21O5 (281.1389)


Dihydroxyphaseic acid is also known as dihydroxyphaseate. Dihydroxyphaseic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Dihydroxyphaseic acid can be found in a number of food items such as olive, turmeric, macadamia nut, and shiitake, which makes dihydroxyphaseic acid a potential biomarker for the consumption of these food products.

   

Kaempferol 3-O-beta-glucopyranoside-7-O-alpha-rhamnopyranoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-{[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-4H-chromen-4-one

C27H30O15 (594.1585)


   

Uridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]pyrimidine-2,4-dione

C9H12N2O6 (244.0695)


C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

Quercimeritrin

2-(3,4-dihydroxyphenyl)-3,5-dihydroxy-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O12 (464.0955)


Quercetin 7-O-beta-D-glucoside is a quercetin O-glucoside in which a glucosyl residue is attached at position 7 of quercetin via a beta-glycosidic linkage. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a member of flavonols, a tetrahydroxyflavone and a quercetin O-glucoside. Quercimeritrin is a natural product found in Salix atrocinerea, Dendroviguiera sphaerocephala, and other organisms with data available. See also: Chamomile (part of). Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1]. Quercimeritrin, isolated from the leaves of Ixeridium dentatum, exhibits significant amylase activity[1].

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[4-[(3R,3aS,6R,6aS)-6-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

Platanic acid

Platanic acid

C29H46O4 (458.3396)


A pentacyclic triterpenoid that is 30-norlupan-28-oic acid substituted by a 3beta-hydroxy and an oxo group at position 20. It is isolated from the leaves of Syzygium claviflorum and exhibits anti-HIV activity.

   

Aviculin

(2R,3R,4R,5R,6S)-2-[[(1S,2R,3R)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy]-6-methyloxane-3,4,5-triol

C26H34O10 (506.2152)


Aviculin is a natural product found in Scurrula atropurpurea, Breynia rostrata, and other organisms with data available.

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Prunin

(S)-5-Hydroxy-2-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)chroman-4-one

C21H22O10 (434.1213)


Naringenin 7-O-beta-D-glucoside is a flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, a hypoglycemic agent, an antilipemic drug and an antibacterial agent. It is a flavanone 7-O-beta-D-glucoside, a dihydroxyflavanone, a monosaccharide derivative, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Prunin is a natural product found in Prunus mume, Podocarpus nivalis, and other organisms with data available. A flavanone 7-O-beta-D-glucoside that is (S)-naringenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2]. Prunin is a potent inhibitor of human enterovirus A71 (HEVA71). Prunin shows strong inhibitory activity against protein tyrosine phosphatase 1B (PTP1B), with an IC50 of 5.5 μM[1][2].

   

Ergosterol peroxide

Ergosterol peroxide

C28H44O3 (428.329)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

betulinic acid

betulinic acid

C30H48O3 (456.3603)


Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Syringaresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2,6-DIMETHOXY-, (1.ALPHA.,3A.ALPHA.,4.ALPHA.,6A.ALPHA.)-(+/-)-

C22H26O8 (418.1628)


(+)-syringaresinol is the (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol. It has a role as an antineoplastic agent. It is an enantiomer of a (-)-syringaresinol. (+)-Syringaresinol is a natural product found in Dracaena draco, Diospyros eriantha, and other organisms with data available. See also: Acai fruit pulp (part of). The (7alpha,7alpha,8alpha,8alpha)-stereoisomer of syringaresinol.

   

Adenosine

(2R,3R,4S,5R)-2-(6-aminopurin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Papaverine

1-[(3,4-dimethoxyphenyl)methyl]-6,7-dimethoxyisoquinoline

C20H21NO4 (339.1471)


A benzylisoquinoline alkaloid that is isoquinoline substituted by methoxy groups at positions 6 and 7 and a 3,4-dimethoxybenzyl group at position 1. It has been isolated from Papaver somniferum. A - Alimentary tract and metabolism > A03 - Drugs for functional gastrointestinal disorders > A03A - Drugs for functional gastrointestinal disorders > A03AD - Papaverine and derivatives G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BE - Drugs used in erectile dysfunction D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors D000089162 - Genitourinary Agents > D064804 - Urological Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.761 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.758

   

Uridine

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl]pyrimidine-2,4-dione

C9H12N2O6 (244.0695)


C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DRTQHJPVMGBUCF_STSL_0179_Uridine_8000fmol_180506_S2_LC02_MS02_83; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.088 Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.

   

[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 4-hydroxybenzoate

NCGC00179757-02![(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 4-hydroxybenzoate

C19H20O9 (392.1107)


   

Arbutin

Arbutin

C12H16O7 (272.0896)


Arbutin is a glycoside; a glycosylated hydroquinone extracted from the bearberry plant in the genus Arctostaphylos. It inhibits tyrosinase and thus prevents the formation of melanin. Arbutin is therefore used as a skin-lightening agent. Arbutin is found in wheat, and is concentrated in pear skins (Pyrus communis) . It has been found as biomarker for the consumption of pears. Annotation level-1 Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3]. Arbutin (β-Arbutin) is a competitive inhibitor of tyrosinase, with Kiapp values of 1.42 mM for monophenolase; 0.9 mM for diphenolase. Arbutin is also used as depigmenting agents[1]. Arbutin is a natural polyphenol isolated from the bearberry plant Arctostaphylos uvaursi, possesses with anti-oxidant, anti-inflammatory and anti-tumor properties[2][3].

   

syringaresinol

4-[4-(4-hydroxy-3,5-dimethoxyphenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenol

C22H26O8 (418.1628)


   

pentadecan-1-ol

pentadecan-1-ol

C15H32O (228.2453)


   

2-phenylethyl beta-D-glucopyranoside

2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.126)


   

5'-Deoxy-5'-(methylsulfinyl)adenosine, 9CI

2-(6-amino-9H-purin-9-yl)-5-(methanesulfinylmethyl)oxolane-3,4-diol

C11H15N5O4S (313.0845)


   

Kaempferol 3-gentiobioside 7-rhamnoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C33H40O20 (756.2113)


   

Astragalin 7-rhamnoside

5-hydroxy-2-(4-hydroxyphenyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C27H30O15 (594.1585)


   

(7'R,8'R)-4,7'-Epoxy-3'-methoxy-4',5,9,9'-lignanetetrol 9'-glucoside

2-{[7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C25H32O11 (508.1945)


   

Isolariciresinol 9'-O-b-D-glucoside

2-{[7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

Blumenol C glucoside

3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)cyclohex-2-en-1-one

C19H32O7 (372.2148)


   

Tuberonic acid glucoside

(1R,2S)-3-oxo-2-(5-O-beta-D-glucopyranosyloxy-2Z-pentenyl)-cyclopentaneacetic acid

C18H28O9 (388.1733)


   

Fruticoside A

Fruticoside A

C29H48O3 (444.3603)


A 3beta-hydroxy steroid that is 4-methylergosta-7,24(28)-dien-3-ol substituted by additional hydroxy groups at positions 2 and 21 (the 2alpha,3beta,4alpha,5alpha stereoisomer). It has been isolated from the roots of Breynia fruticosa and exhibits cytotoxic activity against human cancer cell lines.

   

Fruticoside C

Fruticoside C

C35H56O8 (604.3975)


A steroid saponin that is ergosta-7,24(28)-diene substituted by a hydroxy group at position 2, a methyl group at position 4, a carboxy group at position 21 and a alpha-L-quinovopyranosyloxy group at position 3 (the 2alpha,3beta,4alpha,5alpha stereoisomer). It has been isolated from the roots of Breynia fruticosa.

   

Fruticoside B

Fruticoside B

C29H46O4 (458.3396)


A steroid acid that is ergosta-7,24(28)-dien-21-oic acid substituted by hydroxy groups at positions 2 and 3 and a methyl group at position 5 (the 2alpha,3beta,4alpha,5alpha stereoisomer). It has been isolated from the roots of Breynia fruticosa.

   

Fruticoside D

Fruticoside D

C37H58O9 (646.4081)


A steroid saponin that is 4-methylergosta-7,24(28)-dien-21-oic acid attached to an acetyloxy group at position 2, and a alpha-L-quinovopyranosyloxy group at position 3 (the 2alpha,3beta,4alpha,5alpha stereoisomer). It has been isolated from the roots of Breynia fruticosa.

   

Fruticoside E

Fruticoside E

C37H58O9 (646.4081)


A steroid saponin that is 4-methylergosta-7,24(28)-dien-21-oic acid attached to an acetyloxy group at position 2, and a alpha-L-rhamnopyranosyloxy group at position 3 (the 2alpha,3beta,4alpha,5alpha stereoisomer). It has been isolated from the roots of Breynia fruticosa.

   

Fruticoside F

Fruticoside F

C37H58O8S (662.3852)


A steroid saponin that is ergosta-7,24(28)-diene-21-thioic S-acid attached to an acetyloxy group at position 2, an alpha-L-quinovopyranosyloxy group at position 3 and a methyl group at position 4 (the 2alpha,3beta,4alpha,5alpha stereoisomer). It has been isolated from the roots of Breynia fruticosa.

   

Mairin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-Hydroxy-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-eicosahydro-cyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.3603)


C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

AI3-33881

InChI=1\C15H32O\c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16\h16H,2-15H2,1H

C15H32O (228.2453)


1-Pentadecanol is a naturally occurring antiacne agent[1]. 1-Pentadecanol is a naturally occurring antiacne agent[1].

   

2-Phenylethyl beta-D-glucopyranoside

2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.126)


Isolated from Riesling grapes. Constituent of Rosa damascena bulgaria (damask rose variety) and Vitis vinifera (wine grape). 2-Phenylethyl beta-D-galactopyranoside is found in many foods, some of which are herbs and spices, green vegetables, fruits, and alcoholic beverages. 2-Phenylethyl alpha-D-glucopyranoside is found in alcoholic beverages. 2-Phenylethyl alpha-D-glucopyranoside is isolated from Riesling grapes. 2-Phenylethyl beta-D-glucopyranoside is a constituent of Rosa damascena bulgaria (damask rose) and Vitis vinifera (wine grape).

   

Phenylethyl beta-D-glucopyranoside

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-(2-phenylethoxy)oxane-3,4,5-triol

C14H20O6 (284.126)


   

Breynceanothanolic acid

Breynceanothanolic acid

C29H40O5 (468.2876)


A triterpenoid of the nor-ceanothane-type isolated from the roots of Breynia fruticosa and has been shown to exhibit cytotoxicity against human cancer cell lines.

   

Fruticoside G

Fruticoside G

C36H58O6S (618.3954)


A steroid saponin that is 4-methylstigmasta-7,24(28)-diene-21-thioic S-acid attached to an alpha-L-quinovopyranosyloxy group at position 3 (the 3beta,4alpha,5alpha,24Z stereoisomer). It has been isolated from the roots of Breynia fruticosa.

   

[(2S,3S,4S,5R,6S)-3,4,5-Trihydroxy-6-(4-hydroxyphenoxy)tetrahydropyran-2-yl]methyl 4-hydroxybenzoate

[(2R,3S,4S,5R,6S)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 4-hydroxybenzoate

C19H20O9 (392.1107)


   

Zizyberanalic acid

Zizyberanalic acid

C30H46O4 (470.3396)


A steroid acid isolated from the roots of Breynia fruticosa.

   
   

(1's,2s,2's,4s,5r,6'r,7's,9'r,10'r,12'r)-10'-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

(1's,2s,2's,4s,5r,6'r,7's,9'r,10'r,12'r)-10'-{[(2s,3r,4s,5s,6r)-4,5-dihydroxy-6-(hydroxymethyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

C34H46O20S (806.2303)


   

methyl 2-[(1r,2r)-3-oxo-2-[(2z)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pent-2-en-1-yl]cyclopentyl]acetate

methyl 2-[(1r,2r)-3-oxo-2-[(2z)-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pent-2-en-1-yl]cyclopentyl]acetate

C19H30O9 (402.189)


   

3-[(2s,3s)-2-(2h-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propan-1-ol

3-[(2s,3s)-2-(2h-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propan-1-ol

C20H22O6 (358.1416)


   

(2r,3s,4s,5r,6s)-2-({[(2e,6s)-6-hydroxy-2,6-dimethylocta-2,7-dien-1-yl]oxy}methyl)-6-(4-hydroxyphenoxy)oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-({[(2e,6s)-6-hydroxy-2,6-dimethylocta-2,7-dien-1-yl]oxy}methyl)-6-(4-hydroxyphenoxy)oxane-3,4,5-triol

C22H32O8 (424.2097)


   

[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl (2s)-3-hydroxy-2-methylpropanoate

[(2r,3r,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl (2s)-3-hydroxy-2-methylpropanoate

C16H22O9 (358.1264)


   

(1r,2r,8r)-14-oxa-7-azatetracyclo[6.6.1.0¹,¹¹.0²,⁷]pentadeca-9,11-dien-13-one

(1r,2r,8r)-14-oxa-7-azatetracyclo[6.6.1.0¹,¹¹.0²,⁷]pentadeca-9,11-dien-13-one

C13H15NO2 (217.1103)


   

(1r,3as,5as,5br,9r,10r,11ar)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5as,5br,9r,10r,11ar)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysene-3a-carboxylic acid

C30H46O4 (470.3396)


   

(2r,3r,4s,5s,6r)-2-{[(2r,3r)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2r,3r)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C25H32O11 (508.1945)


   

(2s,3r,4s,5s,6s)-2-{4-[(1s,3ar,4s,6ar)-4-(3,5-dimethoxy-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6s)-2-{4-[(1s,3ar,4s,6ar)-4-(3,5-dimethoxy-4-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-hexahydrofuro[3,4-c]furan-1-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


   

4-hydroxy-4-(4-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)-3,3,5-trimethylcyclohexan-1-one

4-hydroxy-4-(4-hydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)-3,3,5-trimethylcyclohexan-1-one

C19H32O9 (404.2046)


   

(2s,3r,4s,5s)-2-(6-hydroxy-2-imino-3h-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

(2s,3r,4s,5s)-2-(6-hydroxy-2-imino-3h-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O5 (283.0917)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C21H22O9 (418.1264)


   

(2r,3s,4s,5r,6r)-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[(1r,2s,3s)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-2-(hydroxymethyl)oxane-3,4-diol

(2r,3s,4s,5r,6r)-5-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[(1r,2s,3s)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-2-(hydroxymethyl)oxane-3,4-diol

C31H42O15 (654.2524)


   

(2r,3r,4s,5s,6r)-2-{[(2e,6r)-6-hydroxy-2,6-dimethylocta-2,7-dien-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2e,6r)-6-hydroxy-2,6-dimethylocta-2,7-dien-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C16H28O7 (332.1835)


   

[3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate

[3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate

C21H22O9 (418.1264)


   

4-(4-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-1-hydroxy-2,2,6-trimethylcyclohexyl)but-3-en-2-one

4-(4-{[6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)-3,4,5-trihydroxyoxan-2-yl]oxy}-1-hydroxy-2,2,6-trimethylcyclohexyl)but-3-en-2-one

C24H40O12 (520.252)


   

[(2r,3s,4s,5r,6s)-6-{[(2r,3r)-3-(acetyloxy)-2-(3,4-dihydroxyphenyl)-5-hydroxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2r)-2-methylbutanoate

[(2r,3s,4s,5r,6s)-6-{[(2r,3r)-3-(acetyloxy)-2-(3,4-dihydroxyphenyl)-5-hydroxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl (2r)-2-methylbutanoate

C28H34O13 (578.1999)


   

2-{[3-(4-{[1,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]oxy}-3-methoxyphenyl)prop-2-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3-(4-{[1,3-dihydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]oxy}-3-methoxyphenyl)prop-2-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O12 (538.205)


   

2-{[4-(1,4-dihydroxy-2,2,6-trimethylcyclohexyl)-1-hydroxybut-3-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[4-(1,4-dihydroxy-2,2,6-trimethylcyclohexyl)-1-hydroxybut-3-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C19H34O9 (406.2203)


   

[(2r,3s,4s,5r,6s)-6-{[(2r,3r)-3-(acetyloxy)-2-(3,4-dihydroxyphenyl)-5-hydroxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 2-methylpropanoate

[(2r,3s,4s,5r,6s)-6-{[(2r,3r)-3-(acetyloxy)-2-(3,4-dihydroxyphenyl)-5-hydroxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 2-methylpropanoate

C27H32O13 (564.1843)


   

(2s,3s,4r,5s,6s)-5-{[(2r,3r,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[(1r,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-2-(hydroxymethyl)oxane-3,4-diol

(2s,3s,4r,5s,6s)-5-{[(2r,3r,4s)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-6-{[(1r,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-2-(hydroxymethyl)oxane-3,4-diol

C31H42O15 (654.2524)


   

(4r)-4-hydroxy-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

(4r)-4-hydroxy-3,5,5-trimethyl-4-[(1e,3r)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]cyclohex-2-en-1-one

C19H30O8 (386.1941)


   

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(3,4,5-trimethoxyphenyl)methoxy]oxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-[(3,4,5-trimethoxyphenyl)methoxy]oxane-3,4,5-triol

C16H24O9 (360.142)


   

(2r,3r,4s,5r,6r)-2-{[(2r,3e)-4-[(1s,3s,5r,8r)-3-hydroxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl]but-3-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5r,6r)-2-{[(2r,3e)-4-[(1s,3s,5r,8r)-3-hydroxy-1,5-dimethyl-6-oxabicyclo[3.2.1]octan-8-yl]but-3-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C19H32O8 (388.2097)


   

(2r,3r,4s,5s,6r)-2-{[(2s,3e)-4-[(1s,4s,6r)-1,4-dihydroxy-2,2,6-trimethylcyclohexyl]but-3-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2s,3e)-4-[(1s,4s,6r)-1,4-dihydroxy-2,2,6-trimethylcyclohexyl]but-3-en-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C19H34O8 (390.2254)


   

(3e)-4-[(1s,4s,6r)-1-hydroxy-2,2,6-trimethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexyl]but-3-en-2-one

(3e)-4-[(1s,4s,6r)-1-hydroxy-2,2,6-trimethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexyl]but-3-en-2-one

C19H32O8 (388.2097)


   

(2r,3r,4s,5s,6r)-2-{[(2e,6s)-6-hydroxy-2,6-dimethylocta-2,7-dien-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2e,6s)-6-hydroxy-2,6-dimethylocta-2,7-dien-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C16H28O7 (332.1835)


   

2-{[1-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-hydroxy-1-(3,4,5-trimethoxyphenyl)propan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C18H28O10 (404.1682)


   

3-[2-(2h-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propan-1-ol

3-[2-(2h-1,3-benzodioxol-5-yl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propan-1-ol

C20H22O6 (358.1416)


   

4-(2,2,6-trimethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-oxabicyclo[4.1.0]heptan-1-yl)but-3-en-2-one

4-(2,2,6-trimethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7-oxabicyclo[4.1.0]heptan-1-yl)but-3-en-2-one

C19H30O8 (386.1941)


   

(1's,2s,2's,4s,5r,6'r,7's,9'r,10'r,12's)-10'-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

(1's,2s,2's,4s,5r,6'r,7's,9'r,10'r,12's)-10'-{[(2s,3r,4s,5s,6r)-3-{[(2s,3r,4s,5r,6r)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

C39H54O23S (922.2776)


   

10'-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

10'-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

C34H46O20S (806.2303)


   

(2s,3r,4s,5s,6r)-2-[(6,7-dimethyl-1-benzofuran-5-yl)oxy]-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-[(6,7-dimethyl-1-benzofuran-5-yl)oxy]-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C21H28O11 (456.1632)


   

(1r,3ar,5ar,5br,7as,9s,11r,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

(1r,3ar,5ar,5br,7as,9s,11r,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

C30H50O2 (442.3811)


   

(2r,3r,4s,5s,6r)-2-{[(2s,3e)-4-[(1r,4s,6r)-1,4-dihydroxy-2,2,6-trimethylcyclohexyl]-2-hydroxybut-3-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2s,3e)-4-[(1r,4s,6r)-1,4-dihydroxy-2,2,6-trimethylcyclohexyl]-2-hydroxybut-3-en-1-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C19H34O9 (406.2203)


   

benzyl β-d-glucoside

benzyl β-d-glucoside

C13H18O6 (270.1103)


   

(4r)-3,5,5-trimethyl-4-[(3s)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]cyclohex-2-en-1-one

(4r)-3,5,5-trimethyl-4-[(3s)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]cyclohex-2-en-1-one

C19H32O7 (372.2148)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6s)-3,5-dihydroxy-2-(hydroxymethyl)-6-(4-hydroxyphenoxy)oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5r,6s)-3,5-dihydroxy-2-(hydroxymethyl)-6-(4-hydroxyphenoxy)oxan-4-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C18H26O12 (434.1424)


   

4,6-dihydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)cyclohex-2-en-1-one

4,6-dihydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl)cyclohex-2-en-1-one

C19H30O9 (402.189)


   

5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-2,3-dihydro-1-benzopyran-4-one

5-hydroxy-2-(4-hydroxyphenyl)-6,7-dimethoxy-2,3-dihydro-1-benzopyran-4-one

C17H16O6 (316.0947)


   

14-oxa-7-azatetracyclo[6.6.1.0¹,¹¹.0²,⁷]pentadeca-9,11-dien-13-one

14-oxa-7-azatetracyclo[6.6.1.0¹,¹¹.0²,⁷]pentadeca-9,11-dien-13-one

C13H15NO2 (217.1103)


   

2-{[2-(5-ethenyl-5-methyloxolan-2-yl)propan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[2-(5-ethenyl-5-methyloxolan-2-yl)propan-2-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C16H28O7 (332.1835)


   

(6-{[3-(acetyloxy)-2-(3,4-dihydroxyphenyl)-5-hydroxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 2-methylpropanoate

(6-{[3-(acetyloxy)-2-(3,4-dihydroxyphenyl)-5-hydroxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-3,4,5-trihydroxyoxan-2-yl)methyl 2-methylpropanoate

C27H32O13 (564.1843)


   

methyl 2-[3-oxo-2-(5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pent-2-en-1-yl)cyclopentyl]acetate

methyl 2-[3-oxo-2-(5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}pent-2-en-1-yl)cyclopentyl]acetate

C19H30O9 (402.189)


   

2-(hydroxymethyl)-6-[(3,4,5-trimethoxyphenyl)methoxy]oxane-3,4,5-triol

2-(hydroxymethyl)-6-[(3,4,5-trimethoxyphenyl)methoxy]oxane-3,4,5-triol

C16H24O9 (360.142)


   

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{4-[(1z)-3-hydroxyprop-1-en-1-yl]-2,6-dimethoxyphenoxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{4-[(1z)-3-hydroxyprop-1-en-1-yl]-2,6-dimethoxyphenoxy}oxane-3,4,5-triol

C17H24O9 (372.142)


   

10'-[(3-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

10'-[(3-{[3,5-dihydroxy-6-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}-4,5-dihydroxy-6-methyloxan-2-yl)oxy]-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

C40H56O23S (936.2933)


   

(2s,3r,4s,5s,6r)-2-[4-(2-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenoxy)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-[4-(2-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenoxy)phenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C24H30O14 (542.1635)


   

[3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 4-hydroxybenzoate

[3,4,5-trihydroxy-6-(4-hydroxyphenoxy)oxan-2-yl]methyl 4-hydroxybenzoate

C19H20O9 (392.1107)


   

(2r,3r,4s,5s,6r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

(1r,3as,3bs,5r,5ar,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-5,5a,7-triol

(1r,3as,3bs,5r,5ar,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-tetradecahydrocyclopenta[a]phenanthrene-5,5a,7-triol

C29H52O3 (448.3916)


   

2-(benzyloxy)-6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol

2-(benzyloxy)-6-({[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}methyl)oxane-3,4,5-triol

C18H26O10 (402.1526)


   

(4s,5r)-4-hydroxy-4-[(1e,3r)-4-hydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]-3,3,5-trimethylcyclohexan-1-one

(4s,5r)-4-hydroxy-4-[(1e,3r)-4-hydroxy-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}but-1-en-1-yl]-3,3,5-trimethylcyclohexan-1-one

C19H32O9 (404.2046)


   

(2r,3r)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-1-benzopyran-3-yl acetate

(2r,3r)-2-(3,4-dihydroxyphenyl)-5-hydroxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2h-1-benzopyran-3-yl acetate

C23H26O12 (494.1424)


   

(1'r,2s,2's,4s,5r,6'r,7's,9's,10'r,12's)-10'-{[(2s,3s,4s,5s,6r)-3-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

(1'r,2s,2's,4s,5r,6'r,7's,9's,10'r,12's)-10'-{[(2s,3s,4s,5s,6r)-3-{[(2r,3r,4s,5s,6r)-3,5-dihydroxy-6-(hydroxymethyl)-4-{[(2s,3r,4r,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6',7'-dihydroxy-4-(4-hydroxybenzoyloxy)-5-methyl-5'-oxo-3'-oxa-12'-thiaspiro[oxane-2,4'-tricyclo[7.3.0.0²,⁶]dodecan]-12'-ium-12'-olate

C40H56O24S (952.2882)