NCBI Taxonomy: 505277

Aspilia (ncbi_taxid: 505277)

found 169 associated metabolites at genus taxonomy rank level.

Ancestor: Heliantheae

Child Taxonomies: Aspilia pluriseta, unclassified Aspilia, Aspilia mossambicensis

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

alpha-Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.18779039999998)


alpha-Humulene, also known as alpha-caryophyllene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, alpha-humulene is considered to be an isoprenoid lipid molecule. alpha-Humulene is found in allspice. alpha-Humulene is a constituent of many essential oils including hops (Humulus lupulus) and cloves (Syzygium aromaticum). (1E,4E,8E)-alpha-humulene is the (1E,4E,8E)-isomer of alpha-humulene. Humulene is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. See also: Caryophyllene (related). α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Phenylacetaldehyde

alpha-Phenylacetaldehyde

C8H8O (120.0575118)


Phenylacetaldehyde is one important oxidation-related aldehyde. Exposure to styrene gives phenylacetaldehyde as a secondary metabolite. Styrene has been implicated as reproductive toxicant, neurotoxicant, or carcinogen in vivo or in vitro. Phenylacetaldehyde could be formed by diverse thermal reactions during the cooking process together with C8 compounds is identified as a major aroma- active compound in cooked pine mushroom. Phenylacetaldehyde is readily oxidized to phenylacetic acid. Therefore will eventually be hydrolyzed and oxidized to yield phenylacetic acid that will be excreted primarily in the urine in conjugated form. (PMID: 16910727, 7818768, 15606130). Found in some essential oils, e.g. Citrus subspecies, Tagetes minuta (Mexican marigold) and in the mushroom Phallus impudicus (common stinkhorn). Flavouring ingredient COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1251936)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

Thiarubrin A

Thiarubrine A; Thiarubrin A; 3-(5-Hexene-1,3-diynyl)-6-(1-propynyl)-1,2-dithiin

C13H8S2 (228.0067408)


   

Thiarubrin B

Thiarubrine B; Thiarubrin B; 3-(3-Buten-1-ynyl)-6-(1,3-pentadiynyl)-1,2-dithiin

C13H8S2 (228.0067408)


   

Precocene I

2,2-Dimethyl-2H-chromen-7-yl methyl ether

C12H14O2 (190.09937440000002)


   

ent-Kaur-16-en-19-al

(1S,4S,5R,9S,10R,13R)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0^{1,10}.0^{4,9}]hexadecane-5-carbaldehyde

C20H30O (286.229653)


ent-16-Kauren-19-al is found in fruits. ent-16-Kauren-19-al is a constituent of the root of Annona squamosa (sugar apple).

   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1251936)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

gamma-Muurolene

(+)-gamma-Muurolene

C15H24 (204.18779039999998)


   

gamma-Muurolene

(1R,4aR,8aS)-7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.18779039999998)


gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967092)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Epi-Friedelanol

4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

C30H52O (428.4017942)


   

gamma-Elemene

(1S,2S)-1-ethenyl-1-methyl-2-(prop-1-en-2-yl)-4-(propan-2-ylidene)cyclohexane

C15H24 (204.18779039999998)


Gamma-Elemene, also known as g-elemene, belongs to the class of organic compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes that contain 15 carbon atoms and are comprised of three isoprene units. The biosynthesis of sesquiterpenes is known to occur mainly through the mevalonic acid pathway (MVA), in the cytosol. However, recent studies have found evidence of pathway crosstalk with the methyl-erythritol-phosphate (MEP) pathway in the cytosol. Farnesyl diphosphate (FPP) is a key intermediate in the biosynthesis of cyclic sesquiterpenes. FPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. More formally, gamma-elemene is a cyclohexane substituted at positions 1, 1, 2, and 4 by methyl, vinyl, isopropenyl and isopropylidene groups, respectively. There are four known elemene isomers including α-, β-, γ-, and δ-elemene. The elemenes contribute to the floral aromas of some plants and are used as pheromones by some insects. Gamma-elemene is found in many essential plant oils including wormwood leaf oil, peppermint oil, pepper tree leaf oil, parsley leaf oil, orange peel oil, lime oil, juniper berry oil, hinoki leaf oil, angelica root oil, and angelica seed oil. Gamma-elemene has been shown to exhibit good insecticidal activity against the crop pest Spodoptera litura (tobacco cutworm or cotton leafworm) and could be useful as an eco-friendly biopesticide (PMID:28634795). Gamma-elemene, also known as (+)-G-elemene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Gamma-elemene can be found in a number of food items such as sweet basil, mandarin orange (clementine, tangerine), sweet bay, and pot marjoram, which makes gamma-elemene a potential biomarker for the consumption of these food products.

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Stigmasterol

Stigmasterol

C29H48O (412.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Grandiflorenic acid

(4S,5R,9R)-5,9-Dimethyl-14-methylidenetetracyclo[11.2.1.01,10.04,9]hexadec-10-ene-5-carboxylic acid

C20H28O2 (300.2089188)


A tetracyclic diterpenoid with formula C20H28O2 which exhibits anti-inflammatory, antibacterial, antileishmanial and wound-healing properties.

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967092)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Germacrene D

1,6-Cyclodecadiene, 1-methyl-5-methylene-8-(1-methylethyl)-, [s-(E,E)]-

C15H24 (204.18779039999998)


(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).

   
   

ent-Kaur-16-en-19-oic acid

ent-Kaur-16-en-19-oic acid

C20H30O2 (302.224568)


   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967092)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.09547200000003)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.307899)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

phenylacetaldehyde

phenylacetaldehyde

C8H8O (120.0575118)


An aldehyde that consists of acetaldehyde bearing a methyl substituent; the parent member of the phenylacetaldehyde class of compounds. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.18779039999998)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

(1Z,6E)-gamma-humulene

(1Z,6E)-1,8,8-trimethyl-5-methylidenecycloundeca-1,6-diene (1Z,6E)-humula-1(11),4(13),5-triene

C15H24 (204.18779039999998)


   
   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.18779039999998)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

Hexanol

4-01-00-01694 (Beilstein Handbook Reference)

C6H14O (102.10445940000001)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

Thiarubrine A

1-(2-Methyleth-1-yn)-4-(hex-1,3-diyn-5-ene)-2,3-dithiacyclohex-1,3-diene

C13H8S2 (228.0067408)


   

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


   

Precocene I

2H-1-Benzopyran,7-methoxy-2,2-dimethyl-

C12H14O2 (190.09937440000002)


A member of the class of chromenes that is 2H-chromene substituted by a methoxy group at position 7 and two methyl groups at position 2.

   

cis-Abienol

cis-Abienol

C20H34O (290.2609514)


A labdane diterpenoid in which the labdane skeleton has double bonds at C-12 and C-14 (the former with Z-stereochemistry) and carries a hydroxy group at position C-8.

   
   

ent-kaur-16-en-19-al

ent-kaur-16-en-19-al

C20H30O (286.229653)


   

Hex-3-en-1-ol

Hex-3-en-1-ol

C6H12O (100.0888102)


A primary alcohol that is hex-3-ene substituted by a hydroxy group at position 1.

   

Hexan-1-ol

Hexan-1-ol

C6H14O (102.10445940000001)


A primary alcohol that is hexane substituted by a hydroxy group at position 1.

   

(1s,2r,4s,6s,7r,8s,11s)-7-(acetyloxy)-8-isopropyl-4,11-dimethyl-5,12-dioxatricyclo[9.1.0.0⁴,⁶]dodecan-2-yl (2z)-2-methylbut-2-enoate

(1s,2r,4s,6s,7r,8s,11s)-7-(acetyloxy)-8-isopropyl-4,11-dimethyl-5,12-dioxatricyclo[9.1.0.0⁴,⁶]dodecan-2-yl (2z)-2-methylbut-2-enoate

C22H34O6 (394.2355264)


   

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

(2e,6e)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


   

5,9-dimethyl-6-[(2-methylbut-2-enoyl)oxy]-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

5,9-dimethyl-6-[(2-methylbut-2-enoyl)oxy]-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

(1s,4s,5s,6r,9s,10r,13r)-5,9-dimethyl-14-methylidene-6-{[(2e)-3-phenylprop-2-enoyl]oxy}tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5s,6r,9s,10r,13r)-5,9-dimethyl-14-methylidene-6-{[(2e)-3-phenylprop-2-enoyl]oxy}tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C29H36O4 (448.2613456)


   

(2e,4e)-n-(2-methylpropyl)undeca-2,4-dien-8,10-diynimidic acid

(2e,4e)-n-(2-methylpropyl)undeca-2,4-dien-8,10-diynimidic acid

C15H19NO (229.14665639999998)


   

(4s,5r,9r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-10-ene-5-carboxylic acid

(4s,5r,9r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-10-ene-5-carboxylic acid

C20H28O2 (300.2089188)


   

6-{[4,4,6a,6b,11,11,14b-heptamethyl-8a-({[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-(acetyloxy)-4-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-5,6-dihydro-4h-pyran-2-carboxylic acid

6-{[4,4,6a,6b,11,11,14b-heptamethyl-8a-({[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-(acetyloxy)-4-{[3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-5,6-dihydro-4h-pyran-2-carboxylic acid

C64H90O25 (1258.577089)


   

(2e,4e,8z)-n-(2-methylpropyl)deca-2,4,8-trienimidic acid

(2e,4e,8z)-n-(2-methylpropyl)deca-2,4,8-trienimidic acid

C14H23NO (221.17795479999998)


   

6-(6-hydroxy-4-methylhex-4-en-1-ylidene)-2-(4-methylpent-3-en-1-yl)hept-2-enedial

6-(6-hydroxy-4-methylhex-4-en-1-ylidene)-2-(4-methylpent-3-en-1-yl)hept-2-enedial

C20H30O3 (318.21948299999997)


   

2,12-dimethyl-6-methylidene-16-oxapentacyclo[10.3.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-17-one

2,12-dimethyl-6-methylidene-16-oxapentacyclo[10.3.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-17-one

C20H28O2 (300.2089188)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

8-hydroxy-5,8a-dimethyl-6-[(2-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

8-hydroxy-5,8a-dimethyl-6-[(2-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

C25H32O7 (444.2147922)


   

(1s,4s,5r,9r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-10-ene-5-carboxylic acid

(1s,4s,5r,9r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-10-ene-5-carboxylic acid

C20H28O2 (300.2089188)


   

(1s,4s,5s,6r,9s,10r,13r)-5,9-dimethyl-6-{[(2e)-2-methylbut-2-enoyl]oxy}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5s,6r,9s,10r,13r)-5,9-dimethyl-6-{[(2e)-2-methylbut-2-enoyl]oxy}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

5,9-dimethyl-14-methylidene-6-[(3-phenylprop-2-enoyl)oxy]tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

5,9-dimethyl-14-methylidene-6-[(3-phenylprop-2-enoyl)oxy]tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C29H36O4 (448.2613456)


   

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylpropanoate

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylpropanoate

C23H32O7 (420.2147922)


   

(1s,4s,5r,9s,10r,13r,14r)-14-hydroxy-5,9,14-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5r,9s,10r,13r,14r)-14-hydroxy-5,9,14-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C20H32O3 (320.23513219999995)


   

(1s,2s,5r,8s,11r,12r)-2,12-dimethyl-6-methylidene-16-oxapentacyclo[10.3.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-17-one

(1s,2s,5r,8s,11r,12r)-2,12-dimethyl-6-methylidene-16-oxapentacyclo[10.3.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-17-one

C20H28O2 (300.2089188)


   

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

C24H32O7 (432.2147922)


   

8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylpropanoate

8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylpropanoate

C23H32O7 (420.2147922)


   

8-hydroxy-5,8a-dimethyl-3-methylidene-4-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-6-yl 2-methylbutanoate

8-hydroxy-5,8a-dimethyl-3-methylidene-4-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-6-yl 2-methylbutanoate

C24H34O7 (434.2304414)


   

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-6-[(3-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-6-[(3-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

C25H32O7 (444.2147922)


   

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-3-methylidene-4-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-6-yl (2r)-2-methylbutanoate

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-3-methylidene-4-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-6-yl (2r)-2-methylbutanoate

C24H34O7 (434.2304414)


   

methyl (1'r,2r,4's,5'r,9's,10's,13'r,15's)-5',9'-dimethyl-15'-{[(2e)-2-methylbut-2-enoyl]oxy}spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylate

methyl (1'r,2r,4's,5'r,9's,10's,13'r,15's)-5',9'-dimethyl-15'-{[(2e)-2-methylbut-2-enoyl]oxy}spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylate

C26H38O5 (430.2719098)


   

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-6-[(3-methylbutanoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-6-[(3-methylbutanoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

C25H34O7 (446.2304414)


   

n-(2-methylpropyl)deca-2,4-dienimidic acid

n-(2-methylpropyl)deca-2,4-dienimidic acid

C14H25NO (223.193604)


   

8-hydroxy-5,8a-dimethyl-6-[(3-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

8-hydroxy-5,8a-dimethyl-6-[(3-methylbut-2-enoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

C25H32O7 (444.2147922)


   

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


   

(1s,4s,5s,9s,10r,13r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5s,9s,10r,13r)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C20H30O2 (302.224568)


   

n-(2-methylpropyl)undeca-2,4-dien-8,10-diynimidic acid

n-(2-methylpropyl)undeca-2,4-dien-8,10-diynimidic acid

C15H19NO (229.14665639999998)


   

(4r,5s,6s)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-(acetyloxy)-4-{[(2s,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-5,6-dihydro-4h-pyran-2-carboxylic acid

(4r,5s,6s)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-5-(acetyloxy)-4-{[(2s,3r,4r,5s,6s)-3,4,5-tris(acetyloxy)-6-methyloxan-2-yl]oxy}-5,6-dihydro-4h-pyran-2-carboxylic acid

C64H90O25 (1258.577089)


   

(2e,6e)-6-[(4e)-6-hydroxy-4-methylhex-4-en-1-ylidene]-2-(4-methylpent-3-en-1-yl)hept-2-enedial

(2e,6e)-6-[(4e)-6-hydroxy-4-methylhex-4-en-1-ylidene]-2-(4-methylpent-3-en-1-yl)hept-2-enedial

C20H30O3 (318.21948299999997)


   

(5r,9s,13s)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(5r,9s,13s)-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C20H30O2 (302.224568)


   

(2e,4e)-n-(2-methylpropyl)deca-2,4-dienimidic acid

(2e,4e)-n-(2-methylpropyl)deca-2,4-dienimidic acid

C14H25NO (223.193604)


   

4-epi-kaurenic acid

4-epi-kaurenic acid

C20H30O2 (302.224568)


   
   

8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

8-hydroxy-5,8a-dimethyl-3-methylidene-6-[(2-methylpropanoyl)oxy]-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

C24H32O7 (432.2147922)


   

(1r,4s,5r,9s,10s,13r,15s)-15-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1r,4s,5r,9s,10s,13r,15s)-15-hydroxy-5,9-dimethyl-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C20H30O3 (318.21948299999997)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H58O6 (574.4233168000001)


   

7-(acetyloxy)-8-isopropyl-4,11-dimethyl-5,12-dioxatricyclo[9.1.0.0⁴,⁶]dodecan-2-yl 2-methylbut-2-enoate

7-(acetyloxy)-8-isopropyl-4,11-dimethyl-5,12-dioxatricyclo[9.1.0.0⁴,⁶]dodecan-2-yl 2-methylbut-2-enoate

C22H34O6 (394.2355264)


   

8-hydroxy-5,8a-dimethyl-6-[(3-methylbutanoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

8-hydroxy-5,8a-dimethyl-6-[(3-methylbutanoyl)oxy]-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl 2-methylbut-2-enoate

C25H34O7 (446.2304414)


   

(1s,4s,5s,6r,9s,10r,13r)-5,9-dimethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

(1s,4s,5s,6r,9s,10r,13r)-5,9-dimethyl-6-{[(2z)-2-methylbut-2-enoyl]oxy}-14-methylidenetetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C25H36O4 (400.2613456)


   

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.18779039999998)


   

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(1as,4as,7s,7ar,7bs)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-6-{[(2e)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

(3ar,4s,6s,8s,8as,9ar)-8-hydroxy-5,8a-dimethyl-6-{[(2e)-2-methylbut-2-enoyl]oxy}-3-methylidene-2-oxo-3ah,4h,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-4-yl (2e)-2-methylbut-2-enoate

C25H32O7 (444.2147922)


   

methyl 5',9'-dimethyl-15'-[(2-methylbut-2-enoyl)oxy]spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylate

methyl 5',9'-dimethyl-15'-[(2-methylbut-2-enoyl)oxy]spiro[oxirane-2,14'-tetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane]-5'-carboxylate

C26H38O5 (430.2719098)


   

n-(2-methylpropyl)deca-2,4,8-trienimidic acid

n-(2-methylpropyl)deca-2,4,8-trienimidic acid

C14H23NO (221.17795479999998)


   

14-hydroxy-5,9,14-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

14-hydroxy-5,9,14-trimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylic acid

C20H32O3 (320.23513219999995)


   

(1r,2r,5s,8r,11s,12s)-2,12-dimethyl-6-methylidene-16-oxapentacyclo[10.3.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-17-one

(1r,2r,5s,8r,11s,12s)-2,12-dimethyl-6-methylidene-16-oxapentacyclo[10.3.2.1⁵,⁸.0¹,¹¹.0²,⁸]octadecan-17-one

C20H28O2 (300.2089188)