NCBI Taxonomy: 62097

Plumeria rubra (ncbi_taxid: 62097)

found 166 associated metabolites at species taxonomy rank level.

Ancestor: Plumeria

Child Taxonomies: none taxonomy data.

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0423)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)-4H-chromen-4-one

C15H10O6 (286.0477)


Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

Benzoic acid

ScavengePore(TM) benzoic acid, macroporous, 40-70 mesh, extent of labeling: 0.5-1.5 mmol per g loading

C7H6O2 (122.0368)


Benzoic acid appears as a white crystalline solid. Slightly soluble in water. The primary hazard is the potential for environmental damage if released. Immediate steps should be taken to limit spread to the environment. Used to make other chemicals, as a food preservative, and for other uses. Benzoic acid is a compound comprising a benzene ring core carrying a carboxylic acid substituent. It has a role as an antimicrobial food preservative, an EC 3.1.1.3 (triacylglycerol lipase) inhibitor, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a plant metabolite, a human xenobiotic metabolite, an algal metabolite and a drug allergen. It is a conjugate acid of a benzoate. A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid. As the sodium salt form, sodium benzoate is used as a treatment for urea cycle disorders due to its ability to bind amino acids. This leads to excretion of these amino acids and a decrease in ammonia levels. Recent research shows that sodium benzoate may be beneficial as an add-on therapy (1 gram/day) in schizophrenia. Total Positive and Negative Syndrome Scale scores dropped by 21\\\\\% compared to placebo. Benzoic acid is a Nitrogen Binding Agent. The mechanism of action of benzoic acid is as an Ammonium Ion Binding Activity. Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages). A fungistatic compound that is widely used as a food preservative. It is conjugated to GLYCINE in the liver and excreted as hippuric acid. See also: Salicylic Acid (active moiety of); Benzoyl Peroxide (active moiety of); Sodium Benzoate (active moiety of) ... View More ... Widespread in plants especies in essential oils and fruits, mostly in esterified formand is also present in butter, cooked meats, pork fat, white wine, black and green tea, mushroom and Bourbon vanilla. It is used in foodstuffs as antimicrobial and flavouring agent and as preservative. In practical food preservation, the Na salt of benzoic acid is the most widely used form (see MDQ71-S). The antimicrobial activity comprises a wide range of microorganisms, particularly yeasts and moulds. Undissociated benzoic acid is more effective than dissociated, thus the preservative action is more efficient in acidic foodstuffs. Typical usage levels are 500-2000 ppm. Benzoic acid is found in many foods, some of which are animal foods, common grape, lovage, and fruits. Benzoic acid, C6H5COOH, is a colourless crystalline solid and the simplest aromatic carboxylic acid. Benzoic acid occurs naturally free and bound as benzoic acid esters in many plant and animal species. Appreciable amounts have been found in most berries (around 0.05\\\\\%). Cranberries contain as much as 300-1300 mg free benzoic acid per kg fruit. Benzoic acid is a fungistatic compound that is widely used as a food preservative. It often is conjugated to glycine in the liver and excreted as hippuric acid. Benzoic acid is a byproduct of phenylalanine metabolism in bacteria. It is also produced when gut bacteria process polyphenols (from ingested fruits or beverages). It can be found in Serratia (PMID:23061754). Benzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=65-85-0 (retrieved 2024-06-28) (CAS RN: 65-85-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi. Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi.

   

3,7-Dimethyl-1,6-octadien-3-ol

Linalool, certified reference material, TraceCERT(R)

C10H18O (154.1358)


3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].

   

Myristic acid

tetradecanoic acid

C14H28O2 (228.2089)


Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Betulinic acid

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.3603)


Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Lupeyl acetate

[(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-yl] acetate

C32H52O2 (468.3967)


Lupeol acetate is an organic molecular entity. It has a role as a metabolite. Lupeol acetate is a natural product found in Euphorbia dracunculoides, Euphorbia larica, and other organisms with data available. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Ayanin

4H-1-BENZOPYRAN-4-ONE, 5-HYDROXY-2-(3-HYDROXY-4-METHOXYPHENYL)-3,7-DIMETHOXY-

C18H16O7 (344.0896)


3,5-dihydroxy-3,4,7-trimethoxyflavone is a trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups. It has a role as a plant metabolite. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,5-dihydroxy-3,4,7-trimethoxyflavone(1-). Ayanin is a natural product found in Psiadia viscosa, Solanum pubescens, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at positions 3, 4 and 7 have been replaced by methoxy groups.

   

beta-Geraniol

3,7-Dimethyloctan-1-ol, tetradehydro derivative

C10H18O (154.1358)


Geraniol is a colorless to pale yellow oily liquid with a sweet rose odor. (NTP, 1992) Geraniol is a monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. It has a role as a fragrance, an allergen, a volatile oil component and a plant metabolite. It is a monoterpenoid, a primary alcohol and a 3,7-dimethylocta-2,6-dien-1-ol. Geraniol is a monoterpene that is found within many essential oils of fruits, vegetables, and herbs including rose oil, citronella, lemongrass, lavender, and other aromatic plants. It is emitted from the flowers of many species of plant and is commonly used by the food, fragrance, and cosmetic industry. Geraniol has demonstrated a wide spectrum of pharmacological activities including antimicrobial, anti-inflammatory, antioxidant, anti-cancer, and neuroprotective to name a few. Interestingly, geraniol has also been shown to sensitize tumour cells to commonly used chemotherapies including [DB00544] and [DB01248] and represents a promising cancer chemopreventive agent. Due to its anticancer effects, geraniol has been found to be effective against a broad range of cancers including breast, lung, colon, prostate, pancreatic, skin, liver, kidney and oral cancers. These pharmacologic effects are clinically important as geraniol is classified as generally-recognized-as-safe (GRAS) by the Flavor and Extract Manufacturers Association (FEMA) and the Food and Drug Administration (FDA) of the United States. Sensitivity to geraniol may be identified with a clinical patch test. Geraniol is a Standardized Chemical Allergen. The physiologic effect of geraniol is by means of Increased Histamine Release, and Cell-mediated Immunity. Geraniol is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. beta-Geraniol is found in almond. beta-Geraniol is found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. beta-Geraniol is a flavouring agent. Geraniol is a monoterpenoid and an alcohol. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type). It also occurs in small quantities in geranium, lemon, and many other essential oils. It has a rose-like odor and is commonly used in perfumes. It is used in flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. It is the isomer of nerol. (Wikipedia) beta-Geraniol belongs to the family of Monoterpenes. These are compounds contaning a chain of two isoprene units. Geraniol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Java citronella oil (part of). beta-Geraniol, also known as (E)-nerol, the isomer of nerol (or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. This could make beta-geraniol a potential biomarker for the consumption of these foods. It is found in as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Geraniol is a monoterpenoid and an alcohol found in cannabis plants (PMID:6991645 ). Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. Geraniol is produced by the scent glands of honeybees to mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. Flavouring agent A monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

Pelargonic acid

nonanoic acid

C9H18O2 (158.1307)


Nonanoic acid is a C9 straight-chain saturated fatty acid which occurs naturally as esters of the oil of pelargonium. Has antifungal properties, and is also used as a herbicide as well as in the preparation of plasticisers and lacquers. It has a role as an antifeedant, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a straight-chain saturated fatty acid and a medium-chain fatty acid. It is a conjugate acid of a nonanoate. It derives from a hydride of a nonane. Nonanoic acid is a natural product found in Staphisagria macrosperma, Rhododendron mucronulatum, and other organisms with data available. Nonanoic Acid is a naturally-occurring saturated fatty acid with nine carbon atoms. The ammonium salt form of nonanoic acid is used as an herbicide. It works by stripping the waxy cuticle of the plant, causing cell disruption, cell leakage, and death by desiccation. Nonanoic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Pelargonic acid, or nonanoic acid, is a fatty acid which occurs naturally as esters is the oil of pelargonium. Synthetic esters, such as methyl nonanoate, are used as flavorings. Pelargonic acid is an organic compound composed of a nine-carbon chain terminating in a carboxylic acid. It is an oily liquid with an unpleasant, rancid odor. It is nearly insoluble in water, but well soluble in chloroform and ether. The derivative 4-nonanoylmorpholine is an ingredient in some pepper sprays. A C9 straight-chain saturated fatty acid which occurs naturally as esters of the oil of pelargonium. Has antifungal properties, and is also used as a herbicide as well as in the preparation of plasticisers and lacquers. Nonanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-05-0 (retrieved 2024-07-01) (CAS RN: 112-05-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1]. Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1].

   

Geraniol

cis-3,7-Dimethyl-2,6-octadien-1-ol, >=97\\%, FCC, FG

C10H18O (154.1358)


Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

(E)-methyl ester 3-phenyl-2-propenoic acid

methyl cinnamate, propenoic-3-(14)C-labeled, (E)-isomer

C10H10O2 (162.0681)


Flavouring compound [Flavornet] Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Terpinen-4-ol

4-methyl-1-propan-2-ylcyclohex-3-en-1-ol

C10H18O (154.1358)


p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

(+)-alpha-Pinene

(R)-(+)--Pinene;(+)--Pinene; (1R)-(+)--Pinene; (1R)--Pinene; (1R,5R)-(+)--Pinene

C10H16 (136.1252)


alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

Caprylic acid

octanoic acid

C8H16O2 (144.115)


Caprylic acid is the common name for the eight-carbon straight-chain fatty acid known by the systematic name octanoic acid. It is found naturally in coconuts and breast milk. It is an oily liquid with a slightly unpleasant rancid taste that is minimally soluble in water. Caprylic acid is used commercially in the production of esters used in perfumery and also in the manufacture of dyes (Wikipedia). Caprylic acid can be found in numerous foods such as Prunus (Cherry, Plum), pineapple sages, black raspberries, and shallots. Caprylic acid is found to be associated with medium-chain acyl-CoA dehydrogenase deficiency, which is an inborn error of metabolism. Widespread in plant oils, free and as glyceridesand is also present in apple, banana, orange juice and peel, pineapple, cognac, calamus, blue cheeses, cheddar cheese, Swiss cheese, feta cheese and other cheeses. Flavouring agent, defoamer, lubricant, binder and antimicrobial preservative in cheese wraps KEIO_ID C037 Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes. Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes.

   

Caproic acid

Hexanoic acid, sodium salt, 1-(11)C-labeled

C6H12O2 (116.0837)


Caproic acid, also known as hexanoic acid or C6:0, is a medium-chain fatty acid. Medium-chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6 to 12 carbons, which can form medium-chain triglycerides. Caproic acid is a colourless oily liquid that smells like cheese with an overlying waxy or barnyard odor like that of goats or other barnyard animals. Its name comes from the Latin word capra, meaning "goat". Two other fatty acids are named after goats: caprylic acid (C8) and capric acid (C10). Along with caproic acid, they account for 15\\% of the fat in goats milk. Caproic acid is a fatty acid found naturally in various animal fats and oils. While generally more abundant in animals, caproic acid is found in all organisms ranging from bacteria to plants to animals. Caproic acid is one of the chemicals that gives the decomposing fleshy seed coat of the ginkgo fruit its characteristic unpleasant odor. It is also one of the components of vanilla and cheese. Industrially, the primary use of caproic acid is in the manufacture of its esters for use as artificial flavors and in the manufacture of hexyl derivatives, such as hexylphenols. Caproic acid has been associated with medium chain acyl-CoA dehydrogenase deficiency, which is an inborn error of metabolism. As a relatively volatile organic compound, caproic acid has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). Present in apple, wine grapes, butter, licorice and cheeses, e.g. blue cheeses, Cheddar cheese, Swiss cheese, feta cheese, gruyere de comte cheese, etcand is) also present in a few essential oils and fruital aromas. Secondary product of butyric acid fermentation. Flavouring ingredient KEIO_ID C035

   

Caprate (10:0)

decanoic acid

C10H20O2 (172.1463)


Capric acid, also known as decanoic acid is a C10 saturated fatty acid. It is a member of the series of fatty acids found in oils and animal fats. The names of caproic, caprylic, and capric acids are all derived from the word caper (Latin for goat). These fatty acids are light yellowish transparent oily liquids with a sweaty, unpleasant aroma that is reminiscent of goats. Capric acid is used in the manufacture of esters for artificial fruit flavors and perfumes. It is also used as an intermediate in chemical syntheses. Capric acid is used in organic synthesis and industrially in the manufacture of perfumes, lubricants, greases, rubber, dyes, plastics, food additives and pharmaceuticals. Capric acid occurs naturally in coconut oil (about 10\\\\\\%) and palm kernel oil (about 4\\\\\\%), otherwise it is uncommon in typical seed oils. It is found in the milk of various mammals and to a lesser extent in other animal fats. Capric acid, caproic acid (a C6:0 fatty acid) and caprylic acid (a C8:0 fatty acid) account for about 15\\\\\\% of the fatty acids in goat milk fat (PMID 16747831). Capric acid may be responsible for the mitochondrial proliferation associated with the ketogenic diet, which may occur via PPARgamma receptor agonism and the targeting of genes involved in mitochondrial biogenesis (PMIDL 24383952). Widespread in plant oils and as glycerides in seed oilsand is also present in apple, apricot, banana, morello cherry, citrus fruits, cheese, butter, white wine, Japanese whiskey, peated malt, wort and scallops. It is used as a defoamer, lubricant and citrus fruit coating. Salts (Na, K, Mg, Ca, Al) used as binders, emulsifiers and anticaking agents in food manuf. Decanoic acid is found in many foods, some of which are radish (variety), meatball, phyllo dough, and american shad. Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Phenylacetic acid

2-phenylacetic acid

C8H8O2 (136.0524)


Phenylacetic acid, also known as phenylacetate or alpha-toluic acid, belongs to benzene and substituted derivatives class of compounds. Those are aromatic compounds containing one monocyclic ring system consisting of benzene. Phenylacetic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). Phenylacetic acid can be synthesized from acetic acid. Phenylacetic acid is also a parent compound for other transformation products, including but not limited to, hydratropic acid, 2,4,5-trihydroxyphenylacetic acid, and mandelamide. Phenylacetic acid is a sweet, civet, and floral tasting compound and can be found in a number of food items such as hyssop, cowpea, endive, and shea tree, which makes phenylacetic acid a potential biomarker for the consumption of these food products. Phenylacetic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), saliva, feces, and blood. Phenylacetic acid exists in all living species, ranging from bacteria to humans. In humans, phenylacetic acid is involved in the phenylacetate metabolism. Moreover, phenylacetic acid is found to be associated with kidney disease and phenylketonuria. Phenylacetic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Phenylacetic acid is a drug which is used for use as adjunctive therapy for the treatment of acute hyperammonemia and associated encephalopathy in patients with deficiencies in enzymes of the urea cycle. Phenyl acetate (or phenylacetate) is a carboxylic acid ester that has been found in the biofluids of patients with nephritis and/or hepatitis as well as patients with phenylketonuria (PKU), an inborn error of metabolism. Phenyl acetate has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). Excess phenylalanine in the body can be disposed of through a transamination process leading to the production of phenylpyruvate. The phenylpyruvate can be further metabolized into a number of products. Decarboxylation of phenylpyruvate gives phenylacetate, while a reduction reaction gives phenyllactate. The phenylacetate can be further conjugated with glutamine to give phenylacetyl glutamine. All of these metabolites can be detected in serum and urine of PKU patients. Phenyl acetate is also produced endogenously as the metabolite of 2-Phenylethylamine, which is mainly metabolized by monoamine oxidase to form phenyl acetate. 2-phenylethylamine is an "endogenous amphetamine" which may modulate central adrenergic functions, and the urinary phenyl acetate levels have been postulated as a marker for depression. (PMID: 17978765 , 476920 , 6857245). Phenylacetate is also found in essential oils, e.g. neroli, rose oil, free and as esters and in many fruits. As a result it is used as a perfumery and flavoring ingredient. Phenyl acetate is a microbial metabolite. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Citral

(2E)-3,7-dimethylocta-2,6-dienal

C10H16O (152.1201)


Geranial, also known as 3,7-dimethyl-2,6-octadienal, citral or lemonal, belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Thus, citral is considered to be an isoprenoid lipid. Two different isomers of 3,7-dimethyl-2,6-octadienal exist. The E-isomer or trans-isomer is known as geranial or citral A. The Z-isomer or cis-isomer is known as neral or citral B. 3,7-dimethyl-2,6-octadienal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Citral is present in the oils of several plants, including lemon myrtle (90-98\\\\%), Litsea citrata (90\\\\%), Litsea cubeba, lemongrass (65-80\\\\%), lemon tea-tree (70-80\\\\%), Ocimum gratissimum, Lindera citriodora, Calypranthes parriculata, petitgrain, lemon verbena, lemon ironbark, lemon balm, lime, lemon and orange. Citral has also been reported to be found in Cannabis sativa (PMID:6991645 , 26657499 ). Citral has a strong lemon (citrus) odor. Nerals lemon odor is less intense, but sweeter. Citral is therefore an aroma compound used in perfumery for its citrus effect. Citral is also used as a flavor and for fortifying lemon oil. It has strong antimicrobial qualities (PMID:28974979 ) and pheromonal effects in nematodes and insects (PMID:26973536 ). Citral is used in the synthesis of vitamin A, lycopene, ionone, and methylionone (a compound used to mask the smell of smoke). Occurs in lemon grass oil (Cymbopogon citratus), lemon, orange and many other essential oils; flavouring ingredient. Geranial is found in many foods, some of which are watermelon, nutmeg, cloud ear fungus, and yellow wax bean. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1]. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1].

   

Methyl 2-hydroxybenzoate

methyl 2-hydroxybenzoate

C8H8O3 (152.0473)


Methyl salicylate appears as colorless yellowish or reddish liquid with odor of wintergreen. (USCG, 1999) Methyl salicylate is a benzoate ester that is the methyl ester of salicylic acid. It has a role as a flavouring agent, a metabolite and an insect attractant. It is a benzoate ester, a member of salicylates and a methyl ester. It is functionally related to a salicylic acid. Methyl salicylate (oil of wintergreen or wintergreen oil) is an organic ester naturally produced by many species of plants, particularly wintergreens. The compound was first extracted and isolated from plant species Gaultheria procumbens in 1843. It can be manufactured synthetically and it used as a fragrance, in foods, beverages, and liniments. It forms a colorless to yellow or reddish liquid and exhibits a characteristic odor and taste of wintergreen. For acute joint and muscular pain, methyl salicylate is used as a rubefacient and analgesic in deep heating liniments. It is used as a flavoring agent in chewing gums and mints in small concentrations and added as antiseptic in mouthwash solutions. Methyl Salicylate is a natural product found in Nepeta nepetella, Eupatorium cannabinum, and other organisms with data available. Methyl 2-hydroxybenzoate is found in beverages. Methyl 2-hydroxybenzoate is present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. Methyl 2-hydroxybenzoate is found in leaves of Gaultheria procumbens (wintergreen). Methyl 2-hydroxybenzoate is a flavouring agent. Methyl 2-hydroxy benzoate is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Salicylic Acid (has active moiety); Clove Oil (part of); LIDOCAINE; MENTHOL; Methyl Salicylate (component of) ... View More ... Methyl 2-hydroxybenzoate, also known as methyl salicylate, 2-(methoxycarbonyl)phenol or 2-carbomethoxyphenol, belongs to the class of organic compounds known as o-hydroxybenzoic acid esters. These are benzoic acid esters where the benzene ring is ortho-substituted with a hydroxy group. Methyl 2-hydroxybenzoate is a mint, peppermint, and wintergreen tasting compound. Methyl 2-hydroxybenzoate is found, on average, in the highest concentration within hyssops and bilberries. Methyl 2-hydroxybenzoate has also been detected, but not quantified, in several different foods, such as chinese cinnamons, tamarinds, tea, mushrooms, and roselles. Minor metabolism may occur in various tissues but hepatic metabolism constitutes the majority of metabolic processes of absorbed methyl salicylate. Methyl 2-hydroxybenzoate is a potentially toxic compound. Present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. For acute joint and muscular pain, Methyl 2-hydroxybenzoate is used as a rubefacient and analgesic in deep heating liniments. This is thought to mask the underlying musculoskeletal pain and discomfort. Severe toxicity can result in acute lung injury, lethargy, coma, seizures, cerebral edema, and death. Counter-irritation is believed to cause a soothing sensation of warmth. Methyl salicylate plays a role as a signaling molecule in plants. Present in white wine, tea, porcini mushroom Boletus edulis, Bourbon vanilla, clary sage, red sage and fruits including cherry, apple, raspberry, papaya and plum. Found in leaves of Gaultheria procumbens (wintergreen). Flavouring agent. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic A benzoate ester that is the methyl ester of salicylic acid. D018501 - Antirheumatic Agents D005404 - Fixatives Same as: D01087 Acquisition and generation of the data is financially supported in part by CREST/JST. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4]. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].

   

Phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


Phenylacetaldehyde is one important oxidation-related aldehyde. Exposure to styrene gives phenylacetaldehyde as a secondary metabolite. Styrene has been implicated as reproductive toxicant, neurotoxicant, or carcinogen in vivo or in vitro. Phenylacetaldehyde could be formed by diverse thermal reactions during the cooking process together with C8 compounds is identified as a major aroma- active compound in cooked pine mushroom. Phenylacetaldehyde is readily oxidized to phenylacetic acid. Therefore will eventually be hydrolyzed and oxidized to yield phenylacetic acid that will be excreted primarily in the urine in conjugated form. (PMID: 16910727, 7818768, 15606130). Found in some essential oils, e.g. Citrus subspecies, Tagetes minuta (Mexican marigold) and in the mushroom Phallus impudicus (common stinkhorn). Flavouring ingredient COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Phenylethyl acetate

Acetic acid beta -phenylethyl ester

C10H12O2 (164.0837)


2-Phenylethyl acetate, also known as 2-phenethyl acetic acid or benzylcarbinyl acetate, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethyl acetate is a sweet, floral, and fruity tasting compound. 2-Phenylethyl acetate is found, on average, in the highest concentration within ceylon cinnamons and cloves. 2-Phenylethyl acetate has also been detected, but not quantified, in several different foods, such as butternuts, eggplants, turmerics, radish (var.), and pili nuts. This could make 2-phenylethyl acetate a potential biomarker for the consumption of these foods. The acetate ester of 2-phenylethanol. Flavouring ingredient. 2-Phenylethyl acetate is found in many foods, some of which are acerola, prickly pear, summer grape, and sweet orange.

   

Octanol

Octyl alcohol normal-primary

C8H18O (130.1358)


1-Octanol, also known as octan-1-ol, is the organic compound with the molecular formula CH3(CH2)7OH. It is a fatty alcohol. Many other isomers are also known generically as octanols. Octanol is mainly produced industrially by the oligomerization of ethylene using triethylaluminium followed by oxidation of the alkylaluminium products. This route is known as the Ziegler alcohol synthesis. Octanol also occurs naturally in the form of esters in some essential oils. Octanol and water are immiscible. The distribution of a compound between water and octanol is used to calculate the partition coefficient (logP) of that molecule. Water/octanol partitioning is a good approximation of the partitioning between the cytosol and lipid membranes of living systems. Octanol is a colorless, slightly viscous liquid used as a defoaming or wetting agent. It is also used as a solvent for protective coatings, waxes, and oils, and as a raw material for plasticizers. It is also one of many compounds derived from tobacco and tobacco smoke and shown to increase the permeability of the membranes of human lung fibroblasts (PMID 7466833). Occurs in the form of esters in some essential oils. Flavouring agent. 1-Octanol is found in many foods, some of which are common wheat, lime, tea, and corn. D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

Isoplumericin

methyl (1S,4S,8R,10S,11Z,14S)-11-ethylidene-12-oxo-7,9,13-trioxatetracyclo[6.5.1.01,10.04,14]tetradeca-2,5-diene-5-carboxylate

C15H14O6 (290.079)


[Raw Data] CBA32_Isoplumericin_pos_30eV_1-6_01_1570.txt [Raw Data] CBA32_Isoplumericin_pos_20eV_1-6_01_1569.txt [Raw Data] CBA32_Isoplumericin_pos_10eV_1-6_01_1545.txt [Raw Data] CBA32_Isoplumericin_pos_50eV_1-6_01_1572.txt [Raw Data] CBA32_Isoplumericin_pos_40eV_1-6_01_1571.txt

   

Benzyl benzoate

Benzyl benzoate, Pharmaceutical Secondary Standard; Certified Reference Material

C14H12O2 (212.0837)


Benzyl benzoate, also known as benylate or benylic acid, belongs to the class of organic compounds known as benzoic acid esters. These are ester derivatives of benzoic acid. Benzyl benzoate is an extremely weak basic (essentially neutral) compound (based on its pKa). Benzyl benzoate is a faint, sweet, and almond tasting compound. Outside of the human body, benzyl benzoate is found, on average, in the highest concentration within Ceylon cinnamon. Benzyl benzoate has also been detected, but not quantified in, several different foods, such as fennels, garden tomato, annual wild rice, amaranths, and horseradish tree. This could make benzyl benzoate a potential biomarker for the consumption of these foods. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite Sarcoptes scabiei. It is characterized by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and is therefore useful in the treatment of scabies. It is also used to treat lice infestations of the head and body. Benzyl benzoate is a benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. It has a role as a scabicide, an acaricide and a plant metabolite. It is a benzyl ester and a benzoate ester. It is functionally related to a benzoic acid. Benzyl benzoate is one of the older preparations used to treat scabies. Scabies is a skin infection caused by the mite sarcoptes scabiei. It is characterised by severe itching (particularly at night), red spots, and may lead to a secondary infection. Benzyl benzoate is lethal to this mite and so is useful in the treatment of scabies. It is also used to treat lice infestation of the head and body. Benzyl benzoate is not the treatment of choice for scabies due to its irritant properties. Benzyl benzoate is a natural product found in Lonicera japonica, Populus tremula, and other organisms with data available. See also: ... View More ... P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides A benzoate ester obtained by the formal condensation of benzoic acid with benzyl alcohol. It has been isolated from the plant species of the genus Polyalthia. Contained in Peru balsam and Tolu balsam. Isolated from other plants e.g. Jasminum subspecies, ylang-ylang oil. It is used in food flavouring C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01138 Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   

Plumieride

methyl (1S,4aS,7R,7aS)-4'-[(1S)-1-hydroxyethyl]-5'-oxo-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyspiro[4a,7a-dihydro-1H-cyclopenta[c]pyran-7,2'-furan]-4-carboxylate

C21H26O12 (470.1424)


Plumieride is a glycoside. Plumieride has been reported in Plumeria rubra, Allamanda cathartica Plumieride. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=511-89-7 (retrieved 2024-11-15) (CAS RN: 511-89-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[2-[6-[2,4-dimethoxy-3,6-bis[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy]phenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


Liriodendrin is a natural product found in Kalopanax septemlobus, Eleutherococcus gracilistylus, and other organisms with data available. Eleutheroside D is found in tea. Eleutheroside D is a constituent of Siberian ginseng (Eleutherococcus (Acanthopanax) senticosus). Isolated from Eleutherococcus senticosus (Siberian ginseng). Liriodendrin is found in tea. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

2,6-Dimethoxy-1,4-benzoquinone

3,5-Dimethoxy-1,4-benzoquinone; 3,5-Dimethoxybenzoquinone; NSC 24500

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone is a natural product found in Diospyros eriantha, Iris milesii, and other organisms with data available. 2,6-Dimethoxyquinone is a methoxy-substituted benzoquinone and bioactive compound found in fermented wheat germ extracts, with potential antineoplastic and immune-enhancing activity. 2,6-Dimethoxyquinone (2,6-DMBQ) inhibits anaerobic glycolysis thereby preventing cellular metabolism and inducing apoptosis. As cancer cells use the anaerobic glycolysis pathway to metabolize glucose and cancer cells proliferate at an increased rate as compared to normal, healthy cells, this agent is specifically cytotoxic towards cancer cells. In addition, 2,6-DMBQ exerts immune-enhancing effects by increasing natural killer (NK) cell and T-cell activity against cancer cells. See also: Acai fruit pulp (part of). 2,6-Dimethoxy-1,4-benzoquinone is found in common wheat. 2,6-Dimethoxy-1,4-benzoquinone is a constituent of bark of Phyllostachys heterocycla var. pubescens (moso bamboo) Constituent of bark of Phyllostachys heterocycla variety pubescens (moso bamboo). 2,6-Dimethoxy-1,4-benzoquinone is found in green vegetables and common wheat. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

Prenol

3-Methyl-2-butenyl alcohol

C5H10O (86.0732)


Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

Benzaldehyde

benzaldehyde

C7H6O (106.0419)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants. For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors. This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry. Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

Heptadecane

CH3-[CH2]15-CH3

C17H36 (240.2817)


Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .

   

Heptanal

Oenanthic aldehyde

C7H14O (114.1045)


Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent

   

1-Pentanol

N-Pentanol, 1-(13)C-labeled CPD

C5H12O (88.0888)


1-Pentanol, also known as butylcarbinol or 1-pentyl alcohol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-pentanol is considered to be a fatty alcohol lipid molecule. 1-Pentanol is an organic compound with the formula C5H12O. 1-Pentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. All eight isomers of 1-Pentanol are known:; It is a colourless liquid of density 0.8247 g/cm3 (0 oC), boiling at 131.6 oC, slightly soluble in water, easily soluble in organic solvents. 1-Pentanol exists in all eukaryotes, ranging from yeast to humans. 1-Pentanol is a sweet, balsamic, and fusel tasting compound. 1-Pentanol can be found in a few different foods, such as black walnuts, common thymes, and tea and in a lower concentration in safflowers, highbush blueberries, and kohlrabis. 1-Pentanol has also been detected, but not quantified, in several different foods, such as corns, garden tomato (var.), allspices, cherry tomato, and evergreen blackberries. It possesses a characteristic strong smell and a sharp burning taste. The other amyl alcohols may be obtained synthetically. It is a solid that melts at 48 to 50 °C and boils at 112.3 °C. On passing its vapour through a red-hot tube, it decomposes with production of acetylene, ethylene, propylene, and other compounds. Of these, tertiary 1-Pentanol has been the most difficult to obtain, its synthesis having first been reported in 1891, by L. Tissier (Comptes Rendus, 1891, 112, p. 1065) by the reduction of a mixture of trimethyl acetic acid and trimethylacetyl chloride with sodium amalgam. It is oxidized by chromic acid to isovaleraldehyde, and it forms crystalline addition compounds with calcium chloride and tin(IV) chloride. When pure, it is nontoxic, while the impure product is toxic. Widely distributed in plant sources, e.g. peppermint oil, tomatoes, tea, potatoes. Flavouring ingredient

   

2-Phenylethanol

Phenethyl alcohol, 8ci, ban

C8H10O (122.0732)


2-Phenylethanol, also known as benzeneethanol or benzyl carbinol, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethanol exists in all living species, ranging from bacteria to humans. 2-Phenylethanol is a bitter, floral, and honey tasting compound. 2-Phenylethanol is found, on average, in the highest concentration within a few different foods, such as red wines, black walnuts, and white wines and in a lower concentration in grape wines, sweet basils, and peppermints. 2-Phenylethanol has also been detected, but not quantified, in several different foods, such as asparagus, allspices, fruits, horned melons, and lemons. 2-Phenylethanol, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, pervasive developmental disorder not otherwise specified, and autism. 2-phenylethanol has also been linked to the inborn metabolic disorder celiac disease. A primary alcohol that is ethanol substituted by a phenyl group at position 2. Flavouring ingredient. Component of ylang-ylang oil. 2-Phenylethanol is found in many foods, some of which are hickory nut, arrowhead, allspice, and nance. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.

   

Acetoin

1-Hydroxyethyl methyl ketone

C4H8O2 (88.0524)


Acetoin, also known as dimethylketol or 2,3-butanolone, belongs to the class of organic compounds known as acyloins. These are organic compounds containing an alpha hydroxy ketone. Acyloins are formally derived from reductive coupling of carboxylic acyl groups. Thus, acetoin is considered to be an oxygenated hydrocarbon lipid molecule. Acetoin is used as an external energy store by a number of fermentive bacteria. Acetoin, along with diacetyl, is one of the compounds giving butter its characteristic flavor. Acetoin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Acetoin is used as a food flavoring (in baked goods) and a fragrance. Acetoin is a sweet, buttery, and creamy tasting compound. Outside of the human body, Acetoin has been detected, but not quantified in several different foods, such as cocoa and cocoa products, evergreen blackberries, orange bell peppers, tortilla chips, and pomes. This could make acetoin a potential biomarker for the consumption of these foods. Constituent of beer, wine, fresh or cooked apple, fresh or cooked leak, corn, honey, cocoa, butter, cheeses, roasted coffee and other foodstuffs. Acetoin, with regard to humans, has been found to be associated with several diseases such as eosinophilic esophagitis and ulcerative colitis; acetoin has also been linked to the inborn metabolic disorder celiac disease. Acetoin is a colorless or pale yellow to green yellow liquid with a pleasant, buttery odor. It can be found in apples, butter, yogurt, asparagus, black currants, blackberry, wheat, broccoli, brussels sprouts, cantaloupe. Constituent of beer, wine, fresh or cooked apple, fresh or cooked leak, corn, honey, cocoa, butter, cheeses, roasted coffee and other foodstuffs. Flavouring ingredient. [DFC]

   

Benzyl alcohol

Hydroxymethylpolystyrene resin

C7H8O (108.0575)


Benzyl alcohol is a colorless liquid with a sharp burning taste and slight odor. It is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl alcohol is not a sensitizer at 10\\\\%. Benzyl alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID:11766131). Constituent of jasmine and other ethereal oils, both free and as estersand is also present in cherry, orange juice, mandarin peel oil, guava fruit, feijoa fruit, pineapple, leek, cinnamon, cloves, mustard, fermented tea, basil and red sage. Flavouring ingredient P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.

   

Ethyl acetate

Ethyl ester OF acetic acid

C4H8O2 (88.0524)


Ethyl acetate, also known as 1-acetoxyethane or acetic ester, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Ethyl acetate exists in all eukaryotes, ranging from yeast to humans. Ethyl acetate is a sweet, anise, and balsam tasting compound. Ethyl acetate is found, on average, in the highest concentration within a few different foods, such as milk (cow), pineapples, and sweet oranges and in a lower concentration in safflowers. Ethyl acetate has also been detected, but not quantified, in several different foods, such as alcoholic beverages, oxheart cabbages, agaves, chervils, ryes, and peach. It is used in artificial fruit essences. In the field of entomology, ethyl acetate is an effective asphyxiant for use in insect collecting and study. Because it is not hygroscopic, ethyl acetate also keeps the insect soft enough to allow proper mounting suitable for a collection. In a killing jar charged with ethyl acetate, the vapors will kill the collected (usually adult) insect quickly without destroying it. In organic and in natural products chemistry ethyl acetate is often used as a solvent for reactions or extractions. Ethyl acetate is a potentially toxic compound. Ethyl acetate, with regard to humans, has been found to be associated with several diseases such as perillyl alcohol administration for cancer treatment, crohns disease, nonalcoholic fatty liver disease, and pervasive developmental disorder not otherwise specified; ethyl acetate has also been linked to the inborn metabolic disorder celiac disease. Found in cereal crops, radishes, fruit juices, beer, wine, spirits etc. and produced by Anthemis nobilis (Roman chamomile) and Rubus subspecies It is used in artificial fruit essences. It is used as a solvent in the manufacture of modified hop extract and decaffeinated tea or coffeeand is also used for colour and inks used to mark fruit or vegetables

   

Terpinolene

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1252)


Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.

   

Ethanol

Ethyl alcohol in alcoholic beverages

C2H6O (46.0419)


Ethanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4\\%. A blood level of 0.5\\% or more is commonly fatal. Levels of even less than 0.1\\% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 \\%. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system. Ethanol is a general biomarker for the consumption of alcohol. Ethanol is also a metabolite of Hansenula and Saccharomyces (PMID: 14613880) (https://ac.els-cdn.com/S0079635206800470/1-s2.0-S0079635206800470-main.pdf?_tid=4d340044-3230-4141-88dd-deec4d2e35bd&acdnat=1550288012_0c4a20fe963843426147979d376cf624). Intoxicating constituent of all alcoholic beverages. It is used as a solvent and vehicle for food dressings and flavourings. Antimicrobial agent, e.g for pizza crusts prior to baking. extraction solvent for foodstuffs. Widely distributed in fruits and other foods V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents

   

Stearaldehyde

Octadecyl aldehyde

C18H36O (268.2766)


Stearaldehyde or octadecanal is a normal long chain fatty aldehyde that can be found in total lipid extracts of muscle tissue. Stearaldehyde can also be found in the plasma of patients with Sjogren-Larsson syndrome. Sjogren-Larsson syndrome (SLS) is an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH). (PMID 14564703, 11408337). Octadecanal is often used as the substrate of choice to test FALDH activity in patients suspected of having Sjogren-Larsson syndrome. [HMDB] Stearaldehyde or octadecanal is a normal long chain fatty aldehyde that can be found in total lipid extracts of muscle tissue. Stearaldehyde can also be found in the plasma of patients with Sjogren-Larsson syndrome. Sjogren-Larsson syndrome (SLS) is an autosomal recessively inherited neurocutaneous disorder caused by a deficiency of the microsomal enzyme fatty aldehyde dehydrogenase (FALDH). (PMID 14564703, 11408337). Octadecanal is often used as the substrate of choice to test FALDH activity in patients suspected of having Sjogren-Larsson syndrome.

   

Dodecanol

1-Dodecanol (acd/name 4.0)

C12H26O (186.1984)


Dodecanol, also known as dodecyl alcohol or lorol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, dodecanol is considered to be a fatty alcohol lipid molecule. Dodecanol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Dodecanol can be synthesized from dodecane. Dodecanol can also be synthesized into lauryl palmitoleate and dodecyl palmitate. Dodecanol can be found in a number of food items such as watermelon, quince, prickly pear, and brassicas, which makes dodecanol a potential biomarker for the consumption of these food products. Dodecanol can be found primarily in feces and saliva. Dodecanol exists in all eukaryotes, ranging from yeast to humans. Dodecanol (systematically named dodecan-1-ol) is an organic compound with the chemical formula CH3(CH2)10CH2OH (also written as C 12H 26O). It is tasteless, colourless solid with a floral smell. It is classified as a fatty alcohol . Dodecanol, also known by its IUPAC name 1-dodecanol or dodecan-1-ol, and by its trivial name dodecyl alcohol and lauryl alcohol, is a fatty alcohol. Dodecanol is a colourless, water insoluble solid with a melting point of 24 °C and boiling point of 259 °C. It has a floral odor. Dodecanol can be obtained from palm kernel or coconut oil fatty acids and methyl esters by reduction. 1-Dodecanol is an endogenous metabolite. 1-Dodecanol is an endogenous metabolite.

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

(+)-1(10),4-Cadinadiene

1,2,3,5,6,8a-hexahydro-4,7-Dimethyl-1-(1-methylethyl)-(1S,8ar)-naphthalene

C15H24 (204.1878)


Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag

   

Allamandin

2H,6H-1,4,5-Trioxadicyclopent[a,hi]indene-7-carboxylicacid, 3-ethylidene-3,3a,4a,7,7a,9b-hexahydro-6-hydroxy-2-oxo-, methyl ester,(3E,3aR,4aR,6R,7R,7aR,9aR,9bR)-rel-(+)-

C15H16O7 (308.0896)


   

Fulvoplumierin

Fulvoplumierin

C14H12O4 (244.0736)


   

trans-Ocimene

trans-3,7-Dimethylocta-1,3,6-triene

C10H16 (136.1252)


trans-Ocimene is found in allspice. trans-Ocimene is a constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga, and Labidus species (CCD). Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha-isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odour and it is used in perfumery. Constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga and Labidus subspecies [CCD]

   

alpha-Terpineol

2-(4-Methylcyclohex-3-enyl)propan-2-ol (alpha-terpineol)

C10H18O (154.1358)


alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

1-Phenylethanol

(1)-alpha-Methylbenzyl alcohol

C8H10O (122.0732)


1-Phenylethanol is a flavouring agent. It is found in many foods, some of which are onion-family vegetables, herbs and spices, nuts, and fruits. (±)-1-Phenylethanol is a flavouring agent

   

piceol

InChI=1\C8H8O2\c1-6(9)7-2-4-8(10)5-3-7\h2-5,10H,1H

C8H8O2 (136.0524)


INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3087; ORIGINAL_PRECURSOR_SCAN_NO 3084 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3098; ORIGINAL_PRECURSOR_SCAN_NO 3095 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3089; ORIGINAL_PRECURSOR_SCAN_NO 3087 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3095; ORIGINAL_PRECURSOR_SCAN_NO 3093 INTERNAL_ID 214; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3092; ORIGINAL_PRECURSOR_SCAN_NO 3090 CONFIDENCE standard compound; INTERNAL_ID 214; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3160; ORIGINAL_PRECURSOR_SCAN_NO 3158 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Paroxypropione

p-Hydroxypropiophenone

C9H10O2 (150.0681)


C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist Same as: D01870

   

Benzeneacetonitrile

laquo omegaraquo -Cyanotoluene

C8H7N (117.0578)


Isolated from oil of garden cress (Lepidium sativum) and other plant oils. Benzeneacetonitrile is found in many foods, some of which are peppermint, garden tomato (variety), papaya, and kohlrabi. Benzeneacetonitrile is found in garden cress. Benzeneacetonitrile is isolated from oil of garden cress (Lepidium sativum) and other plant oils.

   

Tricosane

CH3-[CH2]21-CH3

C23H48 (324.3756)


N-tricosane, also known as ch3-[ch2]21-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-tricosane is considered to be a hydrocarbon lipid molecule. N-tricosane is an alkane and waxy tasting compound and can be found in a number of food items such as kohlrabi, papaya, coconut, and ginkgo nuts, which makes N-tricosane a potential biomarker for the consumption of these food products. N-tricosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tricosane belongs to the class of organic compounds known as acyclic alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.

   

gamma-Terpineol

1-Methyl-4-(1-methylethylidene)cyclohexanol, 9ci

C10H18O (154.1358)


gamma-Terpineol is found in ceylan cinnamon. gamma-Terpineol is isolated from carrot oils, from the cinnamon tree (Cinnamomum zeylanicum) and Scotch pine (Pinus sylvestris).Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (Wikipedia). Isolated from carrot oils, from the cinnamon tree (Cinnamomum zeylanicum) and Scotch pine (Pinus sylvestris)

   

Ethylmethylacetic acid

DL-2-Methylbutyrate;�DL-2-Methylbutyric acid

C5H10O2 (102.0681)


Ethylmethylacetic acid, also known as alpha-methyl butyric acid or a-methyl butyrate, belongs to the class of organic compounds known as methyl-branched fatty acids. These are fatty acids with an acyl chain that has a methyl branch. Usually, they are saturated and contain only one or more methyl group. However, branches other than methyl may be present. Ethylmethylacetic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethylmethylacetic acid is a carboxylic acid found in low amounts in normal humans (PMID 3372640)

   

Methyl benzoate

Methyl benzenecarboxylic acid

C8H8O2 (136.0524)


Methyl benzoate is an ester with the chemical formula C6H5COOCH3. It is formed by the condensation of methanol and benzoic acid. It is a colorless to slightly yellow liquid that is insoluble with water, but miscible with most organic solvents. Methyl benzoate is found in allspice. Methyl benzoate is present in various flower oils, banana, cherry, pimento berry, ceriman (Monstera deliciosa), clove bud and stem, mustard, coffee, black tea, dill, starfruit and cherimoya (Annona cherimola). Methyl benzoate is used in flavourings. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Present in various flower oils, banana, cherry, pimento berry, ceriman (Monstera deliciosa), clove bud and stem, mustard, coffee, black tea, dill, starfruit and cherimoya (Annona cherimola). It is used in flavourings

   

cis-Citral

(2Z)-3,7-Dimethyl-2,6-octadien-1-al

C10H16O (152.1201)


Neral, also known as cis-citral or citral b, is a member of the class of compounds known as acyclic monoterpenoids. Acyclic monoterpenoids are monoterpenes that do not contain a cycle. Thus, neral is considered to be an isoprenoid lipid molecule. Neral is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Neral is a sweet, citral, and lemon tasting compound and can be found in a number of food items such as oval-leaf huckleberry, lime, onion-family vegetables, and biscuit, which makes neral a potential biomarker for the consumption of these food products. Neral may refer to: An isomer of Citral Neral, India, a town in Raigad district in the Indian state of Maharashtra Neral railway station A Romulan from Star Trek . cis-Citral, also known as neural or citral B, is the Z-isomer of the terpenoid citral. Citral is found in carrot.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1252)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

plumericin

methyl (1S,4S,8R,10S,11E,14S)-11-ethylidene-12-oxo-7,9,13-trioxatetracyclo[6.5.1.01,10.04,14]tetradeca-2,5-diene-5-carboxylate

C15H14O6 (290.079)


[Raw Data] CBA31_Plumericin_pos_40eV_1-5_01_1567.txt [Raw Data] CBA31_Plumericin_pos_10eV_1-5_01_1548.txt [Raw Data] CBA31_Plumericin_pos_20eV_1-5_01_1565.txt [Raw Data] CBA31_Plumericin_pos_30eV_1-5_01_1566.txt [Raw Data] CBA31_Plumericin_pos_50eV_1-5_01_1568.txt

   

HEPTACOSANE

HEPTACOSANE

C27H56 (380.4382)


A straight-chain alkane with 27 carbon atoms.

   

Nonanal

Aldehyde C9, Nonyl aldehyde, Pelargonaldehyde

C9H18O (142.1358)


Nonanal, also known as nonyl aldehyde or pelargonaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, nonanal is considered to be a fatty aldehyde lipid molecule. Nonanal acts synergistically with carbon dioxide in that regard. Nonanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Nonanal exists in all eukaryotes, ranging from yeast to humans. Nonanal is an aldehydic, citrus, and fat tasting compound. nonanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and gingers and in a lower concentration in sweet oranges, carrots, and limes. nonanal has also been detected, but not quantified, in several different foods, such as olives, cereals and cereal products, chinese cinnamons, common grapes, and oats. This could make nonanal a potential biomarker for the consumption of these foods. Nonanal has been identified as a compound that attracts Culex mosquitoes. Nonanal is a potentially toxic compound. Nonanal has been found to be associated with several diseases such as pervasive developmental disorder not otherwise specified, autism, crohns disease, and ulcerative colitis; also nonanal has been linked to the inborn metabolic disorders including celiac disease. Nonanal, also called nonanaldehyde, pelargonaldehyde or Aldehyde C-9, is an alkyl aldehyde. Although it occurs in several natural oils, it is produced commercially by hydroformylation of 1-octene. A colourless, oily liquid, nonanal is a component of perfumes. Nonanal is a clear brown liquid characterized by a rose-orange odor. Insoluble in water. Found in at least 20 essential oils, including rose and citrus oils and several species of pine oil. Nonanal is a saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. It has a role as a human metabolite and a plant metabolite. It is a saturated fatty aldehyde, a n-alkanal and a medium-chain fatty aldehyde. It is functionally related to a nonanoic acid. Nonanal is a natural product found in Teucrium montanum, Eupatorium cannabinum, and other organisms with data available. Nonanal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Nonanal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. Found in various plant sources including fresh fruits, citrus peels, cassava (Manihot esculenta), rice (Oryza sativa). Flavouring ingredient A saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1]. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1].

   

Docosane

InChI=1/C22H46/c1-3-5-7-9-11-13-15-17-19-21-22-20-18-16-14-12-10-8-6-4-2/h3-22H2,1-2H

C22H46 (310.3599)


N-docosane, also known as ch3-[ch2]20-ch3 or dokosan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-docosane is considered to be a hydrocarbon lipid molecule. N-docosane is an alkane and waxy tasting compound and can be found in a number of food items such as lemon balm, linden, allspice, and sunflower, which makes N-docosane a potential biomarker for the consumption of these food products. N-docosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Docosane, also known as CH3-[CH2]20-CH3 or dokosan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Docosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, docosane is considered to be a hydrocarbon lipid molecule. Docosane is an alkane and waxy tasting compound. Docosane is found, on average, in the highest concentration within lemon balms. Docosane has also been detected, but not quantified, in several different foods, such as allspices, lindens, papaya, and sunflowers. This could make docosane a potential biomarker for the consumption of these foods. A straight-chain alkane with 22 carbon atoms. N-docosane is a solid. Insoluble in water. Used in organic synthesis, calibration, and temperature sensing equipment. Docosane is a straight-chain alkane with 22 carbon atoms. It has a role as a plant metabolite. Docosane is a natural product found in Lonicera japonica, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane with 22 carbon atoms. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].

   

Arachidyl alcohol

InChI=1/C20H42O/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18-19-20-21/h21H,2-20H2,1H

C20H42O (298.3235)


Arachidyl alcohol, also known as 1-eicosanol or eicosyl alcohol, belongs to the class of organic compounds known as long-chain fatty alcohols. These are fatty alcohols that have an aliphatic tail of 13 to 21 carbon atoms. Thus, arachidyl alcohol is considered to be a fatty alcohol lipid molecule. Arachidyl alcohol is a very hydrophobic molecule, practically insoluble in water and relatively neutral. Arachidyl alcohol, also 1-icosanol, is a waxy substance used as an emollient in cosmetics. It is a straight-chain fatty alcohol.; Arachidyl alcohol, also 1-icosanol, is a waxy substance used as an emollient in cosmetics. It is a straight-chain fatty alcohol.; ; from wikipedia. Eicosan-1-ol is found in flaxseed, black elderberry, and potato. Icosan-1-ol is a fatty alcohol consisting of a hydroxy function at C-1 of an unbranched saturated chain of 20 carbon atoms. It is a long-chain primary fatty alcohol and a fatty alcohol 20:0. 1-Eicosanol is a natural product found in Lonicera japonica, Artemisia baldshuanica, and other organisms with data available. A long-chain primary fatty alcohol that is icosane in which one of the terminal methyl hydrogens is replaced by a hydroxy group.

   

Methyl_cinnamate

InChI=1/C10H10O2/c1-12-10(11)8-7-9-5-3-2-4-6-9/h2-8H,1H3/b8-7

C10H10O2 (162.0681)


Methyl cinnamate is a methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. It has a role as a flavouring agent, a fragrance, an insect attractant, a volatile oil component and an anti-inflammatory agent. It is a methyl ester and an alkyl cinnamate. Methyl cinnamate is a natural product found in Melaleuca viridiflora, Alpinia formosana, and other organisms with data available. Methyl cinnamate is a metabolite found in or produced by Saccharomyces cerevisiae. The E (trans) isomer of methyl cinnamate. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Heneicosane

(S)-(-)-2,2-Bis(diphenylphosphino)-5,5,6,6,7,7,8,8-octahydro-1,1-binaphthyl (R)-H8-BINAP

C21H44 (296.3443)


Heneicosane, also known as CH3-[CH2]19-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosane is an alkane and waxy tasting compound. Heneicosane is found, on average, in the highest concentration within a few different foods, such as black elderberries, common oregano, and lemon balms. Heneicosane has also been detected, but not quantified, in several different foods, such as sunflowers, kohlrabis, orange bell peppers, lindens, and pepper (c. annuum). This could make heneicosane a potential biomarker for the consumption of these foods. An alkane that has 21 carbons and a straight-chain structure. Heneicosane, also known as ch3-[ch2]19-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is an alkane and waxy tasting compound and can be found in a number of food items such as orange bell pepper, yellow bell pepper, lemon balm, and pepper (c. annuum), which makes heneicosane a potential biomarker for the consumption of these food products. Heneicosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Crystals. (NTP, 1992) Henicosane is an alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. It has a role as a pheromone, a plant metabolite and a volatile oil component. Heneicosane is a natural product found in Erucaria microcarpa, Microcystis aeruginosa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

Methyl cinnamate

3-Phenyl-methyl ester(2E)-2-propenoic acid

C10H10O2 (162.0681)


Methyl cinnamate is found in ceylan cinnamon. Methyl cinnamate occurs in essential oils e.g. from Ocimum and Alpinia species Also present in various fruits, e.g. guava, feijoa, strawberry. Methyl cinnamate is a flavouring agent.Methyl cinnamate is the methyl ester of cinnamic acid and is a white or transparent solid with a strong, aromatic odor. It is found naturally in a variety of plants, including in fruits, like strawberry, and some culinary spices, such as Sichuan pepper and some varieties of basil. Eucalyptus olida has the highest known concentrations of methyl cinnamate (98\\\\\%) with a 2-6\\\\\% fresh weight yield in the leaf and twigs. Occurs in essential oils e.g. from Ocimum and Alpinia subspecies Also present in various fruits, e.g. guava, feijoa, strawberry. Flavouring agent Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Arjunolic acid

10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Arjunolic acid is found in fruits. Arjunolic acid is a constituent of Psidium guajava (guava) Constituent of Psidium guajava (guava). Arjunolic acid is found in fruits and guava.

   

1-Hexanol

1-Hexanol, aluminum salt

C6H14O (102.1045)


1-Hexanol is an organic alcohol with a six carbon chain and a condensed structural formula of CH3(CH2)5OH. This colorless liquid is slightly soluble in water, but miscible with ether and ethanol. Two additional straight chain isomers of 1-hexanol exist, 2-hexanol and 3-hexanol, both of which differ by the location of the hydroxyl group. Many isomeric alcohols have the formula C6H13OH. 1-hexanol is believed to be a component of the odour of freshly mowed grass. It is used in the perfume industry and as a flavouring agent. 1-Hexanol is found in many foods, some of which are lemon, tea, yellow bell pepper, and hyssop. 1-Hexanol is a common constituent of essential oils (e.g. orange peel oil). 1-Hexanol is an organic alcohol with a six carbon chain and a condensed structural formula of CH3(CH2)5OH. This colorless liquid is slightly soluble in water, but miscible with ether and ethanol. Two additional straight chain isomers of 1-hexanol exist, 2-hexanol and 3-hexanol, both of which differ by the location of the hydroxyl group. Many isomeric alcohols have the formula C6H13OH. 1-hexanol is believed to be a component of the odour of freshly mown grass. It is used in the perfume industry. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

(S)-2-Methyl-1-butanol

DL-2-METHYL-1-butanol, pract

C5H12O (88.0888)


(S)-2-Methyl-1-butanol, also known as sec-butylcarbinol or 2-methyl butanol-1, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). (S)-2-Methyl-1-butanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (S)-2-methyl-1-butanol is considered to be a fatty alcohol lipid molecule. (S)-2-Methyl-1-butanol exists in all eukaryotes, ranging from yeast to humans. (S)-2-Methyl-1-butanol is a malt tasting compound. (S)-2-Methyl-1-butanol is found, on average, in the highest concentration within milk (cow) and it has also been detected, but not quantified, in several different foods, such as red raspberries, nectarines, carobs, wild leeks, and black-eyed pea. This could make (S)-2-methyl-1-butanol a potential biomarker for the consumption of these foods. Isolated from grapes, apples, tomatoes etc. (S)-2-Methyl-1-butanol is found in many foods, some of which are carrot, shallot, rose hip, and muskmelon.

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

cis-Ocimene

(Z)-3,7-dimethylocta-1,3,6,-triene

C10H16 (136.1252)


Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. cis-beta-Ocimene is found in many foods, some of which are cornmint, sweet orange, sweet basil, and common sage. cis-Ocimene is found in allspice. Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. (Wikipedia

   

(S)-p-Menth-1-en-4-ol

(1S)-4-methyl-1-(propan-2-yl)cyclohex-3-en-1-ol

C10H18O (154.1358)


(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].

   

beta-Ionol

(3E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ol

C13H22O (194.1671)


beta-Ionol is a flavouring ingredient. Flavouring ingredient

   

Lignocerane

CH3-[CH2]22-CH3

C24H50 (338.3912)


Lignocerane, also known as CH3-[CH2]22-CH3 or N-tetracosane, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Lignocerane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, lignocerane is considered to be a hydrocarbon lipid molecule. Lignocerane has been detected, but not quantified, in several different foods, such as lindens, citrus, sunflowers, allspices, and papaya. Isolated from plant sources e.g. rose and orange oils

   

2-Phenylethyl formate

2-Fenylethylester kyseliny mravenci

C9H10O2 (150.0681)


2-Phenylethyl formate is found in bilberry. 2-Phenylethyl formate is a flavouring ingredient. Flavouring ingredient. 2-Phenylethyl formate is found in bilberry.

   

Benzyl salicylate

Benzoic acid, 2-hydroxy-, phenylmethyl ester

C14H12O3 (228.0786)


Benzyl salicylate is found in cloves. Benzyl salicylate is isolated from essential oils e.g. Dianthus caryophyllus, Populus, Primula species Fixative in perfumes and flavourings Benzyl salicylate is a salicylic acid benzyl ester, a chemical compound most frequently used in cosmetics. It appears as an almost colourless liquid and is rather faint or odorless in nature Isolated from essential oils e.g. Dianthus caryophyllus, Populus, Primula subspecies Fixative in perfumes and flavourings D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber. Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber.

   

Ethyl formate

Ethyl ester OF formic acid

C3H6O2 (74.0368)


Ethyl formate, also known as areginal or ethyl methanoate, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Ethyl formate is an alcohol, bitter, and cognac tasting compound. Ethyl formate has been detected, but not quantified, in several different foods, such as citrus, pineapples, apples, fruits, and pomes. This could make ethyl formate a potential biomarker for the consumption of these foods. It occurs naturally in the body of ants and in the stingers of bees. Ethyl formate has the characteristic smell of rum and is also partially responsible for the flavor of raspberries. The U.S. National Institute for Occupational Safety and Health (NIOSH) also considers a time-weighted average of 100 ppm over an eight-hour period as the recommended exposure limit. Ethyl formate is an ester formed when ethanol (an alcohol) reacts with formic acid (a carboxylic acid). According to the U.S Occupational Safety and Health Administration (OSHA), ethyl formate can irritate eyes, skin, mucous membranes, and the respiratory system of humans and other animals; it is also a central nervous system depressant. Ethyl formate has been identified in dust clouds in an area of the Milky Way galaxy called Sagittarius B2 and it is among 50 molecular species identified using the 30 metre IRAM radiotelescope. In industry, it is used as a solvent for cellulose nitrate, cellulose acetate, oils, and greases. Found in various foods, e.g. cooked apple, orange juice, pineapple, other fruits, raw cabbage, coffee, black tea, wheat bread, white clover, sorghum. It is used as a flavouring agent.

   

2-Phenylethyl benzoate

2-Fenylethylester kyseliny benzoove

C15H14O2 (226.0994)


2-phenylethyl benzoate, also known as benzylcarbinyl benzoate, is a member of the class of compounds known as benzoic acid esters. Benzoic acid esters are ester derivatives of benzoic acid. 2-phenylethyl benzoate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 2-phenylethyl benzoate is a balsam, floral, and honey tasting compound found in ceylon cinnamon and linden, which makes 2-phenylethyl benzoate a potential biomarker for the consumption of these food products. 2-Phenylethyl benzoate is found in ceylan cinnamon. 2-Phenylethyl benzoate is a flavouring ingredient.

   

Nonadecane

Unknown branched fragment OF phospholipid

C19H40 (268.313)


Nonadecane, also known as CH3-[CH2]17-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonadecane is considered to be a hydrocarbon lipid molecule. Nonadecane is an alkane and bland tasting compound. nonadecane has been detected, but not quantified, in several different foods, such as pomes, watermelons, yellow bell peppers, allspices, and papaya. This could make nonadecane a potential biomarker for the consumption of these foods. Nonadecane has been linked to the inborn metabolic disorders including celiac disease. Isolated from apple wax. Nonadecane is found in many foods, some of which are pepper (c. annuum), red bell pepper, papaya, and dill.

   

Thermophillin

Diethylcarbamothioylsulfanyl diethylaminomethanedithioate

C8H8O4 (168.0423)


Thermophillin is found in herbs and spices. Thermophillin is isolated from Acorus calamus (sweet flag) Disulfiram produces a sensitivity to alcohol which results in a highly unpleasant reaction when the patient under treatment ingests even small amounts of alcohol. Disulfiram blocks the oxidation of alcohol at the acetaldehyde stage during alcohol metabolism following disulfiram intake, the concentration of acetaldehyde occurring in the blood may be 5 to 10 times higher than that found during metabolism of the same amount of alcohol alone. Accumulation of acetaldehyde in the blood produces a complex of highly unpleasant symptoms referred to hereinafter as the disulfiram-alcohol reaction. This reaction, which is proportional to the dosage of both disulfiram and alcohol, will persist as long as alcohol is being metabolized. Disulfiram does not appear to influence the rate of alcohol elimination from the body. Prolonged administration of disulfiram does not produce toleranc Isolated from Acorus calamus (sweet flag)

   

2-(4-Methylphenyl)-2-propanol

1-Methyl-4-(1-hydroxy-1-methylethyl)benzene

C10H14O (150.1045)


2-(4-Methylphenyl)-2-propanol is found in allspice. 2-(4-Methylphenyl)-2-propanol occurs in essential oils, e.g. Citrus reticulata and various fresh fruits. 2-(4-Methylphenyl)-2-propanol is a flavouring ingredien Occurs in essential oils, e.g. Citrus reticulata and various fresh fruits. Flavouring ingredient. 2-(4-Methylphenyl)-2-propanol is found in many foods, some of which are nutmeg, dill, fruits, and sweet marjoram.

   

Phenethyl tiglate

2-Methyl-2-phenylethyl ester(2E)-2-butenoic acid

C13H16O2 (204.115)


Phenethyl tiglate is a flavouring ingredient. Flavouring ingredient

   

Phenethyl salicylate

Benzoic acid, 2-hydroxy-, 2-phenylethyl ester

C15H14O3 (242.0943)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Phenethyl salicylate is used imitation fruit flavour It is used imitation fruit flavours

   

Isoamyl salicylate

Benzoic acid, 2-hydroxy-, 3-methylbutyl ester

C12H16O3 (208.1099)


Isoamyl salicylate is found in alcoholic beverages. Isoamyl salicylate is isolated from fruit aromas. Also present in rum and black tea. Isoamyl salicylate is a flavouring agent. Isolated from fruit aromasand is) also present in rum and black tea. Flavouring agent. Isoamyl salicylate is found in tea, alcoholic beverages, and fruits. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Lupeol acetate

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-yl acetate

C32H52O2 (468.3967)


   

Plumieride

Methyl 4-(1-hydroxyethyl)-5-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a,7a-dihydro-1H,5H-spiro[cyclopenta[c]pyran-7,2-furan]-4-carboxylic acid

C21H26O12 (470.1424)


   

Heptacosane

CH3-[CH2]25-CH3

C27H56 (380.4382)


Heptacosane, also known as CH3-[CH2]25-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. Thus, heptacosane is a hydrocarbon lipid molecule, is very hydrophobic, practically insoluble in water, and relatively neutral. Heptacosane has been detected in avocado, sunflowers, peachs, sweet cherries, and wild carrots. This could make heptacosane a potential biomarker for the consumption of these foods. Heptacosane, in addition to other flavonoids, alkaloids and sugars, extracted from the root of Trichosanthes dioica, exhibited antimicrobial activity against Proteus mirabilis and Bacillus subtilis http://www.phytojournal.com/archives/?year=2016&vol=5&issue=5&part=F&ArticleId=985 Heptacosane, also known as ch3-[ch2]25-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptacosane is considered to be a hydrocarbon lipid molecule. Heptacosane can be found in a number of food items such as wild carrot, linden, sweet cherry, and papaya, which makes heptacosane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions .

   

C14:0

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

FA 6:0

Pentylformic acid

C6H12O2 (116.0837)


   

C10:0

Decanoic acid

C10H20O2 (172.1463)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

FA 9:0

pelargonic acid

C9H18O2 (158.1307)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1]. Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1].

   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524)


D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Liriodendrin

(2S,3R,4S,5S,6R)-2-[4-[(3R,3aS,6R,6aS)-6-[3,5-dimethoxy-4-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyphenyl]-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C34H46O18 (742.2684)


(-)-syringaresinol O,O-bis(beta-D-glucoside) is a beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. It has a role as a plant metabolite, an antioxidant and an anti-inflammatory agent. It is functionally related to a (-)-syringaresinol. Acanthoside D is a natural product found in Crescentia cujete, Daphne giraldii, and other organisms with data available. A beta-D-glucoside that is the 4,4-bis(beta-D-glucosyl) derivative of (-)-syringaresinol. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Eleutheroside E is an important component of Acanthopanax, which has anti-inflammatory and protective effects on ischemic heart. Syringaresinol diglucoside is a natural compound from bamboo leaves[1]. Syringaresinol diglucoside is a natural compound from bamboo leaves[1].

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.3603)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Lupeol acetate

Acetic acid (1R,3aR,4S,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-yl ester

C32H52O2 (468.3967)


Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Pilloin

5,3 inverted exclamation mark -Dihydroxy-7,4 inverted exclamation mark -dimethoxyflavone

C17H14O6 (314.079)


Luteolin 4,7-dimethyl ether is a 3-hydroxyflavonoid, a dimethoxyflavone and a dihydroxyflavone. Pilloin is a natural product found in Chromolaena odorata, Alnus japonica, and other organisms with data available.

   

METHYL BENZOATE

methyl benzoate

C8H8O2 (136.0524)


A benzoate ester obtained by condensation of benzoic acid and methanol.

   

Benzyl cyanide

Benzeneacetonitrile

C8H7N (117.0578)


A nitrile that is acetonitrile where one of the methyl hydrogens is substituted by a phenyl group.

   

Swartziol

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxyphenyl)-5,7,4-Trihydroxyflavonol

C15H10O6 (286.0477)


Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

citrol

InChI=1\C10H18O\c1-9(2)5-4-6-10(3)7-8-11\h5,7,11H,4,6,8H2,1-3H3\b10-7

C10H18O (154.1358)


C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Kaempferol

3,5,7-trihydroxy-2-(4-hydroxyphenyl)chromen-4-one

C15H10O6 (286.0477)


Annotation level-3 Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.010 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.011 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2141; CONFIDENCE confident structure IPB_RECORD: 3341; CONFIDENCE confident structure IPB_RECORD: 3321; CONFIDENCE confident structure CONFIDENCE confident structure; IPB_RECORD: 3321 IPB_RECORD: 141; CONFIDENCE confident structure Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

2,3-Dihydroxypropyl octacosanoate

2,3-Dihydroxypropyl octacosanoate

C31H62O4 (498.4648)


   

betulinic acid

betulinic acid

C30H48O3 (456.3603)


Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

2,4,6-Trimethoxyaniline

2,4,6-Trimethoxyaniline

C9H13NO3 (183.0895)


   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Phenylethyl alcohol

2-phenylethanol

C8H10O (122.0732)


C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.

   

Benzyl salicylate

Benzoic acid, 2-hydroxy-, phenylmethyl ester

C14H12O3 (228.0786)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4375; ORIGINAL_PRECURSOR_SCAN_NO 4373 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4383; ORIGINAL_PRECURSOR_SCAN_NO 4379 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4381; ORIGINAL_PRECURSOR_SCAN_NO 4376 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4396; ORIGINAL_PRECURSOR_SCAN_NO 4394 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4398; ORIGINAL_PRECURSOR_SCAN_NO 4397 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9607; ORIGINAL_PRECURSOR_SCAN_NO 9606 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9642; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9614; ORIGINAL_PRECURSOR_SCAN_NO 9611 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9638; ORIGINAL_PRECURSOR_SCAN_NO 9635 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9641; ORIGINAL_PRECURSOR_SCAN_NO 9638 CONFIDENCE standard compound; INTERNAL_ID 962; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9646; ORIGINAL_PRECURSOR_SCAN_NO 9641 Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber. Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber.

   

Arjunolicacid

(4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Arjunolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). Isolated from Symplocos lancifolia and Juglans sinensis, it exhibits antioxidant and antimicrobial activities. It has a role as a metabolite, an antibacterial agent, an antifungal agent and an antioxidant. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an oleanane. Arjunolic acid is a natural product found in Musanga cecropioides, Akebia quinata, and other organisms with data available. A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). Isolated from Symplocos lancifolia and Juglans sinensis, it exhibits antioxidant and antimicrobial activities.

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Terpenol

3-Cyclohexene-1-methanol, .alpha.,.alpha.,4-trimethyl-, sodium salt, (1S)-

C10H18O (154.1358)


Alpha-terpineol is a terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. It has a role as a plant metabolite. alpha-TERPINEOL is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. 2-(4-Methyl-3-cyclohexen-1-yl)-2-propanol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Cannabis sativa subsp. indica top (part of); Peumus boldus leaf (part of). A terpineol that is propan-2-ol substituted by a 4-methylcyclohex-3-en-1-yl group at position 2. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. (-)-α-Terpineol ((S)-α-Terpineol), a monoterpene compound, is one of compounds in Melaleuca alternifolia[1]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Citral

3-01-00-03053 (Beilstein Handbook Reference)

C10H16O (152.1201)


An enal that consists of octa-2,6-dienal bearing methyl substituents at positions 3 and 7. A mixture of the two geometric isomers geranial and neral, it is the major constituent (75-85\\\\%) of oil of lemon grass, the volatile oil of Cymbopogon citratus, or of C. flexuosus. It also occurs in oils of verbena, lemon, and orange. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1]. Citral is a monoterpene found in Cymbopogon citratus essential oil, with antihyperalgesic, anti-nociceptive and anti-inflammatory effects[1].

   

Piceol

4-Hydroxyacetophenone (Acetaminophen Impurity E), Pharmaceutical Secondary Standards; Certified Reference Material

C8H8O2 (136.0524)


4-hydroxyacetophenone is a monohydroxyacetophenone carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, a fungal metabolite and a mouse metabolite. 4-Hydroxyacetophenone is a natural product found in Ficus erecta var. beecheyana, Artemisia ordosica, and other organisms with data available. A monohydroxyacetophenone carrying a hydroxy substituent at position 4. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1]. 4-Hydroxyacetophenone (P-hydroxyacetophenone) is a key hepatoprotective and choleretic compound in Artemisia capillaris and A. morrisonensis, also has an anti-hepatitis B virus effect and anti-inflammatory effect[1].

   

Scopoletin

7-hydroxy-6-methoxychromen-2-one

C10H8O4 (192.0423)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.637 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.629 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.631 IPB_RECORD: 1582; CONFIDENCE confident structure Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

benzyl alcohol

benzyl alcohol

C7H8O (108.0575)


Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.

   

PHENYLACETIC ACID

2-phenylacetic acid

C8H8O2 (136.0524)


A monocarboxylic acid that is toluene in which one of the hydrogens of the methyl group has been replaced by a carboxy group. D009676 - Noxae > D000963 - Antimetabolites D000970 - Antineoplastic Agents

   

Methyl Salicylate

Methyl Salicylate

C8H8O3 (152.0473)


Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4]. Methyl Salicylate (Wintergreen oil) is a topical analgesic and anti-inflammatory agent. Also used as a pesticide, a denaturant, a fragrance ingredient, and a flavoring agent in food and tobacco products[1]. A systemic acquired resistance (SAR) signal in tobacco[2]. A topical nonsteroidal anti-inflammatory agent (NSAID). Methyl salicylate lactoside is a COX inhibitor[4].

   

Decanoic acid

Decanoic acid

C10H20O2 (172.1463)


Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Myristic Acid

Tetradecanoic acid

C14H28O2 (228.2089)


Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.

   

Benzoic Acid

Benzoic Acid

C7H6O2 (122.0368)


Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi. Benzoic acid is an aromatic alcohol existing naturally in many plants and is a common additive to food, drinks, cosmetics and other products. It acts as preservatives through inhibiting both bacteria and fungi.

   

Caprylic acid

Caprylic acid

C8H16O2 (144.115)


Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes. Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes.

   

Capric acid

Decanoic acid

C10H20O2 (172.1463)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A C10, straight-chain saturated fatty acid. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Caproic acid

1-Hexanoic acid

C6H12O2 (116.0837)


   

Lauric acid

Dodecanoic acid

C12H24O2 (200.1776)


Lauric acid, systematically dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids.[6] It is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates. Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2\\\\% of total fat), cow's milk (2.9\\\\%), and goat's milk (3.1\\\\%). Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Nonanoic acid

pelargonic acid

C9H18O2 (158.1307)


Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1]. Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1].

   

acetoin

3-hydroxybutan-2-one

C4H8O2 (88.0524)


A methyl ketone that is butan-2-one substituted by a hydroxy group at position 3.

   

Caproaldehyde

Caproic aldehyde

C6H12O (100.0888)


A saturated fatty aldehyde that is hexane in which one of the terminal methyl group has been mono-oxygenated to form the corresponding aldehyde. D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

benzaldehyde

benzaldehyde-carbonyl-13c

C7H6O (106.0419)


An arenecarbaldehyde that consists of benzene bearing a single formyl substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes.

   

phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


An aldehyde that consists of acetaldehyde bearing a methyl substituent; the parent member of the phenylacetaldehyde class of compounds. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Octanol

InChI=1\C8H18O\c1-2-3-4-5-6-7-8-9\h9H,2-8H2,1H

C8H18O (130.1358)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

Benzyl Benzoate

benzyl benzoate

C14H12O2 (212.0837)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides C254 - Anti-Infective Agent > C276 - Antiparasitic Agent D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3]. Benzyl benzoate (Phenylmethyl benzoate) is an orally active anti-scabies agent, acaricide (EC50= 0.06 g/m2) and fungicide. Benzyl benzoate is an angiotensin II (Ang II) inhibitor with antihypertensive effects. Benzyl benzoate can be used in perfumes, pharmaceuticals and the food industry[1][2][3][4][5]. Benzyl benzoate (Benzoic acid benzyl ester) is a fragrance ingredient in cosmetic products. Benzyl benzoate can be used for the research of Scabies and Demodex-associated inflammatory skin conditions[1][2][3].

   
   

2,6-Dimethoxyquinone

2,6-Dimethoxy-1,4-benzoquinone

C8H8O4 (168.0423)


2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1]. 2,6-Dimethoxy-1,4-benzoquinone, a natural phytochemical, is a known haustorial inducing factor. 2,6-Dimethoxy-1,4-benzoquinone exerts anti-cancer, anti-inflammatory, anti-adipogenic, antibacterial, and antimalaria effects[1].

   

Prenol

4-01-00-02129 (Beilstein Handbook Reference)

C5H10O (86.0732)


3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.

   

Methylcinnamate

Methyl cinnamate

C10H10O2 (162.0681)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1066 Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1]. Methyl cinnamate (Methyl 3-phenylpropenoate), an active component of Zanthoxylum armatum, is a widely used natural flavor compound. Methyl cinnamate (Methyl 3-phenylpropenoate) possesses antimicrobial activity and is a tyrosinase inhibitor that can prevent food browning. Methyl cinnamate (Methyl 3-phenylpropenoate) has antiadipogenic activity through mechanisms mediated, in part, by the CaMKK2-AMPK signaling pathway[1].

   

Methyl cinnamate

Methyl cinnamate

C10H10O2 (162.0681)


A methyl ester resulting from the formal condensation of methyl cinnamic acid with methanol. It is found naturally in the essential oils of Alpinia and Basil leaf oil, and widely used in the flavor and perfume industries. Annotation level-3

   

Tetradecanoic acid

Tetradecanoic acid

C14H28O2 (228.2089)


   

Dodecanoic acid

Dodecanoic acid

C12H24O2 (200.1776)


A straight-chain, twelve-carbon medium-chain saturated fatty acid with strong bactericidal properties; the main fatty acid in coconut oil and palm kernel oil.

   

phenylmethanol

Hydroxymethylpolystyrene resin

C7H8O (108.0575)


P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics An aromatic alcohol that consists of benzene bearing a single hydroxymethyl substituent. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.

   

Nonanal

4-01-00-03352 (Beilstein Handbook Reference)

C9H18O (142.1358)


Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1]. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1].

   

2-Methylbutan-1-ol

2-Methylbutan-1-ol

C5H12O (88.0888)


A primary alcohol that is isopentane substituted by a hydroxy group at position 1. (s)-2-methyl-1-butanol, also known as active amyl alcohol or 2-methylbutyl alcohol, is a member of the class of compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, (s)-2-methyl-1-butanol is considered to be a fatty alcohol lipid molecule (s)-2-methyl-1-butanol is soluble (in water) and an extremely weak acidic compound (based on its pKa). (s)-2-methyl-1-butanol can be synthesized from isopentane (s)-2-methyl-1-butanol can also be synthesized into 2-methylbutyl acetate and 2-methylbutyl decanoate (s)-2-methyl-1-butanol is a malt tasting compound and can be found in a number of food items such as turmeric, salmonberry, garden cress, and horseradish tree, which makes (s)-2-methyl-1-butanol a potential biomarker for the consumption of these food products (s)-2-methyl-1-butanol can be found primarily in feces (s)-2-methyl-1-butanol exists in all eukaryotes, ranging from yeast to humans.

   

Hexalin

Hexyl alcohol (natural)

C6H14O (102.1045)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

1-Eicosanol

Arachinyl alcohol

C20H42O (298.3235)


   

Octan-1-ol

Octan-1-ol

C8H18O (130.1358)


An octanol carrying the hydroxy group at position 1.

   

«

1-Methyl-4-(1-hydroxy-1-methylethyl)benzene

C10H14O (150.1045)


   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Areginal

Ethyl formate [UN1190] [Flammable liquid]

C3H6O2 (74.0368)


   

Phenethylbenzoate

2-Fenylethylester kyseliny benzoove

C15H14O2 (226.0994)


   

Clorius

Methyl benzoate [UN2938] [Keep away from food]

C8H8O2 (136.0524)


   

Lignocerane

N-Tetracosane

C24H50 (338.3912)


   

Nonadekan

Unknown branched fragment OF phospholipid

C19H40 (268.313)


   

Anteyl

1,1',1'',1'''-[Dithiobis(carbonothioylnitrilo)]tetraethane

C8H8O4 (168.0423)


   

Arjunolic acid

(4aS,6aS,6bR,9R,10R,11R,12aR)-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


   

AKS-bbb/661

Benzoic acid, 2-hydroxy-, 2-phenylethyl ester

C15H14O3 (242.0943)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

β-IONOL

(3E)-4-(2,6,6-trimethylcyclohex-1-en-1-yl)but-3-en-2-ol

C13H22O (194.1671)


   

Phenethyl tiglate

2-Methyl-2-phenylethyl ester(2E)-2-butenoic acid

C13H16O2 (204.115)


   

Trefol

Benzoic acid, 2-hydroxy-, 3-methylbutyl ester

C12H16O3 (208.1099)


D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

phenethyl formate

2-Fenylethylester kyseliny mravenci

C9H10O2 (150.0681)


A formate ester of 2-phenylethanol.

   

Docosane

n-Docosane

C22H46 (310.3599)


Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].

   

Heneicosane

Heneicosane

C21H44 (296.3443)


Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].