NCBI Taxonomy: 1385653

Picris japonica (ncbi_taxid: 1385653)

found 142 associated metabolites at species taxonomy rank level.

Ancestor: Picris

Child Taxonomies: none taxonomy data.

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.0477)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Erythrodiol

(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O2 (442.3811)


Erythrodiol is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Erythrodiol exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID: 17292619, 15522132). Erythrodiol is a pentacyclic triterpenoid that is beta-amyrin in which one of the hydrogens of the methyl group at position 28 has been replaced by a hydroxy group. It is a plant metabolite found in olive oil as well as in Rhododendron ferrugineum and other Rhododendron species. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a primary alcohol, a secondary alcohol and a diol. It is functionally related to a beta-amyrin. Erythrodiol is a natural product found in Salacia chinensis, Monteverdia ilicifolia, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is beta-amyrin in which one of the hydrogens of the methyl group at position 28 has been replaced by a hydroxy group. It is a plant metabolite found in olive oil as well as in Rhododendron ferrugineum and other Rhododendron species. Found in grapes, olives, pot marigold (Calendula officinalis) and other plants Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1]. Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

8-Deoxylactucin

(3aS,9aS,9bS)-9-(hydroxymethyl)-6-methyl-3-methylidene-4,5,9a,9b-tetrahydro-3aH-azuleno[4,5-b]furan-2,7-dione

C15H16O4 (260.1049)


   

Luteolin 4'-glucoside

5,7-dihydroxy-2-(3-hydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4H-chromen-4-one

C21H20O11 (448.1006)


Luteolin 4-glucoside is isolated from Spartium junceum and many other plant species [CCD]. Isolated from Spartium junceum and many other plant subspecies [CCD]

   

Dihydroconiferin

2-(hydroxymethyl)-6-[4-(3-hydroxypropyl)-2-methoxyphenoxy]oxane-3,4,5-triol

C16H24O8 (344.1471)


Dihydroconiferin is a constituent of Pinus sylvestris (Scotch pine). Constituent of Pinus sylvestris (Scotch pine)

   

Citrusin C

2-(hydroxymethyl)-6-[2-methoxy-4-(prop-2-en-1-yl)phenoxy]oxane-3,4,5-triol

C16H22O7 (326.1365)


Constituent of leaves of white flowered perilla Perilla frutescens variety forma viridis and the leaves of Dalmatian sage (Salvia officinalis). Flavouring agent. Citrusin C is found in lemon, herbs and spices, and common sage. Citrusin C is found in common sage. Citrusin C is a constituent of leaves of white flowered perilla Perilla frutescens var. forma viridis and the leaves of Dalmatian sage (Salvia officinalis). Citrusin C is a flavouring agent.

   

gamma-Taraxasterol

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Constituent of dandelion root (Taraxacum officinale) and germinating seeds of pot marigold (Calendula officinalis). Flavour component. gamma-Taraxasterol is found in many foods, some of which are shea tree, coffee and coffee products, tea, and soy bean. gamma-Taraxasterol is found in alcoholic beverages. gamma-Taraxasterol is a constituent of dandelion root (Taraxacum officinale) and germinating seeds of pot marigold (Calendula officinalis). Flavour component

   

alpha-Amyrone

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-one

C30H48O (424.3705)


alpha-Amyrone is found in black elderberry. alpha-Amyrone is found in Sambucus nigra (elderberry). Found in Sambucus nigra (elderberry)

   

gamma-Taraxasterone

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-one

C30H48O (424.3705)


Constituent of dandelion root (Taraxacum officinale). gamma-Taraxasterone is found in many foods, some of which are beverages, coffee and coffee products, alcoholic beverages, and tea. gamma-Taraxasterone is found in alcoholic beverages. gamma-Taraxasterone is a constituent of dandelion root (Taraxacum officinale)

   

Annuolide C

5-hydroxy-3,6,9-trimethylidene-dodecahydroazuleno[4,5-b]furan-2-one

C15H18O3 (246.1256)


Annuolide C is found in fats and oils. Annuolide C is a constituent of Helianthus annuus (sunflower). Constituent of Helianthus annuus (sunflower). Annuolide C is found in fats and oils.

   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ustiloxin E is found in cereals and cereal products. Ustiloxin E is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Constituent of Carissa carandas (karanda). Carissic acid is found in beverages and fruits.

   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.3861)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.3705)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Lupeol acetate

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-yl acetate

C32H52O2 (468.3967)


   

8-Deoxylactucin

(9aS,9bS)-9-(hydroxymethyl)-6-methyl-3-methylidene-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H16O4 (260.1049)


8-deoxylactucin is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. 8-deoxylactucin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 8-deoxylactucin can be found in chicory, which makes 8-deoxylactucin a potential biomarker for the consumption of this food product.

   

Jacquinelin

(3S,3aS,9aS,9bS)-9-(hydroxymethyl)-3,6-dimethyl-2H,3H,3aH,4H,5H,7H,9aH,9bH-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205)


Jacquinelin, also known as 11,13-dihydro-8-deoxylactucin or jacquilenin, is a member of the class of compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. Jacquinelin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Jacquinelin can be found in chicory and endive, which makes jacquinelin a potential biomarker for the consumption of these food products.

   

Eugenyl glucoside

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[2-methoxy-4-(prop-2-en-1-yl)phenoxy]oxane-3,4,5-triol

C16H22O7 (326.1365)


Eugenyl glucoside, also known as eugenyl beta-D-glucopyranoside, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Eugenyl glucoside is soluble (in water) and a very weakly acidic compound (based on its pKa). Eugenyl glucoside can be found in lemon balm, which makes eugenyl glucoside a potential biomarker for the consumption of this food product.

   

beta-Amyrenone

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-one

C30H48O (424.3705)


Beta-amyrenone is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrenone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrenone can be found in rosemary and shea tree, which makes beta-amyrenone a potential biomarker for the consumption of these food products.

   

Bauerenol

4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,3,4,4a,5,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Bauerenol is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Bauerenol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Bauerenol can be found in fig, which makes bauerenol a potential biomarker for the consumption of this food product.

   

Taraxasterol acetate

4,4,6a,6b,8a,12,14b-Heptamethyl-11-methylidene-docosahydropicen-3-yl acetic acid

C32H52O2 (468.3967)


Taraxasterol acetate, also known as urs-20(30)-en-3-ol acetate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Taraxasterol acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Taraxasterol acetate can be found in burdock, which makes taraxasterol acetate a potential biomarker for the consumption of this food product.

   

Multiflorenol

4,4,6b,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Multiflorenol is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Multiflorenol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Multiflorenol can be found in bitter gourd and muskmelon, which makes multiflorenol a potential biomarker for the consumption of these food products.

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.3603)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Lupeol acetate

Acetic acid (1R,3aR,4S,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-1-isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-yl ester

C32H52O2 (468.3967)


Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.0477)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

multiflorenol

multiflorenol

C30H50O (426.3861)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Oleanolic Acid

Oleanolic Acid

C30H48O3 (456.3603)


   

Butyrospermol

(3S,5R,10R,13S,14S)-17-((R)-1,5-Dimethyl-hex-4-enyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta(a)phenanthren-3-ol

C30H50O (426.3861)


(-)-Butyrospermol is a natural product found in Euphorbia chamaesyce, Euphorbia mellifera, and other organisms with data available.

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Erythrodiol

(3S,4aR,6aR,6bS,8aS,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

C30H50O2 (442.3811)


Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1]. Erythrodiol is an olive oil component. Erythrodiol promotes Cholesterol efflux (ChE) by selectively inhibiting the degradation of ABCA1 protein. Erythrodiol is a good candidate to be further explored for therapeutic or preventive application in the context of atherosclerosis[1].

   

Taraxasterone

4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-docosahydropicen-3-one

C30H48O (424.3705)


   

Psi-taraxasterol acetate

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

Lupane

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


   

Pseudotaraxasterone

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-one

C30H48O (424.3705)


   

Annuolide C

5-hydroxy-3,6,9-trimethylidene-dodecahydroazuleno[4,5-b]furan-2-one

C15H18O3 (246.1256)


   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


   

alpha

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

a-Amyrone

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-one

C30H48O (424.3705)


   

Annuolide E

5-hydroxy-3-methyl-6,9-dimethylidene-dodecahydroazuleno[4,5-b]furan-2-one

C15H20O3 (248.1412)


   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


   

Citrusin C

2-(hydroxymethyl)-6-[2-methoxy-4-(prop-2-en-1-yl)phenoxy]oxane-3,4,5-triol

C16H22O7 (326.1365)


   

Bauerenyl acetate

4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,3,4,4a,5,6b,7,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

Scorzoside

3-methyl-6,9-dimethylidene-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-dodecahydroazuleno[4,5-b]furan-2-one

C21H30O8 (410.1941)


   

Dihydroconiferin

2-(hydroxymethyl)-6-[4-(3-hydroxypropyl)-2-methoxyphenoxy]oxane-3,4,5-triol

C16H24O8 (344.1471)


   

Apigenin 4'-O-glucoside

5,7-dihydroxy-2-(4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-4H-chromen-4-one

C21H20O10 (432.1056)


   

Lupeol acetate

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-yl acetate

C32H52O2 (468.3967)


Lupeyl acetate, also known as lupeyl acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Lupeyl acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Lupeyl acetate can be found in burdock, date, and fig, which makes lupeyl acetate a potential biomarker for the consumption of these food products. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1]. Lupeol acetate, a derivative of Lupeol, suppresses the progression of rheumatoid arthritis (RA) by inhibiting the activation of macrophages and osteoclastogenesis through downregulations of TNF-α, IL-1β, MCP-1, COX-2, VEGF and granzyme B[1].

   

Butyrospermol

Butyrospermol

C30H50O (426.3861)


   

(2s,3r,4ar,6ar,6bs,8ar,9s,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3,9-triol

(2s,3r,4ar,6ar,6bs,8ar,9s,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3,9-triol

C30H50O3 (458.376)


   

(1r,3ar,5ar,6s,7s,9as,9br,11ar)-6,9a,11a-trimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

(1r,3ar,5ar,6s,7s,9as,9br,11ar)-6,9a,11a-trimethyl-1-[(2r)-6-methylheptan-2-yl]-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

C30H50O2 (442.3811)


   

(3s,4ar,6ar,6br,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-ol

(3s,4ar,6ar,6br,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydropicen-3-one

4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydropicen-3-one

C30H48O (424.3705)


   

(3as,11ar)-6-methyl-3-methylidene-10-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3as,11ar)-6-methyl-3-methylidene-10-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H30O8 (410.1941)


   

3-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

3-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


   

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-ol

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(1s,3as,5ar,7s,9ar,9br,11as)-3a,6,6,9a,11a-pentamethyl-1-[(2s)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

(1s,3as,5ar,7s,9ar,9br,11as)-3a,6,6,9a,11a-pentamethyl-1-[(2s)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

C32H52O2 (468.3967)


   

(3s,4ar,6bs,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-ol

(3s,4ar,6bs,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-[4-(3-hydroxypropyl)-2-methoxyphenoxy]oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-[4-(3-hydroxypropyl)-2-methoxyphenoxy]oxane-3,4,5-triol

C16H24O8 (344.1471)


   

6-(hydroxymethyl)-3-methyl-9-methylidene-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,6ah,7h,8h,9ah,9bh-azuleno[4,5-b]furan-2-one

6-(hydroxymethyl)-3-methyl-9-methylidene-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,6ah,7h,8h,9ah,9bh-azuleno[4,5-b]furan-2-one

C21H30O9 (426.189)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


   

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-ol

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

4,4,6a,6b,9,9,12a,14b-octamethyl-2,4a,5,6,7,10,11,12,12b,13,14,14a-dodecahydro-1h-picen-3-one

4,4,6a,6b,9,9,12a,14b-octamethyl-2,4a,5,6,7,10,11,12,12b,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.3705)


   

(3s,3as,6ar,8s,9ar,9bs)-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,6ar,8s,9ar,9bs)-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O8 (410.1941)


   

5,7-dihydroxy-2-(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

5,7-dihydroxy-2-(3-hydroxy-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)chromen-4-one

C21H20O11 (448.1006)


   

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-yl acetate

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3,9-triol

4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3,9-triol

C30H50O3 (458.376)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O8 (410.1941)


   

3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

C32H52O2 (468.3967)


   

4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-ol

4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(3s,4ar,6bs,8as,12ar,12bs,14ar,14br)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3s,4ar,6bs,8as,12ar,12bs,14ar,14br)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(3s,3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O9 (426.189)


   

(2s,3r,4ar,6ar,6bs,8as,11r,12s,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

(2s,3r,4ar,6ar,6bs,8as,11r,12s,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

C30H50O3 (458.376)


   

(4ar,6ar,6br,8as,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydropicen-3-one

(4ar,6ar,6br,8as,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydropicen-3-one

C30H48O (424.3705)


   

α-amyrenone

α-amyrenone

C30H48O (424.3705)


   

(3s,3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,8s,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-8-{[(2r,3r,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O9 (426.189)


   

(3s,4ar,6ar,6br,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-yl acetate

(3s,4ar,6ar,6br,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,6a,7,8,10,11,12,12a,13-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

(3as,5r,6ar,9ar,9bs)-5-hydroxy-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

(3as,5r,6ar,9ar,9bs)-5-hydroxy-3,6,9-trimethylidene-octahydroazuleno[4,5-b]furan-2-one

C15H18O3 (246.1256)


   

6-methyl-3-methylidene-10-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

6-methyl-3-methylidene-10-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H30O8 (410.1941)


   

(4ar,6bs,8ar,11r,12s,12ar,12bs,14bs)-4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydropicen-3-one

(4ar,6bs,8ar,11r,12s,12ar,12bs,14bs)-4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydropicen-3-one

C30H48O (424.3705)


   

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

(3s,4ar,6bs,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-yl acetate

(3s,4ar,6bs,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

(3s,3as,5r,6ar,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,9ar,9bs)-5-hydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

C15H20O3 (248.1412)


   

(4ar,6ar,6br,8ar,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-tetradecahydro-1h-picen-3-one

(4ar,6ar,6br,8ar,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-tetradecahydro-1h-picen-3-one

C30H48O (424.3705)


   

4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydropicen-3-one

4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydropicen-3-one

C30H48O (424.3705)


   

(3r,4ar,6ar,6br,12ar,12bs,14ar,14br)-4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-ol

(3r,4ar,6ar,6br,12ar,12bs,14ar,14br)-4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

(3s,4ar,6ar,6br,8as,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

(3s,4ar,6ar,6br,8as,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.3861)


   

5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

C15H20O4 (264.1362)


   

4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-yl acetate

4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

(4ar,6ar,6br,8ar,12bs,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12b,13,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,6br,8ar,12bs,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12b,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.3705)


   

10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid

10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid

C30H46O3 (454.3447)


   

(1s,3as,5ar,7s,9ar,9br,11as)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

(1s,3as,5ar,7s,9ar,9br,11as)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl acetate

C32H52O2 (468.3967)


   

(+)-16-gammaceren-3β-ol

(+)-16-gammaceren-3β-ol

C30H50O (426.3861)


   

9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

9-(hydroxymethyl)-3,6-dimethyl-3h,3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H18O4 (262.1205)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12b,13,14,14a-dodecahydro-1h-picen-3-one

4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12b,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.3705)


   

(3s,4ar,6bs,8ar,11r,12s,12ar,12bs,14ar,14br)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydro-1h-picen-3-ol

(3s,4ar,6bs,8ar,11r,12s,12ar,12bs,14ar,14br)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.3861)


   

(3s,4ar,6bs,8ar,11r,12s,12ar,12bs,14bs)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-yl acetate

(3s,4ar,6bs,8ar,11r,12s,12ar,12bs,14bs)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-yl acetate

C32H52O2 (468.3967)


   

(3s,4ar,6ar,6br,8ar,12bs,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-yl acetate

(3s,4ar,6ar,6br,8ar,12bs,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-ol

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

C30H50O3 (458.376)


   

5-hydroxy-3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

5-hydroxy-3-methyl-6,9-dimethylidene-8-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O9 (426.189)


   

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

C30H50O2 (442.3811)


   

(4ar,6bs,8ar,11r,12s,12ar,12bs,14ar,14br)-4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydropicen-3-one

(4ar,6bs,8ar,11r,12s,12ar,12bs,14ar,14br)-4,4,6b,8a,11,12,12b,14b-octamethyl-1,2,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydropicen-3-one

C30H48O (424.3705)


   

(3s,4ar,6bs,8ar,11r,12s,12ar,12bs,14ar,14br)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydro-1h-picen-3-yl acetate

(3s,4ar,6bs,8ar,11r,12s,12ar,12bs,14ar,14br)-4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,7,8,9,10,11,12,12a,13,14,14a-tetradecahydro-1h-picen-3-yl acetate

C32H52O2 (468.3967)


   

(3s,4ar,6ar,6br,12ar,12bs,14ar,14br)-4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-yl acetate

(3s,4ar,6ar,6br,12ar,12bs,14ar,14br)-4,4,6a,6b,9,9,12a,14b-octamethyl-1,2,3,4a,5,6,7,10,11,12,12b,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

(2s,3r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3-diol

(2s,3r,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3-diol

C30H50O3 (458.376)


   

(4as,6as,6br,8ar,10s,12as,12br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12as,12br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b-dodecahydropicene-4a-carboxylic acid

C30H46O3 (454.3447)


   

isobauerenol

isobauerenol

C30H50O (426.3861)


   

(3s,3as,6s,6ar,9ar,9bs)-6-(hydroxymethyl)-3-methyl-9-methylidene-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,6ah,7h,8h,9ah,9bh-azuleno[4,5-b]furan-2-one

(3s,3as,6s,6ar,9ar,9bs)-6-(hydroxymethyl)-3-methyl-9-methylidene-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,6ah,7h,8h,9ah,9bh-azuleno[4,5-b]furan-2-one

C21H30O9 (426.189)


   

(4ar,6ar,6br,12ar,12bs,14ar,14br)-4,4,6a,6b,9,9,12a,14b-octamethyl-2,4a,5,6,7,10,11,12,12b,13,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,6br,12ar,12bs,14ar,14br)-4,4,6a,6b,9,9,12a,14b-octamethyl-2,4a,5,6,7,10,11,12,12b,13,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.3705)


   

4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-yl acetate

4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-yl acetate

C32H52O2 (468.3967)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3,9-triol

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3,9-triol

C30H50O3 (458.376)


   

(2s,3r,4ar,6ar,6bs,8ar,9s,12as,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3,9-triol

(2s,3r,4ar,6ar,6bs,8ar,9s,12as,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3,9-triol

C30H50O3 (458.376)


   

(3s,4ar,6ar,6br,8as,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl acetate

(3s,4ar,6ar,6br,8as,12s,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-yl acetate

C32H52O2 (468.3967)


   

(4ar,6ar,6bs,8ar,12ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,6bs,8ar,12ar,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

C30H48O (424.3705)


   

(3s,3as,5r,6ar,8s,9ar,9bs)-5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,8s,9ar,9bs)-5,8-dihydroxy-3-methyl-6,9-dimethylidene-octahydro-3h-azuleno[4,5-b]furan-2-one

C15H20O4 (264.1362)


   

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3-diol

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-2,3-diol

C30H50O3 (458.376)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-yl acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-yl acetate

4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,6,7,8,10,11,12,12a,13,14-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

(3r,3ar,5as,5br,7ar,9s,11ar,11br,13br)-3-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

(3r,3ar,5as,5br,7ar,9s,11ar,11br,13br)-3-isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1h,2h,3h,4h,5h,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-cyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

C32H52O2 (468.3967)


   

(3s,3ar,6s,6ar,9ar,9bs)-6-(hydroxymethyl)-3-methyl-9-methylidene-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,6ah,7h,8h,9ah,9bh-azuleno[4,5-b]furan-2-one

(3s,3ar,6s,6ar,9ar,9bs)-6-(hydroxymethyl)-3-methyl-9-methylidene-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,3ah,6ah,7h,8h,9ah,9bh-azuleno[4,5-b]furan-2-one

C21H30O9 (426.189)


   

(3s,4ar,6bs,8as,12ar,12bs,14ar,14br)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

(3s,4ar,6bs,8as,12ar,12bs,14ar,14br)-4,4,6b,8a,9,9,12b,14b-octamethyl-1,2,3,4a,5,7,8,10,11,12,12a,13,14,14a-tetradecahydropicen-3-yl acetate

C32H52O2 (468.3967)


   

9-(hydroxymethyl)-6-methyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

9-(hydroxymethyl)-6-methyl-3-methylidene-3ah,4h,5h,9ah,9bh-azuleno[4,5-b]furan-2,7-dione

C15H16O4 (260.1049)


   

(3s,3as,5r,6ar,9ar,9bs)-3-methyl-6,9-dimethylidene-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

(3s,3as,5r,6ar,9ar,9bs)-3-methyl-6,9-dimethylidene-5-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-octahydro-3h-azuleno[4,5-b]furan-2-one

C21H30O8 (410.1941)


   

4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-ol

4,4,6b,8a,11,12,12b,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,13,14-tetradecahydro-1h-picen-3-ol

C30H50O (426.3861)


   

4,4,6b,8a,9,9,12b,14b-octamethyl-2,4a,5,6,6a,7,8,10,11,12,12a,13-dodecahydro-1h-picen-3-one

4,4,6b,8a,9,9,12b,14b-octamethyl-2,4a,5,6,6a,7,8,10,11,12,12a,13-dodecahydro-1h-picen-3-one

C30H48O (424.3705)


   

(3as,11as)-6-methyl-3-methylidene-10-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

(3as,11as)-6-methyl-3-methylidene-10-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)-3ah,4h,5h,8h,9h,11ah-cyclodeca[b]furan-2-one

C21H30O8 (410.1941)


   

(4ar,6ar,6br,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-2,4a,5,6,6a,7,8,10,11,12,12a,13-dodecahydro-1h-picen-3-one

(4ar,6ar,6br,8as,12ar,12bs,14bs)-4,4,6b,8a,9,9,12b,14b-octamethyl-2,4a,5,6,6a,7,8,10,11,12,12a,13-dodecahydro-1h-picen-3-one

C30H48O (424.3705)