NCBI Taxonomy: 271535

Glochidion zeylanicum (ncbi_taxid: 271535)

found 110 associated metabolites at species taxonomy rank level.

Ancestor: Glochidion

Child Taxonomies: Glochidion zeylanicum var. tomentosum

Lupenone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Bergenin

NCGC00346587-02_C14H16O9_Pyrano[3,2-c][2]benzopyran-6(2H)-one, 3,4,4a,10b-tetrahydro-3,4,8,10-tetrahydroxy-2-(hydroxymethyl)-9-methoxy-, (2R,3S,4S,4aR,10bS)-

C14H16O9 (328.0794)


Bergenin is a trihydroxybenzoic acid. It has a role as a metabolite. Bergenin is a natural product found in Ficus racemosa, Ardisia paniculata, and other organisms with data available. A natural product found in Cenostigma gardnerianum. C26170 - Protective Agent > C275 - Antioxidant Annotation level-1 Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2]. Bergenin is a cytoprotective and antioxidative polyphenol found in many medicinal plants. Bergenin has a wide spectrum activities such as hepatoprotective, antiinflammatory, immunomodulatory, antitumor, antiviral, and antifungal properties[1][2].

   

Isoorientin 7-O-(6'-O-(E)-feruloyl)glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside, also known as homoorientin or luteolin-6-C-beta-D-glucoside, is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be synthesized from luteolin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside is also a parent compound for other transformation products, including but not limited to, isoorientin 7-O-glucoside, 7-O-[alpha-L-rhamnosyl-(1->2)-beta-D-glucosyl]isoorientin, and 7-O-(6-sinapoylglucosyl)isoorientin. Isoorientin 7-o-(6-o-(e)-feruloyl)glucoside can be found in barley, which makes isoorientin 7-o-(6-o-(e)-feruloyl)glucoside a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA21_Isoorientin_neg_20eV_1-3_01_1409.txt [Raw Data] CBA21_Isoorientin_pos_20eV_1-3_01_1382.txt [Raw Data] CBA21_Isoorientin_pos_50eV_1-3_01_1385.txt [Raw Data] CBA21_Isoorientin_neg_40eV_1-3_01_1411.txt [Raw Data] CBA21_Isoorientin_neg_10eV_1-3_01_1365.txt [Raw Data] CBA21_Isoorientin_neg_50eV_1-3_01_1412.txt [Raw Data] CBA21_Isoorientin_pos_10eV_1-3_01_1354.txt [Raw Data] CBA21_Isoorientin_pos_40eV_1-3_01_1384.txt [Raw Data] CBA21_Isoorientin_pos_30eV_1-3_01_1383.txt [Raw Data] CBA21_Isoorientin_neg_30eV_1-3_01_1410.txt Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Vitexin 6'-O-malonyl 2'-O-xyloside

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin 6-o-malonyl 2-o-xyloside, also known as apigenin 8-C-glucoside or 8-glycosyl-apigenin, is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin 6-o-malonyl 2-o-xyloside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin 6-o-malonyl 2-o-xyloside can be synthesized from apigenin. Vitexin 6-o-malonyl 2-o-xyloside is also a parent compound for other transformation products, including but not limited to, vitexin 2-O-beta-L-rhamnoside, 7-O-methylvitexin 2-O-beta-L-rhamnoside, and vitexin 2-O-beta-D-glucoside. Vitexin 6-o-malonyl 2-o-xyloside can be found in common beet, which makes vitexin 6-o-malonyl 2-o-xyloside a potential biomarker for the consumption of this food product. Vitexin, also known as apigenin 8-C-glucoside or 8-glycosylapigenin, belongs to the class of organic compounds known as flavonoid 8-C-glycosides. Flavonoid 8-C-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is also described as an apigenin flavone glucoside. Vitexin has been found in passion flower, chasteberry, bamboo leaves, millet and Hawthorn. Vitexin has shown a wide range of pharmacological effects, such as antioxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects (PMID: 27693342). Vitexin has also been shown to directly inhibit thyroid peroxidase and potentially contributes to goiter (PMID: 1696490). It is sometimes called a goitrogen. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA68_Vitexin_neg_10eV.txt [Raw Data] CBA68_Vitexin_neg_30eV.txt [Raw Data] CBA68_Vitexin_pos_20eV.txt [Raw Data] CBA68_Vitexin_neg_50eV.txt [Raw Data] CBA68_Vitexin_neg_40eV.txt [Raw Data] CBA68_Vitexin_pos_40eV.txt [Raw Data] CBA68_Vitexin_pos_30eV.txt [Raw Data] CBA68_Vitexin_pos_10eV.txt [Raw Data] CBA68_Vitexin_neg_20eV.txt Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

trans-3,3',4',5,5',7-Hexahydroxyflavanone

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in tea. (±)-trans-3,3,4,5,5,7-Hexahydroxyflavanone is a constituent of Camellia sinensis (Chinese green tea). Constituent of Camellia sinensis (Chinese green tea). (±)-Dihydromyricetin is found in tea. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Syringin

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-(4-((E)-3-hydroxyprop-1-en-1-yl)-2,6-dimethoxyphenoxy)tetrahydro-2H-pyran-3,4,5-triol

C17H24O9 (372.142)


Syringin is a monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. It has a role as a hepatoprotective agent and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, a primary alcohol and a dimethoxybenzene. It is functionally related to a trans-sinapyl alcohol. Syringin is a natural product found in Salacia chinensis, Codonopsis lanceolata, and other organisms with data available. See also: Codonopsis pilosula root (part of). A monosaccharide derivative that is trans-sinapyl alcohol attached to a beta-D-glucopyranosyl residue at position 1 via a glycosidic linkage. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O11 (448.1006)


Isoorientin is a flavone C-glycoside consisting of luteolin having a beta-D-glucosyl residue at the 6-position. It has a role as a radical scavenger and an antineoplastic agent. It is a tetrahydroxyflavone and a flavone C-glycoside. It is functionally related to a luteolin. It is a conjugate acid of an isoorientin(1-). Isoorientin is a natural product found in Carex fraseriana, Itea chinensis, and other organisms with data available. See also: Acai fruit pulp (part of). A C-glycosyl compound consisting of luteolin having a beta-D-glucosyl residue at the 6-position. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin is an apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet It has a role as a platelet aggregation inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an antineoplastic agent and a plant metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a vitexin-7-olate. Vitexin is a natural product found in Itea chinensis, Salacia chinensis, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of); Cytisus scoparius flowering top (part of); Fenugreek seed (part of) ... View More ... An apigenin flavone glycoside, which is found in the passion flower, bamboo leaves and pearl millet Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Vitexin

8-beta-D-Glucopyranosyl-5,7-dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Isoorientin

Luteolin 6-C-glucoside

C21H20O11 (448.1006)


Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

Isolariciresinol 9'-O-beta-D-glucoside

2-{[7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


Isolariciresinol 9-O-beta-D-glucoside is a constituent of Scots pine (Pinus sylvestris) needles. Constituent of Scots pine (Pinus sylvestris) needles

   

(7'R,8'R)-4,7'-Epoxy-3',5-dimethoxy-4',9,9'-lignanetriol 9'-glucoside

2-{[2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


(7R,8R)-4,7-Epoxy-3,5-dimethoxy-4,9,9-lignanetriol 9-glucoside is found in alcoholic beverages. (7R,8R)-4,7-Epoxy-3,5-dimethoxy-4,9,9-lignanetriol 9-glucoside is isolated from Riesling wine. Isolated from Riesling wine. (7R,8R)-4,7-Epoxy-3,5-dimethoxy-4,9,9-lignanetriol 9-glucoside is found in alcoholic beverages.

   

Isolariciresinol 9-O-beta-D-glucoside

2-{[6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


Isolariciresinol 9-O-beta-D-glucoside is a constituent of Scots pine (Pinus sylvestris) needles. Constituent of Scots pine (Pinus sylvestris) needles.

   

allo-Inositol

(1R,2R,3S,4R,5S,6S)-Cyclohexane-1,2,3,4,5,6-hexol

C6H12O6 (180.0634)


allo-Inositol is an inositol isoform. Inositol is a derivative of cyclohexane with six hydroxyl groups, making it a polyol. It also is known as a sugar alcohol, having exactly the same molecular formula as glucose or other hexoses. Inositol exists in nine possible stereoisomers, including scyllo-inositol, myo-inositol (the most abundant), muco-inositol, D-chiro-inositol, L-chiro-inositol, neo-inositol, allo-inositol, epi-inositol, and cis-inositol.

   

bergenin

5,6,12,14-tetrahydroxy-4-(hydroxymethyl)-13-methoxy-3,8-dioxatricyclo[8.4.0.0²,⁷]tetradeca-1(14),10,12-trien-9-one

C14H16O9 (328.0794)


   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.3861)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O11 (448.1006)


   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.3705)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Rotundic acid

1,10-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Rotundic acid, also known as rotundate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Rotundic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Rotundic acid can be found in olive, which makes rotundic acid a potential biomarker for the consumption of this food product. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1].

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


Vitexin is a member of the class of compounds known as flavonoid 8-c-glycosides. Flavonoid 8-c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to 8-position of a 2-phenylchromen-4-one flavonoid backbone. Vitexin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Vitexin can be found in a number of food items such as flaxseed, prairie turnip, mung bean, and tree fern, which makes vitexin a potential biomarker for the consumption of these food products. Vitexin is an apigenin flavone glucoside, a chemical compound found in the passion flower, Vitex agnus-castus (chaste tree or chasteberry), in the Phyllostachys nigra bamboo leaves, in the pearl millet (Pennisetum millet), and in Hawthorn . Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

Rotundicacid

(1R,2R,4aS,6aS,6bR,8aR,9R,10S,12aR,12bR,14bS)-1,10-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylic acid

C30H48O5 (488.3502)


Rotundic acid is a triterpenoid. It has a role as a metabolite. Rotundic acid is a natural product found in Ilex chinensis, Ilex excelsa, and other organisms with data available. A natural product found in Euscaphis japonica. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1].

   

Glochidonol

Glochidonol

C30H48O2 (440.3654)


A pentacyclic triterpenoid that is lup-20(29)-ene substituted by a beta-hydroxy group at position 1 and an oxo group at position 3. It has been isolated from Breynia fruticosa.

   

Glochidone

(1R,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,11b,12,13,13a,13b-dodecahydro-1H-cyclopenta[a]chrysen-9-one

C30H46O (422.3548)


Glochidone is a pentacyclic triterpenoid that is lupa-1,20(29)-diene substituted by an oxo group at position 3. It has been isolated from Breynia fruticosa. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. It derives from a hydride of a lupane. Glochidone is a natural product found in Byrsonima microphylla, Phyllanthus watsonii, and other organisms with data available. A pentacyclic triterpenoid that is lupa-1,20(29)-diene substituted by an oxo group at position 3. It has been isolated from Breynia fruticosa.

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Vitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-8-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]chromen-4-one

C21H20O10 (432.1056)


Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2]. Vitexin is a c-glycosylated flavone, and is found in various medicinal plants species such as Trigonella foenum-graecum Linn. Vitexin has a wide range of pharmacological effects, including anti-oxidant, anti-cancer, anti-inflammatory, anti-hyperalgesic, and neuroprotective effects[1][2].

   

ampelopsin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Isoorientin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]-4-chromenone

C21H20O11 (448.1006)


Isolated from wheat leaves (Triticum species). Isoorientin 6-diglucoside is found in wheat and cereals and cereal products. Isoorientin is a member of the class of compounds known as flavonoid c-glycosides. Flavonoid c-glycosides are compounds containing a carbohydrate moiety which is C-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Isoorientin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Isoorientin can be found in a number of food items such as oat, prairie turnip, common buckwheat, and common salsify, which makes isoorientin a potential biomarker for the consumption of these food products. Isoorientin (or homoorientin) is a flavone, a chemical flavonoid-like compound. It is the luteolin-6-C-glucoside. Bioassay-directed fractionation techniques led to isolation of isoorientin as the main hypoglycaemic component in Gentiana olivieri . Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM. Isoorientin is a potent inhibitor of COX-2 with an IC50 value of 39 μM.

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.439)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   
   

Dihydromyricetin

trans-3,3,4,5,5,7-Hexahydroxyflavanone

C15H12O8 (320.0532)


A hexahydroxyflavanone that is the 2,3-dihydro derivative of myricetin. Dihydromyricetin, also known as ampelopsin or (2r,3r)-3,5,7,3,4,5-hexahydroxyflavanone, is a member of the class of compounds known as epigallocatechins. Epigallocatechins are compounds containing epigallocatechin or a derivative. Epigallocatechin is a flavan-3-ol containing a benzopyran-3,5,7-triol linked to a 3,4,5-hydroxyphenyl moiety. Dihydromyricetin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Dihydromyricetin can be found in a number of food items such as highbush blueberry, summer grape, sacred lotus, and sweet rowanberry, which makes dihydromyricetin a potential biomarker for the consumption of these food products. Hovenia dulcis has been used in traditional Japanese, Chinese, and Korean medicines to treat fever, parasitic infection, as a laxative, and a treatment of liver diseases, and as a hangover treatment. Methods have been developed to extract ampelopsin from it at large scales, and laboratory research has been conducted with the compound to see if it might be useful as a drug in any of the conditions for which the parent plant has been traditionally used . Isolated from flowers of Eugenia jambolana (jambolan). trans-3,3,4,5,5,7-Hexahydroxyflavanone is found in fruits. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

Urolignoside

(2R,3S,4S,5R,6S)-2-(hydroxymethyl)-6-[4-[(2S,3R)-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy]oxane-3,4,5-triol

C26H34O11 (522.2101)


Urolignoside is a natural product found in Salacia chinensis, Keteleeria evelyniana, and other organisms with data available.

   

I1exo1ic acid

(1R,2R,4aS,6aS,6bR,8aR,9R,10S,12aR,12bR,14bS)-1,10-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydropicene-4a(2H)-carboxylic acid

C30H48O5 (488.3502)


Rotundic acid is a triterpenoid. It has a role as a metabolite. Rotundic acid is a natural product found in Ilex chinensis, Ilex excelsa, and other organisms with data available. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1].

   

syringin

Eleutheroside B

C17H24O9 (372.142)


Syringin, also known as eleutheroside b or beta-terpineol, is a member of the class of compounds known as phenolic glycosides. Phenolic glycosides are organic compounds containing a phenolic structure attached to a glycosyl moiety. Some examples of phenolic structures include lignans, and flavonoids. Among the sugar units found in natural glycosides are D-glucose, L-Fructose, and L rhamnose. Syringin is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Syringin can be found in caraway, fennel, and lemon, which makes syringin a potential biomarker for the consumption of these food products. Syringin is a natural chemical compound first isolated from the bark of lilac (Syringa vulgaris) by Meillet in 1841. It has since been found to be distributed widely throughout many types of plants. It is also called eleutheroside B, and is found in Eleutherococcus senticosus (Siberian ginseng). It is also found in dandelion coffee . Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2]. Syringin is a main bioactive phenolic glycoside in Acanthopanax senticosus, with anti-osteoporosis activity. Syringin prevents cardiac hypertrophy induced by pressure overload through the attenuation of autophagy[1][2].

   

Isolariciresinol 9-O-b-D-glucoside

2-{[6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

(7'R,8'R)-4,7'-Epoxy-3',5-dimethoxy-4',9,9'-lignanetriol 9'-glucoside

2-{[2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

Isolariciresinol 9'-O-b-D-glucoside

2-{[7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Rotundic acid

pedunculoside_qt

C30H48O5 (488.3502)


Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1]. Rotundic acid, a triterpenoid obtained from Ilex rotunda Thunb., induces DNA damage and cell apoptosis in hepatocellular carcinoma through AKT/mTOR and MAPK Pathways. Rotundic acid possesses anti-inflammatory and cardio-protective abilities[1].

   

(+)-Isolariciresinol-3alpha-O-beta-D-glucopyranoside

(+)-Isolariciresinol-3alpha-O-beta-D-glucopyranoside

C26H34O11 (522.2101)


   

Ampelopsin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(3,4,5-trihydroxyphenyl)-, (2R-trans)-

C15H12O8 (320.0532)


(+)-dihydromyricetin is an optically active form of dihydromyricetin having (2R,3R)-configuration. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a secondary alpha-hydroxy ketone and a dihydromyricetin. It is an enantiomer of a (-)-dihydromyricetin. Dihydromyricetin is under investigation in clinical trial NCT03606694 (Effect of Dihydromirycetin on Glycemic Control, Insulin Sensitivity and Insulin Secretion in Type 2 Diabetes Mellitus). Dihydromyricetin is a naturally occurring flavonoid found in the many plant species and is thought to be the active ingredient of several traditional Japanese, Chinese, and Korean medicines that are used to treat fever, parasite infections, liver diseases, and hangovers. Dihydromyricetin preparations have not been linked to instances of serum enzyme elevations or clinically apparent liver injury with jaundice. Dihydromyricetin is a natural product found in Vitis rotundifolia, Catha edulis, and other organisms with data available. An optically active form of dihydromyricetin having (2R,3R)-configuration. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM. Dihydromyricetin is a potent inhibitor with an IC50 of 48 μM on dihydropyrimidinase. Dihydromyricetin can activate autophagy through inhibiting mTOR signaling. Dihydromyricetin suppresses the formation of mTOR complexes (mTORC1/2). Dihydromyricetin is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 22 μM.

   

4-hydroxy-4-(3-hydroxybut-1-en-1-yl)-5,5-dimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

4-hydroxy-4-(3-hydroxybut-1-en-1-yl)-5,5-dimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H30O9 (402.189)


   

(6s,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

(6s,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

C14H20O8 (316.1158)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

C30H50O2 (442.3811)


   

6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

C14H20O8 (316.1158)


   

2,3-dihydroxy-5-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4-dihydroxy-5-methoxybenzoate

2,3-dihydroxy-5-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4-dihydroxy-5-methoxybenzoate

C23H18O12 (486.0798)


   

(4r)-4-[(3s)-3-hydroxybutyl]-5,5-dimethyl-3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

(4r)-4-[(3s)-3-hydroxybutyl]-5,5-dimethyl-3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H32O8 (388.2097)


   

(4r)-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-5,5-dimethyl-3-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

(4r)-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-5,5-dimethyl-3-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H30O8 (386.1941)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


   

2-{[3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

[(2r,3s,4s,5r,6r)-6-{[(3as,6r,7ar)-2-oxo-3a,6,7,7a-tetrahydro-3h-1-benzofuran-6-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3s,4s,5r,6r)-6-{[(3as,6r,7ar)-2-oxo-3a,6,7,7a-tetrahydro-3h-1-benzofuran-6-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C21H24O12 (468.1268)


   

(6s,7as)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

(6s,7as)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

C14H20O8 (316.1158)


   

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-{[(2s,3e)-4-[(1r,2r,4s)-1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl]but-3-en-2-yl]oxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6r)-2-(hydroxymethyl)-6-{[(2s,3e)-4-[(1r,2r,4s)-1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl]but-3-en-2-yl]oxy}oxane-3,4,5-triol

C19H34O9 (406.2203)


   

4-(3-hydroxybutyl)-5,5-dimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

4-(3-hydroxybutyl)-5,5-dimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H32O8 (388.2097)


   

(6s,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7,7a-dihydro-6h-1-benzofuran-2-one

(6s,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7,7a-dihydro-6h-1-benzofuran-2-one

C14H18O8 (314.1002)


   

(3as,6r,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3a,6,7,7a-tetrahydro-3h-1-benzofuran-2-one

(3as,6r,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3a,6,7,7a-tetrahydro-3h-1-benzofuran-2-one

C14H20O8 (316.1158)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s)-3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s)-3-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

(2s,3r,4s,5s,6r)-2-{4-[(2r,3s)-3,7-dihydroxy-5-methoxy-3,4-dihydro-2h-1-benzopyran-2-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{4-[(2r,3s)-3,7-dihydroxy-5-methoxy-3,4-dihydro-2h-1-benzopyran-2-yl]-2,6-dimethoxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C24H30O12 (510.1737)


   

4-(3-hydroxybut-1-en-1-yl)-5,5-dimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

4-(3-hydroxybut-1-en-1-yl)-5,5-dimethyl-3-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H30O8 (386.1941)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-1,10-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (1r,2r,4as,6as,6br,8ar,9r,10s,12ar,12br,14bs)-1,10-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O10 (650.403)


   

{3,4,5-trihydroxy-6-[(2-oxo-5,6,7,7a-tetrahydro-4h-1-benzofuran-6-yl)oxy]oxan-2-yl}methyl 3,4,5-trihydroxybenzoate

{3,4,5-trihydroxy-6-[(2-oxo-5,6,7,7a-tetrahydro-4h-1-benzofuran-6-yl)oxy]oxan-2-yl}methyl 3,4,5-trihydroxybenzoate

C21H24O12 (468.1268)


   

(1r,3ar,5ar,5br,7as,9s,11r,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

(1r,3ar,5ar,5br,7as,9s,11r,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

C30H50O2 (442.3811)


   

11-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

11-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O2 (440.3654)


   

(6r,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

(6r,7ar)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6,7,7a-tetrahydro-4h-1-benzofuran-2-one

C14H20O8 (316.1158)


   

(4as,5s,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-5-ol

(4as,5s,6ar,8ar,12ar,12bs,14ar,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-5-ol

C30H50O (426.3861)


   

(6r,7as)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7,7a-dihydro-6h-1-benzofuran-2-one

(6r,7as)-6-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7,7a-dihydro-6h-1-benzofuran-2-one

C14H18O8 (314.1002)


   

6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7,7a-dihydro-6h-1-benzofuran-2-one

6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-7,7a-dihydro-6h-1-benzofuran-2-one

C14H18O8 (314.1002)


   

2,6-dihydroxy-4-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4,5-trihydroxybenzoate

2,6-dihydroxy-4-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4,5-trihydroxybenzoate

C22H16O12 (472.0642)


   

3-[(2s,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxysulfonic acid

3-[(2s,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxysulfonic acid

C20H24O9S (440.1141)


   

(3s,4ar,6as,8as,12ar,12bs,14as,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3s,4ar,6as,8as,12ar,12bs,14as,14br)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3s)-3-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3s)-3-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C24H30O12 (510.1737)


   

(2r,3r,4s,5s,6r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,2r,3r)-7-hydroxy-1-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-6-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

2-(hydroxymethyl)-6-{4-[3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

2-(hydroxymethyl)-6-{4-[3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

C26H34O11 (522.2101)


   

2-{[7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

(2r,3r,4s,5s,6r)-2-{3-[(2s,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{3-[(2s,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

4-hydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)cyclohex-2-en-1-one

4-hydroxy-3,5,5-trimethyl-4-(3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl)cyclohex-2-en-1-one

C19H32O8 (388.2097)


   

2-{[3-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C24H30O12 (510.1737)


   

(4s)-4-hydroxy-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-5,5-dimethyl-3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

(4s)-4-hydroxy-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-5,5-dimethyl-3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H30O9 (402.189)


   

2-{3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3a,6,7,7a-tetrahydro-3h-1-benzofuran-2-one

6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3a,6,7,7a-tetrahydro-3h-1-benzofuran-2-one

C14H20O8 (316.1158)


   

[(2r,3r,4s,5r,6r)-6-{[(6s,7as)-2-oxo-5,6,7,7a-tetrahydro-4h-1-benzofuran-6-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3r,4s,5r,6r)-6-{[(6s,7as)-2-oxo-5,6,7,7a-tetrahydro-4h-1-benzofuran-6-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C21H24O12 (468.1268)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3r,4r)-3,4-dihydroxy-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-3,5,5-trimethylcyclohexyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3r,4r)-3,4-dihydroxy-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-3,5,5-trimethylcyclohexyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C19H34O9 (406.2203)


   

(4r)-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-5,5-dimethyl-3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

(4r)-4-[(1e,3s)-3-hydroxybut-1-en-1-yl]-5,5-dimethyl-3-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H30O8 (386.1941)


   

(1r,3ar,5ar,5br,7as,9r,11r,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

(1r,3ar,5ar,5br,7as,9r,11r,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

C30H50O2 (442.3811)


   

4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-5-ol

4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-5-ol

C30H50O (426.3861)


   

2-{[3,4-dihydroxy-4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohexyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[3,4-dihydroxy-4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohexyl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C19H34O9 (406.2203)


   

[(2r,3s,4s,5r,6r)-6-{[(6s,7as)-2-oxo-5,6,7,7a-tetrahydro-4h-1-benzofuran-6-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

[(2r,3s,4s,5r,6r)-6-{[(6s,7as)-2-oxo-5,6,7,7a-tetrahydro-4h-1-benzofuran-6-yl]oxy}-3,4,5-trihydroxyoxan-2-yl]methyl 3,4,5-trihydroxybenzoate

C21H24O12 (468.1268)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.439)


   

4-(2-hydroxy-2,6,6-trimethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexylidene)but-3-en-2-one

4-(2-hydroxy-2,6,6-trimethyl-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexylidene)but-3-en-2-one

C19H30O8 (386.1941)


   

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]cyclohex-2-en-1-one

(4s)-4-hydroxy-3,5,5-trimethyl-4-[(3r)-3-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}butyl]cyclohex-2-en-1-one

C19H32O8 (388.2097)


   

(2r,3r,4s,5s,6r)-2-{[(2s,3r)-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2s,3r)-2-(4-hydroxy-3-methoxyphenyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-3-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(1r,3as,5as,5br,7as,9s,11ar,11bs,13as,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3as,5as,5br,7as,9s,11ar,11bs,13as,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


   

(2r,3r,4s,5s,6r)-2-{[(2r,3s)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2r,3s)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-5-methoxy-3,4-dihydro-2h-1-benzopyran-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C23H28O11 (480.1632)


   

4-[(2r,4r)-2-hydroxy-2,6,6-trimethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexylidene]but-3-en-2-one

4-[(2r,4r)-2-hydroxy-2,6,6-trimethyl-4-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexylidene]but-3-en-2-one

C19H30O8 (386.1941)


   

3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxysulfonic acid

3-[2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-2,3-dihydro-1-benzofuran-5-yl]propoxysulfonic acid

C20H24O9S (440.1141)


   

(4r)-4-[(3s)-3-hydroxybutyl]-5,5-dimethyl-3-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

(4r)-4-[(3s)-3-hydroxybutyl]-5,5-dimethyl-3-({[(2r,3r,4s,5r,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclohex-2-en-1-one

C19H32O8 (388.2097)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,6h,7h,7ah,11bh,12h,13h,13ah,13bh-cyclopenta[a]chrysen-9-one

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-1h,2h,3h,4h,5h,6h,7h,7ah,11bh,12h,13h,13ah,13bh-cyclopenta[a]chrysen-9-one

C30H46O (422.3548)


   

2,6-dihydroxy-4-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4-dihydroxy-5-methoxybenzoate

2,6-dihydroxy-4-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4-dihydroxy-5-methoxybenzoate

C23H18O12 (486.0798)


   

(2r,3r,4s,5s,6r)-2-{[(2r,3r,4s)-6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(2r,3r,4s)-6-hydroxy-4-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-7-methoxy-1,2,3,4-tetrahydronaphthalen-2-yl]methoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C26H34O11 (522.2101)


   

{3,4,5-trihydroxy-6-[(2-oxo-3a,6,7,7a-tetrahydro-3h-1-benzofuran-6-yl)oxy]oxan-2-yl}methyl 3,4,5-trihydroxybenzoate

{3,4,5-trihydroxy-6-[(2-oxo-3a,6,7,7a-tetrahydro-3h-1-benzofuran-6-yl)oxy]oxan-2-yl}methyl 3,4,5-trihydroxybenzoate

C21H24O12 (468.1268)


   

2,3-dihydroxy-5-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4,5-trihydroxybenzoate

2,3-dihydroxy-5-[(2r,3r)-3,5,7-trihydroxy-4-oxo-2,3-dihydro-1-benzopyran-2-yl]phenyl 3,4,5-trihydroxybenzoate

C22H16O12 (472.0642)


   

2-[4-(3,7-dihydroxy-5-methoxy-3,4-dihydro-2h-1-benzopyran-2-yl)-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

2-[4-(3,7-dihydroxy-5-methoxy-3,4-dihydro-2h-1-benzopyran-2-yl)-2,6-dimethoxyphenoxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C24H30O12 (510.1737)


   

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{4-[(2s,3r)-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

(2r,3s,4s,5r,6s)-2-(hydroxymethyl)-6-{4-[(2s,3r)-3-(hydroxymethyl)-5-(3-hydroxypropyl)-7-methoxy-2,3-dihydro-1-benzofuran-2-yl]-2-methoxyphenoxy}oxane-3,4,5-triol

C26H34O11 (522.2101)


   

2-(hydroxymethyl)-6-{[4-(1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-yl]oxy}oxane-3,4,5-triol

2-(hydroxymethyl)-6-{[4-(1,2,4-trihydroxy-2,6,6-trimethylcyclohexyl)but-3-en-2-yl]oxy}oxane-3,4,5-triol

C19H34O9 (406.2203)