NCBI Taxonomy: 61134

Ceriops (ncbi_taxid: 61134)

found 500 associated metabolites at genus taxonomy rank level.

Ancestor: Rhizophoraceae

Child Taxonomies: Ceriops tagal, Ceriops decandra, Ceriops australis, Ceriops zippeliana, unclassified Ceriops, Ceriops pseudodecandra

Lupenone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.3704958)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Steviol

(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O3 (318.21948299999997)


Steviol is an ent-kaurane diterpenoid that is 5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid in which the hydrogen at position 13 has been replaced by a hydroxy group. It has a role as an antineoplastic agent. It is a tetracyclic diterpenoid, a tertiary allylic alcohol, a monocarboxylic acid, a bridged compound and an ent-kaurane diterpenoid. It is a conjugate acid of a steviol(1-). Steviol is a natural product found in Ceriops decandra, Cucurbita, and other organisms with data available. Steviol is found in fruits. Steviol is isolated from Cucurbita maxima Rebaudioside B, D, and E may also be present in minute quantities; however, it is suspected that rebaudioside B is a byproduct of the isolation technique. The two majority compounds stevioside and rebaudioside, primarily responsible for the sweet taste of stevia leaves, were first isolated by two French chemists in 1931. Isolated from Cucurbita maxima Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1]. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.37049579999996)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Betulin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

Betulinic acid

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

dammarenediol

(3S,5R,8R,9R,10R,13R,14R,17S)-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H52O2 (444.3967092)


Dammarenediol-II is a tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions. It has a role as a metabolite. It is a tetracyclic triterpenoid, a secondary alcohol and a tertiary alcohol. It derives from a hydride of a dammarane. Dammarenediol II is a natural product found in Olea capensis, Aglaia abbreviata, and other organisms with data available. A tetracyclic triterpenoid that is dammarane which has a double bond between positions 24 and 25, and is substituted by hydroxy groups at the 3beta- and 20- positions.

   

Epi-alpha-amyrin

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Dehydroabietic acid

(1R,4aS,10aR)-1,4a-dimethyl-7-(propan-2-yl)-1,2,3,4,4a,9,10,10a-octahydrophenanthrene-1-carboxylic acid

C20H28O2 (300.2089188)


Dehydroabietic acid belongs to the class of organic compounds known as diterpenoids. These are terpene compounds formed by four isoprene units. Dehydroabietic acid possesses antiviral activity[1]. Dehydroabietic acid possesses antiviral activity[1].

   

Monogynol A

3beta,20-Dihydroxylupane

C30H52O2 (444.3967092)


   

(ent-16betaOH)-16,17-Dihydroxy-9(11)-kauren-19-oic acid

14-hydroxy-14-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-10-ene-5-carboxylic acid

C20H30O4 (334.214398)


(ent-16betaOH)-16,17-Dihydroxy-9(11)-kauren-19-oic acid is found in coffee and coffee products. (ent-16betaOH)-16,17-Dihydroxy-9(11)-kauren-19-oic acid is a constituent of roasted coffee.

   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.37049579999996)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Isosteviol

(4R,4aS,6aR,9S,11aR,11bS)-4,9,11b-Trimethyl-8-oxotetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O3 (318.21948299999997)


Isosteviol is a diterpenoid. Isosteviol is a natural product found in Ceriops decandra with data available. See also: Stevia rebaudiuna Leaf (part of). Isosteviol ((-)-Isosteviol) is a derivative of Stevioside through acid catalyzed hydrolysis of Stevioside. Isosteviol inhibits DNA polymerase and DNA topoisomerase and has antibacterial, anticancer and anti-tuberculosis effects[1][2][3][4]. Isosteviol ((-)-Isosteviol) is a derivative of Stevioside through acid catalyzed hydrolysis of Stevioside. Isosteviol inhibits DNA polymerase and DNA topoisomerase and has antibacterial, anticancer and anti-tuberculosis effects[1][2][3][4].

   

Liquidambaric

(1R,3aS,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-5a,5b,8,8,11a-pentamethyl-9-oxidanylidene-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1H-cyclopenta[a]chrysene-3a-carboxylic acid

C30H46O3 (454.34467659999996)


Betulonic acid is a triterpenoid. It has a role as an anticoronaviral agent. Betulonic acid is a natural product found in Lantana camara, Ozothamnus stirlingii, and other organisms with data available. See also: Jujube fruit (part of). Betulonic acid (Betunolic acid), a naturally occurring triterpene, is found in many plants. Betulonic acid has anti-tumor, anti-inflammatory, antiparasitic and anti-viral (HSV-1) activities[2][1][3][4]. Betulonic acid (Betunolic acid), a naturally occurring triterpene, is found in many plants. Betulonic acid has anti-tumor, anti-inflammatory, antiparasitic and anti-viral (HSV-1) activities[2][1][3][4].

   

Betulonic acid

(1R,3aS,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-5a,5b,8,8,11a-pentamethyl-9-oxo-eicosahydro-cyclopenta[a]chrysene-3a-carboxylic acid

C30H46O3 (454.34467659999996)


Betulonic acid (Betunolic acid), a naturally occurring triterpene, is found in many plants. Betulonic acid has anti-tumor, anti-inflammatory, antiparasitic and anti-viral (HSV-1) activities[2][1][3][4]. Betulonic acid (Betunolic acid), a naturally occurring triterpene, is found in many plants. Betulonic acid has anti-tumor, anti-inflammatory, antiparasitic and anti-viral (HSV-1) activities[2][1][3][4].

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.36032579999994)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterol

Stigmasterol

C29H48O (412.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

(+)-Allodevadarool|Allodevadarool|Erythroxydiol Y

(+)-Allodevadarool|Allodevadarool|Erythroxydiol Y

C20H34O2 (306.2558664)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Squalene

InChI=1\C30H50\c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4\h15-18,23-24H,9-14,19-22H2,1-8H3\b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

betulinic acid

betulinic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   
   

Betulone

(1R,3aS,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-2,3,4,5,6,7,7a,10,11,11b,12,13,13a,13b-tetradecahydro-1H-cyclopenta[a]chrysen-9-one

C30H48O2 (440.36541079999995)


Betulone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Betulone is a natural product found in Euonymus carnosus, Salacia chinensis, and other organisms with data available. A natural product found in Cupania cinerea.

   

Campesterol

Campesterol

C28H48O (400.37049579999996)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Betulin

NCGC00168803-04_C30H50O2_Lup-20(29)-ene-3,28-diol, (3beta)-

C30H50O2 (442.38106)


Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

Steviol

(4R,4aS,6aR,9S,11aR,11bS)-9-hydroxy-4,11b-dimethyl-8-methylenetetradecahydro-6a,9-methanocyclohepta[a]naphthalene-4-carboxylic acid

C20H30O3 (318.21948299999997)


Steviol is an ent-kaurane diterpenoid that is 5beta,8alpha,9beta,10alpha-kaur-16-en-18-oic acid in which the hydrogen at position 13 has been replaced by a hydroxy group. It has a role as an antineoplastic agent. It is a tetracyclic diterpenoid, a tertiary allylic alcohol, a monocarboxylic acid, a bridged compound and an ent-kaurane diterpenoid. It is a conjugate acid of a steviol(1-). Steviol is a natural product found in Ceriops decandra, Cucurbita, and other organisms with data available. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1]. Steviol is a major metabolite of the sweetening compound stevioside. Steviol slows renal cyst growth by reducing AQP2 expression and promoting AQP2 degradation[1].

   

Mairin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-Hydroxy-1-isopropenyl-5a,5b,8,8,11a-pentamethyl-eicosahydro-cyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterin

(3S,8S,9S,10R,13R,14S,17R)-17-[(E,2R,5S)-5-ethyl-6-methyl-hept-3-en-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.37049579999996)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

Urson

(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

viminalol

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ...

   

Lanol

(3S,8S,9S,10R,13R,14S,17R)-10,13-dimethyl-17-[(2R)-6-methylheptan-2-yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C27H46O (386.3548466)


Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Lupan-3beta,20-diol

Lupan-3beta,20-diol

C30H52O2 (444.3967092)


   

14-(hydroxymethyl)-5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-8-ol

14-(hydroxymethyl)-5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-8-ol

C20H34O3 (322.25078140000005)


   

(2-acetyl-6-ethenyl-2,6,8a-trimethyl-hexahydro-1h-naphthalen-1-yl)acetic acid

(2-acetyl-6-ethenyl-2,6,8a-trimethyl-hexahydro-1h-naphthalen-1-yl)acetic acid

C19H30O3 (306.21948299999997)


   

(1r,4ar,4bs,4'bs,6'as,7s,8's,8as,10as,10'as,10'br)-7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-3',4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11'-octadecahydro-3h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2,12'-dione

(1r,4ar,4bs,4'bs,6'as,7s,8's,8as,10as,10'as,10'br)-7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-3',4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11'-octadecahydro-3h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2,12'-dione

C40H58O3 (586.4385718)


   

(4ar,4bs,7s,8as,10as)-7-ethenyl-4b,7,10a-trimethyl-1-methylidene-octahydro-3h-phenanthren-2-one

(4ar,4bs,7s,8as,10as)-7-ethenyl-4b,7,10a-trimethyl-1-methylidene-octahydro-3h-phenanthren-2-one

C20H30O (286.229653)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(4-hydroxyphenyl)prop-2-enoate

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(4-hydroxyphenyl)prop-2-enoate

C39H56O4 (588.4178376)


   

(2s,5r)-2-[(1s,3ar,3br,5ar,6r,7s,9ar,9br,11ar)-7-hydroxy-6-(hydroxymethyl)-3a,3b,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

(2s,5r)-2-[(1s,3ar,3br,5ar,6r,7s,9ar,9br,11ar)-7-hydroxy-6-(hydroxymethyl)-3a,3b,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

C30H52O4 (476.3865392)


   

(4ar,4bs,7s,8as,10as)-7-(1,2-dihydroxyethyl)-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

(4ar,4bs,7s,8as,10as)-7-(1,2-dihydroxyethyl)-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

C20H32O4 (336.2300472)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H58O5 (618.4284018)


   

9-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C39H54O5 (602.3971034)


   

(3ar,3br,5ar,7s,9ar,9br)-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(3ar,3br,5ar,7s,9ar,9br)-1-[(2s)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H52O2 (444.3967092)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H56O4 (588.4178376)


   

(2s,4as,4br,8z,8as,10as)-8-(hydroxymethylidene)-2,4a,8a-trimethyl-7-oxo-octahydro-1h-phenanthrene-2-carboxylic acid

(2s,4as,4br,8z,8as,10as)-8-(hydroxymethylidene)-2,4a,8a-trimethyl-7-oxo-octahydro-1h-phenanthrene-2-carboxylic acid

C19H28O4 (320.19874880000003)


   

methyl (1r,4s,5r,9r,12s,15s,16r)-15-hydroxy-5,9-dimethyl-13-oxapentacyclo[13.2.1.0¹,¹⁰.0⁴,⁹.0¹²,¹⁶]octadec-10-ene-5-carboxylate

methyl (1r,4s,5r,9r,12s,15s,16r)-15-hydroxy-5,9-dimethyl-13-oxapentacyclo[13.2.1.0¹,¹⁰.0⁴,⁹.0¹²,¹⁶]octadec-10-ene-5-carboxylate

C21H30O4 (346.214398)


   

(1s)-1-[(2s,4bs,5r,8as)-5-hydroxy-2,4b,8,8-tetramethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-yl]ethane-1,2-diol

(1s)-1-[(2s,4bs,5r,8as)-5-hydroxy-2,4b,8,8-tetramethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-yl]ethane-1,2-diol

C20H34O3 (322.25078140000005)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C39H54O5 (602.3971034)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-(acetyloxy)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-(acetyloxy)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C32H50O4 (498.37089000000003)


   

(1r,4ar,4bs,4'bs,6'as,7s,8's,8as,10as,10'as,10'br)-7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11',12'-octadecahydro-3h,3'h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2-one

(1r,4ar,4bs,4'bs,6'as,7s,8's,8as,10as,10'as,10'br)-7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11',12'-octadecahydro-3h,3'h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2-one

C40H60O2 (572.459306)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H56O5 (604.4127526)


   

7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11',12'-octadecahydro-3h,3'h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2-one

7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11',12'-octadecahydro-3h,3'h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2-one

C40H60O2 (572.459306)


   

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C39H56O3 (572.4229226)


   

(1r,4s,5r,9s,10r,13s)-5,9,13-trimethyl-14-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

(1r,4s,5r,9s,10r,13s)-5,9,13-trimethyl-14-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

C20H30O2 (302.224568)


   

1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

1-(2-hydroxy-6-methylhept-5-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H52O2 (444.3967092)


   

3-[2-(2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl)-2-oxoethyl]-7-ethenyl-4b,7,10a-trimethyl-1-methylidene-5,6,8,8a,9,10-hexahydro-4ah-phenanthren-2-one

3-[2-(2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl)-2-oxoethyl]-7-ethenyl-4b,7,10a-trimethyl-1-methylidene-5,6,8,8a,9,10-hexahydro-4ah-phenanthren-2-one

C40H58O2 (570.4436568)


   

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(1r,3ar,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H58O4 (602.4334868)


   

1-(5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

1-(5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl)-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H52O4 (476.3865392)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.37049579999996)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O2 (440.36541079999995)


   

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C39H54O5 (602.3971034)


   

6-{7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-2-methylhept-3-ene-2,6-diol

6-{7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl}-2-methylhept-3-ene-2,6-diol

C30H52O3 (460.3916242)


   
   

9-(acetyloxy)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-(acetyloxy)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C32H50O4 (498.37089000000003)


   

[(1r,2s,4as,6s,8as)-2-acetyl-6-ethenyl-2,6,8a-trimethyl-hexahydro-1h-naphthalen-1-yl]acetic acid

[(1r,2s,4as,6s,8as)-2-acetyl-6-ethenyl-2,6,8a-trimethyl-hexahydro-1h-naphthalen-1-yl]acetic acid

C19H30O3 (306.21948299999997)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C39H54O5 (602.3971034)


   

(4ar,4bs,7s,8as,10as)-2,7-dihydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

(4ar,4bs,7s,8as,10as)-2,7-dihydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

C18H28O3 (292.2038338)


   

7'-ethenyl-4'b,7',10'a-trimethyl-decahydrospiro[oxirane-2,1'-phenanthren]-2'-ol

7'-ethenyl-4'b,7',10'a-trimethyl-decahydrospiro[oxirane-2,1'-phenanthren]-2'-ol

C20H32O2 (304.24021719999996)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H58O4 (602.4334868)


   

(4as,6as,6br,8ar,10s,12ar,12br,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8ar,10s,12ar,12br,14br)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


   

2-{9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-1-yl}propanoic acid

2-{9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-1-yl}propanoic acid

C30H50O3 (458.37597500000004)


   

(1z,4as,4br,7r,8ar,10ar)-7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

(1z,4as,4br,7r,8ar,10ar)-7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

C20H30O2 (302.224568)


   

(4as,4br,7r,8ar,10ar)-7-ethenyl-2-hydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

(4as,4br,7r,8ar,10ar)-7-ethenyl-2-hydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

C20H30O2 (302.224568)


   

(1r,4r,8s,9r,10s,13r,14r)-14-(hydroxymethyl)-5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-8-ol

(1r,4r,8s,9r,10s,13r,14r)-14-(hydroxymethyl)-5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-8-ol

C20H34O3 (322.25078140000005)


   

(1s)-1-[(2s,4as,4bs,5r,8as)-5-hydroxy-2,4b,8,8-tetramethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-yl]ethane-1,2-diol

(1s)-1-[(2s,4as,4bs,5r,8as)-5-hydroxy-2,4b,8,8-tetramethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-yl]ethane-1,2-diol

C20H34O3 (322.25078140000005)


   

(2s,2's,4'ar,4'bs,7's,8'as,10'as)-7'-ethenyl-4'b,7',10'a-trimethyl-decahydrospiro[oxirane-2,1'-phenanthren]-2'-ol

(2s,2's,4'ar,4'bs,7's,8'as,10'as)-7'-ethenyl-4'b,7',10'a-trimethyl-decahydrospiro[oxirane-2,1'-phenanthren]-2'-ol

C20H32O2 (304.24021719999996)


   

(1r,3as,5ar,5br,7ar,11ar,11br,13ar,13br)-5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,11ar,11br,13ar,13br)-5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylic acid

C30H46O3 (454.34467659999996)


   

2-[7-hydroxy-6-(hydroxymethyl)-3a,3b,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

2-[7-hydroxy-6-(hydroxymethyl)-3a,3b,6,9a-tetramethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

C30H52O4 (476.3865392)


   

1-(2-hydroxypropan-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

1-(2-hydroxypropan-2-yl)-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H52O2 (444.3967092)


   

(4as,4br,7r,8ar,10ar)-7-ethenyl-3-hydroxy-4b,7,10a-trimethyl-1-methylidene-5,6,8,8a,9,10-hexahydro-4ah-phenanthren-2-one

(4as,4br,7r,8ar,10ar)-7-ethenyl-3-hydroxy-4b,7,10a-trimethyl-1-methylidene-5,6,8,8a,9,10-hexahydro-4ah-phenanthren-2-one

C20H28O2 (300.2089188)


   

1-{9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-1-yl}ethanone

1-{9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-1-yl}ethanone

C29H48O2 (428.36541079999995)


   

(2r,5r)-2-[(1r,3as,3bs,5as,7r,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

(2r,5r)-2-[(1r,3as,3bs,5as,7r,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

C30H52O3 (460.3916242)


   

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C40H56O6 (632.4076676)


   

methyl (1s,4r,5s,9r,10s,13r,15r)-15-hydroxy-5,9-dimethyl-17-oxapentacyclo[11.4.1.0¹,¹⁵.0⁴,¹³.0⁵,¹⁰]octadecane-9-carboxylate

methyl (1s,4r,5s,9r,10s,13r,15r)-15-hydroxy-5,9-dimethyl-17-oxapentacyclo[11.4.1.0¹,¹⁵.0⁴,¹³.0⁵,¹⁰]octadecane-9-carboxylate

C21H32O4 (348.2300472)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2z,4e,6e)-7-hydroxy-4-methylnona-2,4,6,8-tetraenoate

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2z,4e,6e)-7-hydroxy-4-methylnona-2,4,6,8-tetraenoate

C40H60O4 (604.449136)


   

7'-ethenyl-3'-hydroxy-4'b,7',10'a-trimethyl-5',6',8',8'a,9',10'-hexahydro-4'ah-spiro[oxirane-2,1'-phenanthren]-2'-one

7'-ethenyl-3'-hydroxy-4'b,7',10'a-trimethyl-5',6',8',8'a,9',10'-hexahydro-4'ah-spiro[oxirane-2,1'-phenanthren]-2'-one

C20H28O3 (316.2038338)


   

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-[(2s,5s)-5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-[(2s,5s)-5-hydroperoxy-2-hydroxy-6-methylhept-6-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H52O4 (476.3865392)


   

5,9,13-trimethyl-14-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

5,9,13-trimethyl-14-oxotetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carbaldehyde

C20H30O2 (302.224568)


   

7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-3',4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11'-octadecahydro-3h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2,12'-dione

7,8'-diethenyl-4b,4'b,7,8',10a,10'a-hexamethyl-3',4,4',4a,5,5',6,6',6'a,7',8,8a,9,9',10,10',10'b,11'-octadecahydro-3h-spiro[phenanthrene-1,2'-phenanthro[2,1-b]pyran]-2,12'-dione

C40H58O3 (586.4385718)


   

9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


   

{5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl}methanol

{5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl}methanol

C20H34O2 (306.2558664)


   

(2s,4'ar,4'bs,7's,8'as,10'as)-7'-ethenyl-3'-hydroxy-4'b,7',10'a-trimethyl-5',6',8',8'a,9',10'-hexahydro-4'ah-spiro[oxirane-2,1'-phenanthren]-2'-one

(2s,4'ar,4'bs,7's,8'as,10'as)-7'-ethenyl-3'-hydroxy-4'b,7',10'a-trimethyl-5',6',8',8'a,9',10'-hexahydro-4'ah-spiro[oxirane-2,1'-phenanthren]-2'-one

C20H28O3 (316.2038338)


   

1-(2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl)ethane-1,2-diol

1-(2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl)ethane-1,2-diol

C20H34O2 (306.2558664)


   

7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

C20H30O2 (302.224568)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C40H58O5 (618.4284018)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H56O5 (604.4127526)


   

7-ethenyl-2-hydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

7-ethenyl-2-hydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

C20H30O2 (302.224568)


   

(3e,6s)-6-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-3-ene-2,6-diol

(3e,6s)-6-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-2-methylhept-3-ene-2,6-diol

C30H52O3 (460.3916242)


   

(4as,4br,7r,8ar,10ar)-3-{2-[(2s,4ar,4br,8ar)-2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl]-2-oxoethyl}-7-ethenyl-4b,7,10a-trimethyl-1-methylidene-5,6,8,8a,9,10-hexahydro-4ah-phenanthren-2-one

(4as,4br,7r,8ar,10ar)-3-{2-[(2s,4ar,4br,8ar)-2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl]-2-oxoethyl}-7-ethenyl-4b,7,10a-trimethyl-1-methylidene-5,6,8,8a,9,10-hexahydro-4ah-phenanthren-2-one

C40H58O2 (570.4436568)


   

lupan-3β,20-diol

lupan-3β,20-diol

C30H52O2 (444.3967092)


   

5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylic acid

5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylic acid

C30H46O3 (454.34467659999996)


   

(1z,4ar,4bs,7s,8as,10as)-7-(2-hydroxyacetyl)-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

(1z,4ar,4bs,7s,8as,10as)-7-(2-hydroxyacetyl)-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

C20H30O4 (334.214398)


   

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9r,11ar,11br,13ar,13br)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


   

methyl (1s,4r,5r,9r,13r)-14-hydroxy-13-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

methyl (1s,4r,5r,9r,13r)-14-hydroxy-13-(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecane-5-carboxylate

C21H34O4 (350.24569640000004)


   

methyl 15-hydroxy-5,9-dimethyl-13-oxapentacyclo[13.2.1.0¹,¹⁰.0⁴,⁹.0¹²,¹⁶]octadec-10-ene-5-carboxylate

methyl 15-hydroxy-5,9-dimethyl-13-oxapentacyclo[13.2.1.0¹,¹⁰.0⁴,⁹.0¹²,¹⁶]octadec-10-ene-5-carboxylate

C21H30O4 (346.214398)


   

7-ethenyl-4b,7,10a-trimethyl-1-methylidene-octahydro-3h-phenanthren-2-one

7-ethenyl-4b,7,10a-trimethyl-1-methylidene-octahydro-3h-phenanthren-2-one

C20H30O (286.229653)


   

(2s,5r)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

(2s,5r)-2-[(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-6-ene-2,5-diol

C30H52O3 (460.3916242)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-9-{[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C39H54O6 (618.3920184000001)


   

(1e,4ar,4bs,7s,8as,10as)-7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

(1e,4ar,4bs,7s,8as,10as)-7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

C20H30O2 (302.224568)


   

1-(2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl)-2-hydroxyethanone

1-(2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-octahydro-3h-phenanthren-2-yl)-2-hydroxyethanone

C20H32O2 (304.24021719999996)


   

(1z,4ar,4bs,7s,8as,10as)-7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

(1z,4ar,4bs,7s,8as,10as)-7-ethenyl-1-(hydroxymethylidene)-4b,7,10a-trimethyl-octahydro-3h-phenanthren-2-one

C20H30O2 (302.224568)


   

1-(5-hydroxy-2,4b,8,8-tetramethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-yl)ethane-1,2-diol

1-(5-hydroxy-2,4b,8,8-tetramethyl-3,4,4a,5,6,7,8a,9-octahydro-1h-phenanthren-2-yl)ethane-1,2-diol

C20H34O3 (322.25078140000005)


   

(1r,3as,5ar,5br,7ar,11ar,11br,13ar,13bs)-5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylic acid

(1r,3as,5ar,5br,7ar,11ar,11br,13ar,13bs)-5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylic acid

C30H46O3 (454.34467659999996)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (4e,6e)-7-hydroxy-4-methylnona-2,4,6,8-tetraenoate

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl (4e,6e)-7-hydroxy-4-methylnona-2,4,6,8-tetraenoate

C40H60O4 (604.449136)


   

[(1r,4s,9s,10r,13r,14r)-5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]methanol

[(1r,4s,9s,10r,13r,14r)-5,5,9,13-tetramethyl-15-oxatetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadecan-14-yl]methanol

C20H34O2 (306.2558664)


   

(4ar,4bs,7s,8as,10as)-7-ethenyl-2-hydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

(4ar,4bs,7s,8as,10as)-7-ethenyl-2-hydroxy-1,4b,7,10a-tetramethyl-4,4a,5,6,8,8a,9,10-octahydrophenanthren-3-one

C20H30O2 (302.224568)


   

9-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

9-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C39H54O6 (618.3920184000001)