NCBI Taxonomy: 72926

Doellingeria (ncbi_taxid: 72926)

found 230 associated metabolites at genus taxonomy rank level.

Ancestor: Symphiotrichinae

Child Taxonomies: Doellingeria infirma, Doellingeria umbellata, Doellingeria sericocarpoides

Germacrone

3,7-Cyclodecadien-1-one, 3,7-dimethyl-10-(1-methylethylidene)-, (E,E)-

C15H22O (218.1671)


(E,E)-germacrone is a germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. It has a role as a volatile oil component, an antiviral agent, an insecticide, an anti-inflammatory agent, an antioxidant, an antineoplastic agent, an apoptosis inducer, an autophagy inducer, an antimicrobial agent, an androgen antagonist, a neuroprotective agent, a plant metabolite, an antifungal agent, an antitussive, an antifeedant and a hepatoprotective agent. It is a germacrane sesquiterpenoid and an olefinic compound. Germacrone is a natural product found in Rhododendron calostrotum, Rhododendron nivale, and other organisms with data available. A germacrane sesquiterpenoid that has formula C15H22O. It is a natural product found in traditional medicinal plants of the family Zingiberaceae. The compound exhibits a range of pharmacological activities including anti-inflammatory, anticancer, antiviral, anti-androgenic, antioxidant, antimicrobial, antifungal, neuroprotective and insecticidal activities. Germacrone is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrone is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Germacrone can be found in common thyme and turmeric, which makes germacrone a potential biomarker for the consumption of these food products. Germacrone is an antiviral isolate of Geranium macrorrhizum . Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1]. Germacrone is extracted from Rhizoma Curcuma. Germacrone inhibits influenza virus infection[1].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0951)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Campesterol

(1S,2R,5S,10S,11S,14R,15R)-14-[(2R,5R)-5,6-dimethylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C28H48O (400.3705)


Campesterol is a phytosterol, meaning it is a steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\\\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. -- Wikipedia. Campesterol is a member of phytosterols, a 3beta-sterol, a 3beta-hydroxy-Delta(5)-steroid and a C28-steroid. It has a role as a mouse metabolite. It derives from a hydride of a campestane. Campesterol is a natural product found in Haplophyllum bucharicum, Bugula neritina, and other organisms with data available. Campesterol is a steroid derivative that is the simplest sterol, characterized by the hydroxyl group in position C-3 of the steroid skeleton, and saturated bonds throughout the sterol structure, with the exception of the 5-6 double bond in the B ring. Campesterol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=474-62-4 (retrieved 2024-07-01) (CAS RN: 474-62-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.3861)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Squalene

(6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene

C30H50 (410.3912)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Geraniol

cis-3,7-Dimethyl-2,6-octadien-1-ol, >=97\\%, FCC, FG

C10H18O (154.1358)


Geraniol, also known as beta-Geraniol, (E)-nerol (the isomer of nerol) or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. In plants, the biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. It is found as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. An alternate application has been found in the use of insect repellents or deterrants. Though it may repel mosquitoes, flies, lice, cockroaches, ants, and ticks, it is also produced by the scent glands of honey bees to help them mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Extensive testing by Dr. Jerry Butler at the University of Florida has shown geraniol to be one of natures most effective insect repellents (PMID:20836800). Nerol is the (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. It has a role as a volatile oil component, a plant metabolite and a fragrance. Nerol is a natural product found in Eupatorium cannabinum, Vitis rotundifolia, and other organisms with data available. Nerol is a metabolite found in or produced by Saccharomyces cerevisiae. Constituent of many essential oils including neroli and bergamot oils. In essential oils it is a minor component always accompanied by geraniol. Flavouring agent The (2Z)-stereoisomer of 3,7-dimethylocta-2,6-dien-1-ol. It has been isolated from the essential oils from plants like lemon grass. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

beta-Phellandrene

3-methylidene-6-propan-2-ylcyclohexene

C10H16 (136.1252)


beta-Phellandrene is found in allspice. beta-Phellandrene is widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus species). beta-Phellandrene is a flavour ingredient.Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia Beta-phellandrene is one of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). It has a role as a plant metabolite. beta-Phellandrene is a natural product found in Xylopia aromatica, Dacrydium nausoriense, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). One of a pair of phellandrene cyclic monoterpene double-bond isomers in which one double bond is exocyclic (cf. alpha-phellandrene, where both of them are endoocyclic). Widely distributed in essential oils (Angelica, Eucalyptus, Lavandula, Mentha, Pinus subspecies). Flavour ingredient β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

Cuminaldehyde

4-propan-2-ylbenzaldehyde

C10H12O (148.0888)


Cuminaldehyde is the biologically active constituent of Cuminum cyminum seed oil. C. cyminum seed-derived materials have an inhibitory effect in vitro against rat lens aldose reductase and alpha-glucosidase. This inhibitory action cuminaldehyde suggest a potential utility as an antidiabetic therapeutic. (PMID:15796577). Cuminaldehyde is a volatile compound representative of cumin aroma present in trace amounts in the blood and milk of ewes fed with cumin seed. (PMID:8738023). The terpenoid cuminaldehyde, undergoes reduction biotransformation in mammals, but not oxidation. (PMID:2815827). Cuminaldehyde is a member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. It has a role as an insecticide, a volatile oil component and a plant metabolite. It derives from a hydride of a cumene. 4-Isopropylbenzaldehyde is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Paeonia lactiflora root (part of). A member of the class of benzaldehydes that is benzaldehyde substituted by an isopropyl group at position 4. It is a component of essential oils from Cumin and exhibits insecticidal activities. Found in many essential oils, including eucalyptus, cumin and cassiaand is also present in grilled or roast beef and cognac. Flavouring agent Cuminaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=122-03-2 (retrieved 2024-07-11) (CAS RN: 122-03-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1]. Cuminaldehyde is the major component of Cuminum cyminum, a natural aldehyde with inhibitory effect on alpha-synuclein fibrillation and cytotoxicity. Cuminaldehyde shows anticancer activity[1].

   

Eugenol

2-methoxy-4-prop-2-enylphenol

C10H12O2 (164.0837)


Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

3,4-Di-O-caffeoylquinic acid

(1S,3R,4R,5R)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].

   

Phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


Phenylacetaldehyde is one important oxidation-related aldehyde. Exposure to styrene gives phenylacetaldehyde as a secondary metabolite. Styrene has been implicated as reproductive toxicant, neurotoxicant, or carcinogen in vivo or in vitro. Phenylacetaldehyde could be formed by diverse thermal reactions during the cooking process together with C8 compounds is identified as a major aroma- active compound in cooked pine mushroom. Phenylacetaldehyde is readily oxidized to phenylacetic acid. Therefore will eventually be hydrolyzed and oxidized to yield phenylacetic acid that will be excreted primarily in the urine in conjugated form. (PMID: 16910727, 7818768, 15606130). Found in some essential oils, e.g. Citrus subspecies, Tagetes minuta (Mexican marigold) and in the mushroom Phallus impudicus (common stinkhorn). Flavouring ingredient COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Octanol

Octyl alcohol normal-primary

C8H18O (130.1358)


1-Octanol, also known as octan-1-ol, is the organic compound with the molecular formula CH3(CH2)7OH. It is a fatty alcohol. Many other isomers are also known generically as octanols. Octanol is mainly produced industrially by the oligomerization of ethylene using triethylaluminium followed by oxidation of the alkylaluminium products. This route is known as the Ziegler alcohol synthesis. Octanol also occurs naturally in the form of esters in some essential oils. Octanol and water are immiscible. The distribution of a compound between water and octanol is used to calculate the partition coefficient (logP) of that molecule. Water/octanol partitioning is a good approximation of the partitioning between the cytosol and lipid membranes of living systems. Octanol is a colorless, slightly viscous liquid used as a defoaming or wetting agent. It is also used as a solvent for protective coatings, waxes, and oils, and as a raw material for plasticizers. It is also one of many compounds derived from tobacco and tobacco smoke and shown to increase the permeability of the membranes of human lung fibroblasts (PMID 7466833). Occurs in the form of esters in some essential oils. Flavouring agent. 1-Octanol is found in many foods, some of which are common wheat, lime, tea, and corn. D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

Naphthalene

naphthalene

C10H8 (128.0626)


Naphthalene, also known as naftaleno or albocarbon, belongs to the class of organic compounds known as naphthalenes. Naphthalenes are compounds containing a naphthalene moiety, which consists of two fused benzene rings. Naphthalene is possibly neutral. Naphthalene is a dry, pungent, and tar tasting compound. Naphthalene is found, on average, in the highest concentration within a few different foods, such as black walnuts, corns, and cloves. Naphthalene has also been detected, but not quantified, in several different foods, such as green bell peppers, orange bell peppers, rices, yellow bell peppers, and red bell peppers. This could make naphthalene a potential biomarker for the consumption of these foods. Naphthalene was once the primary ingredient in mothballs, though its use has largely been replaced in favor of alternatives such as 1,4-dichlorobenzene. Naphthalene is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Inhalation of naphthalene vapor has been associated with headaches, nausea, vomiting and dizziness. Naphthalene is the most abundant single component of coal tar so most of it is now industrially derived from coal tar. Aside from coal tar, trace amounts of naphthalene are produced by magnolias and some species of deer, as well as the Formosan subterranean termite, possibly produced by the termite as a repellant against "ants, poisonous fungi and nematode worms."[23] Some strains of the endophytic fungus Muscodor albus produce naphthalene among a range of volatile organic compounds, while Muscodor vitigenus produces naphthalene almost exclusively (PMID:12427963). Found in many essential oils

   

alpha-Cadinol

(1R,4S,4aR,8aR)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)

   

Benzaldehyde

benzaldehyde

C7H6O (106.0419)


Benzaldehyde is occasionally found as a volatile component of urine. Benzaldehyde is an aromatic aldehyde used in cosmetics as a denaturant, a flavoring agent, and as a fragrance. Currently used in only seven cosmetic products, its highest reported concentration of use was 0.5\\\% in perfumes. Benzaldehyde is a generally regarded as safe (GRAS) food additive in the United States and is accepted as a flavoring substance in the European Union. Because Benzaldehyde rapidly metabolizes to Benzoic Acid in the skin, the available dermal irritation and sensitization data demonstrating no adverse reactions to Benzoic Acid were considered supportive of the safety of Benzaldehyde. Benzaldehyde is absorbed through skin and by the lungs, distributes to all well-perfused organs, but does not accumulate in any specific tissue type. After being metabolized to benzoic acid, conjugates are formed with glycine or glucuronic acid, and excreted in the urine. Several studies have suggested that Benzaldehyde can have carcinostatic or antitumor properties. Overall, at the concentrations used in cosmetics, Benzaldehyde was not considered a carcinogenic risk to humans. Although there are limited irritation and sensitization data available for Benzaldehyde, the available dermal irritation and sensitization data and ultraviolet (UV) absorption and phototoxicity data demonstrating no adverse reactions to Benzoic Acid support the safety of Benzaldehyde as currently used in cosmetic products. (PMID:16835129, Int J Toxicol. 2006;25 Suppl 1:11-27.). Benzaldehyde, a volatile organic compound, is naturally present in a variety of plants, particularly in certain fruits, nuts, and flowers. It plays a significant role in the aromatic profiles of these plants. For instance, benzaldehyde is a primary component of bitter almond oil, which was one of its earliest known natural sources. Besides bitter almonds, it is also found in fruits like cherries, peaches, and plums, as well as in flowers such as jasmine. In the food industry, benzaldehyde is occasionally used as a food additive to impart specific flavors. This prevalence in plants highlights that benzaldehyde is not only an industrial chemical but also a naturally occurring compound in the plant kingdom. Its presence in these natural sources underscores its significance in both nature and industry. Found in plants, especies in almond kernelsand is) also present in strawberry jam, leek, crispbread, cheese, black tea and several essential oils. Parent and derivs. (e.g. glyceryl acetal) are used as flavourings

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

Heptadecane

CH3-[CH2]15-CH3

C17H36 (240.2817)


Heptadecane, also known as CH3-[CH2]15-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Heptadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an organic compound, an alkane hydrocarbon with the chemical formula C17H36. The most compact and branched isomer would be tetra-tert-butylmethane, but its existence is believed to be impossible due to steric hindrance. The name may refer to any of 24894 theoretically possible structural isomers, or to a mixture thereof. Heptadecane is an alkane tasting compound. heptadecane has been detected, but not quantified, in several different foods, such as lemon balms, coconuts, orange bell peppers, allspices, and pepper (c. annuum). This could make heptadecane a potential biomarker for the consumption of these foods. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. Indeed, it is believed to be the smallest "impossible" alkane. Heptadecane, also known as ch3-[ch2]15-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heptadecane is considered to be a hydrocarbon lipid molecule. Heptadecane is an alkane tasting compound and can be found in a number of food items such as papaya, orange bell pepper, pepper (spice), and red bell pepper, which makes heptadecane a potential biomarker for the consumption of these food products. Heptadecane can be found primarily in saliva. The unbranched isomer is normal or n-heptadecane, CH3(CH2)15CH3. In the IUPAC nomenclature, the name of this compound is simply heptadecane, since the other isomers are viewed and named as alkyl-substituted versions of smaller alkanes .

   

Heptanal

Oenanthic aldehyde

C7H14O (114.1045)


Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent

   

Isovaleraldehyde

3-Methyl-butyraldehyde

C5H10O (86.0732)


Iso-Valeraldehyde, also known as isoamyl aldehyde or 3-methyl-butanal, belongs to the class of organic compounds known as alpha-hydrogen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Iso-Valeraldehyde exists in all eukaryotes, ranging from yeast to humans. Iso-Valeraldehyde is an aldehydic, chocolate, and ethereal tasting compound. Iso-Valeraldehyde is found, on average, in the highest concentration within a few different foods, such as milk (cow), beers, and taco and in a lower concentration in kohlrabis, corns, and tortilla. Iso-Valeraldehyde has also been detected, but not quantified, in several different foods, such as muskmelons, highbush blueberries, fenugreeks, hazelnuts, and dills. This could make iso-valeraldehyde a potential biomarker for the consumption of these foods. A methylbutanal that is butanal substituted by a methyl group at position 3. Iso-Valeraldehyde, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, crohns disease, perillyl alcohol administration for cancer treatment, and hepatic encephalopathy; iso-valeraldehyde has also been linked to the inborn metabolic disorder celiac disease. Occurs in orange, bergamot, lemon, sandalwood, citronella, peppermint, eucalyptus and other oilsand is also in apple, grape, peach cider, vinegar, wines, wheatbreads, scallops and ginger

   

Benzyl alcohol

Hydroxymethylpolystyrene resin

C7H8O (108.0575)


Benzyl alcohol is a colorless liquid with a sharp burning taste and slight odor. It is used as a local anesthetic and to reduce pain associated with Lidocaine injection. Also, it is used in the manufacture of other benzyl compounds, as a pharmaceutical aid, and in perfumery and flavoring. Benzyl Alcohol is an aromatic alcohol used in a wide variety of cosmetic formulations as a fragrance component, preservative, solvent, and viscosity-decreasing agent. Benzyl alcohol is metabolized to Benzoic Acid, which reacts with glycine and excreted as hippuric acid in the human body. Acceptable daily intakes were established by the World Health Organization at 5 mg/kg for Benzyl alcohol. No adverse effects of benzyl alcohol have been seen in chronic exposure animal studies using rats and mice. Effects of Benzyl Alcohol in chronic exposure animal studies are limited to reduced feed intake and reduced growth. Some differences have been noted in one reproductive toxicity study using mice, but these were limited to lower maternal body weights and decreased mean litter weights. Another study also noted that fetal weight was decreased compared to controls, but a third study showed no differences between control and benzyl alcohol-treated groups. Benzyl alcohol has been associated with an increased number of resorptions and malformations in hamsters, but there have been no reproductive or developmental toxicity findings in studies using mice and rats. Genotoxicity tests for benzyl alcohol are mostly negative, but there were some assays that were positive. Carcinogenicity studies, however, were negative. Clinical data indicates that benzyl alcohol can produce nonimmunologic contact urticaria and nonimmunologic immediate contact reactions, characterized by the appearance of wheals, erythema, and pruritis. 5\\\\% benzyl alcohol can elicit a reaction. Benzyl alcohol is not a sensitizer at 10\\\\%. Benzyl alcohol could be used safely at concentrations up to 5\\\\%, but that manufacturers should consider the nonimmunologic phenomena when using benzyl alcohol in cosmetic formulations designed for infants and children. Additionally, Benzyl alcohol is considered safe up to 10\\\\% for use in hair dyes. The limited body exposure, the duration of use, and the frequency of use are considered in concluding that the nonimmunologic reactions would not be a concern. Because of the wide variety of product types in which benzyl alcohol may be used, it is likely that inhalation may be a route of exposure. The available safety tests are not considered sufficient to support the safety of benzyl alcohol in formulations where inhalation is a route of exposure. Inhalation toxicity data are needed to complete the safety assessment of benzyl alcohol where inhalation can occur. (PMID:11766131). Constituent of jasmine and other ethereal oils, both free and as estersand is also present in cherry, orange juice, mandarin peel oil, guava fruit, feijoa fruit, pineapple, leek, cinnamon, cloves, mustard, fermented tea, basil and red sage. Flavouring ingredient P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03A - Ectoparasiticides, incl. scabicides D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.

   

Ethyl acetate

Ethyl ester OF acetic acid

C4H8O2 (88.0524)


Ethyl acetate, also known as 1-acetoxyethane or acetic ester, belongs to the class of organic compounds known as carboxylic acid esters. These are carboxylic acid derivatives in which the carbon atom from the carbonyl group is attached to an alkyl or an aryl moiety through an oxygen atom (forming an ester group). Ethyl acetate exists in all eukaryotes, ranging from yeast to humans. Ethyl acetate is a sweet, anise, and balsam tasting compound. Ethyl acetate is found, on average, in the highest concentration within a few different foods, such as milk (cow), pineapples, and sweet oranges and in a lower concentration in safflowers. Ethyl acetate has also been detected, but not quantified, in several different foods, such as alcoholic beverages, oxheart cabbages, agaves, chervils, ryes, and peach. It is used in artificial fruit essences. In the field of entomology, ethyl acetate is an effective asphyxiant for use in insect collecting and study. Because it is not hygroscopic, ethyl acetate also keeps the insect soft enough to allow proper mounting suitable for a collection. In a killing jar charged with ethyl acetate, the vapors will kill the collected (usually adult) insect quickly without destroying it. In organic and in natural products chemistry ethyl acetate is often used as a solvent for reactions or extractions. Ethyl acetate is a potentially toxic compound. Ethyl acetate, with regard to humans, has been found to be associated with several diseases such as perillyl alcohol administration for cancer treatment, crohns disease, nonalcoholic fatty liver disease, and pervasive developmental disorder not otherwise specified; ethyl acetate has also been linked to the inborn metabolic disorder celiac disease. Found in cereal crops, radishes, fruit juices, beer, wine, spirits etc. and produced by Anthemis nobilis (Roman chamomile) and Rubus subspecies It is used in artificial fruit essences. It is used as a solvent in the manufacture of modified hop extract and decaffeinated tea or coffeeand is also used for colour and inks used to mark fruit or vegetables

   

Terpinolene

1-methyl-4-(propan-2-ylidene)cyclohexene p-mentha-1,4(8)-diene

C10H16 (136.1252)


Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.

   

Tridecane

InChI=1/C13H28/c1-3-5-7-9-11-13-12-10-8-6-4-2/h3-13H2,1-2H

C13H28 (184.2191)


Tridecane appears as an oily straw yellow clear liquid with a hydrocarbon odor. Flash point 190-196 °F. Specific gravity 0.76. Boiling point 456 °F. Repeated or prolonged skin contact may irritate or redden skin, progressing to dermatitis. Exposure to high concentrations of vapor may result in headache and stupor. Tridecane is a straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. It has a role as a plant metabolite and a volatile oil component. Tridecane is a natural product found in Dryopteris assimilis, Thyanta perditor, and other organisms with data available. Tridecane is an alkane hydrocarbon with the chemical formula CH3(CH2)11CH3. Tridecane is found in allspice and it is also isolated from lime oil. It is a light, combustible colourless liquid that is used in the manufacture of paraffin products, the paper processing industry, in jet fuel research and in the rubber industry; furthermore, tridecane is used as a solvent and distillation chaser. n-tridecane is also one of the major chemicals secreted by some insects as a defense against predators. Tridecane has 802 constitutional isomers A straight chain alkane containing 13 carbon atoms. It forms a component of the essential oils isolated from plants such as Abelmoschus esculentus. Isolated from lime oil Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2]. Tridecane is a short chain aliphatic hydrocarbon containing 13 carbon atoms. Tridecane is an volatile oil component isolated from essential oil of Piper aduncum L. Tridecane is a stress compound released by the brown marmorated stink bugs stress compound[1][2].

   

Octane

CH3-[CH2]6-CH3

C8H18 (114.1408)


Octane, also known as N-oktanis a hydrocarbon and an alkane with the chemical formula C8H18, and the condensed structural formula CH3(CH2)6CH3. Octane has many structural isomers that differ by the amount and location of branching in the carbon chain. One of these isomers, 2,2,4-trimethylpentane (commonly called iso-octane) is used as one of the standard values in the octane rating scale. Octane belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, octane is considered to be a hydrocarbon lipid molecule. Octane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Octane is an alkane and gasoline tasting compound. Outside of the human body, octane has been detected, but not quantified in several different foods, such as pepper (Capsicum annuum), celery stalks, cauliflowers, alcoholic beverages, and corns. One of the isomers, 2,2,4-trimethylpentane or isooctane, is of major importance, as it has been selected as the 100 point on the octane rating scale, with n-heptane as the zero point. Octane is an alkane with the chemical formula C8H18. Octane is a potentially toxic compound. Treatment is mainly symptomatic and supportive. It has 18 isomers. Octane ratings are ratings used to represent the anti-knock performance of petroleum-based fuels (octane is less likely to prematurely combust under pressure than heptane), given as the percentage of 2,2,4-trimethylpentane in an 2,2,4-trimethylpentane / n-heptane mixture that would have the same performance. Found in hop oil

   

Toluene

Methylbenzene, 9ci

C7H8 (92.0626)


Toluene, also known as methylbenzene or phenylmethane, belongs to the class of organic compounds known as toluenes. Toluenes are compounds containing a benzene ring which bears a methane group. Toluene is a drug which is used for the removal of ascarids (toxocara canis and toxascaris leonina) and hookworms (ancylostoma caninum and uncinaria stenocephala) and as an aid in removing tapeworms (taenia pisiformis, dipylidium caninum, and echinococcus granulosus) from dogs and cats. Toluene is possibly neutral. Toluene exists in all living species, ranging from bacteria to humans. Toluene is a sweet and paint tasting compound. Toluene is found, on average, in the highest concentration within a few different foods, such as black walnuts, rosemaries, and corianders and in a lower concentration in milk (cow) and kohlrabis. Toluene has also been detected, but not quantified, in several different foods, such as prickly pears, citrus, yellow bell peppers, apples, and garden tomato (var.). This could make toluene a potential biomarker for the consumption of these foods. Toluene is a potentially toxic compound. Toluene, with regard to humans, has been found to be associated with several diseases such as pervasive developmental disorder not otherwise specified, perillyl alcohol administration for cancer treatment, autism, and asthma; toluene has also been linked to the inborn metabolic disorder celiac disease. Isolated from distilled tolu balsam (Myroxylon balsamum). Minor constituent of lime oil (Citrus aurantifolia) D012997 - Solvents

   

Fenchol

Bicyclo[2.2.1]heptan-2-ol, 1,3,3-trimethyl-, (1R-endo)-

C10H18O (154.1358)


Fenchol is found in fennel. Fenchol is a flavouring ingredient with a bitter, lime-like flavour [DFC] (Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.). Fenchol is a natural product found in Kunzea salina, Hyptis goyazensis, and other organisms with data available. Flavouring ingredient with a bitter, lime-like flavour [DFC] Fenchyl alcohol is a monoterpene alcohol in the essential oils isolated from Douglas fir needles, acts as a fragrance. Fenchyl alcohol strongly inhibits the rumen microbial activity of both sheep and deer[1][2]. Fenchyl alcohol is a monoterpene alcohol in the essential oils isolated from Douglas fir needles, acts as a fragrance. Fenchyl alcohol strongly inhibits the rumen microbial activity of both sheep and deer[1][2].

   

Hexanal

N-Caproic aldehyde

C6H12O (100.0888)


Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Pentadecane

CH3-[CH2]13-CH3

C15H32 (212.2504)


Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

(-)-alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721)


1-[(2R)-hex-5-en-2-yl]-4-methylbenzene is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring. (-)-alpha-Curcumene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units.

   

Pinocarveol

6,6-Dimethyl-3-hydroxy-2-methylenebicyclo(3.1.1)heptane

C10H16O (152.1201)


Flavouring ingredient. Pinocarveol is found in many foods, some of which are spearmint, wild celery, hyssop, and sweet bay. Pinocarveol is found in hyssop. Pinocarveol is a flavouring ingredien

   

Tricosane

CH3-[CH2]21-CH3

C23H48 (324.3756)


N-tricosane, also known as ch3-[ch2]21-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-tricosane is considered to be a hydrocarbon lipid molecule. N-tricosane is an alkane and waxy tasting compound and can be found in a number of food items such as kohlrabi, papaya, coconut, and ginkgo nuts, which makes N-tricosane a potential biomarker for the consumption of these food products. N-tricosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tricosane belongs to the class of organic compounds known as acyclic alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1252)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

gamma-Muurolene

(+)-gamma-Muurolene

C15H24 (204.1878)


   

Docosane

InChI=1/C22H46/c1-3-5-7-9-11-13-15-17-19-21-22-20-18-16-14-12-10-8-6-4-2/h3-22H2,1-2H

C22H46 (310.3599)


N-docosane, also known as ch3-[ch2]20-ch3 or dokosan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-docosane is considered to be a hydrocarbon lipid molecule. N-docosane is an alkane and waxy tasting compound and can be found in a number of food items such as lemon balm, linden, allspice, and sunflower, which makes N-docosane a potential biomarker for the consumption of these food products. N-docosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Docosane, also known as CH3-[CH2]20-CH3 or dokosan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Docosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, docosane is considered to be a hydrocarbon lipid molecule. Docosane is an alkane and waxy tasting compound. Docosane is found, on average, in the highest concentration within lemon balms. Docosane has also been detected, but not quantified, in several different foods, such as allspices, lindens, papaya, and sunflowers. This could make docosane a potential biomarker for the consumption of these foods. A straight-chain alkane with 22 carbon atoms. N-docosane is a solid. Insoluble in water. Used in organic synthesis, calibration, and temperature sensing equipment. Docosane is a straight-chain alkane with 22 carbon atoms. It has a role as a plant metabolite. Docosane is a natural product found in Lonicera japonica, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane with 22 carbon atoms. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].

   

Heneicosane

(S)-(-)-2,2-Bis(diphenylphosphino)-5,5,6,6,7,7,8,8-octahydro-1,1-binaphthyl (R)-H8-BINAP

C21H44 (296.3443)


Heneicosane, also known as CH3-[CH2]19-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosane is an alkane and waxy tasting compound. Heneicosane is found, on average, in the highest concentration within a few different foods, such as black elderberries, common oregano, and lemon balms. Heneicosane has also been detected, but not quantified, in several different foods, such as sunflowers, kohlrabis, orange bell peppers, lindens, and pepper (c. annuum). This could make heneicosane a potential biomarker for the consumption of these foods. An alkane that has 21 carbons and a straight-chain structure. Heneicosane, also known as ch3-[ch2]19-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is an alkane and waxy tasting compound and can be found in a number of food items such as orange bell pepper, yellow bell pepper, lemon balm, and pepper (c. annuum), which makes heneicosane a potential biomarker for the consumption of these food products. Heneicosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Crystals. (NTP, 1992) Henicosane is an alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. It has a role as a pheromone, a plant metabolite and a volatile oil component. Heneicosane is a natural product found in Erucaria microcarpa, Microcystis aeruginosa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

Dicaffeoylquinic acid

(1S,3R,4S,5R)-3,5-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


Isolated from coffee and maté, globe artichoke (Cynara scolymus) and caucasian whortleberry (Vaccinium arctostaphylos). 3,5-Di-O-caffeoylquinic acid is found in many foods, some of which are potato, green vegetables, coffee and coffee products, and carrot. Dicaffeoylquinic acid is a polyphenol compound found in foods of plant origin (PMID: 20428313) Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities . Isochlorogenic acid A (3,5-Dicaffeoylquinic acid) is a natural phenolic acid with antioxidant and anti-inflammatory activities .

   

Pentanal

Pentanal (valeraldehyde)

C5H10O (86.0732)


Pentanal, also known as N-valeraldehyde or amyl aldehyde, belongs to the class of organic compounds known as alpha-hydro gen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Pentanal is a saturated fatty aldehyde composed from five carbons in a straight chain. Thus, pentanal is considered to be a fatty aldehyde lipid molecule. Pentanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentanal is an almond, berry, and bready tasting compound. Pentanal is found, on average, in the highest concentration within a few different foods, such as black walnuts, milk (cow), and carrots and in a lower concentration in corns, tortilla, and safflowers. Pentanal has also been detected, but not quantified, in several different foods, such as crustaceans, garden tomato, herbs and spices, and guava. This could make pentanal a potential biomarker for the consumption of these foods. Found in olive oil and several essential oilsand is also present in Bantu beer, plum brandy, cardamom, coriander leaf, rice, Bourbon vanilla, clary sage, cooked shrimps, scallops, apple, banana, sweet cherry, blackcurrant and other foods.

   

Tetradecane

CH3-[CH2]12-CH3

C14H30 (198.2347)


Tetradecane, also known as CH3-[CH2]12-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Tetradecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, tetradecane is considered to be a hydrocarbon lipid molecule. Tetradecane is a mild, alkane, and waxy tasting compound. Tetradecane is found, on average, in the highest concentration within black walnuts. Tetradecane has also been detected, but not quantified, in several different foods, such as lemon balms, common buckwheats, cucumbers, allspices, and green bell peppers. This could make tetradecane a potential biomarker for the consumption of these foods. Tetradecane, with regard to humans, has been found to be associated with several diseases such as crohns disease, ulcerative colitis, nonalcoholic fatty liver disease, and asthma; tetradecane has also been linked to the inborn metabolic disorder celiac disease. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2. TETRADECANE, also known as N-tetradecane or ch3-[ch2]12-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, tetradecane is considered to be a hydrocarbon lipid molecule. TETRADECANE is a mild, alkane, and waxy tasting compound and can be found in a number of food items such as sweet bay, summer savory, green bell pepper, and lemon balm, which makes tetradecane a potential biomarker for the consumption of these food products. Tetradecane can be found primarily in feces and saliva. Tetradecane is an alkane containing 14 carbon atoms[1].

   

Undecane

CH3-[CH2]9-CH3

C11H24 (156.1878)


Undecane, also known as CH3-[CH2]9-CH3 or hendekan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, undecane is considered to be a hydrocarbon lipid molecule. Undecane may also be used as an internal standard in gas chromatography when working with other hydrocarbons. For example, if one is working with a 50 m crosslinked methyl silicone capillary column with an oven temperature increasing slowly, beginning around 60 °C, an 11-carbon molecule like undecane may be used as an internal standard to be compared with the retention times of other 10-, 11-, or 12- carbon molecules, depending on their structures. Undecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. undecane has been detected, but not quantified, in cardamoms. This could make undecane a potential biomarker for the consumption of these foods. Since the boiling point of undecane (196 °C) is well known, it may be used as a comparison for retention times in a gas chromatograph for molecules whose structure has been freshly elucidated. It has 159 isomers. It is used as a mild sex attractant for various types of moths and cockroaches, and an alert signal for a variety of ants. Undecane, also known as ch3-[ch2]9-ch3 or hendekan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, undecane is considered to be a hydrocarbon lipid molecule. Undecane can be found in cardamom, which makes undecane a potential biomarker for the consumption of this food product. Undecane can be found primarily in feces, saliva, and urine. Undecane may also be used as an internal standard in gas chromatography when working with other hydrocarbons. Since the boiling point of undecane (196 °C) is well known, it may be used as a comparison for retention times in a gas chromatograph for molecules whose structure has been freshly elucidated. For example, if one is working with a 50 m crosslinked methyl silicone capillary column with an oven temperature increasing slowly, beginning around 60 °C, an 11-carbon molecule like undecane may be used as an internal standard to be compared with the retention times of other 10-, 11-, or 12- carbon molecules, depending on their structures .

   

3,4-Dihydrocadalene

1,2-dihydro-4,7-Dimethyl-1-(1-methylethyl)naphthalene, 9ci

C15H20 (200.1565)


Constituent of hop, sweet flag, Juniperus and other oils. 3,4-Dihydrocadalene is found in many foods, some of which are root vegetables, rosemary, herbs and spices, and alcoholic beverages. 3,4-Dihydrocadalene is found in alcoholic beverages. 3,4-Dihydrocadalene is a constituent of hop, sweet flag, Juniperus and other oils.

   

gamma-Muurolene

(1R,4aR,8aS)-7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.1878)


gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).

   

(E)-Calamene

1,6-dimethyl-4-(propan-2-yl)-1,2,3,4-tetrahydronaphthalene

C15H22 (202.1721)


Calamene is a metabolite of plant Turnera diffusa. Turnera diffusa (Damiana, Mexican holly, Old Womans Broom) is a small shrub of the family Tuneraceae. T. diffusa is native to both Central and South America and now commercially cultivated in Bolivia and Mexico. The leaf includes volatile oils (1,8-cineole, p-cymene, alpha- and beta-pinene, thymol, alpha-copaene, and calamene); luteolin; tannins, flavonoids (arbutin, acacetin, apigenin and pinocembrin), beta-sitosterol, damianin, and the cyanogenic glycoside tetraphyllin B. (www.globinmed.com) (e)-calamene is also known as calamenene or 1,6-dimethyl-4-isopropyltetralin. (e)-calamene can be found in a number of food items such as guava, lovage, summer savory, and rosemary, which makes (e)-calamene a potential biomarker for the consumption of these food products (e)-calamene can be found primarily in urine.

   

delta-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]

   

alpha-Curcumene

1-methyl-4-(6-methylhept-5-en-2-yl)benzene

C15H22 (202.1721)


alpha-Curcumene belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units

   

Germacrene B

(1Z,5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


Constituent of the peel oil of yuzu Citrus junos. Germacrene B is found in many foods, some of which are pepper (spice), lime, citrus, and common oregano. Germacrene B is found in citrus. Germacrene B is a constituent of the peel oil of yuzu Citrus junos.

   

(+)-alpha-Muurolene

4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


(+)-alpha-Muurolene is isolated from various plant oils including Pinus mugo (dwarf mountain pine). Isolated from various plant oils including Pinus mugo (dwarf mountain pine)

   

Methyl geranate

Methyl (2E)-3,7-dimethylocta-2,6-dienoic acid

C11H18O2 (182.1307)


Methyl_geranate belongs to the family of Acyclic Monoterpenes. These are monoterpenes (compounds made of two consecutive isoprene units) that do not contain a cycle.

   

Nonadecane

Unknown branched fragment OF phospholipid

C19H40 (268.313)


Nonadecane, also known as CH3-[CH2]17-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonadecane is considered to be a hydrocarbon lipid molecule. Nonadecane is an alkane and bland tasting compound. nonadecane has been detected, but not quantified, in several different foods, such as pomes, watermelons, yellow bell peppers, allspices, and papaya. This could make nonadecane a potential biomarker for the consumption of these foods. Nonadecane has been linked to the inborn metabolic disorders including celiac disease. Isolated from apple wax. Nonadecane is found in many foods, some of which are pepper (c. annuum), red bell pepper, papaya, and dill.

   

Eicosane

CH3-[CH2]18-CH3

C20H42 (282.3286)


Eicosane, also known as ch3-[ch2]18-ch3 or octyldodecane, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound and can be found in a number of food items such as linden, papaya, dill, and lemon balm, which makes eicosane a potential biomarker for the consumption of these food products. Eicosane can be found primarily in feces and saliva. Icosanes size, state or chemical inactivity does not exclude it from the traits its smaller alkane counterparts have. It is a colorless, non-polar molecule, nearly unreactive except when it burns. It is less dense than and insoluble in water. Its non-polar trait means it can only perform weak intermolecular bonding (hydrophobic/van der Waals forces) . Eicosane, also known as CH3-[CH2]18-CH3 or octyldodecane, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Eicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, eicosane is considered to be a hydrocarbon lipid molecule. Eicosane is an alkane and waxy tasting compound. Eicosane is found, on average, in the highest concentration within lemon balms. Eicosane has also been detected, but not quantified, in several different foods, such as allspices, papaya, coconuts, lindens, and hyssops. This could make eicosane a potential biomarker for the consumption of these foods. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.

   

Nonane

CH3-[CH2]7-CH3

C9H20 (128.1565)


Nonane is found in common oregano. Nonane is present in numerous plant oils including olive oils.Nonane is a linear alkane hydrocarbon with the chemical formula C9H20. Nonane has 35 structural isomers. (Wikipedia Present in numerous plant oils including olive oils

   

Octadecane

Octadecane, 1-(14)C-labeled CPD

C18H38 (254.2973)


Octadecane, also known as CH3-[CH2]16-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Octadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, octadecane is considered to be a hydrocarbon lipid molecule. Octadecane is an alkane tasting compound. Octadecane has been detected, but not quantified, in several different foods, such as papaya, corianders, sunflowers, kohlrabis, and parsnips. Found in hop oil and other plant sources. Isolated from Piper longum (long pepper). Octadecane is an alkane that is used to store thermal energy at ambient temperature as a phase change material[1].

   

Chondrillasterol

(2S,5S,7S,14R,15R)-14-[(2R,3E,5R)-5-ethyl-6-methylhept-3-en-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-5-ol

C29H48O (412.3705)


Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. Chondrillasterol is found in tea. Chondrillasterol is found in tea. Oxybenzone is an organic compound used in sunscreens. It is a derivative of benzophenone. D020011 - Protective Agents > D011837 - Radiation-Protective Agents > D013473 - Sunscreening Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D009153 - Mutagens D003879 - Dermatologic Agents D003358 - Cosmetics

   

Squalen

2,6,10,15,19,23-Hexamethyltetracosa-2,6,10,14,18,22-hexaene

C30H50 (410.3912)


   

Atractylenolide II

3,8a-dimethyl-5-methylidene-2H,4H,4aH,5H,6H,7H,8H,8aH,9H,9aH-naphtho[2,3-b]furan-2-one

C15H20O2 (232.1463)


   

Atractylenolide III

9a-hydroxy-3,8a-dimethyl-5-methylidene-2H,4H,4aH,5H,6H,7H,8H,8aH,9H,9aH-naphtho[2,3-b]furan-2-one

C15H20O3 (248.1412)


   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.3861)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Germacrone

3,7-dimethyl-10-(propan-2-ylidene)cyclodeca-3,7-dien-1-one

C15H22O (218.1671)


   

Isochlorogenic acid b

3,4-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


   

Muurolol

(1R,4S,4aR,8aS)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


Muurolol is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Muurolol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Muurolol can be found in mugwort, which makes muurolol a potential biomarker for the consumption of this food product.

   

delta-Cadinol

(8R)-2,5-dimethyl-8-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-2-ol

C15H26O (222.1984)


Delta-cadinol, also known as delta-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products. Delta-cadinol, also known as δ-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products.

   

cis-p-Menth-1-en-3-ol

(1R,6S)-3-methyl-6-(propan-2-yl)cyclohex-2-en-1-ol

C10H18O (154.1358)


Cis-p-menth-1-en-3-ol is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Cis-p-menth-1-en-3-ol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Cis-p-menth-1-en-3-ol is a herbal tasting compound and can be found in a number of food items such as common oregano, nutmeg, peppermint, and rosemary, which makes cis-p-menth-1-en-3-ol a potential biomarker for the consumption of these food products.

   

1-S-cis-Calamenene

(1S,4S)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4-tetrahydronaphthalene

C15H22 (202.1721)


(E)-Calamene, also known as calamenene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. (E)-Calamene is possibly neutral. (E)-Calamene is found in highest concentrations in allspices, common oregano, and rosemaries and in lower concentrations in lovages. (E)-Calamene has also been detected in cloves, guava, summer savories, sweet basils, and pepper (spice). This could make (E)-calamene a potential biomarker for the consumption of these foods. Calamene is a metabolite of plant Turnera diffusa (Damiana, Mexican holly, Old Womans Broom), a small shrub of the family Tuneraceae. T. diffusa is native to both Central and South America and now commercially cultivated in Bolivia and Mexico. 1-s-cis-calamenene, also known as (7r,10r)-calamenene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. 1-s-cis-calamenene is a herb and spice tasting compound found in rosemary, which makes 1-s-cis-calamenene a potential biomarker for the consumption of this food product.

   

caryophyllene alcohol

(1R,2S,5R,8S)-4,4,8-trimethyltricyclo[6.3.1.0²,⁵]dodecan-1-ol

C15H26O (222.1984)


Flavouring compound [Flavornet]

   

(E)-3-oxo-beta-ionone

2,4,4-trimethyl-3-[(1E)-3-oxobut-1-en-1-yl]cyclohex-2-en-1-one

C13H18O2 (206.1307)


Flavouring compound [Flavornet]

   

4,5-Dicaffeoylquinic acid

(1R,3R,4R,5S)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


   

Perillene

FURAN, 3-(4-METHYL-3-PENTEN-1-YL)-

C10H14O (150.1045)


Perillene is a monoterpenoid that is furan in which the hydrogen at position 3 is replaced by a 4-methylpent-3-en-1-yl group. A defensive allomone of thrips that has a flowery, citrus-like flavour. It has a role as a semiochemical, a metabolite and a fragrance. It is a member of furans and a monoterpenoid. Perillene is a natural product found in Curcuma amada, Origanum sipyleum, and other organisms with data available. A monoterpenoid that is furan in which the hydrogen at position 3 is replaced by a 4-methylpent-3-en-1-yl group. A defensive allomone of thrips that has a flowery, citrus-like flavour. Perillene, also known as 3-(4-methyl-3-pentenyl)furan, is a member of the class of compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. Perillene is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Perillene is a woody tasting compound found in common oregano and ginger, which makes perillene a potential biomarker for the consumption of these food products. Perillene is a natural monoterpene that consists of a furan ring with a six-carbon homoprenyl side chain. Perillene is a component of the essential oil obtained by extraction of the leaves of Perilla frutescens. Perillene has also been obtained by steam distillation of the leaves of Perilla frutescens. Perillene has been found to elicit distinct electrophysiological responses in the antennae of the apple blossom weevil. It has been suggested that perillene is one several terpene hydrocarbons in the emanation bouquet of apple tree buds which may be used by adult weevils as chemical cues to discrimination during host-searching behavior .

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Palmitic Acid

n-Hexadecanoic acid

C16H32O2 (256.2402)


COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Curcumene

alpha-Curcumene

C15H22 (202.1721)


   

6-METHYL-5-HEPTEN-2-ONE

6-methylhept-5-en-2-one

C8H14O (126.1045)


Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.

   

Chlorogenic Acid

Malonyl-caffeoylquinic acid

C16H18O9 (354.0951)


IPB_RECORD: 1901; CONFIDENCE confident structure Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Spinacene

(6E,10E,14E,18E)-2,6,10,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaene

C30H50 (410.3912)


Squalene, also known as (e,e,e,e)-squalene or all-trans-squalene, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Squalene can be found in a number of food items such as apricot, savoy cabbage, peach (variety), and bitter gourd, which makes squalene a potential biomarker for the consumption of these food products. Squalene can be found primarily in blood, feces, and sweat, as well as throughout most human tissues. In humans, squalene is involved in several metabolic pathways, some of which include risedronate action pathway, steroid biosynthesis, alendronate action pathway, and fluvastatin action pathway. Squalene is also involved in several metabolic disorders, some of which include cholesteryl ester storage disease, CHILD syndrome, hyper-igd syndrome, and wolman disease. Squalene is a natural 30-carbon organic compound originally obtained for commercial purposes primarily from shark liver oil (hence its name, as Squalus is a genus of sharks), although plant sources (primarily vegetable oils) are now used as well, including amaranth seed, rice bran, wheat germ, and olives. Yeast cells have been genetically engineered to produce commercially useful quantities of "synthetic" squalene . COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Campesterol

Campesterol

C28H48O (400.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects. Campesterol is a plant sterol with cholesterol lowering and anticarcinogenic effects.

   

Atractylenolide III

(4aS,8aR,9aS)-9a-hydroxy-3,8a-dimethyl-5-methylidene-4,4a,6,7,8,9-hexahydrobenzo[f][1]benzofuran-2-one

C15H20O3 (248.1412)


Annotation level-1 Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells. Atractylenolide-III is the main component of Atractylodes rhizome and has the activity of inducing apoptosis in lung cancer cells.

   

benzyl alcohol

benzyl alcohol

C7H8O (108.0575)


Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor. Benzyl alcohol is an aromatic alcohol, a colorless liquid with a mild aromatic odor.

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol is a key acyclic diterpene alcohol that is a precursor for vitamins E and K1. Phytol is an extremely common terpenoid, found in all plants esterified to Chlorophyll to confer lipid solubility[citation needed].; Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia C1907 - Drug, Natural Product > C28269 - Phytochemical Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Sabinene

Bicyclo[3.1.0]hexane, 4-methylene-1-(1-methylethyl)-

C10H16 (136.1252)


Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. A thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. 4(10)-thujene, also known as sabinen or 1-isopropyl-4-methylenebicyclo[3.1.0]hexane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. 4(10)-thujene is a citrus, pepper, and pine tasting compound and can be found in a number of food items such as sweet orange, green bell pepper, pot marjoram, and parsley, which makes 4(10)-thujene a potential biomarker for the consumption of these food products. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

3,4-dicaffeoylquinic acid

3,4-dicaffeoylquinic acid

C25H24O12 (516.1268)


   

3,5-dicaffeoylquinic acid

3,5-dicaffeoylquinic acid

C25H24O12 (516.1268)


   

octane

n-Octane

C8H18 (114.1408)


   

nerol

(2Z)-3,7-Dimethyl-2,6-octadien-1-ol

C10H18O (154.1358)


Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].

   

benzaldehyde

benzaldehyde-carbonyl-13c

C7H6O (106.0419)


An arenecarbaldehyde that consists of benzene bearing a single formyl substituent; the simplest aromatic aldehyde and parent of the class of benzaldehydes.

   

phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


An aldehyde that consists of acetaldehyde bearing a methyl substituent; the parent member of the phenylacetaldehyde class of compounds. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Isovaleraldehyde

3-methylbutanal

C5H10O (86.0732)


A methylbutanal that is butanal substituted by a methyl group at position 3. It occurs as a volatile constituent in olives.

   

3-OCTANOL

(±)-octan-3-ol

C8H18O (130.1358)


Present in Japanese peppermint oil and many other essential oils. (S)-3-Octanol is found in herbs and spices.

   

Octanol

InChI=1\C8H18O\c1-2-3-4-5-6-7-8-9\h9H,2-8H2,1H

C8H18O (130.1358)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

Eugenol

2-methoxy-4-prop-2-enylphenol

C10H12O2 (164.0837)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

(1S,3R,4S,5R)-3,5-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

(1S,3R,4S,5R)-3,5-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


   

Hexadecanoic acid

Hexadecanoic acid

C16H32O2 (256.2402)


   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Methyl geranate

(E)-methyl geranate

C11H18O2 (182.1307)


   

1-OCTEN-3-OL

(3R)-oct-1-en-3-ol

C8H16O (128.1201)


Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

Pentanal

Pentanal

C5H10O (86.0732)


A saturated fatty aldehyde composed from five carbons in a straight chain.

   

Octan-1-ol

Octan-1-ol

C8H18O (130.1358)


An octanol carrying the hydroxy group at position 1.

   

D-Amorphene

4,7-Dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

4,5-DCQA

(1R,3R,4S,5R)-3,4-bis({[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 4,5-Dicaffeoylquinic acid (Isochlorogenic acid C) is an antioxidant, can be isolated from Gynura divaricata and Laggera alata. 4,5-Dicaffeoylquinic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice, and has obvious inhibitory activities against yeast α-glucosidase. 4,5-Dicaffeoylquinic acid inhibits prostate cancer cells through cell cycle arrest. 4,5-Dicaffeoylquinic acid also has anti-apoptotic, anti-injury and anti-hepatitis B virus effects[1][2][3]. 4,5-Dicaffeoylquinic acid (Isochlorogenic acid C) is an antioxidant, can be isolated from Gynura divaricata and Laggera alata. 4,5-Dicaffeoylquinic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice, and has obvious inhibitory activities against yeast α-glucosidase. 4,5-Dicaffeoylquinic acid inhibits prostate cancer cells through cell cycle arrest. 4,5-Dicaffeoylquinic acid also has anti-apoptotic, anti-injury and anti-hepatitis B virus effects[1][2][3].

   

Undecane

N-Undecane

C11H24 (156.1878)


Undecane (also known as hendecane) is a liquid alkane hydrocarbon with the chemical formula CH3(CH2)9CH3. It is used as a mild sex attractant for various types of moths and cockroaches, and an alert signal for a variety of ants. It has 159 isomers. Undecane is found in many foods, some of which are sweet bay, lime, fenugreek, and allspice.

   

borneol

1,7,7-Trimethyl-(1R,2S,4R)-rel-bicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)


Flavouring agent. (±)-Borneol is found in many foods, some of which are pot marjoram, pepper (spice), saffron, and german camomile. Constituent of Curcuma aromatica and other plants. (+)-Borneol is found in nutmeg, herbs and spices, and ginger. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

β-Phellandrene

3-methylidene-6-(propan-2-yl)cyclohex-1-ene

C10H16 (136.1252)


β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1]. β-Phellandrene is obtained from Carum petroselinum. β-Phellandrene can be used to essential oil additives[1].

   

(+)-alpha-Muurolene

4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

g-Muurolene

7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.1878)


   

Docosane

n-Docosane

C22H46 (310.3599)


Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].

   

Heneicosane

Heneicosane

C21H44 (296.3443)


Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].

   

HEXADECANE

HEXADECANE

C16H34 (226.266)


A straight-chain alkane with 16 carbon atoms. It is a component of essential oil isolated from long pepper.

   

NONANE

NONANE

C9H20 (128.1565)


A straight chain alkane composed of 9 carbon atoms.

   

Tetradecane

tetradecane

C14H30 (198.2347)


A straight chain alkane consisting of 14 carbon atoms. Tetradecane is an alkane containing 14 carbon atoms[1].

   

Heptanal

InChI=1\C7H14O\c1-2-3-4-5-6-7-8\h7H,2-6H2,1H

C7H14O (114.1045)


   

Pentadecane

n-pentadecane

C15H32 (212.2504)


A straight-chain alkane with 15 carbon atoms. It is a component of volatile oils isolated from plants species like Scandix balansae.

   

NONADECANE

NONADECANE

C19H40 (268.313)


A straight-chain alkane with 19 carbon atoms. It has been found as a component of essential oils isolated from Artemisia armeniaca.

   

TRICOSANE

tricosane

C23H48 (324.3756)


A straight chain alkane containing 23 carbon atoms.

   

2-HEXADECANONE

Hexadecan-2-one

C16H32O (240.2453)


   

Neral

InChI=1\C10H16O\c1-9(2)5-4-6-10(3)7-8-11\h5,7-8H,4,6H2,1-3H3\b10-7

C10H16O (152.1201)


An enal that is 3,7-dimethyloctanal with unsaturation at positions C-2 and C-6. It has been isolated form the essential oils of plant species like lemon.

   

alpha-Curcumene

1-methyl-4-[(2R)-6-methylhept-5-en-2-yl]benzene

C15H22 (202.1721)


Alpha-curcumene is also known as α-curcumene. Alpha-curcumene is a herb tasting compound and can be found in a number of food items such as pepper (spice), lovage, wild carrot, and rosemary, which makes alpha-curcumene a potential biomarker for the consumption of these food products.

   

Germacrene B

(1E,5E)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


   

naphthalene

naphthalene

C10H8 (128.0626)


An aromatic hydrocarbon comprising two fused benzene rings. It occurs in the essential oils of numerous plant species e.g. magnolia.

   

3-Methylbutanal

3-Methylbutanal

C5H10O (86.0732)


   

β-Ionone

beta-Ionone

C13H20O (192.1514)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1].

   

Humulene

trans,trans,trans-2,6,6,9-Tetramethyl-1,4,8-cycloundecatriene

C15H24 (204.1878)


α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].

   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.1878)


   

Hexanol

4-01-00-01694 (Beilstein Handbook Reference)

C6H14O (102.1045)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists

   

cuminol

InChI=1\C10H14O\c1-8(2)10-5-3-9(7-11)4-6-10\h3-6,8,11H,7H2,1-2H

C10H14O (150.1045)


4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1]. 4-Isopropylbenzyl alcohol is a chemical composition of the essential oils from the leaves and flowers of Camellia nitidissima. C. nitidissima possess multiple biological activities including antioxidant activity, anticancer activity, and cytotoxicity as well as inhibiting the formation of advanced glycation end-products[1].

   

Methyl geranate

Methyl (2E)-3,7-dimethylocta-2,6-dienoic acid

C11H18O2 (182.1307)


Methyl geranate, also known as methyl geranic acid or methyl (2e)-3,7-dimethylocta-2,6-dienoate, is a member of the class of compounds known as acyclic monoterpenoids. Acyclic monoterpenoids are monoterpenes that do not contain a cycle. Methyl geranate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Methyl geranate can be found in caraway, which makes methyl geranate a potential biomarker for the consumption of this food product. Methyl geranate exists in all eukaryotes, ranging from yeast to humans. Methyl_geranate belongs to the family of Acyclic Monoterpenes. These are monoterpenes (compounds made of two consecutive isoprene units) that do not contain a cycle.

   

Caryophyllene oxide

Caryophyllene alpha-oxide

C15H24O (220.1827)


Constituent of oil of cloves (Eugenia caryophyllata)and is) also in oils of Betula alba, Mentha piperita (peppermint) and others. Caryophyllene alpha-oxide is found in many foods, some of which are spearmint, cloves, ceylon cinnamon, and herbs and spices. Caryophyllene beta-oxide is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Caryophyllene beta-oxide is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, caryophyllene beta-oxide is primarily located in the membrane (predicted from logP). It can also be found in the extracellular space. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

Chondrillasterol

Chondrillasterol

C29H48O (412.3705)


   

Lavandulol

4-Hexen-1-ol, 5-methyl-2-(1-methylethenyl)-, (theta)-

C10H18O (154.1358)


A monoterpenoid alcohol that is hepta-1-5-diene which is substituted at positions 2 and 6 by methyl groups and at position 3 by a hydroxymethyl group. It is commonly found in lavender oil.

   

α-Copaene

alpha-copaene

C15H24 (204.1878)


   

Borneol

Bicyclo(2.2.1)heptan-2-ol, 1,7,7-trimethyl-, endo-(.+/-.)-

C10H18O (154.1358)


Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. A bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].

   

toluene

toluene

C7H8 (92.0626)


D012997 - Solvents

   

ETHYL ACETATE

ETHYL ACETATE

C4H8O2 (88.0524)


The acetate ester formed between acetic acid and ethanol.

   

TERPINOLENE

TERPINOLENE

C10H16 (136.1252)


A p-menthadiene with double bonds at positions 1 and 4(8).

   

(+)-gamma-cadinene

(+)-gamma-cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,4aR,8aR enantiomer).

   

Pinocarveol

Bicyclo[3.1.1]heptan-3-ol,6,6-dimethyl-2-methylene-

C10H16O (152.1201)


A pinane monoterpenoid that is a bicyclo[3.1.1]heptane substituted by two methyl groups at position 6, a methylidene group at position 2 and a hydroxy group at position 3.

   

2-(4-methylphenyl)propan-2-ol

2-(4-methylphenyl)propan-2-ol

C10H14O (150.1045)


   

3,4-Dihydrocadalene

3,4-Dihydrocadalene

C15H20 (200.1565)


   

delta-Cadinol

delta-Cadinol

C15H26O (222.1984)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.1878)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

octan-3-ol

octan-3-ol

C8H18O (130.1358)


A secondary alcohol that is octane substituted by a hydroxy group at position 3.

   

Hexan-1-ol

Hexan-1-ol

C6H14O (102.1045)


A primary alcohol that is hexane substituted by a hydroxy group at position 1.

   

Oct-1-en-3-ol

Oct-1-en-3-ol

C8H16O (128.1201)


An alkenyl alcohol with a structure based on a C8 unbranched chain with the hydroxy group at C-2 and unsaturation at C-1-C-2. It is a major volatile compound present in many mushrooms and fungi.

   

Tauro-omega-muricholic acid

Tauro-omega-muricholic acid

C26H45NO7S (515.2917)


   

6-({8a-[({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

6-({8a-[({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H74O17 (910.4926)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8r,8ar,12ar,14as,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8r,8ar,12ar,14as,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C58H92O26 (1204.5877)


   

citronellol, (+-)-

citronellol, (+-)-

C10H20O (156.1514)


   

(4z,7z)-1,5,9,9-tetramethyl-12-oxabicyclo[9.1.0]dodeca-4,7-diene

(4z,7z)-1,5,9,9-tetramethyl-12-oxabicyclo[9.1.0]dodeca-4,7-diene

C15H24O (220.1827)


   

(1r,3ar,5as,7s,9as,9br,11ar)-1-[(2s,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,5as,7s,9as,9br,11ar)-1-[(2s,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.3705)


   

(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4as,6as,6br,8ar,10s,12ar,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O20 (1028.5556)


   

6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C52H82O22 (1058.5297)


   

4-methyl-1-(6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol

4-methyl-1-(6-methylhept-5-en-2-yl)cyclohex-3-en-1-ol

C15H26O (222.1984)


   

3,5-dicaffeoylquinic acid

NA

C25H24O12 (516.1268)


{"Ingredient_id": "HBIN007602","Ingredient_name": "3,5-dicaffeoylquinic acid","Alias": "NA","Ingredient_formula": "C25H24O12","Ingredient_Smile": "C1C(C(C(CC1(C(=O)O)O)OC(=O)C=CC2=CC(=C(C=C2)O)O)O)OC(=O)C=CC3=CC(=C(C=C3)O)O","Ingredient_weight": "516.4 g/mol","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "41070","TCMSP_id": "NA","TCM_ID_id": "21406","PubChem_id": "13604688","DrugBank_id": "NA"}

   

(3r,4as,8ar)-3,8a-dimethyl-5-methylidene-3h,4h,4ah,6h,7h,8h,9h-naphtho[2,3-b]furan-2-one

(3r,4as,8ar)-3,8a-dimethyl-5-methylidene-3h,4h,4ah,6h,7h,8h,9h-naphtho[2,3-b]furan-2-one

C15H20O2 (232.1463)


   

α-muurolene

α-muurolene

C15H24 (204.1878)


   

(3r)-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-ol

(3r)-6,6-dimethyl-2-methylidenebicyclo[3.1.1]heptan-3-ol

C10H16O (152.1201)


   

(-)-β-bisabolene

(-)-β-bisabolene

C15H24 (204.1878)


   

methyl 6-[(8a-{[(3-{[4-({3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3-hydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl)oxy]carbonyl}-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylate

methyl 6-[(8a-{[(3-{[4-({3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3-hydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl)oxy]carbonyl}-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylate

C63H100O30 (1336.6299)


   

6-[(8a-{[(3-{[5-({3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]carbonyl}-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[(8a-{[(3-{[5-({3,5-dihydroxy-4-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)oxy]carbonyl}-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C63H100O30 (1336.6299)


   

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9bs)-1-[(2r,5r)-5,6-dimethylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C28H48O (400.3705)


   

nerolidol isomers

nerolidol isomers

C15H26O (222.1984)


   

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,7s,8s)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.1878)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4r,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C53H84O22 (1072.5454)


   

methyl 6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl 6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C53H84O22 (1072.5454)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C48H76O18 (940.5031)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8r,8ar,12as,14as,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8r,8ar,12as,14as,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C52H82O22 (1058.5297)


   

(1s,3r,4r,5s)-3,5-bis({[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

(1s,3r,4r,5s)-3,5-bis({[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H64O13 (764.4347)


   

(1as,4as,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1as,4as,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

(3s,4as,8ar)-3,8a-dimethyl-5-methylidene-3h,4h,4ah,6h,7h,8h,9h-naphtho[2,3-b]furan-2-one

(3s,4as,8ar)-3,8a-dimethyl-5-methylidene-3h,4h,4ah,6h,7h,8h,9h-naphtho[2,3-b]furan-2-one

C15H20O2 (232.1463)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C58H92O26 (1204.5877)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C52H82O22 (1058.5297)


   

β-caryophyllene oxide

β-caryophyllene oxide

C15H24O (220.1827)


   

methyl 6-({8a-[({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)carbonyl]-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

methyl 6-({8a-[({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)carbonyl]-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

C48H76O18 (940.5031)


   

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

(1z,6z,8s)-8-isopropyl-1-methyl-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8-hydroxy-8a-({[(2s,3r,4s,5r)-5-hydroxy-3,4-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8-hydroxy-8a-({[(2s,3r,4s,5r)-5-hydroxy-3,4-bis({[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy})oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C53H84O22 (1072.5454)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C58H92O25 (1188.5927)


   

6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C52H82O21 (1042.5348)


   

(1r,3ar,5ar,7s,9as,9br,11ar)-1-[(2s,3z,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,5ar,7s,9as,9br,11ar)-1-[(2s,3z,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.3705)


   

(3r,4r,4as,6as,6br,8ar,12ar,12br,14as,14br)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

(3r,4r,4as,6as,6br,8ar,12ar,12br,14as,14br)-4,4a,6b,8a,11,11,12b,14a-octamethyl-hexadecahydropicen-3-ol

C30H52O (428.4018)


   

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

(6ar,6br,8ar,14br)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-hexadecahydropicen-3-ol

C30H50O (426.3861)


   

methyl 3,4,5-trihydroxy-6-[(8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-{[(3,4,5-trihydroxyoxan-2-yl)oxy]carbonyl}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]oxane-2-carboxylate

methyl 3,4,5-trihydroxy-6-[(8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-{[(3,4,5-trihydroxyoxan-2-yl)oxy]carbonyl}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]oxane-2-carboxylate

C42H66O14 (794.4452)


   

1,4,4,7-tetramethyltricyclo[5.3.1.0²,⁶]undecan-11-ol

1,4,4,7-tetramethyltricyclo[5.3.1.0²,⁶]undecan-11-ol

C15H26O (222.1984)


   

(4as,8ar,9ar)-3,8a-dimethyl-5-methylidene-4h,4ah,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-2-one

(4as,8ar,9ar)-3,8a-dimethyl-5-methylidene-4h,4ah,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-2-one

C15H20O2 (232.1463)


   

4a-methyl-1-methylidene-7-(propan-2-ylidene)-3,4,8,8a-tetrahydro-2h-naphthalene

4a-methyl-1-methylidene-7-(propan-2-ylidene)-3,4,8,8a-tetrahydro-2h-naphthalene

C15H22 (202.1721)


   

(4as,8ar,9as)-3,8a-dimethyl-5-methylidene-4h,4ah,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-2-one

(4as,8ar,9as)-3,8a-dimethyl-5-methylidene-4h,4ah,6h,7h,8h,9h,9ah-naphtho[2,3-b]furan-2-one

C15H20O2 (232.1463)


   

1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.3705)


   

methyl 6-({8a-[({3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)carbonyl]-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

methyl 6-({8a-[({3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)carbonyl]-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

C58H92O26 (1204.5877)


   

(4s)-4-isopropyl-1,6-dimethyl-3,4-dihydronaphthalene

(4s)-4-isopropyl-1,6-dimethyl-3,4-dihydronaphthalene

C15H20 (200.1565)


   

(1r,4s,4ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

(1r,4s,4ar)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

C15H26O (222.1984)


   

6-[(4,4,6a,6b,11,11,14b-heptamethyl-8a-{[(3,4,5-trihydroxyoxan-2-yl)oxy]carbonyl}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

6-[(4,4,6a,6b,11,11,14b-heptamethyl-8a-{[(3,4,5-trihydroxyoxan-2-yl)oxy]carbonyl}-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H64O13 (764.4347)


   

6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

6-{[8a-({[3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C58H92O26 (1204.5877)


   

8-isopropyl-2,5-dimethyl-5,6,7,8-tetrahydronaphthalen-1-ol

8-isopropyl-2,5-dimethyl-5,6,7,8-tetrahydronaphthalen-1-ol

C15H22O (218.1671)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C53H84O22 (1072.5454)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C52H82O21 (1042.5348)


   

(4r,4ar,6as,6bs,8as,12ar,12bs,14ar,14br)-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydro-1h-picen-3-one

(4r,4ar,6as,6bs,8as,12ar,12bs,14ar,14br)-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydro-1h-picen-3-one

C30H50O (426.3861)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12as,14ar,14br)-8a-({[(2s,3r,4s,5s,6r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C54H86O22 (1086.561)


   
   

methyl 6-({8a-[({3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)carbonyl]-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

methyl 6-({8a-[({3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3,5-dihydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)carbonyl]-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

C53H84O22 (1072.5454)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5r)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H74O17 (910.4926)


   

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

(1as,4ar,7as,7br)-1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8as,12ar,14ar,14br)-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C41H64O13 (764.4347)


   

1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.3861)


   

(1r,4ar,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

(1r,4ar,8as)-4-isopropyl-1,6-dimethyl-3,4,4a,7,8,8a-hexahydro-2h-naphthalen-1-ol

C15H26O (222.1984)


   

methyl 6-({8a-[({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

methyl 6-({8a-[({4,5-dihydroxy-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

C54H86O22 (1086.561)


   

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.3861)


   

3-[(2s)-6-methylhept-5-en-2-yl]-6-methylidenecyclohex-1-ene

3-[(2s)-6-methylhept-5-en-2-yl]-6-methylidenecyclohex-1-ene

C15H24 (204.1878)


   

(3ar,5as,9as,9bs,11ar)-1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3ar,5as,9as,9bs,11ar)-1-(5-ethyl-6-methylhept-3-en-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.3705)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C52H82O21 (1042.5348)


   

3,8a-dimethyl-5-methylidene-3h,4h,4ah,6h,7h,8h,9h-naphtho[2,3-b]furan-2-one

3,8a-dimethyl-5-methylidene-3h,4h,4ah,6h,7h,8h,9h-naphtho[2,3-b]furan-2-one

C15H20O2 (232.1463)


   

3,5-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

3,5-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,4-dihydroxycyclohexane-1-carboxylic acid

C25H24O12 (516.1268)


   

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

1,1,7-trimethyl-4-methylidene-octahydro-1ah-cyclopropa[e]azulene

C15H24 (204.1878)


   

(4ar,8as)-4a-methyl-1-methylidene-7-(propan-2-ylidene)-3,4,8,8a-tetrahydro-2h-naphthalene

(4ar,8as)-4a-methyl-1-methylidene-7-(propan-2-ylidene)-3,4,8,8a-tetrahydro-2h-naphthalene

C15H22 (202.1721)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C53H84O22 (1072.5454)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8r,8ar,12as,14as,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8r,8ar,12as,14as,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C52H82O22 (1058.5297)


   

(r)-β-bisabolene

(r)-β-bisabolene

C15H24 (204.1878)


   

methyl 6-({8a-[({3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

methyl 6-({8a-[({3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-3-hydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)-3,4,5-trihydroxyoxane-2-carboxylate

C58H92O25 (1188.5927)


   

3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl 2,2,6a,6b,9,9,12a-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3-({3,4-dihydroxy-6-methyl-5-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl 2,2,6a,6b,9,9,12a-heptamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C52H84O20 (1028.5556)


   

3,4,5-trihydroxy-6-({8-hydroxy-8a-[({5-hydroxy-3,4-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)oxane-2-carboxylic acid

3,4,5-trihydroxy-6-({8-hydroxy-8a-[({5-hydroxy-3,4-bis[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)carbonyl]-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl}oxy)oxane-2-carboxylic acid

C53H84O22 (1072.5454)


   

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5as,7s,9as,9br,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,3ar,5as,7s,9as,9br,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H58O6 (574.4233)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12as,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C63H100O30 (1336.6299)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-8a-({[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}carbonyl)-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C42H66O14 (794.4452)


   

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

methyl (2s,3s,4s,5r,6r)-6-{[(3s,4ar,6ar,6bs,8r,8ar,12ar,14ar,14br)-8a-({[(2s,3r,4s,5r)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxy-6-methyl-5-{[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl]oxy}carbonyl)-8-hydroxy-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylate

C63H100O30 (1336.6299)


   

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

(2s,3s,4s,5r,6r)-6-{[(3s,4as,6ar,6bs,8as,12as,14as,14br)-8a-({[(2s,3r,4s,5s)-4,5-dihydroxy-3-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}carbonyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl]oxy}-3,4,5-trihydroxyoxane-2-carboxylic acid

C47H74O17 (910.4926)


   

(1r,2r,4s)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol

(1r,2r,4s)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-ol

C10H18O (154.1358)