NCBI Taxonomy: 2507393

Bothriocline amplifolia (ncbi_taxid: 2507393)

found 12 associated metabolites at species taxonomy rank level.

Ancestor: Bothriocline

Child Taxonomies: none taxonomy data.

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Epi-alpha-amyrin

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

viminalol

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ...

   

(1s,2r,4r,11r,13s)-8-acetyl-15-[(acetyloxy)methyl]-4,11-dimethyl-9,16-dioxo-3,10,17-trioxatetracyclo[12.3.0.0²,⁴.0⁷,¹¹]heptadeca-7,14-dien-13-yl 2-(hydroxymethyl)prop-2-enoate

(1s,2r,4r,11r,13s)-8-acetyl-15-[(acetyloxy)methyl]-4,11-dimethyl-9,16-dioxo-3,10,17-trioxatetracyclo[12.3.0.0²,⁴.0⁷,¹¹]heptadeca-7,14-dien-13-yl 2-(hydroxymethyl)prop-2-enoate

C25H28O11 (504.1632)


   

(1s,2r,4r,8r,10s)-8-(acetyloxy)-12-[(acetyloxy)methyl]-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-10-yl 2-(hydroxymethyl)prop-2-enoate

(1s,2r,4r,8r,10s)-8-(acetyloxy)-12-[(acetyloxy)methyl]-4,8-dimethyl-7,13-dioxo-3,14-dioxatricyclo[9.3.0.0²,⁴]tetradec-11-en-10-yl 2-(hydroxymethyl)prop-2-enoate

C23H28O11 (480.1632)


   

2-(3,3-dimethyloxiran-2-yl)-4-ethenyl-2-hydroxy-4,10-dimethyl-3h-pyrano[3,2-c]chromen-5-one

2-(3,3-dimethyloxiran-2-yl)-4-ethenyl-2-hydroxy-4,10-dimethyl-3h-pyrano[3,2-c]chromen-5-one

C20H22O5 (342.1467)


   

8-acetyl-15-[(acetyloxy)methyl]-4,11-dimethyl-9,16-dioxo-3,10,17-trioxatetracyclo[12.3.0.0²,⁴.0⁷,¹¹]heptadeca-7,14-dien-13-yl 2-(hydroxymethyl)prop-2-enoate

8-acetyl-15-[(acetyloxy)methyl]-4,11-dimethyl-9,16-dioxo-3,10,17-trioxatetracyclo[12.3.0.0²,⁴.0⁷,¹¹]heptadeca-7,14-dien-13-yl 2-(hydroxymethyl)prop-2-enoate

C25H28O11 (504.1632)


   

(1r,2e,8s,10r,11s)-6-[(acetyloxy)methyl]-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-(hydroxymethyl)prop-2-enoate

(1r,2e,8s,10r,11s)-6-[(acetyloxy)methyl]-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-(hydroxymethyl)prop-2-enoate

C22H28O10 (452.1682)


   

6-[(acetyloxy)methyl]-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-(hydroxymethyl)prop-2-enoate

6-[(acetyloxy)methyl]-10-hydroxy-11-methoxy-1,10-dimethyl-5-oxo-4,14-dioxatricyclo[9.2.1.0³,⁷]tetradeca-2,6-dien-8-yl 2-(hydroxymethyl)prop-2-enoate

C22H28O10 (452.1682)