NCBI Taxonomy: 98583

Rhodomyrtus tomentosa (ncbi_taxid: 98583)

found 154 associated metabolites at species taxonomy rank level.

Ancestor: Rhodomyrtus

Child Taxonomies: none taxonomy data.

3,3',4'5-Tetrahydroxystilbene

(E)-4-[2-(3,5Dihydroxyphenyl)ethenyl]1,2-benzenediol, 3,3a?4,5a?Tetrahydroxy-trans-stilbene

C14H12O4 (244.0735552)


Piceatannol is a stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. It has a role as a protein kinase inhibitor, a tyrosine kinase inhibitor, an antineoplastic agent, a plant metabolite, a hypoglycemic agent, an apoptosis inducer and a geroprotector. It is a stilbenol, a member of resorcinols, a member of catechols and a polyphenol. It derives from a hydride of a trans-stilbene. Piceatannol is a natural product found in Vitis amurensis, Smilax bracteata, and other organisms with data available. Piceatannol is a polyhydroxylated stilbene extract from the seeds of Euphorbia lagascae, which inhibits protein tyrosine kinase Syk and induces apoptosis. (NCI) Piceatannol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Wine grape (part of); Robinia pseudoacacia whole (part of); Tsuga canadensis bark (part of). 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). [HMDB] 3,3,45-Tetrahydroxystilbene (or Piceatannol) is a phenolic stilbenoid. It is a metabolite of resveratrol found in red wine. A viral protein-tyrosine kinase (LMP2A) implicated in leukemia, non-Hodgkins lymphoma and other diseases associated with Epstein-Barr virus, was recently found to be blocked by picetannol in vitro (PMID 2590224). Therefore there is research interest in piceatannol as an anti-cancer and anti-EBV drug. Piceatannol can also act as an agonist for estrogen receptor alpha in human breast cancer cells (PMID: 16216908). A stilbenol that is trans-stilbene in which one of the phenyl groups is substituted by hydroxy groups at positions 3 and 4, while the other phenyl group is substituted by hydroxy groups at positions 3 and 5. C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4]. Piceatannol is a well-known Syk inhibitor and reduces the expression of iNOS induced by TNF. Piceatannol is an effective agent for research of acute lung injury (ALI)[1]. Piceatannol is a naturally occurring polyphenolic stilbene found in various fruits and vegetables and exhibits anticancer and anti-inflammatory properties[2]. Piceatannol induces apoptosis in DLBCL cell lines[3]. Piceatannol induces autophagy and apoptosis in MOLT-4 human leukemia cells[4].

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.386145)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Betulin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

alpha-Tocopherol

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, (2R*(4R*,8R*))-(+-)-

C29H50O2 (430.38106)


Alpha-tocopherol is a pale yellow, viscous liquid. (NTP, 1992) (R,R,R)-alpha-tocopherol is an alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. It has a role as an antioxidant, a nutraceutical, an antiatherogenic agent, an EC 2.7.11.13 (protein kinase C) inhibitor, an anticoagulant, an immunomodulator, an antiviral agent, a micronutrient, an algal metabolite and a plant metabolite. It is an enantiomer of a (S,S,S)-alpha-tocopherol. In 1922, vitamin E was demonstrated to be an essential nutrient. Vitamin E is a term used to describe 8 different fat soluble tocopherols and tocotrienols, alpha-tocopherol being the most biologically active. Vitamin E acts as an antioxidant, protecting cell membranes from oxidative damage. The antioxidant effects are currently being researched for use in the treatment of diseases causing bone loss, cardiovascular diseases, diabetes mellitus and associated comorbidities, eye diseases, inflammatory diseases (including skin conditions), lipid disorders, neurological diseases, and radiation damage. Though this research is so far inconclusive, vitamin E remains a popular supplement and is generally considered safe by the FDA. Vitamin E is a natural product found in Monteverdia ilicifolia, Calea jamaicensis, and other organisms with data available. Alpha-Tocopherol is the orally bioavailable alpha form of the naturally-occurring fat-soluble vitamin E, with potent antioxidant and cytoprotective activities. Upon administration, alpha-tocopherol neutralizes free radicals, thereby protecting tissues and organs from oxidative damage. Alpha-tocopherol gets incorporated into biological membranes, prevents protein oxidation and inhibits lipid peroxidation, thereby maintaining cell membrane integrity and protecting the cell against damage. In addition, alpha-tocopherol inhibits the activity of protein kinase C (PKC) and PKC-mediated pathways. Alpha-tocopherol also modulates the expression of various genes, plays a key role in neurological function, inhibits platelet aggregation and enhances vasodilation. Compared with other forms of tocopherol, alpha-tocopherol is the most biologically active form and is the form that is preferentially absorbed and retained in the body. A generic descriptor for all tocopherols and tocotrienols that exhibit alpha-tocopherol activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of isoprenoids. See also: Alpha-Tocopherol Acetate (is active moiety of); Tocopherol (related); Vitamin E (related) ... View More ... alpha-Tocopherol is traditionally recognized as the most active form of vitamin E in humans and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha-Tocopherol. Natural vitamin E exists in eight different forms or isomers: four tocopherols and four tocotrienols. In foods, the most abundant sources of vitamin E are vegetable oils such as palm oil, sunflower, corn, soybean, and olive oil. Nuts, sunflower seeds, and wheat germ are also good sources. Constituent of many vegetable oils such as soya and sunflower oils. Dietary supplement and nutrient. Nutriceutical with anticancer and antioxidant props. Added to fats and oils to prevent rancidity. The naturally-occurring tocopherol is a single stereoisomer; synthetic forms are a mixture of all eight possible isomers An alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. α-Tocopherol (alpha-tocopherol) is a type of vitamin E. Its E number is "E307". Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Compared to the others, α-tocopherol is preferentially absorbed and accumulated in humans. Vitamin E is found in a variety of tissues, being lipid-soluble, and taken up by the body in a wide variety of ways. The most prevalent form, α-tocopherol, is involved in molecular, cellular, biochemical processes closely related to overall lipoprotein and lipid homeostasis. Ongoing research is believed to be "critical for manipulation of vitamin E homeostasis in a variety of oxidative stress-related disease conditions in humans."[2] One of these disease conditions is the α-tocopherol role in the use by malaria parasites to protect themselves from the highly oxidative environment in erythrocytes.[3] DL-α-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=16826-11-2 (retrieved 2024-06-29) (CAS RN: 10191-41-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

Combretum caffrum

3,3,4-Tri-O-methylellagic acid; 3,3,4-Trimethoxyellagic acid; 3,4,3-Tri-O-methylellagic acid; Ellagic acid 3,3,4-trimethyl ether

C17H12O8 (344.0532152)


3,4,3-Tri-O-methylellagic acid is a tannin. 2,3,8-Tri-O-methylellagic acid is a natural product found in Lagerstroemia speciosa, Cercidiphyllum japonicum, and other organisms with data available.

   

beta-Amyrenonol

(4aR,6aR,6aS,6bR,8aR,10S,12aS,14bR)-10-hydroxy-2,2,4a,6a,6b,9,9,12a-octamethyl-3,4,5,6,6a,7,8,8a,10,11,12,14b-dodecahydro-1H-picen-13-one

C30H48O2 (440.36541079999995)


11-oxo-beta-amyrin is the pentacyclic triterpenoid that is the 11-oxo derivative of beta-amyrin. It is a pentacyclic triterpenoid and a cyclic terpene ketone. It is functionally related to a beta-amyrin. 11-Oxo-beta-amyrin is a natural product found in Canarium zeylanicum, Launaea arborescens, and other organisms with data available.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0062676)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

(-)-alpha-Tocopherol

2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-3,4-dihydro-2H-1-benzopyran-6-ol

C29H50O2 (430.38106)


α-tocopherol is a member of the class of compounds known as tocopherols. Tocopherols are vitamin E derivatives containing a saturated trimethyltridecyl chain attached to the carbon C6 atom of a benzopyran ring system. The differ from tocotrienols that contain an unsaturated trimethyltrideca-3,7,11-trien-1-yl chain. α-tocopherol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). α-tocopherol can be found in a number of food items such as lime, rowanberry, horseradish tree, and pineappple sage, which makes α-tocopherol a potential biomarker for the consumption of these food products. α-tocopherol is a form of vitamin E that is preferentially absorbed and accumulated in humans. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to α-tocopherol .

   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.386145)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

11E, 13E-Octadecadienoic acid

3,5-dihydroxy-2-(3-hydroxy-4-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-7-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C27H30O17 (626.148293)


   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Combretol

5-Hydroxy-3,7-dimethoxy-2- (3,4,5-trimethoxyphenyl) -4H-1-benzopyran-4-one

C20H20O8 (388.115812)


Combretol is a pentamethoxyflavone that is myricetin in which the hydroxy groups at positions 3, 7, 3, 4 and 5 have been replaced by methoxy groups. It has been isolated from Combretum quadrangulare. It has a role as a metabolite, a plant metabolite and an antileishmanial agent. It is a pentamethoxyflavone and a monohydroxyflavone. It is functionally related to a myricetin. Combretol is a natural product found in Aeonium lindleyi, Betula nigra, and Rhodomyrtus tomentosa with data available. A pentamethoxyflavone that is myricetin in which the hydroxy groups at positions 3, 7, 3, 4 and 5 have been replaced by methoxy groups. It has been isolated from Combretum quadrangulare.

   

Quercetin 7,4-diglucoside

7- (beta-D-Glucopyranosyloxy) -2- [ 4- (beta-D-glucopyranosyloxy) -3-hydroxyphenyl ] -3,5-dihydroxy-4H-1-benzopyran-4-one

C27H30O17 (626.148293)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   
   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.

   

1,4,7-trihydroxy-2-methoxy-6-methylanthracene-9,10-dione

1,4,7-trihydroxy-2-methoxy-6-methylanthracene-9,10-dione

C16H12O6 (300.06338519999997)


   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0062676)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Betulin

NCGC00168803-04_C30H50O2_Lup-20(29)-ene-3,28-diol, (3beta)-

C30H50O2 (442.38106)


Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

VITAMIN E

DL-alpha-Tocopherol

C29H50O2 (430.38106)


Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 40 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 15 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE was 20 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methylbutanoyl)-9-(2-methylpropyl)-9H-xanthene-1,3-dione

6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methylbutanoyl)-9-(2-methylpropyl)-9H-xanthene-1,3-dione

C26H34O6 (442.2355264)


   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

Ephanyl

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, (2R*(4R*,8R*))-(+-)- (9CI)

C29H50O2 (430.38106)


COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

8a-hydroxy-3,3,6,6,8,8-hexamethyl-1,2-benzodioxine-5,7-dione

8a-hydroxy-3,3,6,6,8,8-hexamethyl-1,2-benzodioxine-5,7-dione

C14H20O5 (268.13106700000003)


   

methyl (1s,2r,4as,6as,6br,8as,10r,12ar,12br,14bs)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

methyl (1s,2r,4as,6as,6br,8as,10r,12ar,12br,14bs)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C31H50O3 (470.37597500000004)


   

methyl 9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

methyl 9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C31H50O3 (470.37597500000004)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


   

11-oxo-β-Amyrin

NA

C30H48O2 (440.36541079999995)


{"Ingredient_id": "HBIN000503","Ingredient_name": "11-oxo-\u03b2-Amyrin","Alias": "NA","Ingredient_formula": "C30H48O2","Ingredient_Smile": "CC1(CCC2(CCC3(C(=CC(=O)C4C3(CCC5C4(CCC(C5(C)C)O)C)C)C2C1)C)C)C","Ingredient_weight": "NA","OB_score": "NA","CAS_id": "NA","SymMap_id": "NA","TCMID_id": "32824","TCMSP_id": "NA","TCM_ID_id": "NA","PubChem_id": "NA","DrugBank_id": "NA"}

   

10-hydroxy-2,2,4a,6a,6b,9,9,12a-octamethyl-3,4,5,6,7,8,8a,10,11,12,12b,14b-dodecahydro-1h-picen-13-one

10-hydroxy-2,2,4a,6a,6b,9,9,12a-octamethyl-3,4,5,6,7,8,8a,10,11,12,12b,14b-dodecahydro-1h-picen-13-one

C30H48O2 (440.36541079999995)


   

methyl (1r,3as,5ar,5br,7ar,11ar,11br,13ar,13br)-5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylate

methyl (1r,3as,5ar,5br,7ar,11ar,11br,13ar,13br)-5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylate

C31H48O3 (468.36032579999994)


   

2-{9-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}prop-2-enal

2-{9-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl}prop-2-enal

C30H48O2 (440.36541079999995)


   

methyl (1r,3as,5ar,5br,7ar,9r,10s,11ar,11br,13ar,13br)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

methyl (1r,3as,5ar,5br,7ar,9r,10s,11ar,11br,13ar,13br)-9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C31H50O4 (486.37089000000003)


   

6,8-dihydroxy-2,2,4,4-tetramethyl-5-(3-methylbutanoyl)-9-(2-methylpropyl)-9h-xanthene-1,3-dione

6,8-dihydroxy-2,2,4,4-tetramethyl-5-(3-methylbutanoyl)-9-(2-methylpropyl)-9h-xanthene-1,3-dione

C26H34O6 (442.2355264)


   

13-hydroxy-2,2,4,4,8,8,10,10-octamethyl-12-(3-methylbutanoyl)-6,14-bis(2-methylpropyl)-6,14-dihydro-5,11-dioxapentaphene-1,3,7,9-tetrone

13-hydroxy-2,2,4,4,8,8,10,10-octamethyl-12-(3-methylbutanoyl)-6,14-bis(2-methylpropyl)-6,14-dihydro-5,11-dioxapentaphene-1,3,7,9-tetrone

C41H54O8 (674.3818484000001)


   

(1s,4s,5r,8s,10s,13r,14r,16s,17s,18r)-16-hydroxy-4,5,9,9,13,20,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-10-yl acetate

(1s,4s,5r,8s,10s,13r,14r,16s,17s,18r)-16-hydroxy-4,5,9,9,13,20,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-10-yl acetate

C32H50O5 (514.365805)


   

4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-one

4-(3-hydroxybut-1-en-1-yl)-3,5,5-trimethylcyclohex-2-en-1-one

C13H20O2 (208.14632200000003)


   

2-[(3r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-9-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]prop-2-enal

2-[(3r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-9-hydroxy-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-3-yl]prop-2-enal

C30H48O2 (440.36541079999995)


   

13,15-dihydroxy-9-isopropyl-4,4,6,6-tetramethyl-12-(3-methylbutanoyl)-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16),12,14-tetraene-3,5-dione

13,15-dihydroxy-9-isopropyl-4,4,6,6-tetramethyl-12-(3-methylbutanoyl)-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16),12,14-tetraene-3,5-dione

C26H32O7 (456.2147922)


   

(6r,14r)-13-hydroxy-2,2,4,4,8,8,10,10-octamethyl-12-(3-methylbutanoyl)-6,14-bis(2-methylpropyl)-6,14-dihydro-5,11-dioxapentaphene-1,3,7,9-tetrone

(6r,14r)-13-hydroxy-2,2,4,4,8,8,10,10-octamethyl-12-(3-methylbutanoyl)-6,14-bis(2-methylpropyl)-6,14-dihydro-5,11-dioxapentaphene-1,3,7,9-tetrone

C41H54O8 (674.3818484000001)


   

9-isopropyl-4,4,6,6,12,12,14,14-octamethyl-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16)-diene-3,5,13,15-tetrone

9-isopropyl-4,4,6,6,12,12,14,14-octamethyl-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16)-diene-3,5,13,15-tetrone

C25H32O6 (428.2198772)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

C32H52O3 (484.3916242)


   

3-(3-hydroxyprop-1-en-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

3-(3-hydroxyprop-1-en-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


   

13-hydroxy-6,7,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

13-hydroxy-6,7,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

C17H12O8 (344.0532152)


   

(8ar)-8a-hydroxy-3,3,6,6,8,8-hexamethyl-1,2-benzodioxine-5,7-dione

(8ar)-8a-hydroxy-3,3,6,6,8,8-hexamethyl-1,2-benzodioxine-5,7-dione

C14H20O5 (268.13106700000003)


   

(9r)-6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methylbutanoyl)-9-(2-methylpropyl)-9h-xanthene-1,3-dione

(9r)-6,8-dihydroxy-2,2,4,4-tetramethyl-7-(3-methylbutanoyl)-9-(2-methylpropyl)-9h-xanthene-1,3-dione

C26H34O6 (442.2355264)


   

methyl (4ar,6as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl (4ar,6as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C31H50O3 (470.37597500000004)


   

methyl 10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

methyl 10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C31H50O3 (470.37597500000004)


   

1,1',3,3',5,5'-hexahydroxy-7,7'-dimethyl-[2,2'-bianthracene]-9,9',10,10'-tetrone

1,1',3,3',5,5'-hexahydroxy-7,7'-dimethyl-[2,2'-bianthracene]-9,9',10,10'-tetrone

C30H18O10 (538.0899928)


   

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

(1r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13br)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

C32H52O3 (484.3916242)


   

methyl 5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylate

methyl 5a,5b,8,8,11a-pentamethyl-9-oxo-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysene-3a-carboxylate

C31H48O3 (468.36032579999994)


   

(3s,4ar,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

(3s,4ar,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

(9r)-6,8-dihydroxy-2,2,4,4-tetramethyl-5-(3-methylbutanoyl)-9-(2-methylpropyl)-9h-xanthene-1,3-dione

(9r)-6,8-dihydroxy-2,2,4,4-tetramethyl-5-(3-methylbutanoyl)-9-(2-methylpropyl)-9h-xanthene-1,3-dione

C26H34O6 (442.2355264)


   

(1r,9r)-13,15-dihydroxy-9-isopropyl-4,4,6,6-tetramethyl-12-(3-methylbutanoyl)-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16),12,14-tetraene-3,5-dione

(1r,9r)-13,15-dihydroxy-9-isopropyl-4,4,6,6-tetramethyl-12-(3-methylbutanoyl)-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16),12,14-tetraene-3,5-dione

C26H32O7 (456.2147922)


   

(4s)-4-[(1e,3r)-3-hydroxybut-1-en-1-yl]-3,5,5-trimethylcyclohex-2-en-1-one

(4s)-4-[(1e,3r)-3-hydroxybut-1-en-1-yl]-3,5,5-trimethylcyclohex-2-en-1-one

C13H20O2 (208.14632200000003)


   

methyl 9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

methyl 9,10-dihydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C31H50O4 (486.37089000000003)


   

(3r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-3-(3-hydroxyprop-1-en-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

(3r,3as,5ar,5br,7ar,9s,11ar,11br,13ar,13bs)-3-(3-hydroxyprop-1-en-2-yl)-5a,5b,8,8,11a,13b-hexamethyl-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.38106)


   

6,7,13-trihydroxy-14-methoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

6,7,13-trihydroxy-14-methoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

C15H8O8 (316.0219168)


   

(1r,3ar,5ar,5br,7ar,9s,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,7ar,9s,11ar,11bs,13ar,13br)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


   

(1r,9s)-9-isopropyl-4,4,6,6,12,12,14,14-octamethyl-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16)-diene-3,5,13,15-tetrone

(1r,9s)-9-isopropyl-4,4,6,6,12,12,14,14-octamethyl-8,10-dioxatetracyclo[7.7.0.0²,⁷.0¹¹,¹⁶]hexadeca-2(7),11(16)-diene-3,5,13,15-tetrone

C25H32O6 (428.2198772)


   

methyl (1s,3as,5ar,5br,7ar,9r,11as,11bs,13ar,13bs)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

methyl (1s,3as,5ar,5br,7ar,9r,11as,11bs,13ar,13bs)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C31H50O3 (470.37597500000004)