NCBI Taxonomy: 82113

Lithocarpus (ncbi_taxid: 82113)

found 51 associated metabolites at genus taxonomy rank level.

Ancestor: Fagaceae

Child Taxonomies: Lithocarpus rassa, Lithocarpus laetus, Lithocarpus mariae, Lithocarpus glaber, Lithocarpus edulis, Lithocarpus mairei, Lithocarpus luteus, Lithocarpus henryi, Lithocarpus hancei, Lithocarpus brassii, Lithocarpus hystrix, Lithocarpus elegans, Lithocarpus lucidus, Lithocarpus pulcher, Lithocarpus sulitii, Lithocarpus corneus, Lithocarpus ewyckii, Lithocarpus javensis, Lithocarpus vestitus, Lithocarpus uraianus, Lithocarpus confinis, Lithocarpus gracilis, Lithocarpus jacobsii, Lithocarpus meijerii, Lithocarpus porcatus, Lithocarpus bancanus, Lithocarpus konishii, Lithocarpus arcaulus, Lithocarpus obscurus, Lithocarpus coalitus, Lithocarpus licentii, Lithocarpus stenopus, Lithocarpus haipinii, Lithocarpus balansae, Lithocarpus laoticus, Lithocarpus bullatus, Lithocarpus longinux, Lithocarpus harmandii, Lithocarpus magneinii, Lithocarpus sundaicus, Lithocarpus calolepis, Lithocarpus paihengii, Lithocarpus celebicus, Lithocarpus harlandii, Lithocarpus kawakamii, Lithocarpus naiadarum, Lithocarpus skanianus, Lithocarpus floccosus, Lithocarpus bennettii, Lithocarpus blumeanus, Lithocarpus echinifer, Lithocarpus kalkmanii, Lithocarpus revolutus, Lithocarpus ruminatus, Lithocarpus lemeeanus, Lithocarpus vinhensis, Lithocarpus nitidinux, Lithocarpus coopertus, Lithocarpus dealbatus, Lithocarpus hatusimae, Lithocarpus leptogyne, Lithocarpus truncatus, Lithocarpus fordianus, Lithocarpus formosanus, Lithocarpus tawaiensis, Lithocarpus variolosus, Lithocarpus nantoensis, Lithocarpus oleifolius, Lithocarpus rosthornii, Lithocarpus attenuatus, Lithocarpus taitoensis, Lithocarpus pakhaensis, Lithocarpus synbalanos, Lithocarpus imperialis, Lithocarpus conocarpus, Lithocarpus megacarpus, Lithocarpus havilandii, Lithocarpus fohaiensis, Lithocarpus solerianus, Lithocarpus rotundatus, Lithocarpus turbinatus, Lithocarpus aggregatus, Lithocarpus craibianus, Lithocarpus pachylepis, Lithocarpus papillifer, Lithocarpus annamensis, Lithocarpus xylocarpus, Lithocarpus braianensis, Lithocarpus auriculatus, Lithocarpus cantleyanus, Lithocarpus bidoupensis, Lithocarpus cyrtocarpus, Lithocarpus lindleyanus, Lithocarpus chrysocomus, Lithocarpus calophyllus, Lithocarpus fenzelianus, Lithocarpus handelianus, Lithocarpus paniculatus, Lithocarpus hypoglaucus, Lithocarpus iteaphyllus, Lithocarpus beccarianus, Lithocarpus lampadarius, Lithocarpus palungensis, Lithocarpus longanoides, Lithocarpus ochrocarpus, Lithocarpus ombrophilus, Lithocarpus fenestratus, Lithocarpus ferrugineus, Lithocarpus reinwardtii, Lithocarpus hongiaoensis, Lithocarpus polystachyus, Lithocarpus pycnostachys, Lithocarpus brachycladus, Lithocarpus crassifolius, Lithocarpus microspermus, Lithocarpus dasystachyus, unclassified Lithocarpus, Lithocarpus wallichianus, Lithocarpus litseifolius, Lithocarpus lepidocarpus, Lithocarpus shinsuiensis, Lithocarpus elizabethiae, Lithocarpus uvariifolius, Lithocarpus vuquangensis, Lithocarpus clementianus, Lithocarpus aff. SO-2022, Lithocarpus tephrocarpus, Lithocarpus rufovillosus, Lithocarpus dahuoaiensis, Lithocarpus silvicolarum, Lithocarpus echinophorus, Lithocarpus echinotholus, Lithocarpus grandifolius, Lithocarpus pachyphyllus, Lithocarpus farinulentus, Lithocarpus garrettianus, Lithocarpus cleistocarpus, Lithocarpus brevicaudatus, Lithocarpus megalophyllus, Lithocarpus keningauensis, Lithocarpus bacgiangensis, Lithocarpus sericobalanos, Lithocarpus nieuwenhuisii, Lithocarpus chintungensis, Lithocarpus elaeagnifolius, Lithocarpus amygdalifolius, Lithocarpus encleisocarpus, Lithocarpus gigantophyllus, Lithocarpus ternaticupulus, Lithocarpus dodonaeifolius, Lithocarpus pseudosundaicus, Lithocarpus pseudokunstleri, Lithocarpus pseudomagneinii, Lithocarpus longipedicellatus

Phlorizin

1-{6-[(2S,4S,5S,3R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)(2H-3,4,5,6-tetrahydr opyran-2-yloxy)]-2,4-dihydroxyphenyl}-3-(4-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)


Phlorizin, also known as phlorizoside or phlorrhizen, belongs to the class of organic compounds known as flavonoid o-glycosides. Flavonoid O-glycosides are compounds containing a carbohydrate moiety which is O-glycosidically linked to the 2-phenylchromen-4-one flavonoid backbone. Phlorizin (also referred to as phloridzin; chemical name phloretin-2-‚âà√≠‚Äö√¢¬ß-D-glucopyranoside) is a glucoside of phloretin, a dihydrochalcone, a family of bicyclic flavonoids, which in turn is a subgroup in the diverse phenylpropanoid synthesis pathway in plants. In humans, phlorizin is involved in lactose degradation. Phlorizin is a bitter tasting compound. phlorizin is found, on average, in the highest concentration in a few different foods, such as mexican oregano, european plums, and apples and in a lower concentration in pomegranates and apricots. phlorizin has also been detected, but not quantified, in several different foods, such as epazotes, durians, chinese broccoli, sesames, and sweet potato. This could make phlorizin a potential biomarker for the consumption of these foods. It is of sweet taste and contains four molecules of water in the crystal. Phlorizin is found primarily in unripe Malus (apple), root bark of apple, trace amounts have been found in strawberry. It is poorly soluble in ether and cold water, but soluble in ethanol and hot water. Closely related species, such as pear (Pyrus communis), cherry, and other fruit trees in the Rosaceae do not contain phloridzin. Phlorizin was studied as a potential pharmaceutical treatment for type 2 diabetes, but has since been superseded by more selective and more promising synthetic analogs, such as empagliflozin, canagliflozin and dapagliflozin. Phlorizin is a competitive inhibitor of SGLT1 and SGLT2 because it competes with D-glucose for binding to the carrier; this reduces renal glucose transport, lowering the amount of glucose in the blood. Phlorizin is not an effective drug because when orally consumed, it is nearly entirely converted into phloretin by hydrolytic enzymes in the small intestine. Above 200 °C, it decomposes. Phlorizin is an aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. It has a role as a plant metabolite and an antioxidant. It is an aryl beta-D-glucoside, a member of dihydrochalcones and a monosaccharide derivative. It is functionally related to a phloretin. Phlorizin is a natural product found in Malus doumeri, Vaccinium macrocarpon, and other organisms with data available. See also: ... View More ... An aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 2 via a glycosidic linkage. Isolated from apple leaves and bark Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.

   

Stigmasterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5S,E)-5-ethyl-6-methylhept-3-en-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H48O (412.3705)


Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Hexacosanoic acid

Hexacosanoate (N-C26:0)

C26H52O2 (396.3967)


Hexacosanoic acid, also known as N-hexacosanoate or c26:0, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, hexacosanoic acid is considered to be a fatty acid lipid molecule. Hexacosanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Hexacosanoic acid can be found in a number of food items such as dandelion, potato, cottonseed, and sugar apple, which makes hexacosanoic acid a potential biomarker for the consumption of these food products. Hexacosanoic acid can be found primarily in blood, as well as in human adrenal gland and fibroblasts tissues. Hexacosanoic acid exists in all eukaryotes, ranging from yeast to humans. In humans, hexacosanoic acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Hexacosanoic acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Moreover, hexacosanoic acid is found to be associated with adrenomyeloneuropathy, peroxisomal biogenesis defect, and adrenoleukodystrophy, neonatal. Hexacosanoic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cerotic acid is also a type of very long chain fatty acid that is often associated with the disease adrenoleukodystrophy, which involves the excessive saturation of unmetabolized fatty acid chains, including cerotic acid, in the peroxisome. [In the chem box it is shown folded only because of lack of space. In fact, it is a straight-chain, saturated fatty acid.] . Treatment options for adrenoleukodystrophy (ALD) are limited. Dietary treatment is with Lorenzos oil. For the childhood cerebral form, stem cell transplant and gene therapy are options if the disease is detected early in the clinical course. Adrenal insufficiency in ALD patients can be successfully treated (T3DB). Hexacosanoic acid, or cerotic acid, is a 26-carbon long-chain saturated fatty acid with the chemical formula CH3(CH2)24COOH. It is most commonly found in beeswax and carnauba wax, and is a white crystalline solid. Cerotic acid is also a type of very long chain fatty acid that is often associated with the disease adrenoleukodystrophy, which involves the excessive saturation of unmetabolized fatty acid chains, including cerotic acid, in the peroxisome. Hexacosanoic acid, also known as C26:0 or N-hexacosanoate, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Hexacosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexacosanoic acid is a potentially toxic compound.

   

Trilobatin

1-(2,6-dihydroxy-4-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)


Trilobatin is found in pomes. Trilobatin is isolated from apple leaves. Isolated from apple leaves. Trilobatin is found in pomes. Trilobatin, a natural sweetener derived from?Lithocarpus polystachyus?Rehd[1], Trilobatin?is an HIV-1 entry inhibitor targeting the HIV-1 Gp41 envelope[2]. Neuroprotective effects[1]. Trilobatin is also a SGLT1/2 inhibitor that selectively induces the proliferation of human hepatoblastoma cells[3]. Trilobatin, a natural sweetener derived from?Lithocarpus polystachyus?Rehd[1], Trilobatin?is an HIV-1 entry inhibitor targeting the HIV-1 Gp41 envelope[2]. Neuroprotective effects[1]. Trilobatin is also a SGLT1/2 inhibitor that selectively induces the proliferation of human hepatoblastoma cells[3].

   

Phlorizine

1-(2,4-dihydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)


Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.

   

Taraxasterol

(3S,4aR,6aR,6aR,6bR,8aR,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,12,14b-heptamethyl-11-methylidene-1,2,3,4a,5,6,6a,7,8,9,10,12,12a,13,14,14a-hexadecahydropicen-3-ol

C30H50O (426.3861)


Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].

   

Trilobatin

1-(2,6-dihydroxy-4-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)phenyl)-3-(4-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)


Trilobatin is an aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It is isolated from the leaves of the Chinese sweet tea Lithocarpus polystachyus and exhibits significant anti-hyperglycemic, anti-oxidative and anti-inflammatory properties. It has a role as an anti-inflammatory agent, a sweetening agent, an antioxidant and a plant metabolite. It is an aryl beta-D-glucoside, a member of dihydrochalcones and a monosaccharide derivative. It is functionally related to a phloretin. Trilobatin is a natural product found in Malus trilobata, Balanophora tobiracola, and other organisms with data available. An aryl beta-D-glucoside that is phloretin attached to a beta-D-glucopyranosyl residue at position 4 via a glycosidic linkage. It is isolated from the leaves of the Chinese sweet tea Lithocarpus polystachyus and exhibits significant anti-hyperglycemic, anti-oxidative and anti-inflammatory properties. Trilobatin, a natural sweetener derived from?Lithocarpus polystachyus?Rehd[1], Trilobatin?is an HIV-1 entry inhibitor targeting the HIV-1 Gp41 envelope[2]. Neuroprotective effects[1]. Trilobatin is also a SGLT1/2 inhibitor that selectively induces the proliferation of human hepatoblastoma cells[3]. Trilobatin, a natural sweetener derived from?Lithocarpus polystachyus?Rehd[1], Trilobatin?is an HIV-1 entry inhibitor targeting the HIV-1 Gp41 envelope[2]. Neuroprotective effects[1]. Trilobatin is also a SGLT1/2 inhibitor that selectively induces the proliferation of human hepatoblastoma cells[3].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Stigmasterol

Stigmasterol

C29H48O (412.3705)


Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Phlorizin

1-[2,4-dihydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]phenyl]-3-(4-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)


Origin: Plant; Formula(Parent): C21H24O10; Bottle Name:Phloridzin; PRIME Parent Name:Phloretin-2-O-glucoside; PRIME in-house No.:S0307, Glycosides relative retention time with respect to 9-anthracene Carboxylic Acid is 0.718 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.713 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.714 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2021; CONFIDENCE confident structure Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor. Phlorizin (Floridzin) is a non-selective SGLT inhibitor with Kis of 300 and 39 nM for hSGLT1 and hSGLT2, respectively. Phlorizin is also a Na+/K+-ATPase inhibitor.

   

Cerotic acid

HEXACOSANOIC ACID

C26H52O2 (396.3967)


A 26-carbon, straight-chain, saturated fatty acid.

   
   

HEXACOSANOIC ACID

HEXACOSANOIC ACID

C26H52O2 (396.3967)


   

C26:0

HEXACOSANOIC ACID

C26H52O2 (396.3967)


   

alpha-Glutinol

alpha-Glutinol

C30H50O (426.3861)


A natural product found in Croton gratissimus.

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Ceric acid

Hexacosanoic acid (8CI,9CI)

C26H52O2 (396.3967)


   

methyl (1s,2r,4as,6as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

methyl (1s,2r,4as,6as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C31H50O3 (470.376)


   

canophyllol

canophyllol

C30H50O2 (442.3811)


   

1-(2,4-dihydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(3-hydroxyphenyl)propan-1-one

1-(2,4-dihydroxy-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(3-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)


   

methyl 9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

methyl 9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C31H50O3 (470.376)


   

11b-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-6-oxo-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-9-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

11b-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-6-oxo-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-9-yl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H54O6 (618.392)


   

4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydropicene-2,3-dione

4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydropicene-2,3-dione

C30H48O2 (440.3654)


   

methyl 10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

methyl 10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C33H52O4 (512.3865)


   

(3s,14br)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3s,14br)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O2 (442.3811)


   

methyl (4as,6as,6br,8as,10s,12ar,12bs,14bs)-10-(acetyloxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl (4as,6as,6br,8as,10s,12ar,12bs,14bs)-10-(acetyloxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C33H52O4 (512.3865)


   

4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-ol

4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

methyl (1s,3as,5as,5br,7as,9s,11ar,11bs,13ar,13bs)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

methyl (1s,3as,5as,5br,7as,9s,11ar,11bs,13ar,13bs)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-3a-carboxylate

C31H50O3 (470.376)


   

(2s,3r,4s,5r,6s)-2-{3,5-dihydroxy-4-[3-(4-hydroxyphenyl)propanoyl]phenoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2s,3r,4s,5r,6s)-2-{3,5-dihydroxy-4-[3-(4-hydroxyphenyl)propanoyl]phenoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C23H26O11 (478.1475)


   

4a,6a-dimethyl 10-hydroxy-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

4a,6a-dimethyl 10-hydroxy-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

C32H50O5 (514.3658)


   

9,11b-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-6-one

9,11b-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-6-one

C30H48O3 (456.3603)


   

(1r,3ar,5ar,5bs,7as,9s,11as,11bs,13ar,13br)-11b-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-6-oxo-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-9-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(1r,3ar,5ar,5bs,7as,9s,11as,11bs,13ar,13br)-11b-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-6-oxo-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-9-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C39H54O6 (618.392)


   

(4r,4as,6as,6br,8as,12as,12bs,14as,14bs)-8a-(hydroxymethyl)-4,4a,6b,11,11,12b,14a-heptamethyl-tetradecahydro-1h-picen-3-one

(4r,4as,6as,6br,8as,12as,12bs,14as,14bs)-8a-(hydroxymethyl)-4,4a,6b,11,11,12b,14a-heptamethyl-tetradecahydro-1h-picen-3-one

C30H50O2 (442.3811)


   

(3s,4ar,6ar,8as,12as,12bs,14ar,14bs)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

(3s,4ar,6ar,8as,12as,12bs,14ar,14bs)-8a-(hydroxymethyl)-4,4,6a,11,11,12b,14b-heptamethyl-1,2,3,4a,5,6,8,9,10,12,12a,13,14,14a-tetradecahydropicen-3-ol

C30H50O2 (442.3811)


   

4a,6a-dimethyl (1s,2s,4as,6as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

4a,6a-dimethyl (1s,2s,4as,6as,6br,8ar,10s,12ar,12bs,14bs)-10-hydroxy-1,2,6b,9,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylate

C32H50O5 (514.3658)


   

methyl 10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

methyl 10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C31H50O3 (470.376)


   

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2s,3z,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2s,3z,5s)-5-ethyl-6-methylhept-3-en-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H48O (412.3705)


   

1-(2,4-dihydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(3-hydroxyphenyl)propan-1-one

1-(2,4-dihydroxy-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(3-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)


   

(1r,3ar,5ar,5bs,7as,9s,11as,11bs,13ar,13br)-9,11b-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-6-one

(1r,3ar,5ar,5bs,7as,9s,11as,11bs,13ar,13br)-9,11b-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-6-one

C30H48O3 (456.3603)


   

(1r,3ar,5as,5br,7ar,9s,11ar,11br,13ar,13bs)-5a-(hydroxymethyl)-3a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5as,5br,7ar,9s,11ar,11br,13ar,13bs)-5a-(hydroxymethyl)-3a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


   

α-glutinol

α-glutinol

C30H50O (426.3861)


   

methyl 10-(acetyloxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

methyl 10-(acetyloxy)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C33H52O4 (512.3865)


   

(4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydropicene-2,3-dione

(4r,4as,6as,6br,8ar,12ar,12bs,14as,14bs)-4,4a,6b,8a,11,11,12b,14a-octamethyl-tetradecahydropicene-2,3-dione

C30H48O2 (440.3654)


   

methyl (1s,2r,4as,6as,6br,8ar,10s,12ar,12bs,14bs)-10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

methyl (1s,2r,4as,6as,6br,8ar,10s,12ar,12bs,14bs)-10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylate

C33H52O4 (512.3865)


   

(1r,3ar,5ar,5bs,7as,9r,11as,11bs,13ar,13br)-9,11b-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-6-one

(1r,3ar,5ar,5bs,7as,9r,11as,11bs,13ar,13br)-9,11b-dihydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydrocyclopenta[a]chrysen-6-one

C30H48O3 (456.3603)


   

(2r,3s,4r,5r,6s)-2-{3,5-dihydroxy-4-[3-(4-hydroxyphenyl)propanoyl]phenoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

(2r,3s,4r,5r,6s)-2-{3,5-dihydroxy-4-[3-(4-hydroxyphenyl)propanoyl]phenoxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl acetate

C23H26O11 (478.1475)


   

1-(2,6-dihydroxy-4-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)propan-1-one

1-(2,6-dihydroxy-4-{[(2s,3r,4s,5s,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}phenyl)-3-(4-hydroxyphenyl)propan-1-one

C21H24O10 (436.1369)