NCBI Taxonomy: 53865

Derris laxiflora (ncbi_taxid: 53865)

found 46 associated metabolites at species taxonomy rank level.

Ancestor: Derris

Child Taxonomies: none taxonomy data.

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

senegalensin

4H-1-Benzopyran-4-one, 2,3-dihydro-5,7-dihydroxy-2-(4-hydroxyphenyl)-6,8-bis(3-methyl-2-butenyl)-, (S)-

C25H28O5 (408.1937)


6,8-diprenylnaringenin is a trihydroxyflavanone that is (S)-naringenin substituted by prenyl groups at positions 6 and 8. It has a role as a plant metabolite and an antibacterial agent. It is a trihydroxyflavanone, a member of 4-hydroxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Lonchocarpol A is a natural product found in Macaranga conifera, Erythrina suberosa, and other organisms with data available. A trihydroxyflavanone that is (S)-naringenin substituted by prenyl groups at positions 6 and 8.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Prunetin

5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one, 9CI

C16H12O5 (284.0685)


Prunetin is a hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as a metabolite, an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor, an anti-inflammatory agent and an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a hydroxyisoflavone and a member of 7-methoxyisoflavones. It is functionally related to a genistein. It is a conjugate acid of a prunetin-5-olate. Prunetin is a natural product found in Iris milesii, Prunus leveilleana, and other organisms with data available. Occurs in several Prunus subspecies and Glycyrrhiza glabra (licorice). Prunetin is found in tea, herbs and spices, and sour cherry. Prunetin is found in herbs and spices. Prunetin occurs in several Prunus species and Glycyrrhiza glabra (licorice). A hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

   

beta-Amyrin

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Beta-amryin, also known as B-amryin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amryin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amryin can be found in pigeon pea, which makes beta-amryin a potential biomarker for the consumption of this food product.

   

Anhydropisatin

16-methoxy-5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-1(12),2,4(8),9,13(18),14,16-heptaene

C17H12O5 (296.0685)


Anhydropisatin is a member of the class of compounds known as pterocarpans. Pterocarpans are benzo-pyrano-furano-benzene compounds, containing the 6H-[1]benzofuro[3,2-c]chromene skeleton. They are derivatives of isoflavonoids. Thus, anhydropisatin is considered to be a flavonoid lipid molecule. Anhydropisatin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Anhydropisatin can be found in common pea, which makes anhydropisatin a potential biomarker for the consumption of this food product.

   

Hiravanone

(S) -2,3-Dihydro-5,7-dihydroxy-2- (4-hydroxy-3-methoxyphenyl) -6,8-bis (3-methyl-2-butenyl) -4H-1-benzopyran-4-one

C26H30O6 (438.2042)


   

Derriflavanone

Derriflavanone

C26H28O7 (452.1835)


   

lupinifolin

(S) -7,8-Dihydro-5-hydroxy-8- (4-hydroxyphenyl) -2,2-dimethyl-10- (3-methyl-2-butenyl) -2H,6H-benzo [ 1,2-b:5,4-b ] dipyran-6-one

C25H26O5 (406.178)


   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Laxifolin

5-Hydroxy-2- (4-hydroxyphenyl) -8,8-dimethyl-6- (3-methyl-2-butenyl) -4H,8H-benzo [ 1,2-b:3,4-b ] dipyran-4-one

C25H24O5 (404.1624)


   

Isolaxifolin

5-Hydroxy-8- (4-hydroxyphenyl) -2,2-dimethyl-10- (3-methyl-2-butenyl) -2H,6H-benzo [ 1,2-b:5,4-b ] dipyran-6-one

C25H24O5 (404.1624)


   

Laxiflorin

5,7,4-Trihydroxy-3-methoxy-6- (beta-hydroxyethyl) -8-prenylflavanone

C23H26O7 (414.1678)


   

laxichalcone

(E) -1- [ 5-Hydroxy-2,2,8,8-tetramethyl-2H,8H-benzo [ 1,2-b:3,4-b ] dipyran-6-yl ] -3- (4-hydroxyphenyl) -2-propen-1-one

C25H24O5 (404.1624)


   

derrichalcone

derrichalcone

C26H28O7 (452.1835)


   

Anhydropisatin

3-Methoxy-6H- [ 1,3 ] dioxolo [ 5,6 ] benzofuro [ 3,2-c ] [ 1 ] benzopyran

C17H12O5 (296.0685)


   

Prunetin

4H-1-Benzopyran-4-one, 5-hydroxy-3-(4-hydroxyphenyl)-7-methoxy-

C16H12O5 (284.0685)


Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

   

2,3,6-trimethoxy-5-methylphenol

2,3,6-trimethoxy-5-methylphenol

C10H14O4 (198.0892)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis(3-methylbut-2-enyl)chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis(3-methylbut-2-enyl)chromen-4-one

C25H26O6 (422.1729)


   

7-methoxy-6-methyl-2h-1,3-benzodioxol-4-ol

7-methoxy-6-methyl-2h-1,3-benzodioxol-4-ol

C9H10O4 (182.0579)


   

3'-methoxylupinifolin

3'-methoxylupinifolin

C26H28O6 (436.1886)


   

(1s,3r,8s,11s,12s,15r,16r)-15-[(2r,5r)-5-hydroxy-6-methylhept-6-en-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

(1s,3r,8s,11s,12s,15r,16r)-15-[(2r,5r)-5-hydroxy-6-methylhept-6-en-2-yl]-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C30H48O2 (440.3654)


   

(4as,4bs,5ar,5bs,5cr,7ar,9s,11ar,11br,13bs)-2,2,4a,5b,5c,8,8,11a-octamethyl-1h,3h,4h,4bh,5ah,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-piceno[5,6-b]oxiren-9-ol

(4as,4bs,5ar,5bs,5cr,7ar,9s,11ar,11br,13bs)-2,2,4a,5b,5c,8,8,11a-octamethyl-1h,3h,4h,4bh,5ah,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-piceno[5,6-b]oxiren-9-ol

C30H48O2 (440.3654)


   

2,2,4a,5b,5c,8,8,11a-octamethyl-1h,3h,4h,4bh,5ah,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-piceno[5,6-b]oxiren-9-ol

2,2,4a,5b,5c,8,8,11a-octamethyl-1h,3h,4h,4bh,5ah,6h,7h,7ah,9h,10h,11h,11bh,12h,13bh-piceno[5,6-b]oxiren-9-ol

C30H48O2 (440.3654)


   

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-10-[(2s,3r)-3-methoxy-4,4-dimethyloxetan-2-yl]-8,8-dimethyl-2h,3h-pyrano[3,2-g]chromen-4-one

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-10-[(2s,3r)-3-methoxy-4,4-dimethyloxetan-2-yl]-8,8-dimethyl-2h,3h-pyrano[3,2-g]chromen-4-one

C26H28O7 (452.1835)


   

4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-yl 3-phenylprop-2-enoate

4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-yl 3-phenylprop-2-enoate

C39H56O2 (556.428)


   

(3s,4ar,6ar,6bs,8ar,12as,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

(3s,4ar,6ar,6bs,8ar,12as,14ar,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

1-{5,10-dihydroxy-9-methoxy-2,2,8,8-tetramethyl-9h,10h-pyrano[2,3-h]chromen-6-yl}-3-(4-hydroxyphenyl)prop-2-en-1-one

1-{5,10-dihydroxy-9-methoxy-2,2,8,8-tetramethyl-9h,10h-pyrano[2,3-h]chromen-6-yl}-3-(4-hydroxyphenyl)prop-2-en-1-one

C26H28O7 (452.1835)


   

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-10-[(2s,3s)-3-methoxy-4,4-dimethyloxetan-2-yl]-8,8-dimethyl-2h,3h-pyrano[3,2-g]chromen-4-one

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-10-[(2s,3s)-3-methoxy-4,4-dimethyloxetan-2-yl]-8,8-dimethyl-2h,3h-pyrano[3,2-g]chromen-4-one

C26H28O7 (452.1835)


   

15-(5-hydroxy-6-methylhept-6-en-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

15-(5-hydroxy-6-methylhept-6-en-2-yl)-7,7,12,16-tetramethylpentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C30H48O2 (440.3654)


   

(4ar,6ar,6bs,8ar,11s,12as,14ar,14br)-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,4a,5,6,7,8,10,12,12a,14,14a-dodecahydropicene-3,9-dione

(4ar,6ar,6bs,8ar,11s,12as,14ar,14br)-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,4a,5,6,7,8,10,12,12a,14,14a-dodecahydropicene-3,9-dione

C30H46O3 (454.3447)


   

7,7,12,16-tetramethyl-15-(6-methyl-5-oxohept-6-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

7,7,12,16-tetramethyl-15-(6-methyl-5-oxohept-6-en-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C30H46O2 (438.3498)


   

1-{5-hydroxy-2,2,8,8-tetramethylpyrano[2,3-h]chromen-6-yl}-3-(4-hydroxyphenyl)prop-2-en-1-one

1-{5-hydroxy-2,2,8,8-tetramethylpyrano[2,3-h]chromen-6-yl}-3-(4-hydroxyphenyl)prop-2-en-1-one

C25H24O5 (404.1624)


   

(4ar,6ar,6bs,8ar,9r,12ar,14ar,14br)-9-hydroxy-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,6bs,8ar,9r,12ar,14ar,14br)-9-hydroxy-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

C30H48O2 (440.3654)


   

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-8,8-dimethyl-10-(3-methylbut-2-en-1-yl)-2h,3h-pyrano[3,2-g]chromen-4-one

(2s)-5-hydroxy-2-(4-hydroxyphenyl)-8,8-dimethyl-10-(3-methylbut-2-en-1-yl)-2h,3h-pyrano[3,2-g]chromen-4-one

C25H26O5 (406.178)


   

(2r)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-8,8-dimethyl-10-(3-methylbut-2-en-1-yl)-2h,3h-pyrano[3,2-g]chromen-4-one

(2r)-5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-8,8-dimethyl-10-(3-methylbut-2-en-1-yl)-2h,3h-pyrano[3,2-g]chromen-4-one

C26H28O6 (436.1886)


   

(4ar,6ar,6bs,8ar,9r,11s,12as,14as,14br)-9-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

(4ar,6ar,6bs,8ar,9r,11s,12as,14as,14br)-9-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

C30H48O3 (456.3603)


   

(1r,3ar,5ar,5br,7ar,9s,11ar,11bs,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,7ar,9s,11ar,11bs,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


   

(1s,3r,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methyl-5-oxohept-6-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

(1s,3r,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methyl-5-oxohept-6-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-one

C30H46O2 (438.3498)


   

9-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

9-hydroxy-11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

C30H48O3 (456.3603)


   

9-hydroxy-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

9-hydroxy-4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picen-3-one

C30H48O2 (440.3654)


   

5-hydroxy-2-(4-hydroxyphenyl)-10-[(2s)-3-methoxy-4,4-dimethyloxetan-2-yl]-8,8-dimethyl-2h,3h-pyrano[3,2-g]chromen-4-one

5-hydroxy-2-(4-hydroxyphenyl)-10-[(2s)-3-methoxy-4,4-dimethyloxetan-2-yl]-8,8-dimethyl-2h,3h-pyrano[3,2-g]chromen-4-one

C26H28O7 (452.1835)


   

(3s,6as,6br,8ar,12ar,12bs,14ar,14bs)-4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-yl (2e)-3-phenylprop-2-enoate

(3s,6as,6br,8ar,12ar,12bs,14ar,14bs)-4,4,6b,8a,11,11,12b,14a-octamethyl-1,2,3,6,6a,7,8,9,10,12,12a,13,14,14b-tetradecahydropicen-3-yl (2e)-3-phenylprop-2-enoate

C39H56O2 (556.428)


   

11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,4a,5,6,7,8,10,12,12a,14,14a-dodecahydropicene-3,9-dione

11-(hydroxymethyl)-4,4,6a,6b,8a,11,14b-heptamethyl-1,2,4a,5,6,7,8,10,12,12a,14,14a-dodecahydropicene-3,9-dione

C30H46O3 (454.3447)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis(3-methylbut-2-en-1-yl)chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-6,8-bis(3-methylbut-2-en-1-yl)chromen-4-one

C25H26O6 (422.1729)