NCBI Taxonomy: 182300

Camellia sasanqua (ncbi_taxid: 182300)

found 119 associated metabolites at species taxonomy rank level.

Ancestor: Camellia

Child Taxonomies: none taxonomy data.

Caffeine

1,3,7-trimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C8H10N4O2 (194.0804)


Caffeine is a methyl xanthine alkaloid that is also classified as a purine. Formally, caffeine belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Caffeine is chemically related to the adenine and guanine bases of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It is found in the seeds, nuts, or leaves of a number of plants native to Africa, East Asia and South America and helps to protect them against predator insects and to prevent germination of nearby seeds. The most well-known source of caffeine is the coffee bean. Caffeine is the most widely consumed psychostimulant drug in the world. 85\\\% of American adults consumed some form of caffeine daily, consuming 164 mg on average. Caffeine is mostly is consumed in the form of coffee. Caffeine is a central nervous system stimulant that reduces fatigue and drowsiness. At normal doses, caffeine has variable effects on learning and memory, but it generally improves reaction time, wakefulness, concentration, and motor coordination. Caffeine is a proven ergogenic aid in humans. Caffeine improves athletic performance in aerobic (especially endurance sports) and anaerobic conditions. Moderate doses of caffeine (around 5 mg/kg) can improve sprint performance, cycling and running time trial performance, endurance and cycling power output (PMID: 32551869). At intake levels associated with coffee consumption, caffeine appears to exert most of its biological effects through the antagonism of the A1 and A2A subtypes of the adenosine receptor. Adenosine is an endogenous neuromodulator with mostly inhibitory effects, and adenosine antagonism by caffeine results in effects that are generally stimulatory. Some physiological effects associated with caffeine administration include central nervous system stimulation, acute elevation of blood pressure, increased metabolic rate, and diuresis. A number of in vitro and in vivo studies have demonstrated that caffeine modulates both innate and adaptive immune responses. For instance, studies indicate that caffeine and its major metabolite paraxanthine suppress neutrophil and monocyte chemotaxis, and also suppress production of the pro-inflammatory cytokine tumor necrosis factor (TNF) alpha from human blood. Caffeine has also been reported to suppress human lymphocyte function as indicated by reduced T-cell proliferation and impaired production of Th1 (interleukin [IL]-2 and interferon [IFN]-gamma), Th2 (IL-4, IL-5) and Th3 (IL-10) cytokines. Studies also indicate that caffeine suppresses antibody production. The evidence suggests that at least some of the immunomodulatory actions of caffeine are mediated via inhibition of cyclic adenosine monophosphate (cAMP)-phosphodiesterase (PDE), and consequential increase in intracellular cAMP concentrations. Overall, these studies indicate that caffeine, like other members of the methylxanthine family, is largely anti-inflammatory in nature, and based on the pharmacokinetics of caffeine, many of its immunomodulatory effects occur at concentrations that are relevant to normal human consumption. (PMID: 16540173). Caffeine is rapidly and almost completely absorbed in the stomach and small intestine and distributed to all tissues, including the brain. Caffeine metabolism occurs primarily in the liver, where the activity of the cytochrome P450 isoform CYP1A2 accounts for almost 95\\\% of the primary metabolism of caffeine. CYP1A2-catalyzed 3-demethylation of caffeine results in the formation of 1,7-dimethylxanthine (paraxanthine). Paraxanthine may be demethylated by CYP1A2 to form 1-methylxanthine, which may be oxidized to 1-methyluric acid by xanthine oxidase. Paraxanthine may also be hydroxylated by CYP2A6 to form 1,7-dimethyluric acid, or acetylated by N-acetyltransferase 2 (NAT2) to form 5-acetylamino-6-formylamino-3-methyluracil, an unstable compound that may be deformylated nonenzymatically to form ... Caffeine appears as odorless white powder or white glistening needles, usually melted together. Bitter taste. Solutions in water are neutral to litmus. Odorless. (NTP, 1992) Caffeine is a trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. It has a role as a central nervous system stimulant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an adenosine receptor antagonist, an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor, a ryanodine receptor agonist, a fungal metabolite, an adenosine A2A receptor antagonist, a psychotropic drug, a diuretic, a food additive, an adjuvant, a plant metabolite, an environmental contaminant, a xenobiotic, a human blood serum metabolite, a mouse metabolite, a geroprotector and a mutagen. It is a purine alkaloid and a trimethylxanthine. Caffeine is a drug of the methylxanthine class used for a variety of purposes, including certain respiratory conditions of the premature newborn, pain relief, and to combat drowsiness. Caffeine is similar in chemical structure to [Theophylline] and [Theobromine]. It can be sourced from coffee beans, but also occurs naturally in various teas and cacao beans, which are different than coffee beans. Caffeine is also used in a variety of cosmetic products and can be administered topically, orally, by inhalation, or by injection. The caffeine citrate injection, used for apnea of the premature newborn, was initially approved by the FDA in 1999. According to an article from 2017, more than 15 million babies are born prematurely worldwide. This correlates to about 1 in 10 births. Premature birth can lead to apnea and bronchopulmonary dysplasia, a condition that interferes with lung development and may eventually cause asthma or early onset emphysema in those born prematurely. Caffeine is beneficial in preventing and treating apnea and bronchopulmonary dysplasia in newborns, improving the quality of life of premature infants. Caffeine is a Central Nervous System Stimulant and Methylxanthine. The physiologic effect of caffeine is by means of Central Nervous System Stimulation. Caffeine is xanthine alkaloid that occurs naturally in seeds, leaves and fruit of several plants and trees that acts as a natural pesticide. Caffeine is a major component of coffee, tea and chocolate and in humans acts as a central nervous system (CNS) stimulant. Consumption of caffeine, even in high doses, has not been associated with elevations in serum enzyme elevations or instances of clinically apparent liver injury. Caffeine is a natural product found in Mus musculus, Herrania cuatrecasana, and other organisms with data available. Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. This agent also promotes neurotransmitter release that further stimulates the CNS. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases (PDEs). Inhibition of PDEs raises the intracellular concentration of cyclic AMP (cAMP), activates protein kinase A, and inhibits leukotriene synthesis, which leads to reduced inflammation and innate immunity. Caffeine is the most widely consumed psychostimulant drug in the world that mostly is consumed in the form of coffee. Whether caffeine and/or coffee consumption contribute to the development of cardiovascular disease (CVD), the single leading cause of death in the US, is uncle... Component of coffee beans (Coffea arabica), many other Coffea subspecies, chocolate (Theobroma cacao), tea (Camellia thea), kolanut (Cola acuminata) and several other Cola subspecies and several other plants. It is used in many cola-type beverages as a flavour enhancer. Caffeine is found in many foods, some of which are black cabbage, canola, jerusalem artichoke, and yellow bell pepper. A trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. [Raw Data] CBA01_Caffeine_pos_50eV.txt [Raw Data] CBA01_Caffeine_pos_20eV.txt [Raw Data] CBA01_Caffeine_pos_40eV.txt [Raw Data] CBA01_Caffeine_pos_10eV.txt [Raw Data] CBA01_Caffeine_pos_30eV.txt Caffeine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-08-2 (retrieved 2024-06-29) (CAS RN: 58-08-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Theobromine

3,7-dimethylpurine-2,6-dione

C7H8N4O2 (180.0647)


Theobromine is an odorless white crystalline powder. Bitter taste. pH (saturated solution in water): 5.5-7. (NTP, 1992) Theobromine, also known as xantheose, is the principal alkaloid of Theobroma cacao (cacao plant).[4] Theobromine is slightly water-soluble (330 mg/L) with a bitter taste.[5] In industry, theobromine is used as an additive and precursor to some cosmetics.[4] It is found in chocolate, as well as in a number of other foods, including tea (Camellia sinensis), some American hollies (yaupon and guayusa) and the kola nut. It is a white or colourless solid, but commercial samples can appear yellowish.[5] Theobromine is a dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. It has a role as an adenosine receptor antagonist, a food component, a plant metabolite, a human blood serum metabolite, a mouse metabolite, a vasodilator agent and a bronchodilator agent. Theobromine (3,7-dimethylxanthine) is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) Theobromine is a natural product found in Theobroma grandiflorum, Theobroma mammosum, and other organisms with data available. 3,7-Dimethylxanthine. The principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than THEOPHYLLINE and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. (From Martindale, The Extra Pharmacopoeia, 30th ed, pp1318-9) See also: Paullinia cupana seed (part of). Theobromine, or 3,7-Dimethylxanthine, is the principle alkaloid in Theobroma cacao (the cacao bean) and other plants. A xanthine alkaloid that is used as a bronchodilator and as a vasodilator. It has a weaker diuretic activity than theophylline and is also a less powerful stimulant of smooth muscle. It has practically no stimulant effect on the central nervous system. It was formerly used as a diuretic and in the treatment of angina pectoris and hypertension. Theobromine is a bitter alkaloid of the methylxanthine family, which also includes the similar compounds theophylline and caffeine. Despite its name, the compound contains no bromine. Theobromine is derived from Theobroma, the genus of the cacao tree, which is composed of the Greek roots theo ("God") and broma ("food"), meaning "food of the gods". It is the primary alkaloid found in cocoa and chocolate, and is one of the causes for chocolates mood-elevating effects. The amount found in chocolate is small enough that chocolate can be safely consumed by humans in large quantities, but animals that metabolize theobromine more slowly, such as cats and dogs, can easily consume enough chocolate to cause chocolate poisoning. Theobromine is a stimulant frequently confused with caffeine. Theobromine has very different effects on the human body from caffeine; it is a mild, lasting stimulant with a mood improving effect, whereas caffeine has a strong, immediate effect and increases stress. In medicine, it is used as a diuretic, vasodilator, and myocardial stimulant. There is a possible association between prostate cancer and theobromine. Theobromine is a contributing factor in acid reflux because it relaxes the esophageal sphincter muscle, allowing stomach acid access to the esophagus. A dimethylxanthine having the two methyl groups located at positions 3 and 7. A purine alkaloid derived from the cacao plant, it is found in chocolate, as well as in a number of other foods, and is a vasodilator, diuretic and heart stimulator. Constituent of tea leaves (Camellia thea), cocoa Theobroma cacao, cola nut (Cola acuminata) and guarana (Paullinia cupana); flavouring ingredient with a bitter taste Biosynthesis Theobromine is a purine alkaloid derived from xanthosine, a nucleoside. Cleavage of the ribose and N-methylation yields 7-methylxanthosine. 7-Methylxanthosine in turn is the precursor to theobromine, which in turn is the precursor to caffeine.[24] Even without dietary intake, theobromine may occur in the body as it is a product of the human metabolism of caffeine, which is metabolised in the liver into 12\% theobromine, 4\% theophylline, and 84\% paraxanthine.[25] In the liver, theobromine is metabolized into xanthine and subsequently into methyluric acid.[26] Important enzymes include CYP1A2 and CYP2E1.[27] The elimination half life of theobromine is between 6 and 8 hours.[1][2] Unlike caffeine, which is highly water-soluble, theobromine is only slightly water-soluble and is more fat soluble, and thus peaks more slowly in the blood. While caffeine peaks after only 30 minutes, theobromine requires 2–3 hours to peak.[28] The primary mechanism of action for theobromine inside the body is inhibition of adenosine receptors.[5] Its effect as a phosphodiesterase inhibitor[29] is thought to be small.[5]

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)

   

Euphol

(3S,5R,10S,13S,14S)-17-((R)-1,5-Dimethyl-hex-4-enyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


Euphol is a triterpenoid. Euphol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Euphorbia subspecies (CCD). Euphol is found in many foods, some of which are cucumber, soy bean, shea tree, and tea. Euphol is found in cucumber. Euphol is a constituent of Euphorbia species (CCD) Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

beta-Cryptoxanthin

(1R)-3,5,5-trimethyl-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-3-en-1-ol

C40H56O (552.4331)


beta-Cryptoxanthin has been isolated from abalone, fish eggs, and many higher plants. beta-Cryptoxanthin is a major source of vitamin A, often second only to beta-carotene, and is present in fruits such as oranges, tangerines, and papayas (PMID: 8554331). Frequent intake of tropical fruits that are rich in beta-cryptoxanthin is associated with higher plasma beta-cryptoxanthin concentrations in Costa Rican adolescents. Papaya intake was the best food predictor of plasma beta-cryptoxanthin concentrations. Subjects that frequently consumed (i.e. greater or equal to 3 times/day) tropical fruits with at least 50 micro g/100 g beta-cryptoxanthin (e.g. papaya, tangerine, orange, watermelon) had twofold the plasma beta-cryptoxanthin concentrations of those with intakes of less than 4 times/week (PMID: 12368412). A modest increase in beta-cryptoxanthin intake, equivalent to one glass of freshly squeezed orange juice per day, is associated with a reduced risk of developing inflammatory disorders such as rheumatoid arthritis (PMID: 16087992). Higher prediagnostic serum levels of total carotenoids and beta-cryptoxanthin were associated with lower smoking-related lung cancer risk in middle-aged and older men in Shanghai, China (PMID: 11440962). Consistent with inhibition of the lung cancer cell growth, beta-cryptoxanthin induced the mRNA levels of retinoic acid receptor beta (RAR-beta) in BEAS-2B cells, although this effect was less pronounced in A549 cells. Furthermore, beta-cryptoxanthin transactivated the RAR-mediated transcription activity of the retinoic acid response element. These findings suggest a mechanism of anti-proliferative action of beta-cryptoxanthin and indicate that beta-cryptoxanthin may be a promising chemopreventive agent against lung cancer (PMID: 16841329). Cryptoxanthin is a natural carotenoid pigment. It has been isolated from a variety of sources including the petals and flowers of plants in the genus Physalis, orange rind, papaya, egg yolk, butter, apples, and bovine blood serum. In a pure form, cryptoxanthin is a red crystalline solid with a metallic lustre. It is freely soluble in chloroform, benzene, pyridine, and carbon disulfide. In the human body, cryptoxanthin is converted into vitamin A (retinol) and is therefore considered a provitamin A. As with other carotenoids, cryptoxanthin is an antioxidant and may help prevent free radical damage to cells and DNA, as well as stimulate the repair of oxidative damage to DNA. Structurally, cryptoxanthin is closely related to beta-carotene, with only the addition of a hydroxyl group. It is a member of the class of carotenoids known as xanthophylls. Beta-cryptoxanthin is a carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. It has a role as a provitamin A, an antioxidant, a biomarker and a plant metabolite. It derives from a hydride of a beta-carotene. beta-Cryptoxanthin is a natural product found in Hibiscus syriacus, Cladonia gracilis, and other organisms with data available. A mono-hydroxylated xanthophyll that is a provitamin A precursor. See also: Corn (part of). A carotenol that exhibits antioxidant activity. It has been isolated from fruits such as papaya and oranges. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins Cryptoxanthin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=472-70-8 (retrieved 2024-10-31) (CAS RN: 472-70-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

alpha-Carotene

(6R)-1,5,5-trimethyl-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4382)


alpha-Carotene belongs to the class of organic compounds known as carotenes. These are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. alpha-Carotene is considered to be an isoprenoid lipid molecule. alpha-Carotene is one of the primary isomers of carotene. Plasma levels of alpha-carotene are positively associated with the detection rate of AFB1-DNA adducts in a dose-dependent manner, whereas plasma lycopene level was inversely related to the presence of the adducts in urine (PMID: 9214602). (6R)-beta,epsilon-carotene is an alpha-carotene. It is an enantiomer of a (6S)-beta,epsilon-carotene. alpha-Carotene is a natural product found in Hibiscus syriacus, Scandix stellata, and other organisms with data available. Widespread carotenoid, e.g. in carrots and palm oil. Has vitamin A activity but less than that of b-Carotene A cyclic carotene with a beta- and an epsilon-ring at opposite ends respectively. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Germanicol

(3S,4aR,6aR,6bR,8aR,12bR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12b,13,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Germanicol is a pentacyclic triterpenoid that is oleanane substituted by a hydroxy group at the 3beta-position and with a double bond between positioins 18 and 19. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. Germanicol is a natural product found in Barringtonia racemosa, Euphorbia nicaeensis, and other organisms with data available.

   

L-Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0321)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=50-81-7 (retrieved 2024-10-29) (CAS RN: 50-81-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Beta-Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Cycloartenol

(1S,3R,6S,8R,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.01,3.03,8.012,16]octadecan-6-ol

C30H50O (426.3861)


Cycloartenol is found in alcoholic beverages. Cycloartenol is a constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato) Cycloartenol is a sterol precursor in photosynthetic organisms and plants. The biosynthesis of cycloartenol starts from the triterpenoid squalene. Its structure is also related to triterpenoid lanosterol Cycloartenol is a pentacyclic triterpenoid, a 3beta-sterol and a member of phytosterols. It has a role as a plant metabolite. It derives from a hydride of a lanostane. Cycloartenol is a natural product found in Euphorbia nicaeensis, Euphorbia boetica, and other organisms with data available. Constituent of Artocarpus integrifolia fruits and Solanum tuberosum (potato)

   

alpha-Amyrin

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1H-picen-3-ol

C30H50O (426.3861)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.

   

Eugenol

2-methoxy-4-prop-2-enylphenol

C10H12O2 (164.0837)


Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

Phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


Phenylacetaldehyde is one important oxidation-related aldehyde. Exposure to styrene gives phenylacetaldehyde as a secondary metabolite. Styrene has been implicated as reproductive toxicant, neurotoxicant, or carcinogen in vivo or in vitro. Phenylacetaldehyde could be formed by diverse thermal reactions during the cooking process together with C8 compounds is identified as a major aroma- active compound in cooked pine mushroom. Phenylacetaldehyde is readily oxidized to phenylacetic acid. Therefore will eventually be hydrolyzed and oxidized to yield phenylacetic acid that will be excreted primarily in the urine in conjugated form. (PMID: 16910727, 7818768, 15606130). Found in some essential oils, e.g. Citrus subspecies, Tagetes minuta (Mexican marigold) and in the mushroom Phallus impudicus (common stinkhorn). Flavouring ingredient COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Violaxanthin

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O4 (600.4178)


Violaxanthin belongs to the class of organic compounds known as xanthophylls. These are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Xanthophylls arise by oxygenation of the carotene backbone. Thus, violaxanthin is considered to be an isoprenoid lipid molecule. Violaxanthin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Violaxanthin is an orange-coloured pigment that is found in brown algae and various plants (e.g. pansies). It is biosynthesized from the epoxidation of zeaxanthin. Violaxanthin is a food additive that is only approved for use in Australia and New Zealand (INS: 161e) (PMID: 29890662). 3 (violaxanthin, zeaxanthin and antheraxanthin) participate in series of photo-induced interconversions known as violaxanthin cycle; Xanthophyll; a carotene epoxide that is precursor to capsanthin; cleavage of 9-cis-epoxycarotenoids (violaxanthin) to xanthoxin, catalyzed by 9-cis-epoxycarotenoid dioxygenase, is the key regulatory step of abscisic acid biosynthesis; one of 3 xanthophylls involved in evolution of plastids of green plants (oxygen evolution). (all-E)-Violaxanthin is found in many foods, some of which are orange bell pepper, passion fruit, pepper (c. annuum), and italian sweet red pepper. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Lutein 5,6-epoxide

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1R,4R)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O3 (584.4229)


Lutein; 5,6-Epoxide is found in common grape. Paprika oleoresin (also known as paprika extract) is an oil soluble extract from the fruits of Capsicum Annum Linn or Capsicum Frutescens(Indian red chillies), and is primarily used as a colouring and/or flavouring in food products. It is composed of capsaicin, the main flavouring compound giving pungency in higher concentrations, and capsanthin and capsorubin, the main colouring compounds (among other carotenoids). Isolated from a variety of higher plants and from algae. Taraxanthin was a mixture with lutein epoxide as the main component. [CCD]. Lutein 5,6-epoxide is found in many foods, some of which are rice, swamp cabbage, garden tomato (variety), and common grape.

   

24-Methylenecycloartan-3-ol

(1S,3R,6S,8R,11S,12S,15R,16R)-7,7,12,16-tetramethyl-15-[(2R)-6-methyl-5-methylideneheptan-2-yl]pentacyclo[9.7.0.0^{1,3}.0^{3,8}.0^{12,16}]octadecan-6-ol

C31H52O (440.4018)


24-methylenecycloartan-3-ol belongs to cycloartanols and derivatives class of compounds. Those are steroids containing a cycloartanol moiety. 24-methylenecycloartan-3-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 24-methylenecycloartan-3-ol can be found in a number of food items such as oregon yampah, common persimmon, pineapple, and climbing bean, which makes 24-methylenecycloartan-3-ol a potential biomarker for the consumption of these food products.

   

Barringtogenol C

4a-(hydroxymethyl)-2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-3,4,5,10-tetrol

C30H50O5 (490.3658)


Sapogenin from Thea sinensis (tea). Barringtogenol C is found in tea. Barringtogenol C is found in tea. Sapogenin from Thea sinensis (tea

   

tellimagrandin I

1-Desgalloyleugeniin

C34H26O22 (786.0916)


   

Camelliol C

4,6,6-trimethyl-5-[(3Z,7E,11Z)-3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl]cyclohex-3-en-1-ol

C30H50O (426.3861)


Camelliol C is found in fats and oils. Camelliol C is a constituent of sasanqua oil (Camellia sasanqua). Constituent of sasanqua oil (Camellia sasanqua). Camelliol C is found in tea and fats and oils.

   

δ-amyrin

delta-amyrin

C30H50O (426.3861)


   

Tirucallol

(3S,5R,10S,13S,14S,17S)-4,4,10,13,14-pentamethyl-17-((S)-6-methylhept-5-en-2-yl)-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


Tirucallol is a triterpenoid. Tirucallol is a natural product found in Euphorbia oxyphylla, Euphorbia caducifolia, and other organisms with data available. Constituent of gum mastic and pistachio nut resin. Tirucallol is found in many foods, some of which are soy bean, tea, cucumber, and muskmelon. Tirucallol is found in cucumber. Tirucallol is a constituent of gum mastic and pistachio nut resin. Tirucallol, a tetracyclic triterpene, is isolated from Euphorbia lacteal latex. Tirucallol has topical anti-inflammatory effect. Tirucallol can suppress ear edema in the mouse model and inhibit nitrite production in lipopolysaccharide-stimulated macrophages[1]. Tirucallol, a tetracyclic triterpene, is isolated from Euphorbia lacteal latex. Tirucallol has topical anti-inflammatory effect. Tirucallol can suppress ear edema in the mouse model and inhibit nitrite production in lipopolysaccharide-stimulated macrophages[1].

   

3beta-24-Methylenecycloartan-3-ol

7,7,12,16-tetramethyl-15-(6-methyl-5-methylideneheptan-2-yl)pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C31H52O (440.4018)


3beta-24-Methylenecycloartan-3-ol is a constituent of rice bran oil. Constituent of rice bran oil

   

beta-Sitostenone

(2R,15R)-14-[(2R,5R)-5-ethyl-6-methylheptan-2-yl]-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-6-en-5-one

C29H48O (412.3705)


beta-Sitostenone is found in cardamom. beta-Sitostenone is a constituent of the wood of Quassia amara (Surinam quassia).

   

Camelliagenin A

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,8,9-triol

C30H50O4 (474.3709)


Sapogenin from the seeds of Camellia japonica. Camelliagenin A is found in tea and fats and oils. Camelliagenin A is found in fats and oils. Sapogenin from the seeds of Camellia japonic

   

Gein

2-[2-methoxy-4-(prop-2-en-1-yl)phenoxy]-6-{[(3,4,5-trihydroxyoxan-2-yl)oxy]methyl}oxane-3,4,5-triol

C21H30O11 (458.1788)


Sasanquin is found in fats and oils. Sasanquin is isolated from leaves of Camellia sasanqua and Camellia japonica. Isolated from roots of Geum urbanum (herb bennet)

   

Sintaxanthin

(3E,5E,7E,9Z,11E,13E,15Z,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-3,5,7,9,11,13,15,17-octaen-2-one

C31H42O (430.3235)


Isolated from the exocarp of Sinton citrangequat (a Citrus/Poncirus/Fortunella hybrid). Sintaxanthin is found in sweet orange and citrus. Sintaxanthin is found in citrus. Sintaxanthin is isolated from the exocarp of Sinton citrangequat (a Citrus/Poncirus/Fortunella hybrid

   

Theasapogenol A

4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-3,4,5,10-tetrol

C30H50O6 (506.3607)


Theasapogenol A is found in tea. Sapogenol isolated from seeds of china tea and other plants. May or may not be present in the leaves. Theasapogenol A is found together with various acylated derivation and their glucosides for which refs. are give Sapogenol isolated from seeds of china tea and other plants. May or may not be present in the leaves. Found together with various acylated derivs. and their glucosides for which refs. are given. Theasapogenol A is found in tea.

   

Theasapogenol E

3,8,9,10-tetrahydroxy-8a-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carbaldehyde

C30H48O6 (504.3451)


Camelliagenin D is found in fats and oils. Camelliagenin D is isolated from seeds of Camellia sinensis (Japanese tea) and Camellia sasanqu Sapogenin from seeds of China tea (Thea sinensis) and Camellia sasanqua. Theasapogenol E is found in tea.

   

Dammaradienol

2,6,6,10,11-pentamethyl-14-(6-methylhepta-1,5-dien-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-5-ol

C30H50O (426.3861)


Dammaradienol is found in herbs and spices. Dammaradienol is a constituent of Inula helenium (elecampane)

   

Camelliagenin C

4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,8,9-triol

C30H50O5 (490.3658)


Sapogenin from the seeds of Camellia japonica. Camelliagenin C is found in tea and fats and oils. Camelliagenin C is found in fats and oils. Sapogenin from the seeds of Camellia japonic

   

Camelliin A

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(19),2,4,6,20,22-hexaen-12-yl 2-({7,8,9,12,13,14,20,29,30,33,34,35-dodecahydroxy-4,17,25,38-tetraoxo-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaen-28-yl}oxy)-3,4,5-trihydroxybenzoate

C68H48O44 (1568.1518)


Camelliin A is found in fats and oils. Camelliin A is isolated from the flower buds of Camellia japonica and Camellia sasanqua. Isolated from the flower buds of Camellia japonica and Camellia sasanqua. Camelliin A is found in tea and fats and oils.

   

Camelliin B

4,5,6,12,20,21,22,30,31,32,47,48,49,52,53,59,60-heptadecahydroxy-9,17,35,44,56,61-hexaoxo-38,39-bis(3,4,5-trihydroxybenzoyloxy)-2,10,13,16,28,36,43,57,58,62-decaoxaundecacyclo[38.13.4.3¹⁴,²⁵.2²⁴,²⁷.1¹¹,¹⁵.1³⁷,⁴¹.0³,⁸.0¹⁸,²³.0²⁹,³⁴.0⁴⁵,⁵⁰.0⁵¹,⁵⁵]tetrahexaconta-1(53),3,5,7,18(23),19,21,24(60),25,27(59),29(34),30,32,45(50),46,48,51,54-octadecaen-64-yl 3,4,5-trihydroxybenzoate

C75H52O48 (1720.1628)


Camelliin B is found in fats and oils. Camelliin B is isolated from the flower buds of Camellia japonica and Camellia sasanqua. Isolated from the flower buds of Camellia japonica and Camellia sasanqua. Camelliin B is found in tea and fats and oils.

   

beta-Amyrin acetate

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-yl acetate

C32H52O2 (468.3967)


Beta-amyrin acetate, also known as B-amyrin acetic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Beta-amyrin acetate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Beta-amyrin acetate can be found in burdock and guava, which makes beta-amyrin acetate a potential biomarker for the consumption of these food products. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

psi-Taraxasterol

(3S,6aR,6bR,8aS,12S,14bR)-4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Psi-taraxasterol is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Psi-taraxasterol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Psi-taraxasterol can be found in burdock and dandelion, which makes psi-taraxasterol a potential biomarker for the consumption of these food products.

   

Caffeine

1,3,7-trimethylpurine-2,6-dione

C8H10N4O2 (194.0804)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant CONFIDENCE standard compound; EAWAG_UCHEM_ID 303 EAWAG_UCHEM_ID 303; CONFIDENCE standard compound D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.3861)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Ascorbic acid

(5R)-5-[(1S)-1,2-dihydroxyethyl]-3,4-dihydroxy-2,5-dihydrofuran-2-one

C6H8O6 (176.0321)


Ascorbic acid is found naturally in citrus fruits and many vegetables and is an essential nutrient in human diets. It is necessary to maintain connective tissue and bone. The biologically active form of ascorbic acid is vitamin C. Vitamin C is a water soluble vitamin. Primates (including humans) and a few other species in all divisions of the animal kingdom, notably the guinea pig, have lost the ability to synthesize ascorbic acid and must obtain it in their food. Vitamin C functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant (PubChem). Ascorbic acid is an electron donor for enzymes involved in collagen hydroxylation, biosynthesis of carnitine and norepinephrine, tyrosine metabolism, and amidation of peptide hormones. Ascrobic acid (vitamin C) deficiency causes scurvy. The amount of vitamin C necessary to prevent scurvy may not be adequate to maintain optimal health. The ability of vitamin C to donate electrons also makes it a potent water-soluble antioxidant that readily scavenges free radicals such as molecular oxygen, superoxide, hydroxyl radical, and hypochlorous acid. In this setting, several mechanisms could account for a link between vitamin C and heart disease. One is the relation between LDL oxidation and vitamins C and E. Vitamin C in vitro can recycle vitamin E, which can donate electrons to prevent LDL oxidation in vitro. As the lipid-phase vitamin E is oxidized, it can be regenerated by aqueous vitamin C. Other possibilities are that vitamin C could decrease cholesterol by mechanisms not well characterized, or could improve vasodilatation and vascular reactivity, perhaps by decreasing the interactions of nitric oxide with oxidants (PMID: 10799361). Moreover, ascorbic acid is found to be associated with hyperoxalemia, which is an inborn error of metabolism. Ascorbic acid is also a microbial metabolite produced by Ketogulonicigenium (PMID: 15785002). Occurs widely in animals and plants. Good sources are citrus fruits and hip berries. Isolated from ox adrenal cortex, lemons and paprika. Production industrially on a large scale from glucose. Vitamin (antiscorbutic), antioxidant, nutrient, preservative consistency enhancer. It is used to reduce discoloration, mainly browning caused by polyphenol oxidase, in fruit and vegetable products. It is used to enhance colour formn. and to reduced the formn. of nitrosamines in meat products. It is used synergistically with Sulfur dioxide HVF10-P in wine and beer as a perservative. Assists formn. of the gluten network in bread making, thus enhancing bread volume. L-Ascorbic acid is found in many foods, some of which are cabbage, hyssop, ginseng, and pancake. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].

   

β-Amyrin acetate

(4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl) acetate

C32H52O2 (468.3967)


β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Cycloartenol

9beta,19-cyclolanost-24-en-3beta-ol

C30H50O (426.3861)


   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

tellimagrandin I

tellimagrandin I

C34H26O22 (786.0916)


   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.3861)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.

   

Sasanquol

3-[4b,7,8a,10a-tetramethyl-7-(4-methylpent-3-en-1-yl)-2-(propan-2-ylidene)-tetradecahydrophenanthren-1-yl]propan-1-ol

C30H52O (428.4018)


   

Butyrospermol

(3S,5R,10R,13S,14S)-17-((R)-1,5-Dimethyl-hex-4-enyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta(a)phenanthren-3-ol

C30H50O (426.3861)


(-)-Butyrospermol is a natural product found in Euphorbia chamaesyce, Euphorbia mellifera, and other organisms with data available.

   

β-Amyrin acetate

[(3S,4aR,6aR,6bS,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicen-3-yl] acetate

C32H52O2 (468.3967)


Beta-amyrin acetate is a triterpenoid. beta-Amyrin acetate is a natural product found in Euphorbia decipiens, Euphorbia larica, and other organisms with data available. β-Amyrin acetate is a triterpenoid with potent anti-inflammatory, antifungal, anti-diabetic, anti-hyperlipidemic activities. β-Amyrin acetate can inhibit HMG-CoA reductase activity by locating in the hydrophobic binding cleft of HMG CoA reductase[1][2][3][4].

   

Caffeine

1,3,7-trimethylpurine-2,6-dione

C8H10N4O2 (194.0804)


CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5866; ORIGINAL_PRECURSOR_SCAN_NO 5861 N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5880; ORIGINAL_PRECURSOR_SCAN_NO 5879 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5893; ORIGINAL_PRECURSOR_SCAN_NO 5892 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5916; ORIGINAL_PRECURSOR_SCAN_NO 5911 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5923; ORIGINAL_PRECURSOR_SCAN_NO 5921 CONFIDENCE standard compound; INTERNAL_ID 1199; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5924; ORIGINAL_PRECURSOR_SCAN_NO 5922 CONFIDENCE standard compound; INTERNAL_ID 2766 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; RYYVLZVUVIJVGH-UHFFFAOYSA-N_STSL_0030_Caffeine_0500fmol_180410_S2_LC02_MS02_97; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 1079 CONFIDENCE standard compound; INTERNAL_ID 50 CONFIDENCE standard compound; INTERNAL_ID 8666 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.568 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.560 CONFIDENCE standard compound; INTERNAL_ID 4089 IPB_RECORD: 3001; CONFIDENCE confident structure

   

theobromine

3,7-dimethylpurine-2,6-dione

C7H8N4O2 (180.0647)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; YAPQBXQYLJRXSA-UHFFFAOYSA-N_STSL_0032_Theobromine_8000fmol_180416_S2_LC02_MS02_45; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.367 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.359

   

Violaxanthin

(1S,4S,6R)-1-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1S,4S,6R)-4-hydroxy-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-2,2,6-trimethyl-7-oxabicyclo[4.1.0]heptan-4-ol

C40H56O4 (600.4178)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Cucurbitachrome 1 is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone. Cucurbitachrome 1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cucurbitachrome 1 can be found in a number of food items such as italian sweet red pepper, herbs and spices, fruits, and red bell pepper, which makes cucurbitachrome 1 a potential biomarker for the consumption of these food products. (all-e)-violaxanthin is a member of the class of compounds known as xanthophylls. Xanthophylls are carotenoids containing an oxygenated carotene backbone. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Xanthophylls arise by oxygenation of the carotene backbone (all-e)-violaxanthin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (all-e)-violaxanthin can be found in a number of food items such as orange bell pepper, green bell pepper, passion fruit, and yellow bell pepper, which makes (all-e)-violaxanthin a potential biomarker for the consumption of these food products.

   

Cryptoxanthin

(all-E)-beta-Cryptoxanthin

C40H56O (552.4331)


Isolated from papaya (Carica papaya) and many other higher plants, also from fish eggs [DFC]. beta-Cryptoxanthin is found in many foods, some of which are smelt, soy yogurt, common carp, and rose hip.

   

α-Carotene

(all-E)-alpha-Carotene

C40H56 (536.4382)


   

phenylacetaldehyde

2-phenylacetaldehyde

C8H8O (120.0575)


An aldehyde that consists of acetaldehyde bearing a methyl substituent; the parent member of the phenylacetaldehyde class of compounds. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Eugenol

2-methoxy-4-prop-2-enylphenol

C10H12O2 (164.0837)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

euphol

(3S,5R,10S,13S,14S)-17-((R)-1,5-Dimethyl-hex-4-enyl)-4,4,10,13,14-pentamethyl-2,3,4,5,6,7,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1]. Euphol is a tetracyclic triterpene alcohol isolated from the sap of Euphorbia tirucalli with anti-mutagenic, anti-inflammatory and immunomodulatory effects, orally active. Euphol inhibits the monoacylglycerol lipase (MGL) activity via a reversible mechanism (IC50=315 nM). MGL inhibition in the periphery modulates the endocannabinoid system to block the development of inflammatory pain[1].

   

24-methylene-cycloartanol

24-methylene-9beta,19-cyclo-lanostan-3beta-ol

C31H52O (440.4018)


   

Camelliagenin e

3,8,9,10-tetrahydroxy-8a-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carbaldehyde

C30H48O6 (504.3451)


   

Theasapogenol A

4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-3,4,5,10-tetrol

C30H50O6 (506.3607)


   

Barrigenol a2

8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,8,9-triol

C30H50O4 (474.3709)


   

Camelliagenin B

3,8,9-trihydroxy-8a-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carbaldehyde

C30H48O5 (488.3502)


   

Theasapogenol C

4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,8,9-triol

C30H50O5 (490.3658)


   

Sintaxanthin

(3E,5E,7E,9Z,11E,13E,15Z,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-3,5,7,9,11,13,15,17-octaen-2-one

C31H42O (430.3235)


   

Lutein 5,6-epoxide

(1R,3S,6S)-6-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(1R,4R)-4-hydroxy-2,6,6-trimethylcyclohex-2-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-1,5,5-trimethyl-7-oxabicyclo[4.1.0]heptan-3-ol

C40H56O3 (584.4229)


An epoxycarotenol derivative of lutein.

   

Dammaradienol

Dammaradienol

C30H50O (426.3861)


   

Engenol

InChI=1\C10H12O2\c1-3-4-8-5-6-9(11)10(7-8)12-2\h3,5-7,11H,1,4H2,2H

C10H12O2 (164.0837)


C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.

   

viminalol

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.3861)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ...

   

Hyacinthin

InChI=1\C8H8O\c9-7-6-8-4-2-1-3-5-8\h1-5,7H,6H

C8H8O (120.0575)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

vitamin C

2-o-(beta-d-glucopyranosyl)-ascorbic acid_qt

C6H8O6 (176.0321)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].

   

Lanster

(3S,5R,10S,13R,14R,17R)-4,4,10,13,14-pentamethyl-17-[(2R)-6-methylhept-5-en-2-yl]-2,3,5,6,7,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-3-ol

C30H50O (426.3861)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

teina

InChI=1\C8H10N4O2\c1-10-4-9-6-5(10)7(13)12(3)8(14)11(6)2\h4H,1-3H

C8H10N4O2 (194.0804)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Thesal

1H-purine-2,6-dione,3,7-dihydro-3,7- dimethyl- (9CI)

C7H8N4O2 (180.0647)


R - Respiratory system > R03 - Drugs for obstructive airway diseases > R03D - Other systemic drugs for obstructive airway diseases > R03DA - Xanthines C - Cardiovascular system > C03 - Diuretics > C03B - Low-ceiling diuretics, excl. thiazides > C03BD - Xanthine derivatives D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents C78273 - Agent Affecting Respiratory System > C29712 - Anti-asthmatic Agent > C319 - Bronchodilator D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents

   

Escinidin

(3R,4R,4aR,5R,6aR,6aS,6bR,8aR,10S,12aR,14bS)-4a-(hydroxymethyl)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-3,4,5,10-tetrol

C30H50O5 (490.3658)


   

Vitamin_C

L-Threoascorbic acid,Antiscorbutic factor,Vitamin C;(R)-5-((S)-1,2-Dihydroxyethyl)-3,4-dihydroxyfuran-2(5H)-one

C6H8O6 (176.0321)


L-ascorbic acid is a white to very pale yellow crystalline powder with a pleasant sharp acidic taste. Almost odorless. (NTP, 1992) L-ascorbic acid is the L-enantiomer of ascorbic acid and conjugate acid of L-ascorbate. It has a role as a coenzyme, a flour treatment agent, a food antioxidant, a plant metabolite, a cofactor, a skin lightening agent and a geroprotector. It is an ascorbic acid and a vitamin C. It is a conjugate acid of a L-ascorbate. It is an enantiomer of a D-ascorbic acid. A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. Ascorbic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Ascorbic acid is a Vitamin C. Ascorbic Acid is a natural product found in Populus tremula, Rosa platyacantha, and other organisms with data available. Ascorbic Acid is a natural water-soluble vitamin (Vitamin C). Ascorbic acid is a potent reducing and antioxidant agent that functions in fighting bacterial infections, in detoxifying reactions, and in the formation of collagen in fibrous tissue, teeth, bones, connective tissue, skin, and capillaries. Found in citrus and other fruits, and in vegetables, vitamin C cannot be produced or stored by humans and must be obtained in the diet. (NCI04) A six carbon compound related to glucose. It is found naturally in citrus fruits and many vegetables. Ascorbic acid is an essential nutrient in human diets, and necessary to maintain connective tissue and bone. Its biologically active form, vitamin C, functions as a reducing agent and coenzyme in several metabolic pathways. Vitamin C is considered an antioxidant. See also: Sodium Ascorbate (active moiety of); D-ascorbic acid (related); Magnesium Ascorbyl Phosphate (active moiety of) ... View More ... G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AD - Organic acids A - Alimentary tract and metabolism > A11 - Vitamins > A11G - Ascorbic acid (vitamin c), incl. combinations > A11GA - Ascorbic acid (vitamin c), plain B - Blood and blood forming organs > B03 - Antianemic preparations > B03A - Iron preparations > B03AA - Iron bivalent, oral preparations COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4]. L-Ascorbic acid (L-Ascorbate), an electron donor, is an endogenous antioxidant agent. L-Ascorbic acid inhibits selectively Cav3.2 channels with an IC50 of 6.5 μM. L-Ascorbic acid is also a collagen deposition enhancer and an elastogenesis inhibitor[1][2][3]. L-Ascorbic acid exhibits anti-cancer effects through the generation of reactive oxygen species (ROS) and selective damage to cancer cells[4].

   

24-methylenecycloartanol

24-methylenecycloartanol

C31H52O (440.4018)


A pentacyclic triterpenoid that is (9beta)-24-methylene-9,19-cyclolanostane which carries a hydroxy group at position 3beta. It is isolated from several plant species including Euphorbia, Epidendrum, Psychotria and Sideritis.

   

Camelliol C

Camelliol C

C30H50O (426.3861)


   

Theasapogenol b

barringtogenol C

C30H50O5 (490.3658)


   

(3s,4r,4ar,6ar,6bs,8r,8as,9s,12as,14ar,14br)-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,8,9-triol

(3s,4r,4ar,6ar,6bs,8r,8as,9s,12as,14ar,14br)-4,8a-bis(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,8,9-triol

C30H50O5 (490.3658)


   

(2s,3r,4s,5s,6r)-2-[2-methoxy-4-(prop-2-en-1-yl)phenoxy]-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-[2-methoxy-4-(prop-2-en-1-yl)phenoxy]-6-({[(2s,3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C21H30O11 (458.1788)


   

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-({7,8,9,12,13,14,20,29,30,33,34,35-dodecahydroxy-4,17,25,38-tetraoxo-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32(37),33,35-dodecaen-28-yl}oxy)-3,4,5-trihydroxybenzoate

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-({7,8,9,12,13,14,20,29,30,33,34,35-dodecahydroxy-4,17,25,38-tetraoxo-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32(37),33,35-dodecaen-28-yl}oxy)-3,4,5-trihydroxybenzoate

C68H48O44 (1568.1518)


   

5-[6-(2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl)-3-methylhex-3-en-1-yl]-4,6,6-trimethylcyclohex-3-en-1-yl acetate

5-[6-(2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl)-3-methylhex-3-en-1-yl]-4,6,6-trimethylcyclohex-3-en-1-yl acetate

C32H52O2 (468.3967)


   

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-{4-[(2s)-3,3-dimethyloxiran-2-yl]but-1-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-{4-[(2s)-3,3-dimethyloxiran-2-yl]but-1-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H50O2 (442.3811)


   

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-3a,3b,6,6,9a-pentamethyl-1-(6-methyl-5-methylidenehept-1-en-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-3a,3b,6,6,9a-pentamethyl-1-(6-methyl-5-methylidenehept-1-en-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C31H52O (440.4018)


   

2,2-dimethyl-4-methylidene-3-(3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl)cyclohexyl acetate

2,2-dimethyl-4-methylidene-3-(3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl)cyclohexyl acetate

C32H52O2 (468.3967)


   

(1s,5r)-4,6,6-trimethyl-5-[(3e,7e,11e)-3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl]cyclohex-3-en-1-yl acetate

(1s,5r)-4,6,6-trimethyl-5-[(3e,7e,11e)-3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl]cyclohex-3-en-1-yl acetate

C32H52O2 (468.3967)


   

1-{3,4,5,11,17,18,19-heptahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-10-yl}-2-hydroxy-3-oxopropyl 3,4,5-trihydroxybenzoate

1-{3,4,5,11,17,18,19-heptahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-10-yl}-2-hydroxy-3-oxopropyl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806)


   

(1s,5r)-5-[(3e)-6-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-3-methylhex-3-en-1-yl]-4,6,6-trimethylcyclohex-3-en-1-yl acetate

(1s,5r)-5-[(3e)-6-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-3-methylhex-3-en-1-yl]-4,6,6-trimethylcyclohex-3-en-1-yl acetate

C32H52O2 (468.3967)


   

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-{4-[(2r)-3,3-dimethyloxiran-2-yl]but-1-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-{4-[(2r)-3,3-dimethyloxiran-2-yl]but-1-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

C32H52O3 (484.3916)


   

(3as,5ar,7s,9ar,11as)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3as,5ar,7s,9ar,11as)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

4,5-bis(acetyloxy)-2-{[3,4,5,6-tetrakis(acetyloxy)oxan-2-yl]methoxy}oxan-3-yl acetate

4,5-bis(acetyloxy)-2-{[3,4,5,6-tetrakis(acetyloxy)oxan-2-yl]methoxy}oxan-3-yl acetate

C25H34O17 (606.1796)


   

(1s,3br,7s,9ar)-1-[4-(3,3-dimethyloxiran-2-yl)but-1-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1s,3br,7s,9ar)-1-[4-(3,3-dimethyloxiran-2-yl)but-1-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H50O2 (442.3811)


   

(2s)-2-amino-4-(ethyl-c-hydroxycarbonimidoyl)butanoic acid

(2s)-2-amino-4-(ethyl-c-hydroxycarbonimidoyl)butanoic acid

C7H14N2O3 (174.1004)


   

(1r,7s,9as)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,7s,9as)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

(3s,4ar,6ar,6bs,8r,8as,9s,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,8,9-triol

(3s,4ar,6ar,6bs,8r,8as,9s,12as,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,11,14b-heptamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,8,9-triol

C30H50O4 (474.3709)


   

(4s,8e)-11-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-yl acetate

(4s,8e)-11-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-yl acetate

C32H54O2 (470.4124)


   

(3ar,3br,5ar,7s,9ar,9br)-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(3ar,3br,5ar,7s,9ar,9br)-3a,3b,6,6,9a-pentamethyl-1-(6-methylhepta-1,5-dien-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

(3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

(3r,6s,8r,11s,12s,15r,16r)-7,7,12,16-tetramethyl-15-[(2r)-6-methylhept-5-en-2-yl]pentacyclo[9.7.0.0¹,³.0³,⁸.0¹²,¹⁶]octadecan-6-ol

C30H50O (426.3861)


   

(3as,3br,5ar,7s,9ar,9br)-3a,3b,6,6,9a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3as,3br,5ar,7s,9ar,9br)-3a,3b,6,6,9a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

(10r,11s,12r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 3,4,5-trihydroxybenzoate

(10r,11s,12r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 3,4,5-trihydroxybenzoate

C34H26O22 (786.0916)


   

3-[(3s,3as,5as,6s,9as,9br)-3a,5a,9b-trimethyl-3-[(2s)-6-methylhept-5-en-2-yl]-7-(propan-2-ylidene)-octahydro-1h-cyclopenta[a]naphthalen-6-yl]propan-1-ol

3-[(3s,3as,5as,6s,9as,9br)-3a,5a,9b-trimethyl-3-[(2s)-6-methylhept-5-en-2-yl]-7-(propan-2-ylidene)-octahydro-1h-cyclopenta[a]naphthalen-6-yl]propan-1-ol

C30H52O (428.4018)


   

(3as,3br,5ar,7s,9ar,9br)-3a,3b,6,6,9a-pentamethyl-1-[(2s)-6-methylhept-5-en-2-yl]-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(3as,3br,5ar,7s,9ar,9br)-3a,3b,6,6,9a-pentamethyl-1-[(2s)-6-methylhept-5-en-2-yl]-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

4,5,6,12,20,21,22,30,31,32,47,48,49,52,53,59,60-heptadecahydroxy-9,17,35,44,56,61-hexaoxo-38,64-bis(3,4,5-trihydroxybenzoyloxy)-2,10,13,16,28,36,43,57,58,62-decaoxaundecacyclo[38.13.4.3¹⁴,²⁵.2²⁴,²⁷.1¹¹,¹⁵.1³⁷,⁴¹.0³,⁸.0¹⁸,²³.0²⁹,³⁴.0⁴⁵,⁵⁰.0⁵¹,⁵⁵]tetrahexaconta-1(54),3,5,7,18(23),19,21,24,26,29,31,33,45(50),46,48,51(55),52,59-octadecaen-39-yl 3,4,5-trihydroxybenzoate

4,5,6,12,20,21,22,30,31,32,47,48,49,52,53,59,60-heptadecahydroxy-9,17,35,44,56,61-hexaoxo-38,64-bis(3,4,5-trihydroxybenzoyloxy)-2,10,13,16,28,36,43,57,58,62-decaoxaundecacyclo[38.13.4.3¹⁴,²⁵.2²⁴,²⁷.1¹¹,¹⁵.1³⁷,⁴¹.0³,⁸.0¹⁸,²³.0²⁹,³⁴.0⁴⁵,⁵⁰.0⁵¹,⁵⁵]tetrahexaconta-1(54),3,5,7,18(23),19,21,24,26,29,31,33,45(50),46,48,51(55),52,59-octadecaen-39-yl 3,4,5-trihydroxybenzoate

C75H52O48 (1720.1628)


   

4,6,6-trimethyl-5-(3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl)cyclohex-3-en-1-yl acetate

4,6,6-trimethyl-5-(3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl)cyclohex-3-en-1-yl acetate

C32H52O2 (468.3967)


   

3-[(3s,3as,5as,6s,9as,9br)-3a,5a,9b-trimethyl-3-[(2r)-6-methylhept-5-en-2-yl]-7-(propan-2-ylidene)-octahydro-1h-cyclopenta[a]naphthalen-6-yl]propan-1-ol

3-[(3s,3as,5as,6s,9as,9br)-3a,5a,9b-trimethyl-3-[(2r)-6-methylhept-5-en-2-yl]-7-(propan-2-ylidene)-octahydro-1h-cyclopenta[a]naphthalen-6-yl]propan-1-ol

C30H52O (428.4018)


   

(1s,3r)-2,2-dimethyl-4-methylidene-3-[(3e,7e,11e)-3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl]cyclohexan-1-ol

(1s,3r)-2,2-dimethyl-4-methylidene-3-[(3e,7e,11e)-3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl]cyclohexan-1-ol

C30H50O (426.3861)


   

(6s,7ar)-2-[(2e,4e,6e,8e,10e,12e,14e)-15-[(6s,7ar)-6-hydroxy-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl]-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-6-ol

(6s,7ar)-2-[(2e,4e,6e,8e,10e,12e,14e)-15-[(6s,7ar)-6-hydroxy-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-2-yl]-6,11-dimethylhexadeca-2,4,6,8,10,12,14-heptaen-2-yl]-4,4,7a-trimethyl-2,5,6,7-tetrahydro-1-benzofuran-6-ol

C40H56O4 (600.4178)


   

(3s,4s,4as,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-3,8,9,10-tetrahydroxy-8a-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carbaldehyde

(3s,4s,4as,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-3,8,9,10-tetrahydroxy-8a-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carbaldehyde

C30H48O6 (504.3451)


   

(2r,3r,4s,5r,6s)-4,5,6-tris(acetyloxy)-2-({[(2r,3r,4s,5r)-3,4,5-tris(acetyloxy)oxan-2-yl]oxy}methyl)oxan-3-yl acetate

(2r,3r,4s,5r,6s)-4,5,6-tris(acetyloxy)-2-({[(2r,3r,4s,5r)-3,4,5-tris(acetyloxy)oxan-2-yl]oxy}methyl)oxan-3-yl acetate

C25H34O17 (606.1796)


   

(1r,3ar,7s,9ar,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3ar,7s,9ar,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2r)-6-methylhept-5-en-2-yl]-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C30H50O (426.3861)


   

11-(2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl)-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-yl acetate

11-(2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl)-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-yl acetate

C32H54O2 (470.4124)


   

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

(4ar,6ar,6br,8as,12ar,12br,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,12,12a,12b,13,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.3861)


   

(4s,8e)-11-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-ol

(4s,8e)-11-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-ol

C30H52O (428.4018)


   

(8e)-11-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-ol

(8e)-11-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-4,8-dimethyl-5-(propan-2-ylidene)undec-8-en-1-ol

C30H52O (428.4018)


   

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-{4-[(2r)-3,3-dimethyloxiran-2-yl]but-1-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

(1s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-{4-[(2r)-3,3-dimethyloxiran-2-yl]but-1-en-2-yl}-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-ol

C30H50O2 (442.3811)


   

(1s,3r)-2,2-dimethyl-4-methylidene-3-[(3e,7e,11e)-3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl]cyclohexyl acetate

(1s,3r)-2,2-dimethyl-4-methylidene-3-[(3e,7e,11e)-3,8,12,16-tetramethylheptadeca-3,7,11,15-tetraen-1-yl]cyclohexyl acetate

C32H52O2 (468.3967)


   

1-[4-(3,3-dimethyloxiran-2-yl)but-1-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

1-[4-(3,3-dimethyloxiran-2-yl)but-1-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

C32H52O3 (484.3916)


   

(3s,4r,4as,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-3,8,9,10-tetrahydroxy-8a-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carbaldehyde

(3s,4r,4as,6ar,6bs,8r,8ar,9r,10r,12as,14ar,14br)-3,8,9,10-tetrahydroxy-8a-(hydroxymethyl)-4,6a,6b,11,11,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-4-carbaldehyde

C30H48O6 (504.3451)


   

(3s)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

(3s)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12b,13,14,14a-tetradecahydropicen-3-ol

C30H50O (426.3861)


   

(3r,4r,4ar,5r,6as,6br,8as,9r,10s,12ar,12br,14bs)-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-3,4,5,10-tetrol

(3r,4r,4ar,5r,6as,6br,8as,9r,10s,12ar,12br,14bs)-4a,9-bis(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-3,4,5,10-tetrol

C30H50O6 (506.3607)


   

11-formyl-4,5,6,18,19,20,28,29,30,45,46,47,50,51,57,58,62-heptadecahydroxy-9,15,33,42,54,59-hexaoxo-36,37-bis(3,4,5-trihydroxybenzoyloxy)-2,10,14,26,34,41,55,56,60-nonaoxadecacyclo[36.13.4.4¹³,²³.2²²,²⁵.1³⁵,³⁹.0³,⁸.0¹⁶,²¹.0²⁷,³².0⁴³,⁴⁸.0⁴⁹,⁵³]dohexaconta-1(52),3,5,7,16(21),17,19,22,24,27,29,31,43(48),44,46,49(53),50,57-octadecaen-12-yl 3,4,5-trihydroxybenzoate

11-formyl-4,5,6,18,19,20,28,29,30,45,46,47,50,51,57,58,62-heptadecahydroxy-9,15,33,42,54,59-hexaoxo-36,37-bis(3,4,5-trihydroxybenzoyloxy)-2,10,14,26,34,41,55,56,60-nonaoxadecacyclo[36.13.4.4¹³,²³.2²²,²⁵.1³⁵,³⁹.0³,⁸.0¹⁶,²¹.0²⁷,³².0⁴³,⁴⁸.0⁴⁹,⁵³]dohexaconta-1(52),3,5,7,16(21),17,19,22,24,27,29,31,43(48),44,46,49(53),50,57-octadecaen-12-yl 3,4,5-trihydroxybenzoate

C75H52O48 (1720.1628)


   

(1s,5r)-5-[(3e)-6-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-3-methylhex-3-en-1-yl]-4,6,6-trimethylcyclohex-3-en-1-ol

(1s,5r)-5-[(3e)-6-[(4ar,8ar)-2,4a,7,7-tetramethyl-3,4,5,6,8,8a-hexahydronaphthalen-1-yl]-3-methylhex-3-en-1-yl]-4,6,6-trimethylcyclohex-3-en-1-ol

C30H50O (426.3861)