NCBI Taxonomy: 2963287

Premna tomentosa (ncbi_taxid: 2963287)

found 52 associated metabolites at species taxonomy rank level.

Ancestor: Premna

Child Taxonomies: none taxonomy data.

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Coniferaldehyde

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal

C10H10O3 (178.063)


Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin, also known as quercetagetin 3,6,7,3-tetramethyl ether or 3,6,7,3-tetra-methylquercetagetin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, chrysosplenetin is considered to be a flavonoid lipid molecule. Chrysosplenetin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Chrysosplenetin can be found in german camomile, which makes chrysosplenetin a potential biomarker for the consumption of this food product. Chrysosplenetin is an O-methylated flavonol. It can be found in the root of Berneuxia thibetica and in Chamomilla recutita . Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Betulin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.1006)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Pachypodol

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,7-dimethoxy-

C18H16O7 (344.0896)


Pachypodol is a trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. It has a role as a plant metabolite and an antiemetic. It is a dihydroxyflavone and a trimethoxyflavone. It is functionally related to a quercetin. Pachypodol is a natural product found in Larrea cuneifolia, Macaranga triloba, and other organisms with data available. A trimethoxyflavone that is quercetin in which the hydroxy groups at position 3, 7 and 3 are replaced by methoxy groups. It has been isolated from Combretum quadrangulare and Euodia elleryana. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2]. Pachypodol exerts antioxidant and cytoprotective effects in HepG2 cells[1].Pachypodol inhibits the growth of CaCo 2 colon cancer cell line in vitro(IC50 = 185.6 mM)[2].

   

Methylprednisolone

6a_Methylprednisolone

C22H30O5 (374.2093)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H02 - Corticosteroids for systemic use > H02A - Corticosteroids for systemic use, plain > H02AB - Glucocorticoids D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AA - Corticosteroids, combinations for treatment of acne D - Dermatologicals > D07 - Corticosteroids, dermatological preparations > D07A - Corticosteroids, plain > D07AA - Corticosteroids, weak (group i) D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D005938 - Glucocorticoids C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C308 - Immunotherapeutic Agent > C574 - Immunosuppressant > C211 - Therapeutic Corticosteroid COVID info from DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents D005765 - Gastrointestinal Agents > D000932 - Antiemetics D000893 - Anti-Inflammatory Agents D020011 - Protective Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8731; ORIGINAL_PRECURSOR_SCAN_NO 8728 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8721; ORIGINAL_PRECURSOR_SCAN_NO 8719 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8747; ORIGINAL_PRECURSOR_SCAN_NO 8745 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8759; ORIGINAL_PRECURSOR_SCAN_NO 8757 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8784; ORIGINAL_PRECURSOR_SCAN_NO 8783 CONFIDENCE standard compound; INTERNAL_ID 904; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8757; ORIGINAL_PRECURSOR_SCAN_NO 8755 CONFIDENCE standard compound; INTERNAL_ID 2810 CONFIDENCE standard compound; INTERNAL_ID 1076 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2621

   

Syringaldehyde

InChI=1/C9H10O4/c1-12-7-3-6(5-10)4-8(13-2)9(7)11/h3-5,11H,1-2H

C9H10O4 (182.0579)


Syringaldehyde is a hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. It has a role as a hypoglycemic agent and a plant metabolite. It is a hydroxybenzaldehyde and a dimethoxybenzene. Syringaldehyde is a natural product found in Ficus septica, Mikania laevigata, and other organisms with data available. Syringaldehyde is a metabolite found in or produced by Saccharomyces cerevisiae. A hydroxybenzaldehyde that is 4-hydroxybenzaldehyde substituted by methoxy groups at positions 3 and 5. Isolated from Pisonia aculeata and Panax japonicus var. major, it exhibits hypoglycemic activity. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

Corosolic acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,10R,11R,12aR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O4 (472.3552)


Colosolic acid is a natural product found in Rhododendron brachycarpum, Psidium, and other organisms with data available.

   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ustiloxin E is found in cereals and cereal products. Ustiloxin E is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Constituent of Carissa carandas (karanda). Carissic acid is found in beverages and fruits.

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O10 (432.1056)


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Corosolic acid

10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


Corosolic acid, also known as corosolate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Corosolic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Corosolic acid can be found in guava, loquat, and olive, which makes corosolic acid a potential biomarker for the consumption of these food products. Corosolic acid is a pentacyclic triterpene acid found in Lagerstroemia speciosa. It is similar in structure to ursolic acid, differing only in the fact that it has a 2-alpha-hydroxy attachment . Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Syringaldehyde

3,5-Dimethoxy-4-hydroxy-benzaldehyde

C9H10O4 (182.0579)


4-hydroxy-3,5-dimethoxybenzaldehyde, also known as sinapaldehyde or 2,6-dimethoxy-4-formylphenol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. 4-hydroxy-3,5-dimethoxybenzaldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 4-hydroxy-3,5-dimethoxybenzaldehyde is a mild, sweet, and plastic tasting compound and can be found in a number of food items such as whisky, common grape, garden tomato (variety), and coriander, which makes 4-hydroxy-3,5-dimethoxybenzaldehyde a potential biomarker for the consumption of these food products. 4-hydroxy-3,5-dimethoxybenzaldehyde may be a unique S.cerevisiae (yeast) metabolite. Because it contains many functional groups, it can be classified in many ways - aromatic, aldehyde, phenol. It is a colorless solid (impure samples appear yellowish) that is soluble in alcohol and polar organic solvents. Its refractive index is 1.53 . Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

Ursolic acid (2-alpha-hydroxy-)

(1S,2R,4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


   

Corosolic_acid

(1S,2R,4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


Corosolic acid is a triterpenoid. It has a role as a metabolite. Corosolic acid is a natural product found in Ternstroemia gymnanthera, Cunila lythrifolia, and other organisms with data available. See also: Lagerstroemia speciosa leaf (part of). A natural product found particularly in Rhododendron species and Eriobotrya japonica. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Corosolic acid

3-Epicorosolic acid

C30H48O4 (472.3552)


Annotation level-1 Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.3603)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

coniferyl aldehyde

4-Hydroxy-3-methoxy-trans-cinnamaldehyde

C10H10O3 (178.063)


Annotation level-1 Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.1056)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.1006)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Syringaldehyde

4-hydroxy-3,5-dimethoxybenzaldehyde

C9H10O4 (182.0579)


Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 303; CONFIDENCE confident structure Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1]. Syringaldehyde is a polyphenolic compound belonging to the group of flavonoids and is found in different plant species like Manihot esculenta and Magnolia officinalis[1]. Syringaldehyde moderately inhibits COX-2 activity with an IC50 of 3.5 μg/mL[2]. Anti-hyperglycemic and anti-inflammatory activities[1].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxychromen-4-one

NCGC00169183-02!5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxychromen-4-one

C19H18O8 (374.1002)


   

Betulin

NCGC00168803-04_C30H50O2_Lup-20(29)-ene-3,28-diol, (3beta)-

C30H50O2 (442.3811)


Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

coniferaldehyde

coniferaldehyde

C10H10O3 (178.063)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 13

   

5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one

5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,7-dimethoxy-4H-chromen-4-one

C19H18O8 (374.1002)


   

4-Hydroxy-3,5-dimethoxybenzaldehyde

4-Hydroxy-3,5-dimethoxybenzaldehyde

C9H10O4 (182.0579)


   

Anisylacetone

2-Butanone, 4-(P-methoxyphenyl)- (6ci,7ci,8ci)

C11H14O2 (178.0994)


Anisylacetone (p-Methoxybenzylacetone) is a male fruit fly attractant[1]. Anisylacetone (p-Methoxybenzylacetone) is a male fruit fly attractant[1].

   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


   

Chrysosplenetin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3,6,7-trimethoxy-

C19H18O8 (374.1002)


Chrysosplenetin is a tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. It has a role as an antiviral agent and a plant metabolite. It is a tetramethoxyflavone and a dihydroxyflavone. It is functionally related to a quercetagetin. Chrysosplenetin is a natural product found in Haplophyllum myrtifolium, Cleome amblyocarpa, and other organisms with data available. A tetramethoxyflavone that is the 3,6,7,3-tetramethyl ether derivative of quercetagetin. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1]. Chrysosplenetin is one of the polymethoxylated flavonoids in Artemisia annua L. (Compositae) and other several Chinese herbs. Chrysosplenetin inhibits P-gp activity and reverses the up-regulated P-gp and MDR1 levels induced by artemisinin (ART). Chrysosplenetin significantly augments the rat plasma level and anti-malarial efficacy of ART, partially due to the uncompetitive inhibition effect of Chrysosplenetin on rat CYP3A[1].

   

methyl 5-[(1r,2s,3r,4r,4ar,8ar)-3-hydroxy-1,2,4a,5-tetramethyl-4-{[(2z)-3-phenylprop-2-enoyl]oxy}-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylidene-4-oxopentanoate

methyl 5-[(1r,2s,3r,4r,4ar,8ar)-3-hydroxy-1,2,4a,5-tetramethyl-4-{[(2z)-3-phenylprop-2-enoyl]oxy}-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylidene-4-oxopentanoate

C30H38O6 (494.2668)


   

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


   

(1s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3(8),4,6-triene-1,4,5-triol

(1s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3(8),4,6-triene-1,4,5-triol

C20H30O4 (334.2144)


   

(2s)-2-[(1s,11s)-4,5-bis(acetyloxy)-1-hydroxy-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3(8),4,6-trien-6-yl]propyl acetate

(2s)-2-[(1s,11s)-4,5-bis(acetyloxy)-1-hydroxy-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3(8),4,6-trien-6-yl]propyl acetate

C26H36O7 (460.2461)


   

6-(1-hydroxypropan-2-yl)-12,12-dimethyl-16-oxatetracyclo[7.6.1.0¹,¹¹.0³,⁸]hexadeca-3(8),4,6-triene-4,5-diol

6-(1-hydroxypropan-2-yl)-12,12-dimethyl-16-oxatetracyclo[7.6.1.0¹,¹¹.0³,⁸]hexadeca-3(8),4,6-triene-4,5-diol

C20H28O4 (332.1987)


   

(3s,8s,10s,14s)-7,7,14-trimethyl-16-oxatetracyclo[9.7.0.0³,⁸.0¹³,¹⁷]octadeca-1(18),11,13(17)-triene-3,10,18-triol

(3s,8s,10s,14s)-7,7,14-trimethyl-16-oxatetracyclo[9.7.0.0³,⁸.0¹³,¹⁷]octadeca-1(18),11,13(17)-triene-3,10,18-triol

C20H28O4 (332.1987)


   

(1s,9s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4,9-triol

(1s,9s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4,9-triol

C20H30O4 (334.2144)


   

6-(1-hydroxypropan-2-yl)-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4,9-triol

6-(1-hydroxypropan-2-yl)-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4,9-triol

C20H30O4 (334.2144)


   

syringaldehyde acetate

syringaldehyde acetate

C11H12O5 (224.0685)


   

methyl 5-[(1r,2s,3r,4r,4ar,8ar)-4-hydroxy-1,2,4a,5-tetramethyl-3-{[(2e)-3-phenylprop-2-enoyl]oxy}-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylidene-4-oxopentanoate

methyl 5-[(1r,2s,3r,4r,4ar,8ar)-4-hydroxy-1,2,4a,5-tetramethyl-3-{[(2e)-3-phenylprop-2-enoyl]oxy}-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylidene-4-oxopentanoate

C30H38O6 (494.2668)


   

6-(1-hydroxypropan-2-yl)-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3(8),4,6-triene-1,4,5-triol

6-(1-hydroxypropan-2-yl)-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3(8),4,6-triene-1,4,5-triol

C20H30O4 (334.2144)


   

methyl 5-{3-hydroxy-1,2,4a,5-tetramethyl-4-[(3-phenylprop-2-enoyl)oxy]-2,3,4,7,8,8a-hexahydronaphthalen-1-yl}-3-methylidene-4-oxopentanoate

methyl 5-{3-hydroxy-1,2,4a,5-tetramethyl-4-[(3-phenylprop-2-enoyl)oxy]-2,3,4,7,8,8a-hexahydronaphthalen-1-yl}-3-methylidene-4-oxopentanoate

C30H38O6 (494.2668)


   

5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,6,7-trimethoxychromen-4-one

5-hydroxy-2-(3-hydroxy-4,5-dimethoxyphenyl)-3,6,7-trimethoxychromen-4-one

C20H20O9 (404.1107)


   

(1s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4-diol

(1s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4-diol

C20H30O3 (318.2195)


   

6-(1-hydroxypropan-2-yl)-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4-diol

6-(1-hydroxypropan-2-yl)-12,12-dimethyltricyclo[9.4.0.0³,⁸]pentadeca-3,5,7-triene-1,4-diol

C20H30O3 (318.2195)


   

(1s,9s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyl-16-oxatetracyclo[7.6.1.0¹,¹¹.0³,⁸]hexadeca-3(8),4,6-triene-4,5-diol

(1s,9s,11s)-6-[(2s)-1-hydroxypropan-2-yl]-12,12-dimethyl-16-oxatetracyclo[7.6.1.0¹,¹¹.0³,⁸]hexadeca-3(8),4,6-triene-4,5-diol

C20H28O4 (332.1987)


   

methyl 5-{4-hydroxy-1,2,4a,5-tetramethyl-3-[(3-phenylprop-2-enoyl)oxy]-2,3,4,7,8,8a-hexahydronaphthalen-1-yl}-3-methylidene-4-oxopentanoate

methyl 5-{4-hydroxy-1,2,4a,5-tetramethyl-3-[(3-phenylprop-2-enoyl)oxy]-2,3,4,7,8,8a-hexahydronaphthalen-1-yl}-3-methylidene-4-oxopentanoate

C30H38O6 (494.2668)


   

methyl 5-[(1r,2s,3r,4r,4ar,8ar)-3-hydroxy-1,2,4a,5-tetramethyl-4-{[(2e)-3-phenylprop-2-enoyl]oxy}-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylidene-4-oxopentanoate

methyl 5-[(1r,2s,3r,4r,4ar,8ar)-3-hydroxy-1,2,4a,5-tetramethyl-4-{[(2e)-3-phenylprop-2-enoyl]oxy}-2,3,4,7,8,8a-hexahydronaphthalen-1-yl]-3-methylidene-4-oxopentanoate

C30H38O6 (494.2668)