Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Nicotinic acid

pyridine-3-carboxylic acid

C6H5NO2 (123.032027)


Nicotinic acid is an odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3\\\\\% solution) 3-3.5. (NTP, 1992) Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate. Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Nicotinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Niacin is a Nicotinic Acid. Niacin, also known as nicotinic acid and vitamin B3, is a water soluble, essential B vitamin that, when given in high doses, is effective in lowering low density lipoprotein (LDL) cholesterol and raising high density lipoprotein (HDL) cholesterol, which makes this agent of unique value in the therapy of dyslipidemia. Niacin can cause mild-to-moderate serum aminotransferase elevations and high doses and certain formulations of niacin have been linked to clinically apparent, acute liver injury which can be severe as well as fatal. Niacin is a water-soluble vitamin belonging to the vitamin B family, which occurs in many animal and plant tissues, with antihyperlipidemic activity. Niacin is converted to its active form niacinamide, which is a component of the coenzymes nicotinamide adenine dinucleotide (NAD) and its phosphate form, NADP. These coenzymes play an important role in tissue respiration and in glycogen, lipid, amino acid, protein, and purine metabolism. Although the exact mechanism of action by which niacin lowers cholesterol is not fully understood, it may act by inhibiting the synthesis of very low density lipoproteins (VLDL), inhibiting the release of free fatty acids from adipose tissue, increasing lipoprotein lipase activity, and reducing the hepatic synthesis of VLDL-C and LDL-C. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan (see below), but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. Nicotinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-67-6 (retrieved 2024-06-29) (CAS RN: 59-67-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.105642)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. [Raw Data] CBA27_Afzelin_neg_30eV_1-1_01_1585.txt [Raw Data] CBA27_Afzelin_pos_20eV_1-1_01_1549.txt [Raw Data] CBA27_Afzelin_pos_10eV_1-1_01_1540.txt [Raw Data] CBA27_Afzelin_neg_10eV_1-1_01_1576.txt [Raw Data] CBA27_Afzelin_neg_20eV_1-1_01_1584.txt [Raw Data] CBA27_Afzelin_neg_40eV_1-1_01_1586.txt [Raw Data] CBA27_Afzelin_pos_30eV_1-1_01_1550.txt [Raw Data] CBA27_Afzelin_pos_50eV_1-1_01_1552.txt [Raw Data] CBA27_Afzelin_pos_40eV_1-1_01_1551.txt [Raw Data] CBA27_Afzelin_neg_50eV_1-1_01_1587.txt Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Polypodine B

(2beta,3beta,5beta,22R)-2,3,5,14,20,22,25-heptahydroxycholest-7-en-6-one

C27H44O8 (496.3036024)


   

Leonoside B

4-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)oxan-3-yl (2Z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C36H48O19 (784.2789657999999)


Leonoside B is found in root vegetables. Leonoside B is isolated from tubers of Stachys sieboldii (Chinese artichoke). Isolated from tubers of Stachys sieboldii (Chinese artichoke). Leonoside B is found in root vegetables.

   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4H-chromen-4-one

C21H20O10 (432.105642)


5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one can be found in a number of food items such as endive, linden, peach, and ginkgo nuts, which makes 5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-4h-chromen-4-one a potential biomarker for the consumption of these food products. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

Dehydroergosterol

14-(5,6-dimethylhept-3-en-2-yl)-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadeca-1(17),7,9-trien-5-ol

C28H42O (394.3235482)


   

Polypodine B

4,5,7,11-tetrahydroxy-2,15-dimethyl-14-(2,3,6-trihydroxy-6-methylheptan-2-yl)tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-9-en-8-one

C27H44O8 (496.3036024)


Polypodine b belongs to hydroxy bile acids, alcohols and derivatives class of compounds. Those are bile acids, alcohols or derivatives bearing at least hydroxyl group. Polypodine b is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Polypodine b can be found in lambsquarters and spinach, which makes polypodine b a potential biomarker for the consumption of these food products.

   

20-Hydroxyecdysone

20-Hydroxyecdysone

C27H44O7 (480.3086874)


   

Afzelin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.105642)


Afzelin is a glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. It has a role as a plant metabolite, an antibacterial agent and an anti-inflammatory agent. It is a glycosyloxyflavone, a trihydroxyflavone and a monosaccharide derivative. It is functionally related to a kaempferol. It is a conjugate acid of an afzelin(1-). Afzelin is a natural product found in Premna odorata, Vicia tenuifolia, and other organisms with data available. A glycosyloxyflavone that is kaempferol attached to an alpha-L-rhamnosyl residue at position 3 via a glycosidic linkage. Acquisition and generation of the data is financially supported in part by CREST/JST. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1]. Afzelin (Kaempferol-3-O-rhamnoside)It is a flavonol glycoside that has anti-inflammatory, anti-oxidative stress response, anti-apoptotic, and anti-cardiac cytotoxic effects. AfzelinIt can reduce mitochondrial damage, enhance mitochondrial biosynthesis, and reduce mitochondria-related proteins. Parkinand PTENinduced putative kinase 1 (putative kinase 1)s level. AfzelinCan be improved D-galactosamine(GalN)/LPSSurvival rate of mice treated with doxorubicin prophylaxis (HY-15142A)Induced cardiotoxicity and scopolamine (HY-N0296)-induced neurological injury. AfzelinAlso inhibits asthma and allergies caused by ovalbumin[1][2][3][4]. Afzelin (Kaempferol-3-O-rhamnoside) is is a flavonol glycoside found in Houttuynia cordata Thunberg and is widely used in the preparation of antibacterial and antipyretic agents, detoxicants and for the treatment of inflammation. Afzelin attenuates the mitochondrial damage, enhances mitochondrial biogenesis and decreases the level of mitophagy-related proteins, parkin and PTEN-induced putative kinase 1. Afzelin improves the survival rate and reduces the serum levels of alanine aminotransferase and pro-inflammatory cytokines in D-galactosamine (GalN)/LPS -treated mice[1].

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   
   

Ivain II

Ivain II

C28H42O9 (522.2828682)


A diterpenoid isolated from the aerial parts of Ajuga bracteosa and has been shown to exhibit antifeedant activity.

   

Turkesterone

(2S,3R,5R,9R,10R,11R,13R,14S,17S)-2,3,11,14-tetrahydroxy-10,13-dimethyl-17-[(2R,3R)-2,3,6-trihydroxy-6-methylheptan-2-yl]-2,3,4,5,9,11,12,15,16,17-decahydro-1H-cyclopenta[a]phenanthren-6-one

C27H44O8 (496.3036024)


Turkesterone is a steroid. Turkesterone is a natural product found in Sida spinosa, Cyanotis arachnoidea, and other organisms with data available. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones SubCategory_DNP: : The sterols, Cholestanes

   

Vanillic Acid

Vanillic acid hexoside

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   
   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

Leonoside B

4-({4,5-dihydroxy-6-methyl-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]oxan-2-yl}oxy)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)oxan-3-yl (2Z)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C36H48O19 (784.2789657999999)


   

ajugapantin A

ajugapantin A

C28H38O11 (550.2413998)


A diterpene lactone isolated from the whole plants of Ajuga ciliata.

   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

Ajugalide B

Ajugalide B

C26H36O10 (508.2308356)


A diterpene lactone isolated from the whole plants of Ajuga ciliata.

   

Ajugaciliatin G

Ajugaciliatin G

C24H34O9 (466.2202714)


A diterpene lactone isolated from the whole plants of Ajuga ciliata.

   

Ajugaciliatin B

Ajugaciliatin B

C31H45ClO11 (628.265025)


A diterpene lactone isolated from the whole plants of Ajuga ciliata and has been shown to exhibit neuroprotective activity.

   

Ajugapitin

Ajugapitin

C29H42O10 (550.2777832)


A diterpenoid isolated from the aerial parts of Ajuga bracteosa and has been shown to exhibit antifeedant activity against Spodoptera littoralis.

   

Dehydroergosterol

Dehydroergosterol

C28H42O (394.3235482)


A phytosterol consiting of ergostane having double bonds at the 5,6-, 7,8- 9,11- and 22,23-positions as well as a 3beta-hydroxy group.

   

delta-Cadinene

delta-Cadinene

C15H24 (204.18779039999998)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

(1s,4ar,7ar)-4a-hydroxy-7-methyl-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,7ah-cyclopenta[c]pyran-5-one

(1s,4ar,7ar)-4a-hydroxy-7-methyl-1-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,7ah-cyclopenta[c]pyran-5-one

C15H20O9 (344.110727)


   

2,4,8-tris(acetyloxy)-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl 2-methylbut-2-enoate

2,4,8-tris(acetyloxy)-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl 2-methylbut-2-enoate

C31H42O11 (590.2726982)


   

(1r,4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2r)-2-methylbutanoate

(1r,4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2r)-2-methylbutanoate

C29H42O10 (550.2777832)


   

(1r,4r,4ar,5s,6r,8s,8ar)-8a-[(acetyloxy)methyl]-8-hydroxy-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2e)-2-methylbut-2-enoate

(1r,4r,4ar,5s,6r,8s,8ar)-8a-[(acetyloxy)methyl]-8-hydroxy-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2e)-2-methylbut-2-enoate

C27H38O9 (506.25156979999997)


   

3-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1-(2,4-dimethyl-5-oxooxolan-3-yl)-3-hydroxybutan-2-yl acetate

3-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1-(2,4-dimethyl-5-oxooxolan-3-yl)-3-hydroxybutan-2-yl acetate

C31H46O9 (562.3141666)


   

4a,5-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

4a,5-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

C17H26O11 (406.1475046)


   

(1s,4ar,7s,7as)-5-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

(1s,4ar,7s,7as)-5-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

C17H26O10 (390.1525896)


   

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2s,3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2s,3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

C28H40O10 (536.2621340000001)


   

(4r)-2-hydroxy-4-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexa-2,5-dien-1-one

(4r)-2-hydroxy-4-methyl-4-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}cyclohexa-2,5-dien-1-one

C13H18O8 (302.1001628)


   

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbut-2-enoate

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbut-2-enoate

C34H46O11 (630.3039966)


   

(4as,7s,7ar)-4a,5-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

(4as,7s,7ar)-4a,5-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

C17H26O11 (406.1475046)


   

(1r,2s,4ar,5s,6r,8s,8ar)-5-[(2s,3as,5r,6ar)-5-ethoxy-hexahydrofuro[2,3-b]furan-2-yl]-2,8-bis(acetyloxy)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl acetate

(1r,2s,4ar,5s,6r,8s,8ar)-5-[(2s,3as,5r,6ar)-5-ethoxy-hexahydrofuro[2,3-b]furan-2-yl]-2,8-bis(acetyloxy)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl acetate

C28H42O10 (538.2777832)


   

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2r,3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2r,3as,6as)-2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

C28H40O10 (536.2621340000001)


   

4-{3-[(1s,5as,7r,8s,9ar,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl}-3,5-dimethyloxolan-2-one

4-{3-[(1s,5as,7r,8s,9ar,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl}-3,5-dimethyloxolan-2-one

C29H44O9 (536.2985174)


   

(4r,4ar,5s,6r,8s,8ar)-5-[(3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate

(4r,4ar,5s,6r,8s,8ar)-5-[(3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate

C29H44O9 (536.2985174)


   

8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-5-{2-[(2-methylbutanoyl)oxy]-2-(5-oxo-2h-furan-3-yl)ethyl}-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbut-2-enoate

8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-5-{2-[(2-methylbutanoyl)oxy]-2-(5-oxo-2h-furan-3-yl)ethyl}-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbut-2-enoate

C34H48O11 (632.3196458)


   

8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-{hexahydrofuro[2,3-b]furan-2-yl}-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-{hexahydrofuro[2,3-b]furan-2-yl}-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

C28H42O10 (538.2777832)


   

(1s,2s,3r,4ar,5r,6s,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-[(2s)-hexahydrofuro[2,3-b]furan-2-yl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl propanoate

(1s,2s,3r,4ar,5r,6s,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-[(2s)-hexahydrofuro[2,3-b]furan-2-yl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl propanoate

C27H40O10 (524.2621340000001)


   

4-(3-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxybutyl)-3,5-dimethyloxolan-2-one

4-(3-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxybutyl)-3,5-dimethyloxolan-2-one

C29H44O7 (504.3086874)


   

methyl 2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl)acetate

methyl 2-(1-hydroxy-4-oxocyclohexa-2,5-dien-1-yl)acetate

C9H10O4 (182.057906)


   

(1r,2r,7r,10r,11s,14r,15r,16r)-16-(4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl)-7,15-dihydroxy-10,14,16-trimethyl-17-oxapentacyclo[13.2.2.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]nonadec-4-en-9-one

(1r,2r,7r,10r,11s,14r,15r,16r)-16-(4,5-dimethyl-6-oxo-2,3-dihydropyran-2-yl)-7,15-dihydroxy-10,14,16-trimethyl-17-oxapentacyclo[13.2.2.0¹,¹⁴.0²,¹¹.0⁵,¹⁰]nonadec-4-en-9-one

C28H38O6 (470.2668248)


   

1-[1-(4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-3a,7-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,8,11-trione

1-[1-(4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl)-1-hydroxyethyl]-3a,7-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,8,11-trione

C29H38O8 (514.2566548)


   

methyl (3r,21s,22s)-16-ethenyl-11-ethyl-12-(hydroxymethylidene)-17,21,26-trimethyl-4-oxo-22-(3-oxo-3-{[(2e,7s,11s)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1,5(26),6,8,10,13(25),14,16,18(24),19-decaene-3-carboxylate

methyl (3r,21s,22s)-16-ethenyl-11-ethyl-12-(hydroxymethylidene)-17,21,26-trimethyl-4-oxo-22-(3-oxo-3-{[(2e,7s,11s)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1,5(26),6,8,10,13(25),14,16,18(24),19-decaene-3-carboxylate

C55H72N4O6 (884.5451572)


   

(1r,2r,3s,4as,5r,6s,8r,8as)-5-[(2s,3ar,5r,6as)-5-methoxy-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2r)-2-methylbutanoate

(1r,2r,3s,4as,5r,6s,8r,8as)-5-[(2s,3ar,5r,6as)-5-methoxy-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2r)-2-methylbutanoate

C30H46O11 (582.3039966)


   

(2r,3r)-3-[(1s,3as,5ar,7r,8r,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-[(2r,3s,4s)-2,4-dimethyl-5-oxooxolan-3-yl]-3-hydroxybutan-2-yl acetate

(2r,3r)-3-[(1s,3as,5ar,7r,8r,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-[(2r,3s,4s)-2,4-dimethyl-5-oxooxolan-3-yl]-3-hydroxybutan-2-yl acetate

C31H46O9 (562.3141666)


   

4a-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,7ah-cyclopenta[c]pyran-5-one

4a-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,7ah-cyclopenta[c]pyran-5-one

C15H20O9 (344.110727)


   

2-[8-(acetyloxy)-4-hydroxy-8a-(hydroxymethyl)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbutanoate

2-[8-(acetyloxy)-4-hydroxy-8a-(hydroxymethyl)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbutanoate

C27H40O9 (508.26721900000007)


   

(1ar,4r,7r,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1ar,4r,7r,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1983546)


   

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2z)-2-methylbut-2-enoate

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-{[(2z)-2-methylbut-2-enoyl]oxy}-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2z)-2-methylbut-2-enoate

C34H46O11 (630.3039966)


   

(3s,4s,5r)-4-[(3r)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one

(3s,4s,5r)-4-[(3r)-3-[(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-3-hydroxy-2-oxobutyl]-3,5-dimethyloxolan-2-one

C29H42O8 (518.2879532000001)


   

2-{3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]phenyl}-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

2-{3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]phenyl}-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

C39H50O26 (934.25902)


   

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2s)-2-methylbutanoate

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2s)-2-methylbutanoate

C29H44O10 (552.2934324)


   

(3z)-3-(2-hydroxyethylidene)-1-methyl-2-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclopentyl acetate

(3z)-3-(2-hydroxyethylidene)-1-methyl-2-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)cyclopentyl acetate

C17H28O9 (376.17332380000005)


   

(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-[(2s,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1s,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-[(2s,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C27H44O7 (480.3086874)


   

2-[8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbutanoate

2-[8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbutanoate

C29H42O9 (534.2828682)


   

4-(3-{3a,5a,7,8,11-pentahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxy-2-oxobutyl)-3,5-dimethyloxolan-2-one

4-(3-{3a,5a,7,8,11-pentahydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-3-hydroxy-2-oxobutyl)-3,5-dimethyloxolan-2-one

C29H42O10 (550.2777832)


   

(4r,4ar,5s,6r,8s,8ar)-8a-[(acetyloxy)methyl]-8-hydroxy-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate

(4r,4ar,5s,6r,8s,8ar)-8a-[(acetyloxy)methyl]-8-hydroxy-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate

C27H40O9 (508.26721900000007)


   

3-{[(2s,3s,4s,5s,6s)-4,5-dihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium

3-{[(2s,3s,4s,5s,6s)-4,5-dihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-5-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium

[C53H57O28]+ (1141.3036222)


   

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-4-{[(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-3-{[(2s,3r,4s,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}oxan-2-yl]oxy}-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C34H44O19 (756.2476674)


   

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-{[(2s,3s,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}chromen-4-one

C21H20O10 (432.105642)


   

5-{2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl}-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 3-(acetyloxy)-2-methylbutanoate

5-{2h,3h,3ah,6ah-furo[2,3-b]furan-2-yl}-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 3-(acetyloxy)-2-methylbutanoate

C31H44O12 (608.2832624)


   

(4ar,5s,6r,8s,8ar)-8-hydroxy-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl (2e)-2-methylbut-2-enoate

(4ar,5s,6r,8s,8ar)-8-hydroxy-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl (2e)-2-methylbut-2-enoate

C25H36O6 (432.2511756)


   

2-{3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

2-{3,4-dihydroxy-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]phenyl}-5,7-dihydroxy-3-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]chromen-4-one

C33H40O21 (772.206199)


   

(1'r,2r,2's,4'r,5's,6'r,7's,8's,11'r)-5'-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-2'-(acetyloxy)-7'-hydroxy-4',5'-dimethyl-12'-oxaspiro[oxirane-2,10'-tricyclo[6.2.2.0¹,⁶]dodecan]-11'-yl (2e)-2-methylbut-2-enoate

(1'r,2r,2's,4'r,5's,6'r,7's,8's,11'r)-5'-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-2'-(acetyloxy)-7'-hydroxy-4',5'-dimethyl-12'-oxaspiro[oxirane-2,10'-tricyclo[6.2.2.0¹,⁶]dodecan]-11'-yl (2e)-2-methylbut-2-enoate

C27H38O9 (506.25156979999997)


   

2-[8-(acetyloxy)-8a-[(acetyloxy)methyl]-4-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl acetate

2-[8-(acetyloxy)-8a-[(acetyloxy)methyl]-4-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl acetate

C26H36O10 (508.2308356)


   

(1r,2s,3s,4ar,5s,6r,8s,8ar)-5-[(2r,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

(1r,2s,3s,4ar,5s,6r,8s,8ar)-5-[(2r,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylpropanoate

C28H42O10 (538.2777832)


   

methyl (3r,21s,22s)-16-ethenyl-11-ethyl-12-formyl-17,21,26-trimethyl-4-oxo-22-(3-oxo-3-{[(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1(23),2(6),5(26),7,9,11,13,15,17,19-decaene-3-carboxylate

methyl (3r,21s,22s)-16-ethenyl-11-ethyl-12-formyl-17,21,26-trimethyl-4-oxo-22-(3-oxo-3-{[(2e,7r,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1(23),2(6),5(26),7,9,11,13,15,17,19-decaene-3-carboxylate

C55H72N4O6 (884.5451572)


   

(1s,3ar,5ar,7r,8s,9ar,9br,11ar)-1-[(2r,3r)-2,3-dihydroxy-4-(3-methyl-2-oxo-5,6-dihydropyran-4-yl)butan-2-yl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione

(1s,3ar,5ar,7r,8s,9ar,9br,11ar)-1-[(2r,3r)-2,3-dihydroxy-4-(3-methyl-2-oxo-5,6-dihydropyran-4-yl)butan-2-yl]-3a,7,8-trihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,11-dione

C29H40O9 (532.2672190000001)


   

2-[8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-[(2-methylpropanoyl)oxy]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylpropanoate

2-[8-(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-4-[(2-methylpropanoyl)oxy]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylpropanoate

C32H46O11 (606.3039966)


   

(1r,2s,3r,4s,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-3,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-4-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2s)-2-methylbutanoate

(1r,2s,3r,4s,4ar,5s,6r,8s,8ar)-5-[(2s,3ar,6as)-hexahydrofuro[2,3-b]furan-2-yl]-3,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-4-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2s)-2-methylbutanoate

C31H46O12 (610.2989116)


   

(1s,4as,7s,7as)-4a-hydroxy-7-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

(1s,4as,7s,7as)-4a-hydroxy-7-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

C17H26O10 (390.1525896)


   

(1s)-2-[(1r,4ar,5s,6r,8s,8ar)-8-hydroxy-8a-(hydroxymethyl)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2s)-2-methylbutanoate

(1s)-2-[(1r,4ar,5s,6r,8s,8ar)-8-hydroxy-8a-(hydroxymethyl)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2s)-2-methylbutanoate

C25H38O7 (450.2617398)


   

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-4,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylpropanoate

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-4,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylpropanoate

C30H42O11 (578.2726982)


   

(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

(2r,3r,4r,5r,6r)-5-hydroxy-6-[2-(3-hydroxy-4-methoxyphenyl)ethoxy]-2-(hydroxymethyl)-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C31H40O15 (652.236709)


   

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-4,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2s)-2-methylbutanoate

(1s)-2-[(1r,4r,4ar,5s,6r,8s,8ar)-4,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl (2s)-2-methylbutanoate

C31H44O11 (592.2883474)


   

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(1r,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,3e,5s)-5-ethyl-6-methylhepta-3,6-dien-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C29H46O (410.3548466)


   

(1s,4ar,5r,8ar)-5-[(3s)-5-hydroxy-3-methylpentyl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

(1s,4ar,5r,8ar)-5-[(3s)-5-hydroxy-3-methylpentyl]-1,4a-dimethyl-6-methylidene-hexahydro-2h-naphthalene-1-carboxylic acid

C20H34O3 (322.25078140000005)


   

2-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1-(3-ethyl-5-hydroxy-4-methyloxolan-2-yl)-2-hydroxypropyl acetate

2-{3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-1-(3-ethyl-5-hydroxy-4-methyloxolan-2-yl)-2-hydroxypropyl acetate

C31H48O9 (564.3298158)


   

(1s,4as,5r,7s,7as)-5-(acetyloxy)-4a-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

(1s,4as,5r,7s,7as)-5-(acetyloxy)-4a-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

C19H28O12 (448.1580688)


   

(1s,3ar,5ar,7r,9ar,9br,11ar)-1-[(1r)-1-[(2r)-4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-3a,7-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,8,11-trione

(1s,3ar,5ar,7r,9ar,9br,11ar)-1-[(1r)-1-[(2r)-4-ethyl-5-methyl-6-oxo-2,3-dihydropyran-2-yl]-1-hydroxyethyl]-3a,7-dihydroxy-9a,11a-dimethyl-1h,2h,3h,5ah,6h,7h,9h,9bh,10h-cyclopenta[a]phenanthrene-5,8,11-trione

C29H38O8 (514.2566548)


   

(1r,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-[(2r,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1r,3as,5ar,7r,8s,9ar,9br,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-1-[(2r,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C27H44O7 (480.3086874)


   

5-{[(2s,3s,4s,5r,6s)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-3-{[(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium

5-{[(2s,3s,4s,5r,6s)-6-{[(2-carboxyacetyl)oxy]methyl}-3,4,5-trihydroxyoxan-2-yl]oxy}-3-{[(2s,3r,4s,5r,6s)-4,5-dihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)-3-{[(2s,3r,4s,5r,6r)-3,4,5-trihydroxy-6-({[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-7-hydroxy-2-(3,4,5-trihydroxyphenyl)-1λ⁴-chromen-1-ylium

[C56H59O31]+ (1227.3040164000001)


   

methyl (3s,21r,22s)-16-ethenyl-11-ethyl-12,17,21,26-tetramethyl-4-oxo-22-(3-oxo-3-{[(2e,7s,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1(23),2(6),5(26),8,10(25),11,13,15,17,19-decaene-3-carboxylate

methyl (3s,21r,22s)-16-ethenyl-11-ethyl-12,17,21,26-tetramethyl-4-oxo-22-(3-oxo-3-{[(2e,7s,11r)-3,7,11,15-tetramethylhexadec-2-en-1-yl]oxy}propyl)-7,23,24,25-tetraazahexacyclo[18.2.1.1⁵,⁸.1¹⁰,¹³.1¹⁵,¹⁸.0²,⁶]hexacosa-1(23),2(6),5(26),8,10(25),11,13,15,17,19-decaene-3-carboxylate

C55H74N4O5 (870.5658913999999)


   

(1s)-2-[(1s,4ar,5s,6s,8r,8ar)-4,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbutanoate

(1s)-2-[(1s,4ar,5s,6s,8r,8ar)-4,8-bis(acetyloxy)-8a-[(acetyloxy)methyl]-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-5-yl]-1-(5-oxo-2h-furan-3-yl)ethyl 2-methylbutanoate

C31H44O11 (592.2883474)


   

[(2s,3s,4s,5s)-5-[(1r)-1-[(1s,2r,3as,5ar,7r,9as,9br,11as)-1,2-dihydroxy-9a,11a-dimethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-3-ethyl-4-hydroxy-2-methyloxolan-2-yl]methyl acetate

[(2s,3s,4s,5s)-5-[(1r)-1-[(1s,2r,3as,5ar,7r,9as,9br,11as)-1,2-dihydroxy-9a,11a-dimethyl-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]ethyl]-3-ethyl-4-hydroxy-2-methyloxolan-2-yl]methyl acetate

C37H60O12 (696.408456)


   

(1s,4ar,7s,7as)-4a-hydroxy-7-methyl-1-{[(2r,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

(1s,4ar,7s,7as)-4a-hydroxy-7-methyl-1-{[(2r,3s,4r,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-7-yl acetate

C17H26O10 (390.1525896)


   

(4e)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

(4e)-4-ethylidene-7-hydroxy-6,7-dimethyl-2,9-dioxa-14-azatricyclo[9.5.1.0¹⁴,¹⁷]heptadec-11-ene-3,8-dione

C18H25NO5 (335.173264)


   

3a,7,8-trihydroxy-9a,11a-dimethyl-1-[2,3,6-trihydroxy-5-(prop-1-en-2-yl)heptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

3a,7,8-trihydroxy-9a,11a-dimethyl-1-[2,3,6-trihydroxy-5-(prop-1-en-2-yl)heptan-2-yl]-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C29H46O7 (506.3243366)


   

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1r,2s,3ar,5ar,7r,9as,9br,11as)-1-[(1s)-1-[(2r,4s,5s)-4-ethyl-5-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2s,3r,4s,5s,6r)-2-{[(2r,3r,4s,5s,6r)-2-{[(1r,2s,3ar,5ar,7r,9as,9br,11as)-1-[(1s)-1-[(2r,4s,5s)-4-ethyl-5-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-4,5-dihydroxy-6-(hydroxymethyl)oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C47H78O19 (946.5137038)


   

[4-(acetyloxy)-5-hydroxy-5-(hydroxymethyl)-1,2-dimethyl-1-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-naphthalen-4a-yl]methyl acetate

[4-(acetyloxy)-5-hydroxy-5-(hydroxymethyl)-1,2-dimethyl-1-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-naphthalen-4a-yl]methyl acetate

C24H36O8 (452.2410056)


   

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2s,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

(1s,3as,5as,7r,8s,9ar,9br,11ar)-3a,5a,7,8-tetrahydroxy-9a,11a-dimethyl-1-[(2s,3r)-2,3,6-trihydroxy-6-methylheptan-2-yl]-1h,2h,3h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-5-one

C27H44O8 (496.3036024)


   

8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-{hexahydrofuro[2,3-b]furan-2-yl}-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbutanoate

8-(acetyloxy)-8a-[(acetyloxy)methyl]-5-{hexahydrofuro[2,3-b]furan-2-yl}-2-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl 2-methylbutanoate

C29H44O10 (552.2934324)


   
   

(4r,4as,7s,7as)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(4r,4as,7s,7as)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1983546)


   

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2s,3as,5s,6ar)-5-hydroxy-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2r,3s)-3-(acetyloxy)-2-methylbutanoate

(1r,2s,3r,4ar,5s,6r,8s,8ar)-5-[(2s,3as,5s,6ar)-5-hydroxy-hexahydrofuro[2,3-b]furan-2-yl]-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl (2r,3s)-3-(acetyloxy)-2-methylbutanoate

C31H46O13 (626.2938266)


   

(4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-8a-(hydroxymethyl)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate

(4r,4ar,5s,6r,8s,8ar)-8-(acetyloxy)-5-[(2s)-2-hydroxy-2-(5-oxo-2h-furan-3-yl)ethyl]-8a-(hydroxymethyl)-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-4-yl (2s)-2-methylbutanoate

C27H40O9 (508.26721900000007)


   

5-{2h,3h,3ah,6ah-furo[2,3-b]furan-2-ylmethyl}-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylbutanoate

5-{2h,3h,3ah,6ah-furo[2,3-b]furan-2-ylmethyl}-8-(acetyloxy)-8a-[(acetyloxy)methyl]-3-hydroxy-5,6-dimethyl-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-2-yl 2-methylbutanoate

C30H44O10 (564.2934324)


   

[(1r,4ar,5s,6r,8s,8ar)-1,8-dihydroxy-8a-(hydroxymethyl)-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-naphthalen-1-yl]methyl 2-methylbut-2-enoate

[(1r,4ar,5s,6r,8s,8ar)-1,8-dihydroxy-8a-(hydroxymethyl)-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-naphthalen-1-yl]methyl 2-methylbut-2-enoate

C25H38O7 (450.2617398)


   

8-hydroxy-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl acetate

8-hydroxy-5,6-dimethyl-5-[2-(5-oxo-2h-furan-3-yl)ethyl]-hexahydro-2h-spiro[naphthalene-1,2'-oxiran]-8a-ylmethyl acetate

C22H32O6 (392.2198772)


   

(6r)-6-[(1r)-1-[(1s,3ar,3br,6s,9ar,9bs,11ar)-3a,6-dihydroxy-9a,11a-dimethyl-9-oxo-1h,2h,3h,3bh,4h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-hydroxyethyl]-3-(hydroxymethyl)-4-methyl-5,6-dihydropyran-2-one

(6r)-6-[(1r)-1-[(1s,3ar,3br,6s,9ar,9bs,11ar)-3a,6-dihydroxy-9a,11a-dimethyl-9-oxo-1h,2h,3h,3bh,4h,6h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-1-hydroxyethyl]-3-(hydroxymethyl)-4-methyl-5,6-dihydropyran-2-one

C28H38O7 (486.2617398)


   

(1s,3r,4r,4as,5r,7s,7as)-4,4a,5-trihydroxy-3-methoxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-hexahydrocyclopenta[c]pyran-7-yl acetate

(1s,3r,4r,4as,5r,7s,7as)-4,4a,5-trihydroxy-3-methoxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-hexahydrocyclopenta[c]pyran-7-yl acetate

C18H30O13 (454.168633)


   

(1s,2s,3as,5as,7s,9as,9br,11as)-1-[(1r)-1-[(2s,3r,4s,5s)-4-ethyl-3-hydroxy-5-(hydroxymethyl)-5-methyloxolan-2-yl]-2-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-1,2,7-triol

(1s,2s,3as,5as,7s,9as,9br,11as)-1-[(1r)-1-[(2s,3r,4s,5s)-4-ethyl-3-hydroxy-5-(hydroxymethyl)-5-methyloxolan-2-yl]-2-hydroxyethyl]-9a,11a-dimethyl-2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-1,2,7-triol

C29H48O7 (508.33998579999997)


   

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3ar,5ar,7r,9as,9br,11as)-1-[(1s)-1-[(2r,4s,5s)-4-ethyl-5-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1r,2s,3ar,5ar,7r,9as,9br,11as)-1-[(1s)-1-[(2r,4s,5s)-4-ethyl-5-methyl-5-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxolan-2-yl]ethyl]-2-hydroxy-9a,11a-dimethyl-1h,2h,3h,3ah,5h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C41H68O14 (784.4608828)


   

(5r)-4-[(3r)-3-[(5ar,7r,8s,9ar,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3,5-dimethyloxolan-2-one

(5r)-4-[(3r)-3-[(5ar,7r,8s,9ar,11ar)-3a,7,8-trihydroxy-9a,11a-dimethyl-5-oxo-1h,2h,3h,5ah,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-2,3-dihydroxybutyl]-3,5-dimethyloxolan-2-one

C29H44O8 (520.3036024)