NCBI Taxonomy: 4014

Burseraceae (ncbi_taxid: 4014)

found 143 associated metabolites at family taxonomy rank level.

Ancestor: Sapindales

Child Taxonomies: Bursera, Canarium, Commiphora, Garuga, Triomma, Protium, Aucoumea, Santiria, Beiselia, Dacryodes, Boswellia, Ambilobea, Haplolobus, Scutinanthe, Tetragastris, Trattinnickia, Crepidospermum, unclassified Burseraceae

Fraxetin

7,8-dihydroxy-6-methoxychromen-2-one

C10H8O5 (208.0371718)


Fraxetin is a hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. It has a role as an Arabidopsis thaliana metabolite, an antimicrobial agent, an apoptosis inhibitor, an apoptosis inducer, an antioxidant, an anti-inflammatory agent, a hepatoprotective agent, an antibacterial agent and a hypoglycemic agent. It is a hydroxycoumarin and an aromatic ether. Fraxetin is a natural product found in Santolina pinnata, Campanula dolomitica, and other organisms with data available. A hydroxycoumarin that is 6-methoxycoumarin in which the hydrogens at positions 7 and 8 have been replaced by hydroxy groups. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.550 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.542 Fraxetin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=574-84-5 (retrieved 2024-06-28) (CAS RN: 574-84-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1]. Fraxetin is isolated from Fraxinus rhynchophylla Hance. Fraxetin has antitumor, anti-oxidation effects and anti-inflammory effects. Fraxetin induces apoptosis[1].

   

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Coniferaldehyde

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enal

C10H10O3 (178.062991)


Coniferaldehyde (CAS: 458-36-6), also known as 4-hydroxy-3-methoxycinnamaldehyde or ferulaldehyde, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferaldehyde is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, coniferaldehyde is found, on average, in the highest concentration within sherries. Coniferaldehyde has also been detected, but not quantified in, several different foods, such as highbush blueberries, lima beans, Chinese cabbages, loquats, and greenthread tea. This could make coniferaldehyde a potential biomarker for the consumption of these foods. BioTransformer predicts that coniferaldehyde is a product of caffeic aldehyde metabolism via a catechol-O-methylation-pattern2 reaction catalyzed by the enzyme catechol O-methyltransferase (PMID: 30612223). Coniferyl aldehyde, also known as 4-hydroxy-3-methoxycinnamaldehyde or 4-hm-ca, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Coniferyl aldehyde is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Coniferyl aldehyde can be found in a number of food items such as pear, common walnut, kelp, and citrus, which makes coniferyl aldehyde a potential biomarker for the consumption of these food products. Coniferyl aldehyde is a low molecular weight phenolic compound susceptible to be extracted from cork stoppers into wine . Coniferyl aldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a phenylpropanoid and a member of guaiacols. It is functionally related to an (E)-cinnamaldehyde. 4-Hydroxy-3-methoxycinnamaldehyde is a natural product found in Pandanus utilis, Microtropis japonica, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and a methoxy group at position 3. Acquisition and generation of the data is financially supported in part by CREST/JST. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells[1]. Coniferaldehyde (Ferulaldehyde) is an effective inducer of heme oxygenase-1 (HO-1). Coniferaldehyde exerts anti-inflammatory properties in response to LPS. Coniferaldehyde inhibits LPS-induced apoptosis through the PKCα/β II/Nrf-2/HO-1 dependent pathway in RAW264.7 macrophage cells Coniferaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=458-36-6 (retrieved 2024-09-04) (CAS RN: 458-36-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Salicylic acid

2-hydroxybenzoic acid

C7H6O3 (138.0316926)


Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). Constituent of Taraxacum officinale (dandelion). Taraxerol is found in many foods, some of which are kiwi, scarlet bean, prairie turnip, and grapefruit/pummelo hybrid. Taraxerol is found in alcoholic beverages. Taraxerol is a constituent of Taraxacum officinale (dandelion)

   

Friedelin

3(2H)-PICENONE, EICOSAHYDRO-4,4A,6B,8A,11,11,12B,14A-OCTAMETHYL-, (4R-(4.ALPHA.,4A.ALPHA.,6A.BETA.,6B.ALPHA.,8A.ALPHA.,12A.ALPHA.,12B.BETA.,14A.ALPHA.,14B.BETA.))-

C30H50O (426.386145)


Friedelin is a pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. It has a role as an anti-inflammatory drug, a non-narcotic analgesic, an antipyretic and a plant metabolite. It is a pentacyclic triterpenoid and a cyclic terpene ketone. Friedelin is a natural product found in Diospyros eriantha, Salacia chinensis, and other organisms with data available. A pentacyclic triterpenoid that is perhydropicene which is substituted by an oxo group at position 3 and by methyl groups at the 4, 4a, 6b, 8a, 11, 11, 12b, and 14a-positions (the 4R,4aS,6aS,6bR,8aR,12aR,12bS,14aS,14bS-enantiomer). It is the major triterpenoid constituent of cork. Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as pomegranate, sugar apple, apple, and mammee apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Furanodiene

CYCLODECA(B)FURAN, 4,7,8,11-TETRAHYDRO-3,6,10-TRIMETHYL-, (5E,9E)-

C15H20O (216.151407)


Furanodiene is a germacrane sesquiterpenoid. Furanodiene is a natural product found in Curcuma amada, Lactarius chrysorrheus, and other organisms with data available. Furanodiene is a constituent of Curcuma zedoaria (zedoary) Constituent of Curcuma zedoaria (zedoary)

   

Stearic acid

1-Heptadecanecarboxylic acid

C18H36O2 (284.2715156)


Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0062676)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Caprylic acid

octanoic acid

C8H16O2 (144.1150236)


Caprylic acid is the common name for the eight-carbon straight-chain fatty acid known by the systematic name octanoic acid. It is found naturally in coconuts and breast milk. It is an oily liquid with a slightly unpleasant rancid taste that is minimally soluble in water. Caprylic acid is used commercially in the production of esters used in perfumery and also in the manufacture of dyes (Wikipedia). Caprylic acid can be found in numerous foods such as Prunus (Cherry, Plum), pineapple sages, black raspberries, and shallots. Caprylic acid is found to be associated with medium-chain acyl-CoA dehydrogenase deficiency, which is an inborn error of metabolism. Widespread in plant oils, free and as glyceridesand is also present in apple, banana, orange juice and peel, pineapple, cognac, calamus, blue cheeses, cheddar cheese, Swiss cheese, feta cheese and other cheeses. Flavouring agent, defoamer, lubricant, binder and antimicrobial preservative in cheese wraps KEIO_ID C037 Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes. Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes.

   

Caprate (10:0)

decanoic acid

C10H20O2 (172.14632200000003)


Capric acid, also known as decanoic acid is a C10 saturated fatty acid. It is a member of the series of fatty acids found in oils and animal fats. The names of caproic, caprylic, and capric acids are all derived from the word caper (Latin for goat). These fatty acids are light yellowish transparent oily liquids with a sweaty, unpleasant aroma that is reminiscent of goats. Capric acid is used in the manufacture of esters for artificial fruit flavors and perfumes. It is also used as an intermediate in chemical syntheses. Capric acid is used in organic synthesis and industrially in the manufacture of perfumes, lubricants, greases, rubber, dyes, plastics, food additives and pharmaceuticals. Capric acid occurs naturally in coconut oil (about 10\\\\\\%) and palm kernel oil (about 4\\\\\\%), otherwise it is uncommon in typical seed oils. It is found in the milk of various mammals and to a lesser extent in other animal fats. Capric acid, caproic acid (a C6:0 fatty acid) and caprylic acid (a C8:0 fatty acid) account for about 15\\\\\\% of the fatty acids in goat milk fat (PMID 16747831). Capric acid may be responsible for the mitochondrial proliferation associated with the ketogenic diet, which may occur via PPARgamma receptor agonism and the targeting of genes involved in mitochondrial biogenesis (PMIDL 24383952). Widespread in plant oils and as glycerides in seed oilsand is also present in apple, apricot, banana, morello cherry, citrus fruits, cheese, butter, white wine, Japanese whiskey, peated malt, wort and scallops. It is used as a defoamer, lubricant and citrus fruit coating. Salts (Na, K, Mg, Ca, Al) used as binders, emulsifiers and anticaking agents in food manuf. Decanoic acid is found in many foods, some of which are radish (variety), meatball, phyllo dough, and american shad. Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776204)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Agathisflavone

Agathisflavone

C30H18O10 (538.0899928)


A biflavonoid that is obtained by oxidative coupling of two molecules of apigenin resulting in a bond between positions C-6 and C-8 of the two chromene rings.

   

Pinocarveol

6,6-Dimethyl-3-hydroxy-2-methylenebicyclo(3.1.1)heptane

C10H16O (152.12010859999998)


Flavouring ingredient. Pinocarveol is found in many foods, some of which are spearmint, wild celery, hyssop, and sweet bay. Pinocarveol is found in hyssop. Pinocarveol is a flavouring ingredien

   

Bicyclogermacrene

(2Z,6Z)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene

C15H24 (204.18779039999998)


Constituent of the peel oil of Citrus junos (yuzu). Bicyclogermacrene is found in many foods, some of which are common oregano, lemon balm, hyssop, and orange mint. Bicyclogermacrene is found in citrus. Bicyclogermacrene is a constituent of the peel oil of Citrus junos (yuzu).

   

Maniladiol

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,8-diol

C30H50O2 (442.38106)


A pentacyclic triterpenoid that is olean-12-ene in which the hydrogens at the 3beta and 16beta positions have been replaced by hydroxy groups.

   

Boswellic acid

(3R,4R,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C30H48O3 (456.36032579999994)


Boswellic acid (BA) is an active component of Boswellia serrata (also known as Salai guggul). Extensive research in the past 30 years identified the active component of this resin as BA (a pentacyclic triterpenic acid) and its derivatives (acetyl-beta-boswellic acid, 11-keto-beta-boswellic acid and acetyl-11-keto-beta-boswellic acid). In animal models of inflammation, BA has been shown to be an effective adjuvant mitigating bovine serum albumin-induced arthritis and osteoarthritis. The anti-arthritic potential of BA is a result of its anti-inflammatory activity, mediated through inhibition of NF-kB, COX-2 and 5-LOX. ((PMID: 17475558, 3429205). Boswellic acid is a triterpenoid. beta-Boswellic acid is a natural product found in Cyclocarya paliurus, Boswellia papyrifera, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2]. β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2]. β-Boswellic acid is isolated from the gum resin of Boswellia serrata. β-Boswellic acid is a nonreducing-type inhibitor of the 5-lipoxygenase (5-LO) product formation either interacting directly with the 5-LO or blocking its translocation[1]. β-Boswellic acid inhibits the synthesis of DNA, RNA and protein in human leukemia HL-60 cells[2].

   

2-Nonanone

Methyl N-heptyl ketone

C9H18O (142.1357578)


2-Nonanone is found in alcoholic beverages. 2-Nonanone is present in banana, ginger, Brazil nut, attar of rose, clove oil, coconut oil, passionflower, sorghum, asparagus, tomato, corn, wine, cheese, beer, blackcurrant buds, melon, and strawberry jam. 2-Nonanone is a flavor and fragrance agent. It is a clear slightly yellow liquid. Ketones, such as 2-Nonanone, are reactive with many acids and bases liberating heat and flammable gases (e.g., H2). The amount of heat may be sufficient to start a fire in the unreacted portion of the ketone. Ketones react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat. Present in banana, ginger, Brazil nut, attar of rose, clove oil, coconut oil, passionflower, sorghum, asparagus, tomato, corn, wine, cheese, beer, blackcurrant buds, melon, strawberry jam etc. Flavouring ingredient. 2-Nonanone is found in many foods, some of which are green vegetables, cereals and cereal products, watermelon, and cloves.

   

beta-Farnesene

(6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.18779039999998)


A mixture with 1,3,6,10-Farnesatetraene JXF60-O has been isolated from many plant sources and is used as a food flavourant (woodgreen flavour). beta-Farnesene is found in sweet basil. (E)-beta-Farnesene is found in anise. (E)-beta-Farnesene is a constituent of hop, camomile and other essential oils (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].

   

Brein

(3S,4aR,6aR,6bS,8S,8aS,11R,12S,12aS,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1H-picene-3,8-diol

C30H50O2 (442.38106)


Constituent of Manila elemi resin and oil (Canarium communis), Elemi oil has a citrus-like smell, a bit spicy and is pale in color. In the Philippines the Elemi tree is known locally as Pili". The main chemical components of elemi oil are terpineol, elemicine, elemol, dipentene, phellandrene and limonene. It is also found in Baccharis rhomboidalis (a spice shrub primarily found in Chile), Euphorbia species (also commonly referred to as "Spurges"), Farfugium species and others. Constituent of Manila elemi resin (Canarium communis), Baccharis rhomboidalis, Euphorbia subspecies, Farfugium subspecies and others [CCD]. Brein is found in sunflower.

   

Maniladiol

4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,8-diol

C30H50O2 (442.38106)


3alpha-Maniladiol is found in fruits. 3alpha-Maniladiol is a constituent of Canarium album (Chinese white olive). Constituent of Calendula officinalis (pot marigold). Maniladiol is found in sunflower.

   

3alpha-12-Ursene-3,24-diol

4-(hydroxymethyl)-4,6a,6b,8a,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O2 (442.38106)


3alpha-12-Ursene-3,24-diol is found in herbs and spices. 3alpha-12-Ursene-3,24-diol is a constituent of Boswellia serrata (Indian olibanum). Constituent of Boswellia serrata (Indian olibanum). 3alpha-12-Ursene-3,24-diol is found in herbs and spices.

   

3alpha-Corosolic acid

2,3-dihydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C30H48O4 (472.3552408)


3alpha-Corosolic acid is found in herbs and spices. 3alpha-Corosolic acid is a constituent of Boswellia serrata (Indian olibanum). Constituent of Boswellia serrata (Indian olibanum). (2a,3a)-Dihydroxy-12-ursen-24-oic acid is found in herbs and spices.

   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

Friedelin

4,4a,6b,8a,11,11,12b,14a-octamethyl-docosahydropicen-3-one

C30H50O (426.386145)


Friedelin is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Friedelin is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Friedelin can be found in a number of food items such as apple, pear, mammee apple, and sugar apple, which makes friedelin a potential biomarker for the consumption of these food products. Friedelin is a triterpenoid chemical compound found in Azima tetracantha, Orostachys japonica, and Quercus stenophylla. Friedelin is also found in the roots of the Cannabis plant .

   

Isofuranodiene

3,6,10-trimethyl-4H,7H,8H,11H-cyclodeca[b]furan

C15H20O (216.151407)


   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.37049579999996)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Sobrepin

5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-ol

C10H18O2 (170.1306728)


   

C10:0

Decanoic acid

C10H20O2 (172.14632200000003)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

1(7)-p-Menthene

1(7)-p-Menthene

C10H18 (138.1408428)


   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

bicyclogermacrene

bicyclogermacrene

C15H24 (204.18779039999998)


A sesquiterpene derived from germacrane by dehydrogenation across the C(1)-C(10) and C(4)-C(5) bonds and cyclisation across the C(8)-C(9) bond.

   

Taraxerol

(3S,4aR,6aR,8aR,12aR,12bS,14aR,14bR)-4,4,6a,8a,11,11,12b,14b-octamethyl-1,2,3,4,4a,5,6,6a,8,8a,9,10,11,12,12a,12b,13,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Taraxerol is a pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15. It has a role as a metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. Taraxerol is a natural product found in Diospyros morrisiana, Liatris acidota, and other organisms with data available. See also: Myrica cerifera root bark (part of). A pentacyclic triterpenoid that is oleanan-3-ol lacking the methyl group at position 14, with an alpha-methyl substituent at position 13 and a double bond between positions 14 and 15.

   

Hinokinin

(3R,4R)-3,4-bis(benzo(d)(1,3)dioxol-5-ylmethyl)dihydrofuran-2(3H)-one

C20H18O6 (354.1103328)


Hinokinin is a lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 3,4-methylenedioxybenzyl group at positions 3 and 4 (the 3R,4R-diastereoisomer). It has a role as a trypanocidal drug. It is a lignan, a gamma-lactone and a member of benzodioxoles. Hinokinin is a natural product found in Piper nigrum, Chamaecyparis obtusa, and other organisms with data available. A lignan that is dihydrofuran-2(3H)-one (gamma-butyrolactone) substituted by a 3,4-methylenedioxybenzyl group at positions 3 and 4 (the 3R,4R-diastereoisomer). Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1]. Hinokinin (Compound 1) is a compound isolated from the stems of Hypoestes aristate. Hinokinin exhibits moderate activity of HIV-1 protease enzyme[1].

   

Cabraleadiol monoacetate

[(3R,5R,8R,9R,10R,13R,14R,17S)-17-[(2S,5S)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl] acetate

C32H54O4 (502.4021884)


Cabraleadiol monoacetate is a tetracyclic triterpenoid isolated from Aglaia abbreviata. It has a role as a plant metabolite. It is a member of oxolanes, a tetracyclic triterpenoid, an acetate ester and a tertiary alcohol. It derives from a hydride of a dammarane. Cabraleadiol monoacetate is a natural product found in Aglaia abbreviata, Aglaia elaeagnoidea, and other organisms with data available. A tetracyclic triterpenoid isolated from Aglaia abbreviata.

   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0062676)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Decanoic acid

Decanoic acid

C10H20O2 (172.14632200000003)


Decanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=334-48-5 (retrieved 2024-06-29) (CAS RN: 334-48-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

stearic acid

stearic acid

C18H36O2 (284.2715156)


Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.

   

Caprylic acid

Caprylic acid

C8H16O2 (144.1150236)


Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes. Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes.

   

Capric acid

Decanoic acid

C10H20O2 (172.14632200000003)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A C10, straight-chain saturated fatty acid. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3]. Decanoic acid, a component of medium chain triclycerides, is a brain-penetrant and non-competitive inhibitor of AMPA receptor. Decanoic acid has antiseizure effects[1][2][3].

   

Lauric acid

Dodecanoic acid

C12H24O2 (200.1776204)


Lauric acid, systematically dodecanoic acid, is a saturated fatty acid with a 12-carbon atom chain, thus having many properties of medium-chain fatty acids.[6] It is a bright white, powdery solid with a faint odor of bay oil or soap. The salts and esters of lauric acid are known as laurates. Lauric acid, as a component of triglycerides, comprises about half of the fatty-acid content in coconut milk, coconut oil, laurel oil, and palm kernel oil (not to be confused with palm oil),[10][11] Otherwise, it is relatively uncommon. It is also found in human breast milk (6.2\\\\% of total fat), cow's milk (2.9\\\\%), and goat's milk (3.1\\\\%). Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

coniferaldehyde

coniferaldehyde

C10H10O3 (178.062991)


CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 13

   

Octadecanoic acid

Octadecanoic acid

C18H36O2 (284.2715156)


A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.

   

Dodecanoic acid

Dodecanoic acid

C12H24O2 (200.1776204)


A straight-chain, twelve-carbon medium-chain saturated fatty acid with strong bactericidal properties; the main fatty acid in coconut oil and palm kernel oil.

   

Brein

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,8-diol

C30H50O2 (442.38106)


   

b-farnesene

(6Z)-7,11-dimethyl-3-methylidenedodeca-1,6,10-triene

C15H24 (204.18779039999998)


   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

g-Muurolene

7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.18779039999998)


   

3alpha-Corosolic acid

2,3-dihydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-4-carboxylic acid

C30H48O4 (472.3552408)


   

3alpha-12-Ursene-3,24-diol

4-(hydroxymethyl)-4,6a,6b,8a,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O2 (442.38106)


   
   

Nonan-2-one

Nonan-2-one

C9H18O (142.1357578)


A methyl ketone that is nonane in which the methylene hydrogens at position 2 are replaced by an oxo group.

   
   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

linoleic

9,12-Octadecadienoic acid, (9E,12E)-

C18H32O2 (280.2402172)


Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].

   

Furanodiene

InChI=1\C15H20O\c1-11-5-4-6-12(2)9-15-14(8-7-11)13(3)10-16-15\h6-7,10H,4-5,8-9H2,1-3H3\b11-7+,12-6

C15H20O (216.151407)


   

Pinocarveol

Bicyclo[3.1.1]heptan-3-ol,6,6-dimethyl-2-methylene-

C10H16O (152.12010859999998)


A pinane monoterpenoid that is a bicyclo[3.1.1]heptane substituted by two methyl groups at position 6, a methylidene group at position 2 and a hydroxy group at position 3.

   

2-(4-methylphenyl)propan-2-ol

2-(4-methylphenyl)propan-2-ol

C10H14O (150.1044594)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.18779039999998)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

3,5-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

3,5-dihydroxy-2-(4-hydroxyphenyl)-8-(3-methylbut-2-en-1-yl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,3-dihydro-1-benzopyran-4-one

C26H30O11 (518.178803)


   

(3s,5s)-3-[(1s,3as,5ar,7r,9ar,9br,11as)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(2-methylprop-1-en-1-yl)oxolan-2-one

(3s,5s)-3-[(1s,3as,5ar,7r,9ar,9br,11as)-7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl]-5-(2-methylprop-1-en-1-yl)oxolan-2-one

C30H46O3 (454.34467659999996)


   

(1s,4s,5r,8r,10s,13r,14r,16r,17s,18r,19s,20r)-16-hydroxy-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-10-yl acetate

(1s,4s,5r,8r,10s,13r,14r,16r,17s,18r,19s,20r)-16-hydroxy-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracosan-10-yl acetate

C32H50O5 (514.365805)


   

1-[2-(but-3-en-2-yl)-3,6-dihydroxy-5-methylphenyl]-2-methylpropan-2-yl acetate

1-[2-(but-3-en-2-yl)-3,6-dihydroxy-5-methylphenyl]-2-methylpropan-2-yl acetate

C17H24O4 (292.1674504)


   

12-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

12-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-yl acetate

C32H52O3 (484.3916242)


   

(5r,6r)-6-ethenyl-3,6-dimethyl-5-(prop-1-en-2-yl)-5,7-dihydro-4h-1-benzofuran

(5r,6r)-6-ethenyl-3,6-dimethyl-5-(prop-1-en-2-yl)-5,7-dihydro-4h-1-benzofuran

C15H20O (216.151407)


   

(3as,5s,8s)-3a-hydroxy-1,5,8-trimethyl-4h,5h,7h,8h,9h-naphtho[2,1-b]furan-2,6-dione

(3as,5s,8s)-3a-hydroxy-1,5,8-trimethyl-4h,5h,7h,8h,9h-naphtho[2,1-b]furan-2,6-dione

C15H18O4 (262.1205028)


   

(4as,5r,6r,8ar)-6-hydroxy-5-[(3e,7e,11e)-13-hydroxy-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-1,1,4a,6-tetramethyl-hexahydronaphthalen-2-one

(4as,5r,6r,8ar)-6-hydroxy-5-[(3e,7e,11e)-13-hydroxy-4,8,12-trimethyltrideca-3,7,11-trien-1-yl]-1,1,4a,6-tetramethyl-hexahydronaphthalen-2-one

C30H50O3 (458.37597500000004)


   

(1s,5r)-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-ol

(1s,5r)-5-(2-hydroxypropan-2-yl)-2-methylcyclohex-2-en-1-ol

C10H18O2 (170.1306728)


   

(8r)-3,6,10-trimethyl-4h,7h,8h,11h-cyclodeca[b]furan-8-yl acetate

(8r)-3,6,10-trimethyl-4h,7h,8h,11h-cyclodeca[b]furan-8-yl acetate

C17H22O3 (274.15688620000003)


   

3-{3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-(2-methylprop-1-en-1-yl)oxolan-2-one

3-{3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-(2-methylprop-1-en-1-yl)oxolan-2-one

C30H44O3 (452.3290274)


   

(3r,4s,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

(3r,4s,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14br)-4-(hydroxymethyl)-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O2 (442.38106)


   

2,2-dimethyl-5-(prop-1-en-2-yl)furan-3-one

2,2-dimethyl-5-(prop-1-en-2-yl)furan-3-one

C9H12O2 (152.0837252)


   

(1s,2s,3as,3bs,7s,9ar,9bs,11as)-1-[(2s)-2,6-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

(1s,2s,3as,3bs,7s,9ar,9bs,11as)-1-[(2s)-2,6-dihydroxy-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthrene-2,7-diol

C27H46O4 (434.3395916)


   

(1e,3z,6e,10z)-14-isopropyl-3,7,11-trimethylcyclotetradeca-1,3,6,10-tetraene

(1e,3z,6e,10z)-14-isopropyl-3,7,11-trimethylcyclotetradeca-1,3,6,10-tetraene

C20H32 (272.2503872)


   

1a-isopropyl-4,7-dimethyl-hexahydro-2h-azuleno[4,5-b]oxirene-4,7-diol

1a-isopropyl-4,7-dimethyl-hexahydro-2h-azuleno[4,5-b]oxirene-4,7-diol

C15H26O3 (254.1881846)


   

1,5,8-trimethyl-7h,8h,9h-naphtho[2,1-b]furan-6-one

1,5,8-trimethyl-7h,8h,9h-naphtho[2,1-b]furan-6-one

C15H16O2 (228.1150236)


   

(3ar,4r,9r,9as)-9-(2h-1,3-benzodioxol-5-yl)-3a,9a-dihydroxy-6,7,8-trimethoxy-1-oxo-3h,4h,9h-naphtho[2,3-c]furan-4-yl (2e)-2-methylbut-2-enoate

(3ar,4r,9r,9as)-9-(2h-1,3-benzodioxol-5-yl)-3a,9a-dihydroxy-6,7,8-trimethoxy-1-oxo-3h,4h,9h-naphtho[2,3-c]furan-4-yl (2e)-2-methylbut-2-enoate

C27H28O11 (528.1631538)


   

(1s,2s,4s)-4-isopropyl-1-methylcyclohexane-1,2,4-triol

(1s,2s,4s)-4-isopropyl-1-methylcyclohexane-1,2,4-triol

C10H20O3 (188.14123700000002)


   

3-[(2s,5ar,6s,7s,9ar,9br)-2-hydroperoxy-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-1h,2h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

3-[(2s,5ar,6s,7s,9ar,9br)-2-hydroperoxy-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-1h,2h,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

C22H34O4 (362.24569640000004)


   

(1r,3as,4r,8ar)-7-isopropyl-1,4-dimethyl-2,3,3a,5,6,8a-hexahydroazulene-1,4-diol

(1r,3as,4r,8ar)-7-isopropyl-1,4-dimethyl-2,3,3a,5,6,8a-hexahydroazulene-1,4-diol

C15H26O2 (238.1932696)


   

(1s,3r,5r)-2,2,6-trimethyltricyclo[3.3.0.0¹,³]oct-6-ene

(1s,3r,5r)-2,2,6-trimethyltricyclo[3.3.0.0¹,³]oct-6-ene

C11H16 (148.1251936)


   

methyl 3-[(1s,2s,4ar,4bs,6ar,9r,10s,10ar,12ar)-2-isopropyl-1,4a,4b,6a,9,10-hexamethyl-2,3,4,5,6,7,8,9,10,10a,12,12a-dodecahydrochrysen-1-yl]propanoate

methyl 3-[(1s,2s,4ar,4bs,6ar,9r,10s,10ar,12ar)-2-isopropyl-1,4a,4b,6a,9,10-hexamethyl-2,3,4,5,6,7,8,9,10,10a,12,12a-dodecahydrochrysen-1-yl]propanoate

C31H52O2 (456.3967092)


   

1,5,8-trimethyl-6h,7h,9h-naphtho[2,1-b]furan-8-ol

1,5,8-trimethyl-6h,7h,9h-naphtho[2,1-b]furan-8-ol

C15H18O2 (230.1306728)


   

(2s)-2-[(1s,3as,9as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2s)-2-[(1s,3as,9as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C30H46O3 (454.34467659999996)


   

2-methoxy-8-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

2-methoxy-8-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C23H24O8 (428.1471104)


   

(2r)-2-[(1r,3as,5ar,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2r)-2-[(1r,3as,5ar,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C30H46O3 (454.34467659999996)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysene-9,11-diol

C30H50O2 (442.38106)


   

(1s,4s,5r,8r,10s,13s,14r,17s,18r,19s,20r)-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl acetate

(1s,4s,5r,8r,10s,13s,14r,17s,18r,19s,20r)-4,5,9,9,13,19,20-heptamethyl-23-oxo-24-oxahexacyclo[15.5.2.0¹,¹⁸.0⁴,¹⁷.0⁵,¹⁴.0⁸,¹³]tetracos-15-en-10-yl acetate

C32H48O4 (496.3552408)


   

(3r,6ar,6bs,8s,8as,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,8-diol

(3r,6ar,6bs,8s,8as,14br)-4,4,6a,6b,8a,11,11,14b-octamethyl-1,2,3,4a,5,6,7,8,9,10,12,12a,14,14a-tetradecahydropicene-3,8-diol

C30H50O2 (442.38106)


   

(10r,11r,15r)-10-(4-hydroxy-3,5-dimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

(10r,11r,15r)-10-(4-hydroxy-3,5-dimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C21H20O7 (384.120897)


   

(4s,4as,8as)-4-isopropyl-6-methyl-1-methylidene-3,4,4a,7,8,8a-hexahydro-2h-naphthalene

(4s,4as,8as)-4-isopropyl-6-methyl-1-methylidene-3,4,4a,7,8,8a-hexahydro-2h-naphthalene

C15H24 (204.18779039999998)


   

(10r,11r,15s)-15-hydroxy-12-oxo-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-11-yl acetate

(10r,11r,15s)-15-hydroxy-12-oxo-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-11-yl acetate

C24H24O10 (472.13694039999996)


   

8-methoxy-3,6,10-trimethyl-4-oxo-5h,6h,7h,8h,11h-cyclodeca[b]furan-5-yl acetate

8-methoxy-3,6,10-trimethyl-4-oxo-5h,6h,7h,8h,11h-cyclodeca[b]furan-5-yl acetate

C18H24O5 (320.1623654)


   

(1s,2r)-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2,6-dimethoxyphenoxy]propane-1,3-diol

(1s,2r)-1-(4-hydroxy-3-methoxyphenyl)-2-[4-(3-hydroxypropyl)-2,6-dimethoxyphenoxy]propane-1,3-diol

C21H28O8 (408.1784088)


   

14-isopropyl-3,7,11-trimethylcyclotetradeca-2,6,10-trien-1-ol

14-isopropyl-3,7,11-trimethylcyclotetradeca-2,6,10-trien-1-ol

C20H34O (290.2609514)


   

3a,6,9a,11a-tetramethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-7,8,9-triol

3a,6,9a,11a-tetramethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,4h,5h,5ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-7,8,9-triol

C29H48O3 (444.36032579999994)


   

3-[(3r,3ar,3br,5ar,6s,7s,9ar,9br,11ar)-6,9a,9b,11a-tetramethyl-3,7-bis(prop-1-en-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-6-yl]propanoic acid

3-[(3r,3ar,3br,5ar,6s,7s,9ar,9br,11ar)-6,9a,9b,11a-tetramethyl-3,7-bis(prop-1-en-2-yl)-dodecahydro-1h-cyclopenta[a]phenanthren-6-yl]propanoic acid

C30H48O2 (440.36541079999995)


   

3-{7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-(2-methylprop-1-en-1-yl)oxolan-2-one

3-{7-hydroxy-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-1-yl}-5-(2-methylprop-1-en-1-yl)oxolan-2-one

C30H46O3 (454.34467659999996)


   

(10e)-4,5,10-trimethoxy-2-oxatricyclo[13.2.2.1³,⁷]icosa-1(17),3(20),4,6,10,15,18-heptaen-12-one

(10e)-4,5,10-trimethoxy-2-oxatricyclo[13.2.2.1³,⁷]icosa-1(17),3(20),4,6,10,15,18-heptaen-12-one

C22H24O5 (368.1623654)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(3,4,5-trimethoxyphenoxy)oxan-2-yl]methoxysulfonic acid

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-(3,4,5-trimethoxyphenoxy)oxan-2-yl]methoxysulfonic acid

C15H22O12S (426.08319320000004)


   

1-(3-hydroxy-6-methyl-4-oxohept-5-en-2-yl)-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

1-(3-hydroxy-6-methyl-4-oxohept-5-en-2-yl)-3a,6,6,9a,11a-pentamethyl-1h,2h,3h,5h,5ah,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-one

C30H46O3 (454.34467659999996)


   

4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picene-3,3-diol

4,4,6a,6b,8a,11,11,14b-octamethyl-2,4a,5,6,7,8,9,10,12,12a,14,14a-dodecahydro-1h-picene-3,3-diol

C30H50O2 (442.38106)


   

(3s,6r)-6-[(1r,3as,3br,5ar,7s,9ar,9br)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthren-1-yl]-2-methylheptane-2,3-diol

(3s,6r)-6-[(1r,3as,3br,5ar,7s,9ar,9br)-7-hydroxy-3a,3b,6,6,9a-pentamethyl-1h,2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h-cyclopenta[a]phenanthren-1-yl]-2-methylheptane-2,3-diol

C30H52O3 (460.3916242)


   

(3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-(acetyloxy)-14-methoxy-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-4-carboxylic acid

(3r,4r,4ar,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-(acetyloxy)-14-methoxy-4,6a,6b,8a,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-4-carboxylic acid

C33H52O5 (528.3814542)


   

3-[(3ar,5ar,6s,7s,9ar,9br)-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-1h,3ah,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

3-[(3ar,5ar,6s,7s,9ar,9br)-6,9a,9b-trimethyl-7-(prop-1-en-2-yl)-1h,3ah,4h,5h,5ah,7h,8h,9h-cyclopenta[a]naphthalen-6-yl]propanoic acid

C22H34O2 (330.2558664)


   

(5r,6s,8s)-8-methoxy-3,6,10-trimethyl-4-oxo-5h,6h,7h,8h,11h-cyclodeca[b]furan-5-yl acetate

(5r,6s,8s)-8-methoxy-3,6,10-trimethyl-4-oxo-5h,6h,7h,8h,11h-cyclodeca[b]furan-5-yl acetate

C18H24O5 (320.1623654)


   

3,6-dimethyl-10-methylidene-5h,6h,7h,11h-cyclodeca[b]furan-4-one

3,6-dimethyl-10-methylidene-5h,6h,7h,11h-cyclodeca[b]furan-4-one

C15H18O2 (230.1306728)


   

(1r,2s,6s,7s,8r)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

(1r,2s,6s,7s,8r)-8-isopropyl-1,3-dimethyltricyclo[4.4.0.0²,⁷]dec-3-ene

C15H24 (204.18779039999998)


   

3a-hydroxy-1,5,8-trimethyl-4h,5h,7h,8h,9h-naphtho[2,1-b]furan-2,6-dione

3a-hydroxy-1,5,8-trimethyl-4h,5h,7h,8h,9h-naphtho[2,1-b]furan-2,6-dione

C15H18O4 (262.1205028)


   

2-hydroperoxy-3a,3b,6,6,9a-pentamethyl-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

2-hydroperoxy-3a,3b,6,6,9a-pentamethyl-2h,3h,4h,5h,5ah,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C22H36O3 (348.26643060000004)


   

(3s,4as,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

(3s,4as,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O (426.386145)


   

(1r,3ar,5ar,5br,7ar,9r,11ar,11br,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

(1r,3ar,5ar,5br,7ar,9r,11ar,11br,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


   

(1r,2s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-[(2r)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

(1r,2s,3ar,3br,5ar,7s,9ar,9br,11ar)-1-[(2r)-2-hydroxy-6-methylhept-5-en-2-yl]-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthrene-2,7-diol

C30H52O3 (460.3916242)


   

(10s,11s,15r)-15-hydroxy-12-oxo-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-11-yl acetate

(10s,11s,15r)-15-hydroxy-12-oxo-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-11-yl acetate

C24H24O10 (472.13694039999996)


   

(7s,9ar,11ar)-1-[(5r)-5-ethyl-6-methylheptan-2-yl]-6,6,9a,11a-tetramethyl-1h,2h,3h,3ah,3bh,4h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

(7s,9ar,11ar)-1-[(5r)-5-ethyl-6-methylheptan-2-yl]-6,6,9a,11a-tetramethyl-1h,2h,3h,3ah,3bh,4h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol

C31H54O (442.41744339999997)


   

3-[(1s,2s,4ar,4bs,6as,10ar,12ar)-1,4a,4b,6a,9,9-hexamethyl-8-oxo-2-(prop-1-en-2-yl)-2,3,4,5,6,7,10,10a,12,12a-decahydrochrysen-1-yl]propanoic acid

3-[(1s,2s,4ar,4bs,6as,10ar,12ar)-1,4a,4b,6a,9,9-hexamethyl-8-oxo-2-(prop-1-en-2-yl)-2,3,4,5,6,7,10,10a,12,12a-decahydrochrysen-1-yl]propanoic acid

C30H46O3 (454.34467659999996)


   

(2r,3s,4r,5z)-tricos-5-ene-1,2,3,4-tetrol

(2r,3s,4r,5z)-tricos-5-ene-1,2,3,4-tetrol

C23H46O4 (386.3395916)


   

(8as)-3,8a-dimethyl-5-methylidene-4h,4ah,6h,9h-naphtho[2,3-b]furan

(8as)-3,8a-dimethyl-5-methylidene-4h,4ah,6h,9h-naphtho[2,3-b]furan

C15H18O (214.1357578)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O (424.37049579999996)


   

8-methoxy-3,6,10-trimethyl-5h,6h,7h,8h,11h-cyclodeca[b]furan-4-one

8-methoxy-3,6,10-trimethyl-5h,6h,7h,8h,11h-cyclodeca[b]furan-4-one

C16H22O3 (262.15688620000003)


   

(8s)-1,5,8-trimethyl-6h,7h,9h-naphtho[2,1-b]furan-8-ol

(8s)-1,5,8-trimethyl-6h,7h,9h-naphtho[2,1-b]furan-8-ol

C15H18O2 (230.1306728)


   

(10r,11r,15s)-12-oxo-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-11-yl acetate

(10r,11r,15s)-12-oxo-10-(3,4,5-trimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-11-yl acetate

C24H24O9 (456.14202539999997)


   

2-[(3,4-dihydroxy-6-{3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methoxy]-6-methyloxane-3,4,5-triol

2-[(3,4-dihydroxy-6-{3-[2-(4-hydroxyphenyl)ethenyl]-5-methoxyphenoxy}-5-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl)methoxy]-6-methyloxane-3,4,5-triol

C33H44O16 (696.2629224)


   

1-(2,6-dihydroxy-6-methylhept-4-en-2-yl)-2,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

1-(2,6-dihydroxy-6-methylhept-4-en-2-yl)-2,11-dihydroxy-3a,3b,6,6,9a-pentamethyl-dodecahydro-1h-cyclopenta[a]phenanthren-7-yl acetate

C32H54O6 (534.3920184)


   

1-[(1r,3ar,5ar,5br,7ar,9r,11ar,11br,13ar,13bs)-9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-1-yl]ethanone

1-[(1r,3ar,5ar,5br,7ar,9r,11ar,11br,13ar,13bs)-9-hydroxy-3a,5a,5b,8,8,11a-hexamethyl-hexadecahydrocyclopenta[a]chrysen-1-yl]ethanone

C29H48O2 (428.36541079999995)


   

8-methoxy-3,6,10-trimethyl-5h,6h,7h,8h,11h,11ah-cyclodeca[b]furan-2,4-dione

8-methoxy-3,6,10-trimethyl-5h,6h,7h,8h,11h,11ah-cyclodeca[b]furan-2,4-dione

C16H22O4 (278.1518012)


   

4-(hydroxymethyl)-1-isopropylcyclohex-3-en-1-ol

4-(hydroxymethyl)-1-isopropylcyclohex-3-en-1-ol

C10H18O2 (170.1306728)


   

(6r,8r)-8-methoxy-3,6,10-trimethyl-5h,6h,7h,8h,11h-cyclodeca[b]furan-4-one

(6r,8r)-8-methoxy-3,6,10-trimethyl-5h,6h,7h,8h,11h-cyclodeca[b]furan-4-one

C16H22O3 (262.15688620000003)


   

2,2,6-trimethyltricyclo[3.3.0.0¹,³]oct-6-ene

2,2,6-trimethyltricyclo[3.3.0.0¹,³]oct-6-ene

C11H16 (148.1251936)


   

(1s,5r,6r)-5-[(2r)-2-hydroxybutan-2-yl]-2-methyl-6-(2-methylprop-1-en-1-yl)cyclohex-2-en-1-ol

(1s,5r,6r)-5-[(2r)-2-hydroxybutan-2-yl]-2-methyl-6-(2-methylprop-1-en-1-yl)cyclohex-2-en-1-ol

C15H26O2 (238.1932696)


   

methyl 3-(acetyloxy)-2,12,14-trihydroxy-8a-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylate

methyl 3-(acetyloxy)-2,12,14-trihydroxy-8a-(hydroxymethyl)-4,6a,6b,11,12,14b-hexamethyl-1,2,3,4a,5,6,7,8,9,10,11,12a,14,14a-tetradecahydropicene-4-carboxylate

C33H52O8 (576.3661992)


   

(3r,4r,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

(3r,4r,6ar,6bs,8ar,11r,12s,12ar,14ar,14bs)-3-hydroxy-4,6a,6b,8a,11,12,14b-heptamethyl-14-oxo-1,2,3,4a,5,6,7,8,9,10,11,12,12a,14a-tetradecahydropicene-4-carboxylic acid

C30H46O4 (470.3395916)


   

(2r,3r,4s,5s,6r)-2-{[(1s,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

(2r,3r,4s,5s,6r)-2-{[(1s,3as,3bs,7s,9ar,9bs,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

(4as,5s,8s,8as)-8-hydroxy-5-isopropyl-3,8-dimethyl-1,4a,5,6,7,8a-hexahydronaphthalen-2-one

(4as,5s,8s,8as)-8-hydroxy-5-isopropyl-3,8-dimethyl-1,4a,5,6,7,8a-hexahydronaphthalen-2-one

C15H24O2 (236.1776204)


   

5-isopropyl-2-methylcyclohex-2-ene-1,4-diol

5-isopropyl-2-methylcyclohex-2-ene-1,4-diol

C10H18O2 (170.1306728)


   

(10r,11s,15r)-10-(2h-1,3-benzodioxol-5-yl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

(10r,11s,15r)-10-(2h-1,3-benzodioxol-5-yl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C20H16O6 (352.0946836)


   

8-(acetyloxy)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a-dodecahydro-1h-picen-3-yl acetate

8-(acetyloxy)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a-dodecahydro-1h-picen-3-yl acetate

C34H52O4 (524.3865392)


   

(2s)-2-[(1r,3as,5as,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

(2s)-2-[(1r,3as,5as,9as,11as)-3a,6,6,9a,11a-pentamethyl-7-oxo-1h,2h,3h,4h,5h,5ah,8h,9h,10h,11h-cyclopenta[a]phenanthren-1-yl]-6-methylhept-5-enoic acid

C30H46O3 (454.34467659999996)