NCBI Taxonomy: 375278

Siphoneugena (ncbi_taxid: 375278)

found 357 associated metabolites at genus taxonomy rank level.

Ancestor: Plinia group

Child Taxonomies: Siphoneugena dussii, Siphoneugena reitzii, Siphoneugena densiflora, Siphoneugena guilfoyleana, unclassified Siphoneugena

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Quercitrin, also known as quercimelin or quercitronic acid, belongs to the class of organic compounds known as flavonoid-3-o-glycosides. These are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Quercitrin exists in all living organisms, ranging from bacteria to humans. Quercitrin is found, on average, in the highest concentration within a few different foods, such as lingonberries, american cranberries, and olives and in a lower concentration in common beans, tea, and welsh onions. Quercitrin has also been detected, but not quantified, in several different foods, such as guava, bilberries, common pea, apricots, and spearmints. Quercitrin is a quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It has a role as an antioxidant, an antileishmanial agent, an EC 1.1.1.184 [carbonyl reductase (NADPH)] inhibitor, an EC 1.1.1.21 (aldehyde reductase) inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor and a plant metabolite. It is a monosaccharide derivative, a tetrahydroxyflavone, an alpha-L-rhamnoside and a quercetin O-glycoside. It is a conjugate acid of a quercitrin-7-olate. Quercitrin is a natural product found in Xylopia emarginata, Lotus ucrainicus, and other organisms with data available. Quercitrin is a glycoside formed from the flavonoid quercetin and the deoxy sugar rhamnose. It is a constituent of the dye quercitron. Quercitrin is found in many foods, some of which are garden tomato (variety), kiwi, italian sweet red pepper, and guava. A quercetin O-glycoside that is quercetin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. [Raw Data] CBA03_Quercitrin_pos_10eV.txt [Raw Data] CBA03_Quercitrin_pos_20eV.txt [Raw Data] CBA03_Quercitrin_neg_50eV.txt [Raw Data] CBA03_Quercitrin_neg_30eV.txt [Raw Data] CBA03_Quercitrin_neg_10eV.txt [Raw Data] CBA03_Quercitrin_neg_40eV.txt [Raw Data] CBA03_Quercitrin_neg_20eV.txt [Raw Data] CBA03_Quercitrin_pos_50eV.txt [Raw Data] CBA03_Quercitrin_pos_30eV.txt [Raw Data] CBA03_Quercitrin_pos_40eV.txt Quercitrin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=522-12-3 (retrieved 2024-07-09) (CAS RN: 522-12-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Gallic acid

3,4,5-trihydroxybenzoic acid

C7H6O5 (170.0215226)


Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

Esculentic acid (Diplazium)

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.386145)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Amyrin

(3S,4aR,5R,6aR,6bR,8S,8aR,12aR,14aR,14bR)-4,4,6a,6b,8a,11,11,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Epi-alpha-amyrin

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.

   

Syringic acid

InChI=1/C9H10O5/c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10/h3-4,10H,1-2H3,(H,11,12

C9H10O5 (198.052821)


Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563). Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate. Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available. Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max) A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID S018 Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0062676)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Rhamnose

L-(+)-Rhamnose hydrate = 6-deoxy-L-mannose monohydrate

C6H12O5 (164.06847019999998)


Rhamnose (Rham) is a naturally occurring deoxy sugar. It can be classified as either a methyl-pentose or a 6-deoxy-hexose. Rhamnose occurs in nature in its L-form as L-rhamnose (6-deoxy-L-mannose). This is unusual, since most of the naturally occurring sugars are in D-form. Rhamnose is commonly bound to other sugars in nature. It is a common glycone component of glycosides from many plants. Rhamnose is also a component of the outer cell membrane of certain bacteria. L-rhamnose is metabolized to L-Lactaldehyde, which is a branching point in the metabolic pathway of L-fucose and L-rhamnose utilization. It exists in two anomeric forms, alpha-L-rhamnose and beta-L-rhamnose. Rhamnose has been found in Klebsiella, Pseudomonas (https://link.springer.com/article/10.1007/BF00369505) (https://onlinelibrary.wiley.com/doi/abs/10.1002/ejlt.200300816). Acquisition and generation of the data is financially supported in part by CREST/JST. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

Pedunculagin

(2S,22R)-7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.02,19.05,10.011,16.026,31.032,37]nonatriaconta-5,7,9,11,13,15,26,28,30,32,34,36-dodecaene-4,17,25,38-tetrone

C34H24O22 (784.0759204)


   

5-Hydroxymethyl-2-furancarboxaldehyde

5-(hydroxymethyl)furan-2-carbaldehyde;5-(Hydroxymethyl)furfural

C6H6O3 (126.0316926)


5-hydroxymethylfurfural is a member of the class of furans that is furan which is substituted at positions 2 and 5 by formyl and hydroxymethyl substituents, respectively. Virtually absent from fresh foods, it is naturally generated in sugar-containing foods during storage, and especially by drying or cooking. It is the causative component in honey that affects the presystemic metabolism and pharmacokinetics of GZ in-vivo. It has a role as an indicator and a Maillard reaction product. It is a member of furans, an arenecarbaldehyde and a primary alcohol. Aes-103 has been used in trials studying the treatment and prevention of Hypoxia, Anemia, Sickle Cell, and Sickle Cell Disease. 5-Hydroxymethylfurfural is a natural product found in Prunus mume, Tussilago farfara, and other organisms with data available. 5-Hydroxymethyl-2-furancarboxaldehyde belongs to the family of Furans. These are compounds containing a furan ring, which is a five-member aromatic ring with one oxygen atom, four carbon atoms. 5-Hydroxymethyl-2-furancarboxaldehyde is found in garden onion. Obtainable from various carbohydrates. 5-Hydroxymethyl-2-furancarboxaldehyde is present in tomatoes, tobacco oil etc. 5-Hydroxymethyl-2-furancarboxaldehyde is a constituent of numerous plant species. 5-Hydroxymethyl-2-furancarboxaldehyde is used as an index of heat treatment and deterioration in food such as tomato paste, honey and fruit juices. Also an indicator of adulteration with acid-converted invert sugars. 5-Hydroxymethylfurfural is a biomarker for the consumption of beer 5-Hydroxymethyl-2-furancarboxaldehyde or simply HMF is obtainable from various carbohydrates. It is found in garden tomatoes, garden onion, and tobacco oil. Constituent of numerous plant spp.. Used as an index of heat treatment and deterioration in food such as tomato paste, honey and fruit juices. Also an indicator of adulteration with acid-converted invert sugars. 5-Hydroxymethylfurfural is a biomarker for the consumption of beer. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors.

   

L-Rhamnose

(2R,3R,4S,5S)-2,3,4,5-Tetrahydroxyhexanal

C6H12O5 (164.06847019999998)


Any rhamnose having L-configuration. L-rhamnose occurs naturally in many plant glycosides and some gram-negative bacterial lipopolysaccharides. Acquisition and generation of the data is financially supported by the Max-Planck-Society CONFIDENCE standard compound; INTERNAL_ID 234 Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

Arjunolic acid

10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


Arjunolic acid is found in fruits. Arjunolic acid is a constituent of Psidium guajava (guava) Constituent of Psidium guajava (guava). Arjunolic acid is found in fruits and guava.

   

(2R,3R,4S,5S)-2,3,4,5-Tetrahydroxyhexanal

(2R,3R,4S,5S)-2,3,4,5-Tetrahydroxyhexanal

C6H12O5 (164.06847019999998)


   

alpha-Amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.

   

Guaijaverin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(3,4,5-trihydroxyoxan-2-yl)oxy]-4H-chromen-4-one

C20H18O11 (434.0849078)


Guaijaverin is a urease inhibitor with an IC50 of 120 μM. Guaijaverin shows antioxidant and anti-Streptococcus mutans activities[1][2][3]. Guaijaverin is a urease inhibitor with an IC50 of 120 μM. Guaijaverin shows antioxidant and anti-Streptococcus mutans activities[1][2][3]. Reynoutrin (Quercetin-3-D-xyloside) is a flavonoid from Psidium cattleianum, with antioxidant and radical-scavenging activity[1]. Reynoutrin (Quercetin-3-D-xyloside) is a flavonoid from Psidium cattleianum, with antioxidant and radical-scavenging activity[1].

   

Guaijaverin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4S,5S)-3,4,5-trihydroxytetrahydropyran-2-yl]oxy-chromen-4-one

C20H18O11 (434.0849078)


Acquisition and generation of the data is financially supported in part by CREST/JST. Guaijaverin is a natural product found in Eucalyptus cypellocarpa, Hypericum scabrum, and other organisms with data available. Guaijaverin is a urease inhibitor with an IC50 of 120 μM. Guaijaverin shows antioxidant and anti-Streptococcus mutans activities[1][2][3]. Guaijaverin is a urease inhibitor with an IC50 of 120 μM. Guaijaverin shows antioxidant and anti-Streptococcus mutans activities[1][2][3].

   

Brahmic acid

(1S,2R,4aS,6aS,6bR,8R,8aR,9R,10R,11R,12aR,12bR,14bS)-8,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O6 (504.3450708)


Madecassic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3, 6 and 23 (the 2alpha,3beta,6beta stereoisomer). It has a role as an antioxidant and a plant metabolite. It is a pentacyclic triterpenoid, a tetrol and a monocarboxylic acid. It derives from a hydride of an ursane. Madecassic acid is a natural product found in Siphoneugena densiflora, Centella erecta, and Centella asiatica with data available. See also: Centella asiatica flowering top (part of) ... View More ... C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Madecassic acid is isolated from Centella asiatica (Umbelliferae). Madecassic acid has anti-inflammatory properties caused by iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 inhibition via the downregulation of NF-κB activation in RAW 264.7 macrophage cells[1]. Madecassic acid is isolated from Centella asiatica (Umbelliferae). Madecassic acid has anti-inflammatory properties caused by iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 inhibition via the downregulation of NF-κB activation in RAW 264.7 macrophage cells[1].

   

Madecassic

(1S,2R,4aS,6aS,6bR,8R,8aR,9R,10R,11R,12aR,12bR,14bS)-8,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O6 (504.3450708)


Madecassic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3, 6 and 23 (the 2alpha,3beta,6beta stereoisomer). It has a role as an antioxidant and a plant metabolite. It is a pentacyclic triterpenoid, a tetrol and a monocarboxylic acid. It derives from a hydride of an ursane. Madecassic acid is a natural product found in Siphoneugena densiflora, Centella erecta, and Centella asiatica with data available. See also: Centella asiatica flowering top (part of) ... View More ... A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3, 6 and 23 (the 2alpha,3beta,6beta stereoisomer). C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Madecassic acid is isolated from Centella asiatica (Umbelliferae). Madecassic acid has anti-inflammatory properties caused by iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 inhibition via the downregulation of NF-κB activation in RAW 264.7 macrophage cells[1]. Madecassic acid is isolated from Centella asiatica (Umbelliferae). Madecassic acid has anti-inflammatory properties caused by iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 inhibition via the downregulation of NF-κB activation in RAW 264.7 macrophage cells[1].

   

β-Amyrin

beta-amyrin-H2O

C30H50O (426.386145)


Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].

   

Asiatic Acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,9R,10R,11R,12aR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O5 (488.3501558)


Esculentic acid (diplazium) is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Esculentic acid (diplazium) is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Esculentic acid (diplazium) can be found in green vegetables, which makes esculentic acid (diplazium) a potential biomarker for the consumption of this food product. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product relative retention time with respect to 9-anthracene Carboxylic Acid is 1.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.378 Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Terminolic acid

Terminolic acid

C30H48O6 (504.3450708)


Terminolic acid is a pentacyclic triterpenoid glucoside isolated from Combretum racemosum. Terminolic acid can inhibit the pro-inflammatory cytokines by binding to receptor active site of IL-1β and IL-6, and enhance anti-inflammatory cytokines by binding to IL-4 receptor binding sites. Terminolic acid also exhibits moderate antibacterial activity[1][1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Quercitrin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2]. Quercitrin (Quercetin 3-rhamnoside) is a bioflavonoid compound with potential anti-inflammation, antioxidative and neuroprotective effect. Quercitrin induces apoptosis of colon cancer cells. Quercitrin can be used for the research of cardiovascular and neurological disease research[1][2].

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Rhamnose

alpha-L-Rhamnose

C6H12O5 (164.06847019999998)


Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.386145)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   
   

2,4,6-Trimethoxybenzaldehyde

2,4,6-Trimethoxybenzaldehyde

C10H12O4 (196.0735552)


   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

Esculentic acid (Diplazium)

10,11-DIHYDROXY-9-(HYDROXYMETHYL)-1,2,6A,6B,9,12A-HEXAMETHYL-1,2,3,4,4A,5,6,6A,6B,7,8,8A,9,10,11,12,12A,12B,13,14B-ICOSAHYDROPICENE-4A-CARBOXYLIC ACID

C30H48O5 (488.3501558)


10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid is a natural product found in Psidium, Punica, and other organisms with data available. Esculentic acid (Diplazium) is found in green vegetables. Esculentic acid (Diplazium) is a constituent of the edible fern Diplazium esculentum Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

Arjunolicacid

(4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


Arjunolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). Isolated from Symplocos lancifolia and Juglans sinensis, it exhibits antioxidant and antimicrobial activities. It has a role as a metabolite, an antibacterial agent, an antifungal agent and an antioxidant. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an oleanane. Arjunolic acid is a natural product found in Musanga cecropioides, Akebia quinata, and other organisms with data available. A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). Isolated from Symplocos lancifolia and Juglans sinensis, it exhibits antioxidant and antimicrobial activities.

   

Terminolic acid

(4aS,6aR,6aS,6bR,8R,8aR,9R,10R,11R,12aR,14bS)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O6 (504.3450708)


Terminolic acid is a natural product found in Terminalia alata, Picrorhiza kurrooa, and other organisms with data available. See also: Centella asiatica flowering top (part of). Terminolic acid is a pentacyclic triterpenoid glucoside isolated from Combretum racemosum. Terminolic acid can inhibit the pro-inflammatory cytokines by binding to receptor active site of IL-1β and IL-6, and enhance anti-inflammatory cytokines by binding to IL-4 receptor binding sites. Terminolic acid also exhibits moderate antibacterial activity[1][1].

   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0062676)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

alpha-L-Rhamnose

(2R,3R,4S,5S)-2,3,4,5-Tetrahydroxyhexanal

C6H12O5 (164.06847019999998)


Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   

Vanillic Acid

Vanillic acid hexoside

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Madecassic Acid

Madecassic Acid

C30H48O6 (504.3450708)


Madecassic acid is isolated from Centella asiatica (Umbelliferae). Madecassic acid has anti-inflammatory properties caused by iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 inhibition via the downregulation of NF-κB activation in RAW 264.7 macrophage cells[1]. Madecassic acid is isolated from Centella asiatica (Umbelliferae). Madecassic acid has anti-inflammatory properties caused by iNOS, COX-2, TNF-alpha, IL-1beta, and IL-6 inhibition via the downregulation of NF-κB activation in RAW 264.7 macrophage cells[1].

   

Syringic acid

Syringic acid

C9H10O5 (198.052821)


Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

Arjunolic acid

(4aS,6aS,6bR,9R,10R,11R,12aR)-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


   

Esculentic acid (Diplazium)

10,11-DIHYDROXY-9-(HYDROXYMETHYL)-1,2,6A,6B,9,12A-HEXAMETHYL-1,2,3,4,4A,5,6,6A,6B,7,8,8A,9,10,11,12,12A,12B,13,14B-ICOSAHYDROPICENE-4A-CARBOXYLIC ACID

C30H48O5 (488.3501558)


   

Epi-a-amyrin

4,4,6a,6b,8a,11,12,14b-octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O (426.386145)


   

Quertin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-

C15H10O7 (302.042651)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Vanillate

4-Hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Harzol

(3S,8S,9S,10R,13R,14S,17R)-17-[(2R,5R)-5-ethyl-6-methyl-heptan-2-yl]-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.386145)


C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

GALOP

InChI=1\C7H6O5\c8-4-1-3(7(11)12)2-5(9)6(4)10\h1-2,8-10H,(H,11,12

C7H6O5 (170.0215226)


C26170 - Protective Agent > C275 - Antioxidant Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].

   

viminalol

(3S,4aR,6aR,6bS,8aR,11R,12S,12aR,14aR,14bR)-4,4,6a,6b,8a,11,12,14b-Octamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-eicosahydro-picen-3-ol

C30H50O (426.386145)


Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ...

   

67-47-0

InChI=1\C6H6O3\c7-3-5-1-2-6(4-8)9-5\h1-3,8H,4H

C6H6O3 (126.0316926)


5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors. 5-Hydroxymethylfurfural (2-Hydroxymethyl-5-furfural), derived from Cornus officinalis, inhibits yeast growth and fermentation as stressors.

   

Cedar acid

InChI=1\C9H10O5\c1-13-6-3-5(9(11)12)4-7(14-2)8(6)10\h3-4,10H,1-2H3,(H,11,12

C9H10O5 (198.052821)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.

   

L-Rha

(2R,3R,4S,5S)-2,3,4,5-Tetrahydroxyhexanal

C6H12O5 (164.06847019999998)


Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2]. Rhamnose (L-Rhamnose) is a monosaccharide found in plants and bacteria. Rhamnose-conjugated immunogens is used in immunotherapies[1]. Rhamnose crosses the epithelia via the transcellular pathway and acts as a marker of intestinal absorption[2].

   
   
   

Quercetin 3-beta-D-xylopyranoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5S)-3,4,5-trihydroxyoxan-2-yl]oxychromen-4-one

C20H18O11 (434.0849078)


Reynoutrin (Quercetin-3-D-xyloside) is a flavonoid from Psidium cattleianum, with antioxidant and radical-scavenging activity[1]. Reynoutrin (Quercetin-3-D-xyloside) is a flavonoid from Psidium cattleianum, with antioxidant and radical-scavenging activity[1].

   

Asiatic

(1S,2R,4aS,6aS,6bR,8aR,9R,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


Asiatic acid is a pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. It has a role as an angiogenesis modulating agent and a metabolite. It is a monocarboxylic acid, a triol and a pentacyclic triterpenoid. It derives from a hydride of an ursane. From Centella asiatica and other plants; shows a variety of bioactivities. Asiatic acid is a natural product found in Psidium guajava, Combretum fruticosum, and other organisms with data available. See also: Holy basil leaf (part of); Lagerstroemia speciosa leaf (part of); Centella asiatica flowering top (part of). A pentacyclic triterpenoid that is ursane substituted by a carboxy group at position 28 and hydroxy groups at positions 2, 3 and 23 (the 2alpha,3beta stereoisomer). It is isolated from Symplocos lancifolia and Vateria indica and exhibits anti-angiogenic activity. C1907 - Drug, Natural Product > C28269 - Phytochemical > C1905 - Triterpenoid Compound C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2]. Asiatic acid, a pentacyclic triterpene found in Centella asiatica, induces apoptosis in melanoma cells. Asiatic acid has the potential for skin cancer treatment[1]. Asiatic acid also has anti-inflammatory activities[2].

   

(11r,12r)-12-[(15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12r)-12-[(15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2s,3r,4r,5s)-3,4,5-trihydroxyoxan-2-yl]oxy}chromen-4-one

C20H18O11 (434.0849078)


   

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}chromen-4-one

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(3r,4s,5r)-3,4,5-trihydroxyoxan-2-yl]oxy}chromen-4-one

C20H18O11 (434.0849078)


   

(4as,6as,6br,8ar,9r,12ar,12br,14bs)-8,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(4as,6as,6br,8ar,9r,12ar,12br,14bs)-8,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C30H48O6 (504.3450708)


   

(1r,2s,20s,42s,46s)-7,8,9,12,13,14,25,26,27,30,31,32,35,36,37,46-hexadecahydroxy-3,18,21,41,43-pentaoxanonacyclo[27.13.3.1³⁸,⁴².0²,²⁰.0⁵,¹⁰.0¹¹,¹⁶.0²³,²⁸.0³³,⁴⁵.0³⁴,³⁹]hexatetraconta-5,7,9,11(16),12,14,23,25,27,29,31,33(45),34(39),35,37-pentadecaene-4,17,22,40,44-pentone

(1r,2s,20s,42s,46s)-7,8,9,12,13,14,25,26,27,30,31,32,35,36,37,46-hexadecahydroxy-3,18,21,41,43-pentaoxanonacyclo[27.13.3.1³⁸,⁴².0²,²⁰.0⁵,¹⁰.0¹¹,¹⁶.0²³,²⁸.0³³,⁴⁵.0³⁴,³⁹]hexatetraconta-5,7,9,11(16),12,14,23,25,27,29,31,33(45),34(39),35,37-pentadecaene-4,17,22,40,44-pentone

C41H26O26 (934.0712296)


   

(3,4,5,6-tetrahydroxyoxan-2-yl)methyl 10,11-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboperoxoate

(3,4,5,6-tetrahydroxyoxan-2-yl)methyl 10,11-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboperoxoate

C36H58O10 (650.4029768)


   

(2e)-3-(2,4,6-trimethoxyphenyl)prop-2-enal

(2e)-3-(2,4,6-trimethoxyphenyl)prop-2-enal

C12H14O4 (222.0892044)


   

(1r,2s,19r,22r)-7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaene-4,17,25,38-tetrone

(1r,2s,19r,22r)-7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaene-4,17,25,38-tetrone

C34H24O22 (784.0759204)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O11 (666.3978918)


   

7,8,9,12,13,14,25,26,27,30,31,32,35,36,37,46-hexadecahydroxy-3,18,21,41,43-pentaoxanonacyclo[27.13.3.1³⁸,⁴².0²,²⁰.0⁵,¹⁰.0¹¹,¹⁶.0²³,²⁸.0³³,⁴⁵.0³⁴,³⁹]hexatetraconta-5,7,9,11(16),12,14,23,25,27,29,31,33(45),34(39),35,37-pentadecaene-4,17,22,40,44-pentone

7,8,9,12,13,14,25,26,27,30,31,32,35,36,37,46-hexadecahydroxy-3,18,21,41,43-pentaoxanonacyclo[27.13.3.1³⁸,⁴².0²,²⁰.0⁵,¹⁰.0¹¹,¹⁶.0²³,²⁸.0³³,⁴⁵.0³⁴,³⁹]hexatetraconta-5,7,9,11(16),12,14,23,25,27,29,31,33(45),34(39),35,37-pentadecaene-4,17,22,40,44-pentone

C41H26O26 (934.0712296)


   

(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-2-({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaen-6-yl}oxy)oxan-3-yl acetate

(2s,3r,4r,5r,6s)-4,5-dihydroxy-6-methyl-2-({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaen-6-yl}oxy)oxan-3-yl acetate

C22H18O13 (490.0747378)


   

12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

12-{2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl}-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaene-4,17,25,38-tetrone

7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaene-4,17,25,38-tetrone

C34H24O22 (784.0759204)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8r,8ar,9r,10r,11r,12ar,12br,14bs)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8r,8ar,9r,10r,11r,12ar,12br,14bs)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O11 (666.3978918)


   

(1s,2r,4as,6as,6br,8r,9r,10r,11r,12ar)-8,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6as,6br,8r,9r,10r,11r,12ar)-8,10,11-trihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C30H48O6 (504.3450708)


   

[(2r,3s,4s,5r,6r)-3,4,5,6-tetrahydroxyoxan-2-yl]methyl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboperoxoate

[(2r,3s,4s,5r,6r)-3,4,5,6-tetrahydroxyoxan-2-yl]methyl (4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-10,11-dihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboperoxoate

C36H58O10 (650.4029768)


   

(11r,12r)-12-[(14r,15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

(11r,12r)-12-[(14r,15s,19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-({14-hydroxy-7,13-dimethoxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(14),4,6,8(16),11(15),12-hexaen-6-yl}oxy)oxan-2-yl]methyl acetate

[(2r,3s,4s,5r,6s)-3,4,5-trihydroxy-6-({14-hydroxy-7,13-dimethoxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(14),4,6,8(16),11(15),12-hexaen-6-yl}oxy)oxan-2-yl]methyl acetate

C24H22O14 (534.1009512)


   

7,13,14-trihydroxy-6-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

7,13,14-trihydroxy-6-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

C20H16O12 (448.0641736)


   

(1r,2r,20r,42s,46r)-7,8,9,12,13,14,25,26,27,30,31,32,35,36,37,46-hexadecahydroxy-3,18,21,41,43-pentaoxanonacyclo[27.13.3.1³⁸,⁴².0²,²⁰.0⁵,¹⁰.0¹¹,¹⁶.0²³,²⁸.0³³,⁴⁵.0³⁴,³⁹]hexatetraconta-5,7,9,11(16),12,14,23,25,27,29,31,33(45),34(39),35,37-pentadecaene-4,17,22,40,44-pentone

(1r,2r,20r,42s,46r)-7,8,9,12,13,14,25,26,27,30,31,32,35,36,37,46-hexadecahydroxy-3,18,21,41,43-pentaoxanonacyclo[27.13.3.1³⁸,⁴².0²,²⁰.0⁵,¹⁰.0¹¹,¹⁶.0²³,²⁸.0³³,⁴⁵.0³⁴,³⁹]hexatetraconta-5,7,9,11(16),12,14,23,25,27,29,31,33(45),34(39),35,37-pentadecaene-4,17,22,40,44-pentone

C41H26O26 (934.0712296)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

(2r,3s,4s,5s)-2,3,4,5-tetrahydroxyhexanal

(2r,3s,4s,5s)-2,3,4,5-tetrahydroxyhexanal

C6H12O5 (164.06847019999998)


   

3-(2,4,6-trimethoxyphenyl)prop-2-enal

3-(2,4,6-trimethoxyphenyl)prop-2-enal

C12H14O4 (222.0892044)


   

(2s,3s,4r,5r,6s)-3,5-dihydroxy-2-methyl-6-({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaen-6-yl}oxy)oxan-4-yl acetate

(2s,3s,4r,5r,6s)-3,5-dihydroxy-2-methyl-6-({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaen-6-yl}oxy)oxan-4-yl acetate

C22H18O13 (490.0747378)


   

stigmast-5-en-3-ol, (3β)-

stigmast-5-en-3-ol, (3β)-

C29H50O (414.386145)


   
   

4-hydroxy-6,8-dimethoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}oxanthrene-2-carboxylic acid

4-hydroxy-6,8-dimethoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}oxanthrene-2-carboxylic acid

C22H24O13 (496.1216854)


   

12-[(19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

12-[(19s)-2,3,4,7,8,9,19-heptahydroxy-12,17-dioxo-13,16-dioxatetracyclo[13.3.1.0⁵,¹⁸.0⁶,¹¹]nonadeca-1(18),2,4,6,8,10-hexaen-14-yl]-3,4,5,17,18,19-hexahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H28O26 (936.0868788)


   

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 8,10,11-trihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 8,10,11-trihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O10 (650.4029768)


   

(4as,6as,6br,9s,10r,11r,12ar)-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,9s,10r,11r,12ar)-10,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O5 (488.3501558)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8r,8ar,10r,11r,12ar,12br,14bs)-8,10,11-trihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8r,8ar,10r,11r,12ar,12br,14bs)-8,10,11-trihydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O10 (650.4029768)


   

(4as,6as,6br,8r,9r,10r,11r,12ar)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8r,9r,10r,11r,12ar)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O6 (504.3450708)


   

[(2r,3r,4s,5r,6s)-4-(acetyloxy)-3,5-dihydroxy-6-({14-hydroxy-7,13-dimethoxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(14),4,6,8(16),11(15),12-hexaen-6-yl}oxy)oxan-2-yl]methyl acetate

[(2r,3r,4s,5r,6s)-4-(acetyloxy)-3,5-dihydroxy-6-({14-hydroxy-7,13-dimethoxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(14),4,6,8(16),11(15),12-hexaen-6-yl}oxy)oxan-2-yl]methyl acetate

C26H24O15 (576.1115154)


   

(1s,2r,4as,6as,6br,9r,10r,11r,12ar)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6as,6br,9r,10r,11r,12ar)-10,11-dihydroxy-9-(hydroxymethyl)-1,2,6a,6b,9,12a-hexamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C30H48O5 (488.3501558)


   

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8r,8ar,9s,10r,11r,12ar,12br,14bs)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6as,6br,8r,8ar,9s,10r,11r,12ar,12br,14bs)-8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C36H58O11 (666.3978918)


   

(2s,3r,4s,5r,6s)-4,5-dihydroxy-2-methyl-6-({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaen-6-yl}oxy)oxan-3-yl acetate

(2s,3r,4s,5r,6s)-4,5-dihydroxy-2-methyl-6-({7,13,14-trihydroxy-3,10-dioxo-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaen-6-yl}oxy)oxan-3-yl acetate

C22H18O13 (490.0747378)


   

4-hydroxy-6,8-dimethoxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}oxanthrene-2-carboxylic acid

4-hydroxy-6,8-dimethoxy-7-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]methoxy}oxanthrene-2-carboxylic acid

C22H24O13 (496.1216854)