NCBI Taxonomy: 62125

Tephrosia villosa (ncbi_taxid: 62125)

found 53 associated metabolites at species taxonomy rank level.

Ancestor: Tephrosia

Child Taxonomies: none taxonomy data.

Lupenone

(1S,3aR,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropyl-3a,5a,5b,8,8,11a-hexamethyl-1,2,3,3a,4,5,5a,5b,6,7,7a,8,11a,11b,12,13,13a,13b-octadecahydro-9H-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone is a triterpenoid. It has a role as a metabolite. It derives from a hydride of a lupane. Lupenone is a natural product found in Liatris acidota, Euphorbia larica, and other organisms with data available. A natural product found in Cupania cinerea. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Rotenone

[1]Benzopyrano[3,4-b]furo[2,3-h][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, [2R-(2alpha,6aalpha,12aalpha)]-

C23H22O6 (394.1416)


Rotenone appears as colorless to brownish crystals or a white to brownish-white crystalline powder. Has neither odor nor taste. (NTP, 1992) Rotenone is a member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). It has a role as a phytogenic insecticide, a mitochondrial NADH:ubiquinone reductase inhibitor, a metabolite, an antineoplastic agent, a toxin and a piscicide. It is an organic heteropentacyclic compound and a member of rotenones. Rotenone is an isoflavone compound that naturally occurs in the jicama vine plant as well as many Fabaceae plants. It has broad spectrum insecticide and pesticide activity and is also toxic to fish. Rotenone is a natural product found in Pachyrhizus erosus, Millettia ferruginea, and other organisms with data available. Rotenone is a naturally occurring organic heteropentacyclic compound and member of rotenones that is found in the roots of several plant species. It is a mitochondrial NADH:ubiquinone reductase inhibitor, toxin, and metabolite, and is used as an antineoplastic agent and insecticide. It is characterized as a colorless to brownish or a white to brownish-white crystalline solid that is odorless. Exposure occurs by inhalation, ingestion, or contact. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. (Wikipedia) Rotenone has been shown to exhibit apoptotic, neuroprotectant and neuroprotective functions (A7776, A7777, A7777).Rotenone belongs to the family of Rotenoids. These are phenolic compounds containing aA cis-fused tetrahydrochromeno[3,4-b]chromenenucleus. Many rotenoids contain an additional ring, e.g rotenone[1]. (Reference: [1] IUPAC. Compendium of Chemical Terminology, 2nd ed. (the Gold Book). Compiled by A. D. McNaught and A. Wilkinson. Blackwell Scientific Publications, Oxford (1997). XML on-line corrected version: http://goldbook.iupac.org (2006-) created by M. Nic, J. Jirat, B. Kosata; updates compiled by A. Jenkins. ISBN 0-9678550-9-8. doi:10.1351/goldbook. (PAC, 1995, 67, 1307 (Glossary of class names of organic compounds and reactivity intermediates based on structure (IUPAC Recommendations 1995)) on page 1364)). A botanical insecticide that is an inhibitor of mitochondrial electron transport. Rotenone is found in jicama. Rotenone is widely distributed in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean).Rotenone is an odorless chemical that is used as a broad-spectrum insecticide, piscicide, and pesticide. It occurs naturally in the roots and stems of several plants such as the jicama vine plant. In mammals, including humans, it is linked to the development of Parkinsons disease. A member of the class of rotenones that consists of 1,2,12,12a-tetrahydrochromeno[3,4-b]furo[2,3-h]chromen-6(6aH)-one substituted at position 2 by a prop-1-en-2-yl group and at positions 8 and 9 by methoxy groups (the 2R,6aS,12aS-isomer). A non-systemic insecticide, it is the principal insecticidal constituent of derris (the dried rhizome and root of Derris elliptica). Widely distrib. in the Leguminosae (Papilionoideae) e.g. Pachyrrhizus erosus (yam bean) D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

   

Lupeol

(1R,3aR,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a,5a,5b,8,8,11a-hexamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O (426.3861)


Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Medicarpin

9-Methoxy-6a,11a-dimethyl-6a,11a-dihydro-6H-\ 1-benzofuro[3,2-c]chromen-3-ol from Dalbergia Oliveri

C16H14O4 (270.0892)


A member of the class of pterocarpans that is 3-hydroxyptercarpan with a methoxy substituent at position 9. (+)-medicarpin is the (+)-enantiomer of medicarpin. It is an enantiomer of a (-)-medicarpin. (+)-Medicarpin is a natural product found in Dalbergia sissoo, Machaerium acutifolium, and other organisms with data available. The (+)-enantiomer of medicarpin. (-)-medicarpin is the (-)-enantiomer of medicarpin. It has a role as a plant metabolite. It is an enantiomer of a (+)-medicarpin. Medicarpin is a natural product found in Cicer chorassanicum, Melilotus dentatus, and other organisms with data available. See also: Glycyrrhiza uralensis Root (part of); Medicago sativa whole (part of). The (-)-enantiomer of medicarpin. Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1]. Medicarpin is a flavonoid isolated from Medicago sativa. Medicarpin induces apoptosis and overcome multidrug resistance in leukemia P388 cells by modulating P-gp-mediated efflux of agents[1].

   

(-)-Maackiain

(1R,12R)-5,7,11,19-tetraoxapentacyclo[10.8.0.02,10.04,8.013,18]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol

C16H12O5 (284.0685)


(-)-maackiain is the (-)-enantiomer of maackiain. It is an enantiomer of a (+)-maackiain. Maackiain is a natural product found in Tephrosia virginiana, Leptolobium bijugum, and other organisms with data available. (-)-Maackiain. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=2035-15-6 (retrieved 2024-07-09) (CAS RN: 2035-15-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Rotenonone

(R) -1,2-Dihydro-8,9-dimethoxy-2- (1-methylethenyl) [ 1 ] benzopyrano [ 3,4-b ] furo [ 2,3-h ] [ 1 ] benzopyran-6,12-dione

C23H18O7 (406.1052)


   

Sumatrol

(2R) -1,2,12,12aalpha-Tetrahydro-5-hydroxy-8,9-dimethoxy-2- (1-methylethenyl) [ 1 ] benzopyrano [ 3,4-b ] furo [ 2,3-h ] [ 1 ] benzopyran-6 (6aalphaH) -one

C23H22O7 (410.1365)


   

(-)-Maackiain

5,7,11,19-tetraoxapentacyclo[10.8.0.0²,¹⁰.0⁴,⁸.0¹³,¹⁸]icosa-2,4(8),9,13(18),14,16-hexaen-16-ol

C16H12O5 (284.0685)


(-)-Maackiain is found in chickpea. (-)-Maackiain is widespread in the Leguminosae subfamily. (-)-Maackiain is a constituent of Trifolium pratense (red clover). (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

Lupenone

1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one

C30H48O (424.3705)


1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. 1,2,5,14,18,18-hexamethyl-8-(prop-1-en-2-yl)pentacyclo[11.8.0.0²,¹⁰.0⁵,⁹.0¹⁴,¹⁹]henicosan-17-one is an extremely weak basic (essentially neutral) compound (based on its pKa). This compound has been identified in human blood as reported by (PMID: 31557052 ). Lupenone is not a naturally occurring metabolite and is only found in those individuals exposed to this compound or its derivatives. Technically Lupenone is part of the human exposome. The exposome can be defined as the collection of all the exposures of an individual in a lifetime and how those exposures relate to health. An individual's exposure begins before birth and includes insults from environmental and occupational sources.

   

Villosone

(R) -1,2-Dihydro-5-hydroxy-8,9-dimethoxy-2- (1-methylvinyl) [ 1 ] benzopyrano [ 3,4-b ] furo [ 2,3-h ] [ 1 ] benzopyran-6,12-dione

C23H18O8 (422.1002)


   

Tephrinone

5-Hydroxy-7-methoxy-8-C-prenylflavanone

C21H22O4 (338.1518)


   

Tephrosol

3-Hydroxy-2-methoxy-8,9-methylenedioxycoumestan

C17H10O7 (326.0427)


   

Rotenone

Pesticide4_Rotenone_C23H22O6_Furo[2,3:7,8][1]benzopyrano[2,3-c][1]benzopyran-6(6aH)-one, 1,2,12,12a-tetrahydro-8,9-dimethoxy-2-(1-methylethenyl)-, (2R,6aS,12aS)-

C23H22O6 (394.1416)


Origin: Plant, Pyrans relative retention time with respect to 9-anthracene Carboxylic Acid is 1.283 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.281 Acquisition and generation of the data is financially supported by the Max-Planck-Society D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals IPB_RECORD: 2241; CONFIDENCE confident structure Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production. Rotenone is a mitochondrial electron transport chain complex I inhibitor. Rotenone induces apoptosis through enhancing mitochondrial reactive oxygen species production.

   

lupeol

Lup-20(29)-en-3.beta.-ol

C30H50O (426.3861)


D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].

   

Lupenone

(1R,3aR,4S,5aR,5bR,7aR,11aR,11bR,13aR,13bR)-1-Isopropenyl-3a,5a,5b,8,8,11a-hexamethyl-eicosahydro-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2]. Lupenone is an orally active lupine-type triterpenoid that can be isolated from Musa basjoo. Lupenone Lupenone plays a role through the PI3K/Akt/mTOR and NF-κB signaling pathways. Lupenone has anti-inflammatory, antiviral, antidiabetic and anticancer activities[1][2][3]. Lupenone, isolated from Musa basjoo, belongs to lupane type triterpenoids. Lupenone shows various pharmacological activities including anti-inflammatory, anti-virus, anti-diabetes, anti-cancer, improving Chagas disease without major toxicity[1][2].

   

Maackiain

(-)-Maackiain

C16H12O5 (284.0685)


Widespread in the Leguminosae subfamily. Constituent of Trifolium pratense (red clover). (-)-Maackiain is found in many foods, some of which are nectarine, chickpea, alaska blueberry, and adzuki bean. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1]. (-)-Maackiain is a pterocarpan phytoalexin produced from Sophora flavescens. (-)-Maackiain is toxic to several genera of fungal pathogens of legume and non legume hosts[1].

   

16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C23H20O6 (392.126)


   

(1r,14r)-11,14-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

(1r,14r)-11,14-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

C23H22O8 (426.1315)


   

16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C24H20O6 (404.126)


   

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


   

(1r,3ar,5ar,5br,7ar,11ar,11br,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

(1r,3ar,5ar,5br,7ar,11ar,11br,13ar,13bs)-3a,5a,5b,8,8,11a-hexamethyl-1-(prop-1-en-2-yl)-tetradecahydro-1h-cyclopenta[a]chrysen-9-one

C30H48O (424.3705)


   

10,13-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

10,13-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O8 (426.1315)


   

16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14(19),15,17-heptaene-12,21-dione

16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14(19),15,17-heptaene-12,21-dione

C23H18O7 (406.1052)


   

(6r)-10-hydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14(19),15,17-heptaene-12,21-dione

(6r)-10-hydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14(19),15,17-heptaene-12,21-dione

C23H18O8 (422.1002)


   

(6s,21s)-10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

(6s,21s)-10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C23H20O8 (424.1158)


   

(1r,6s,13r)-10-hydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

(1r,6s,13r)-10-hydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O7 (410.1365)


   

(6r)-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

(6r)-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C23H20O6 (392.126)


   

10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C23H20O8 (424.1158)


   

(1s,6r,13s,21s)-10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

(1s,6r,13s,21s)-10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O8 (426.1315)


   

(1s,6r,13r,21s)-10,13,21-trihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

(1s,6r,13r,21s)-10,13,21-trihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O9 (442.1264)


   

10-hydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

10-hydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O7 (410.1365)


   

(6r,21s)-10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

(6r,21s)-10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C23H20O8 (424.1158)


   

(1r,14s)-11,14-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

(1r,14s)-11,14-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

C23H22O8 (426.1315)


   
   

7-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

7-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C25H28O5 (408.1937)


   

10-hydroxy-16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

10-hydroxy-16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C24H20O7 (420.1209)


   

10-hydroxy-16,17-dimethoxy-21-(methoxymethylidene)-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

10-hydroxy-16,17-dimethoxy-21-(methoxymethylidene)-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C25H22O8 (450.1315)


   

10,13,21-trihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

10,13,21-trihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O9 (442.1264)


   

(2s)-8-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-7-{[(2e)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

(2s)-8-[(2e)-3,7-dimethylocta-2,6-dien-1-yl]-7-{[(2e)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C35H44O5 (544.3189)


   

(2s)-5-hydroxy-7-methoxy-8-(2-methylprop-1-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-7-methoxy-8-(2-methylprop-1-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C20H20O4 (324.1362)


   

10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

10,21-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O8 (426.1315)


   

(6r)-9,11-dihydroxy-2,3,6-trimethoxy-8-(3-methylbut-2-en-1-yl)-6h-5,7-dioxatetraphen-12-one

(6r)-9,11-dihydroxy-2,3,6-trimethoxy-8-(3-methylbut-2-en-1-yl)-6h-5,7-dioxatetraphen-12-one

C24H24O8 (440.1471)


   

(1s,14s,22r)-11,22-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,21-dioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

(1s,14s,22r)-11,22-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,21-dioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

C24H24O7 (424.1522)


   

(2s)-7-{[(2e)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

(2s)-7-{[(2e)-3,7-dimethylocta-2,6-dien-1-yl]oxy}-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C25H28O5 (408.1937)


   

(6r)-10-hydroxy-16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

(6r)-10-hydroxy-16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C24H20O7 (420.1209)


   

5-hydroxy-7-methoxy-8-(2-methylprop-1-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

5-hydroxy-7-methoxy-8-(2-methylprop-1-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C20H20O4 (324.1362)


   

16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O6 (394.1416)


   

(6r,21z)-10-hydroxy-16,17-dimethoxy-21-(methoxymethylidene)-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

(6r,21z)-10-hydroxy-16,17-dimethoxy-21-(methoxymethylidene)-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C25H22O8 (450.1315)


   

(1r,6r,13r)-10,13-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

(1r,6r,13r)-10,13-dihydroxy-16,17-dimethoxy-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-3(11),4(8),9,14,16,18-hexaen-12-one

C23H22O8 (426.1315)


   

(1s,14r)-11,14-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

(1s,14r)-11,14-dihydroxy-17,18-dimethoxy-7,7-dimethyl-2,8,21-trioxapentacyclo[12.8.0.0³,¹².0⁴,⁹.0¹⁵,²⁰]docosa-3,5,9,11,15(20),16,18-heptaen-13-one

C23H22O8 (426.1315)


   

(2s)-5-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

(2s)-5-hydroxy-7-methoxy-8-(3-methylbut-2-en-1-yl)-2-phenyl-2,3-dihydro-1-benzopyran-4-one

C21H22O4 (338.1518)


   

(6r)-16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

(6r)-16,17-dimethoxy-21-methylidene-6-(prop-1-en-2-yl)-2,7,20-trioxapentacyclo[11.8.0.0³,¹¹.0⁴,⁸.0¹⁴,¹⁹]henicosa-1(13),3,8,10,14,16,18-heptaen-12-one

C24H20O6 (404.126)


   

8-(3,7-dimethylocta-2,6-dien-1-yl)-7-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

8-(3,7-dimethylocta-2,6-dien-1-yl)-7-[(3,7-dimethylocta-2,6-dien-1-yl)oxy]-5-hydroxy-2-(4-hydroxyphenyl)-2,3-dihydro-1-benzopyran-4-one

C35H44O5 (544.3189)