NCBI Taxonomy: 373121
Arnebia (ncbi_taxid: 373121)
found 125 associated metabolites at genus taxonomy rank level.
Ancestor: Lithospermeae
Child Taxonomies: Arnebia tubata, Arnebia guttata, Arnebia tibetana, Arnebia euchroma, Arnebia coerulea, Arnebia benthamii, Arnebia fimbriata, Arnebia tinctoria, Arnebia szechenyi, Arnebia decumbens, Arnebia densiflora, Arnebia linearifolia, Arnebia hispidissima
Melatonin
Melatonin is a member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. It has a role as a hormone, an anticonvulsant, an immunological adjuvant, a radical scavenger, a central nervous system depressant, a human metabolite, a mouse metabolite and a geroprotector. It is a member of acetamides and a member of tryptamines. It is functionally related to a tryptamine. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and lowering the body temperature. Melatonin is also implicated in the regulation of mood, learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders (ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin is a hormone produced by the pineal gland that has multiple effects including somnolence, and is believed to play a role in regulation of the sleep-wake cycle. Melatonin is available over-the-counter and is reported to have beneficial effects on wellbeing and sleep. Melatonin has not been implicated in causing serum enzyme elevations or clinically apparent liver injury. Melatonin is a natural product found in Mesocricetus auratus, Ophiopogon japonicus, and other organisms with data available. Therapeutic Melatonin is a therapeutic chemically synthesized form of the pineal indole melatonin with antioxidant properties. The pineal synthesis and secretion of melatonin, a serotonin-derived neurohormone, is dependent on beta-adrenergic receptor function. Melatonin is involved in numerous biological functions including circadian rhythm, sleep, the stress response, aging, and immunity. Melatonin is a hormone involved in sleep regulatory activity, and a tryptophan-derived neurotransmitter, which inhibits the synthesis and secretion of other neurotransmitters such as dopamine and GABA. Melatonin is synthesized from serotonin intermediate in the pineal gland and the retina where the enzyme 5-hydroxyindole-O-methyltransferase, that catalyzes the last step of synthesis, is found. This hormone binds to and activates melatonin receptors and is involved in regulating the sleep and wake cycles. In addition, melatonin possesses antioxidative and immunoregulatory properties via regulating other neurotransmitters. Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is l... Melatonin is a biogenic amine that is found in animals, plants and microbes. Aaron B. Lerner of Yale University is credited for naming the hormone and for defining its chemical structure in 1958. In mammals, melatonin is produced by the pineal gland. The pineal gland is small endocrine gland, about the size of a rice grain and shaped like a pine cone (hence the name), that is located in the center of the brain (rostro-dorsal to the superior colliculus) but outside the blood-brain barrier. The secretion of melatonin increases in darkness and decreases during exposure to light, thereby regulating the circadian rhythms of several biological functions, including the sleep-wake cycle. In particular, melatonin regulates the sleep-wake cycle by chemically causing drowsiness and. lowering the body temperature. Melatonin is also implicated in the regulation of mood,learning and memory, immune activity, dreaming, fertility and reproduction. Melatonin is also an effective antioxidant. Most of the actions of melatonin are mediated through the binding and activation of melatonin receptors. Individuals with autism spectrum disorders(ASD) may have lower than normal levels of melatonin. A 2008 study found that unaffected parents of individuals with ASD also have lower melatonin levels, and that the deficits. were associated with low activity of the ASMT gene, which encodes the last enzyme of melatonin synthesis. Reduced melatonin production has also been proposed as a likely factor in the significantly higher cancer rates in night workers. Melatonin, also known chemically as N-acetyl-5-methoxytryptamine, is a naturally occurring compound found in animals, plants and microbes. In animals, circulating levels of the hormone melatonin vary in a daily cycle, thereby allowing the entrainment of the circadian rhythms of several biological functions. A member of the class of acetamides that is acetamide in which one of the hydrogens attached to the nitrogen atom is replaced by a 2-(5-methoxy-1H-indol-3-yl)ethyl group. It is a hormone secreted by the pineal gland in humans. Melatonin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=73-31-4 (retrieved 2024-07-01) (CAS RN: 73-31-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
Caffeic acid
Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Uridine
Uridine, also known as beta-uridine or 1-beta-D-ribofuranosylpyrimidine-2,4(1H,3H)-dione, is a member of the class of compounds known as pyrimidine nucleosides. Pyrimidine nucleosides are compounds comprising a pyrimidine base attached to a ribosyl or deoxyribosyl moiety. More specifically, uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine is soluble (in water) and a very weakly acidic compound (based on its pKa). Uridine can be synthesized from uracil. It is one of the five standard nucleosides which make up nucleic acids, the others being adenosine, thymidine, cytidine and guanosine. The five nucleosides are commonly abbreviated to their one-letter codes U, A, T, C and G respectively. Uridine is also a parent compound for other transformation products, including but not limited to, nikkomycin Z, 3-(enolpyruvyl)uridine 5-monophosphate, and 5-aminomethyl-2-thiouridine. Uridine can be found in most biofluids, including urine, breast milk, cerebrospinal fluid (CSF), and blood. Within the cell, uridine is primarily located in the mitochondria, in the nucleus and the lysosome. It can also be found in the extracellular space. As an essential nucleoside, uridine exists in all living species, ranging from bacteria to humans. In humans, uridine is involved in several metabolic disorders, some of which include dhydropyrimidinase deficiency, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and beta-ureidopropionase deficiency. Moreover, uridine is found to be associated with Lesch-Nyhan syndrome, which is an inborn error of metabolism. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine plays a role in the glycolysis pathway of galactose. In humans there is no catabolic process to metabolize galactose. Therefore, galactose is converted to glucose and metabolized via the normal glucose metabolism pathways. More specifically, consumed galactose is converted into galactose 1-phosphate (Gal-1-P). This molecule is a substrate for the enzyme galactose-1-phosphate uridyl transferase which transfers a UDP molecule to the galactose molecule. The end result is UDP-galactose and glucose-1-phosphate. This process is continued to allow the proper glycolysis of galactose. Uridine is found in many foods (anything containing RNA) but is destroyed in the liver and gastrointestinal tract, and so no food, when consumed, has ever been reliably shown to elevate blood uridine levels. On the other hand, consumption of RNA-rich foods may lead to high levels of purines (adenine and guanosine) in blood. High levels of purines are known to increase uric acid production and may aggravate or lead to conditions such as gout. Uridine is a ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. It has a role as a human metabolite, a fundamental metabolite and a drug metabolite. It is functionally related to a uracil. Uridine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Uridine is a Pyrimidine Analog. The chemical classification of uridine is Pyrimidines, and Analogs/Derivatives. Uridine is a natural product found in Ulva australis, Synechocystis, and other organisms with data available. Uridine is a nucleoside consisting of uracil and D-ribose and a component of RNA. Uridine has been studied as a rescue agent to reduce the toxicities associated with 5-fluorouracil (5-FU), thereby allowing the administration of higher doses of 5-FU in chemotherapy regimens. (NCI04) Uridine is a metabolite found in or produced by Saccharomyces cerevisiae. A ribonucleoside in which RIBOSE is linked to URACIL. Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a b-N1-glycosidic bond. ; Uridine is a molecule (known as a nucleoside) that is formed when uracil is attached to a ribose ring (also known as a ribofuranose) via a ?-N1-glycosidic bond. Uridine is found in many foods, some of which are celery leaves, canola, common hazelnut, and hickory nut. A ribonucleoside composed of a molecule of uracil attached to a ribofuranose moiety via a beta-N(1)-glycosidic bond. [Spectral] Uridine (exact mass = 244.06954) and Adenosine (exact mass = 267.09675) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Uridine (exact mass = 244.06954) and Glutathione (exact mass = 307.08381) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Uridine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-96-8 (retrieved 2024-06-29) (CAS RN: 58-96-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.
Deoxyshikonin
Deoxyshikonin is a hydroxy-1,4-naphthoquinone. Deoxyshikonin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). Deoxyshikonin is isolated from Arnebia euchroma with antitumor activity. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF, indicates a prolymphangiogenesis as well as a proangiogenesis effect in vitro[1]. Deoxyshikonin shows significant synergic antimicrobial activity against S. pneumonia (MIC=17 μg/mL), also shows significantly inhibitory activities against MRSA[2]. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF. Deoxyshikonin inhibited colorectal cancer (CRC) through the PI3K/Akt/mTOR pathway. Deoxyshikonin has proangiogenesis effect and antitumor activity. Deoxyshikonin is an antibacterial agent against methicillin-resistant S. aureus (MRSA) and S. pneumonia (MIC=17 μg/mL)[1][2][3]. Deoxyshikonin is isolated from Arnebia euchroma with antitumor activity. Deoxyshikonin increases the expression of VEGF-C and VEGF-A mRNA in HMVEC-dLy, promotes HIF-1α and HIF-1β subunit interaction and binds to specific DNA sequences targeted by HIF, indicates a prolymphangiogenesis as well as a proangiogenesis effect in vitro[1]. Deoxyshikonin shows significant synergic antimicrobial activity against S. pneumonia (MIC=17 μg/mL), also shows significantly inhibitory activities against MRSA[2].
Shikonin
Shikonin is a hydroxy-1,4-naphthoquinone. Shikonin is a natural product found in Echium plantagineum, Arnebia hispidissima, and other organisms with data available. See also: Arnebia guttata root (part of); Arnebia euchroma root (part of); Lithospermum erythrorhizon root (part of). D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].
Acetylshikonin
Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].
beta,beta-Dimethylacrylshikonin
Dmask is a natural product found in Arnebia hispidissima with data available. Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
Stigmasterol
Stigmasterol is a phytosterol, meaning it is steroid derived from plants. As a food additive, phytosterols have cholesterol-lowering properties (reducing cholesterol absorption in intestines), and may act in cancer prevention. Phytosterols naturally occur in small amount in vegetable oils, especially soybean oil. One such phytosterol complex, isolated from vegetable oil, is cholestatin, composed of campesterol, stigmasterol, and brassicasterol, and is marketed as a dietary supplement. Sterols can reduce cholesterol in human subjects by up to 15\\%. The mechanism behind phytosterols and the lowering of cholesterol occurs as follows : the incorporation of cholesterol into micelles in the gastrointestinal tract is inhibited, decreasing the overall amount of cholesterol absorbed. This may in turn help to control body total cholesterol levels, as well as modify HDL, LDL and TAG levels. Many margarines, butters, breakfast cereals and spreads are now enriched with phytosterols and marketed towards people with high cholesterol and a wish to lower it. Stigmasterol is found to be associated with phytosterolemia, which is an inborn error of metabolism. Stigmasterol is a 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. It has a role as a plant metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Stigmasterol is a natural product found in Ficus auriculata, Xylopia aromatica, and other organisms with data available. Stigmasterol is a steroid derivative characterized by the hydroxyl group in position C-3 of the steroid skeleton, and unsaturated bonds in position 5-6 of the B ring, and position 22-23 in the alkyl substituent. Stigmasterol is found in the fats and oils of soybean, calabar bean and rape seed, as well as several other vegetables, legumes, nuts, seeds, and unpasteurized milk. See also: Comfrey Root (part of); Saw Palmetto (part of); Plantago ovata seed (part of). Stigmasterol is an unsaturated plant sterol occurring in the plant fats or oils of soybean, calabar bean, and rape seed, and in a number of medicinal herbs, including the Chinese herbs Ophiopogon japonicus (Mai men dong) and American Ginseng. Stigmasterol is also found in various vegetables, legumes, nuts, seeds, and unpasteurized milk. A 3beta-sterol that consists of 3beta-hydroxystigmastane having double bonds at the 5,6- and 22,23-positions. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
beta-Sitosterol
beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
Lupeol
Lupeol is a pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. It has a role as an anti-inflammatory drug and a plant metabolite. It is a secondary alcohol and a pentacyclic triterpenoid. It derives from a hydride of a lupane. Lupeol has been investigated for the treatment of Acne. Lupeol is a natural product found in Ficus auriculata, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is lupane in which the hydrogen at the 3beta position is substituted by a hydroxy group. It occurs in the skin of lupin seeds, as well as in the latex of fig trees and of rubber plants. It is also found in many edible fruits and vegetables. D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].
Betulin
Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Amyrin
Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].
C.I. Natural Red 20
Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS (Generally Recognized As Safe) list. Not permitted in Germany. Japan approved Red dye component of alkanet root extract used for colouring sausage casings, margarine, confectionery and wine. This extract, formerly FEMA 2016, has been removed from the FEMA GRAS list. Not permitted in Germany. Japan approved. C.I. Natural Red 20 is a naphthoquinone. C.I. Natural Red 20 is a natural product found in Boraginaceae, Lithospermum erythrorhizon, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7]. Shikonin is a major component of a Chinese herbal medicine named zicao. Shikonin is a potent TMEM16A chloride channel inhibitor with an IC50 of 6.5 μM[1]. Shikonin is a specific pyruvate kinase M2 (PKM2) inhibitor[2] and can also inhibit TNF-α and NF-κB pathway[3]. Shikonin decreases exosome secretion through the inhibition of glycolysis[4]. Shikonin inhibits AIM2 inflammasome activation[7].
Methyl caffeate
Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1]. Methyl caffeate, an antimicrobial agent, shows moderate antimicrobial and prominent antimycobacterial activities. Methyl caffeate also exhibits α-glucosidase inhibition activity, oxidative stress inhibiting activity, anti-platelet activity, antiproliferative activity in cervix adenocarcinoma and anticancer activity in lung and leukmia cell lines[1].
Potassium
Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).
Corosolic acid
Colosolic acid is a natural product found in Rhododendron brachycarpum, Psidium, and other organisms with data available.
Heptacosanoic acid
Heptacosanoic acid is a fatty acid found in follicular casts (the abnormal impactation of a sebaceous follicle) implicated as the preclinical lesion of acne vulgaris. (PMID: 2940302). Heptacosanoic acid is one of the fatty acids found that contribute to a significant increase in the microviscosity of erythrocyte membranes in patients affected with adrenoleukodystrophy (ALD) and adrenomyeloneuropathy (AMN). (PMID: 6874949). Heptacosanoic acid has been found in the adrenal cortex and brain, in adrenoleukodystrophy and Zellweger syndrome in humans. (PMID: 3806133). Heptacosanoic acid has been found in blood and tissues of patients with different genetic peroxisomal disorder (Refsums disease, X-linked adrenoleukodystrophy, neonatal adrenoleukodystrophy or Zellweger syndrome). (PMID: 2474624). Heptacosanoic acid is a fatty acid found in follicular casts (the abnormal impactation of a sebaceous follicle) implicated as the preclinical lesion of acne vulgaris. (PMID: 2940302)
cis-Caffeic acid
Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
beta,beta-Dimethylacrylshikonin
(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
Corosolic acid
Corosolic acid, also known as corosolate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Corosolic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Corosolic acid can be found in guava, loquat, and olive, which makes corosolic acid a potential biomarker for the consumption of these food products. Corosolic acid is a pentacyclic triterpene acid found in Lagerstroemia speciosa. It is similar in structure to ursolic acid, differing only in the fact that it has a 2-alpha-hydroxy attachment . Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.
Ursolic acid (2-alpha-hydroxy-)
Uridine
C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.
Alkannin
Alkannin is a hydroxy-1,4-naphthoquinone. Alkannin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3]. (-)-Alkannin, found in Alkanna tinctoria, is used as a food coloring. (-)-Alkannin shows anticancer activity, arrests cell cycle, and induces apoptosis. (-)-Alkannin improves hepatic inflammation in a Rho-kinase pathway[1][2][3].
beta-HIVS
Beta-hydroxyisovalerylshikonin is a natural product isolated from Lithospermum erythrorhizon, acts as a potent inhibitor of protein tyrosine kinases (PTK), with IC50s of 0.7μM and 1μM for EGFR and v-Src receptor, respectively. Beta-hydroxyisovalerylshikonin is effective against a wide variety of tumor cell lines, and most efficiently induces cell-death in NCI-H522 and DMS114 cells[1]. Beta-hydroxyisovalerylshikonin is a natural product isolated from Lithospermum erythrorhizon, acts as a potent inhibitor of protein tyrosine kinases (PTK), with IC50s of 0.7μM and 1μM for EGFR and v-Src receptor, respectively. Beta-hydroxyisovalerylshikonin is effective against a wide variety of tumor cell lines, and most efficiently induces cell-death in NCI-H522 and DMS114 cells[1].
β-acetoxyisovalerylalkannin
Butanoic acid, 3-(acetyloxy)-3-methyl-, 1-(1,4-dihydro-5,8-dihydroxy-1,4-dioxo-2-naphthalenyl)-4-methyl-3-pentenyl ester, (S)- is a natural product found in Alkanna tinctoria with data available. Beta-Acetoxyisovalerylshikonin is a naphthoquinone derivative isolated from Arnebia euchroma[1][2]. Beta-Acetoxyisovalerylshikonin is a naphthoquinone derivative isolated from Arnebia euchroma[1][2].
Corosolic_acid
Corosolic acid is a triterpenoid. It has a role as a metabolite. Corosolic acid is a natural product found in Ternstroemia gymnanthera, Cunila lythrifolia, and other organisms with data available. See also: Lagerstroemia speciosa leaf (part of). A natural product found particularly in Rhododendron species and Eriobotrya japonica. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.
Tormentic_acid
Tormentic acid is a triterpenoid. It has a role as a metabolite. Tormentic acid is a natural product found in Debregeasia saeneb, Chaenomeles speciosa, and other organisms with data available. A natural product found in Euscaphis japonica. Tormentic acid, a triterpene isolated from Rosa rugosa, exerts anti-inflammatory, antihyperlipidemic, and anti-atherogenic properties[1][2]. Tormentic acid, a triterpene isolated from Rosa rugosa, exerts anti-inflammatory, antihyperlipidemic, and anti-atherogenic properties[1][2]. Tormentic acid, a triterpene isolated from Rosa rugosa, exerts anti-inflammatory, antihyperlipidemic, and anti-atherogenic properties[1][2].
Corosolic acid
Annotation level-1 Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.
TETRACOSYL 3-(4-HYDROXY-3-METHOXYPHENYL)PROP-2-ENOATE
β-Amyrin
Beta-amyrin, also known as amyrin or (3beta)-olean-12-en-3-ol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Thus, beta-amyrin is considered to be an isoprenoid lipid molecule. Beta-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Beta-amyrin can be synthesized from oleanane. Beta-amyrin is also a parent compound for other transformation products, including but not limited to, erythrodiol, glycyrrhetaldehyde, and 24-hydroxy-beta-amyrin. Beta-amyrin can be found in a number of food items such as thistle, pepper (c. baccatum), wakame, and endive, which makes beta-amyrin a potential biomarker for the consumption of these food products. The amyrins are three closely related natural chemical compounds of the triterpene class. They are designated α-amyrin (ursane skeleton), β-amyrin (oleanane skeleton) and δ-amyrin. Each is a pentacyclic triterpenol with the chemical formula C30H50O. They are widely distributed in nature and have been isolated from a variety of plant sources such as epicuticular wax. In plant biosynthesis, α-amyrin is the precursor of ursolic acid and β-amyrin is the precursor of oleanolic acid. All three amyrins occur in the surface wax of tomato fruit. α-Amyrin is found in dandelion coffee . β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].
Tormentic acid
Tormentic acid, also known as tormentate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Tormentic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Tormentic acid can be found in loquat and olive, which makes tormentic acid a potential biomarker for the consumption of these food products. Tormentic acid is a bio-active isolate of Luehea divaricata and Agrimonia eupatoria. Tormentic acid derivatives have been synthesized and researched . Tormentic acid, a triterpene isolated from Rosa rugosa, exerts anti-inflammatory, antihyperlipidemic, and anti-atherogenic properties[1][2]. Tormentic acid, a triterpene isolated from Rosa rugosa, exerts anti-inflammatory, antihyperlipidemic, and anti-atherogenic properties[1][2]. Tormentic acid, a triterpene isolated from Rosa rugosa, exerts anti-inflammatory, antihyperlipidemic, and anti-atherogenic properties[1][2].
sitosterol
A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
beta,beta-Dimethylacrylalkannin
β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1].
Melatonin
N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives > N05CH - Melatonin receptor agonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone D020011 - Protective Agents > D000975 - Antioxidants C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS ORIGINAL_PRECURSOR_SCAN_NO 3385; CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3387; ORIGINAL_PRECURSOR_SCAN_NO 3385 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3400; ORIGINAL_PRECURSOR_SCAN_NO 3398 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3376; ORIGINAL_PRECURSOR_SCAN_NO 3375 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3184; ORIGINAL_PRECURSOR_SCAN_NO 3183 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3391; ORIGINAL_PRECURSOR_SCAN_NO 3387 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3198; ORIGINAL_PRECURSOR_SCAN_NO 3196 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7086; ORIGINAL_PRECURSOR_SCAN_NO 7084 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7064; ORIGINAL_PRECURSOR_SCAN_NO 7062 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7062; ORIGINAL_PRECURSOR_SCAN_NO 7059 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7093; ORIGINAL_PRECURSOR_SCAN_NO 7090 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7098; ORIGINAL_PRECURSOR_SCAN_NO 7096 CONFIDENCE standard compound; INTERNAL_ID 961; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7084; ORIGINAL_PRECURSOR_SCAN_NO 7082 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.685 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.686 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.679 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.682 Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5]. Melatonin is a hormone made by the pineal gland that can activates melatonin receptor. Melatonin plays a role in sleep and possesses important antioxidative and anti-inflammatory properties[1][2][3]. Melatonin is a novel selective ATF-6 inhibitor and induces human hepatoma cell apoptosis through COX-2 downregulation[4]. Melatonin attenuates palmitic acid-induced (HY-N0830) mouse granulosa cells apoptosis via endoplasmic reticulum stress[5].
Stigmasterol
Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong.
(E)-6-[5-(3-furyl)-2-methylpent-2-enyl]-2,3-dimethoxy-1,4-benzoquinone|Arnebifuranone|isoarnebifuranone
lupeol
D000893 - Anti-Inflammatory Agents Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1]. Lupeol (Clerodol; Monogynol B; Fagarasterol) is an active pentacyclic?triterpenoid, has anti-oxidant, anti-mutagenic, anti-tumor and anti-inflammatory activity. Lupeol is a potent?androgen receptor (AR)?inhibitor and can be used for cancer research, especially prostate cancer of androgen-dependent phenotype (ADPC) and castration resistant phenotype (CRPC)[1].
Lignocerol
Lignoceryl alcohol, also known as tetracosanol or tetracosyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, lignoceryl alcohol is considered to be a fatty alcohol lipid molecule. Lignoceryl alcohol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Lignoceryl alcohol can be synthesized from tetracosane. Lignoceryl alcohol can also be synthesized into 22-methyltetracosan-1-ol. Lignoceryl alcohol can be found in common hazelnut, which makes lignoceryl alcohol a potential biomarker for the consumption of this food product. Lignoceryl alcohol is a fatty alcohol, usually derived from the fatty acid Lignoceric acid .
Acetylalkannin
Acetylalkannin is a natural product found in Arnebia hispidissima, Alkanna cappadocica, and other organisms with data available. Acetylalkannin (Alkannin acetate) is an isohexenylnaphthazarin pigment isolated from Arnebia euchroma with antimicrobial and cytotoxic activities[1]. Acetylalkannin (Alkannin acetate) is an isohexenylnaphthazarin pigment isolated from Arnebia euchroma with antimicrobial and cytotoxic activities[1].
Caffeate
D020011 - Protective Agents > D000975 - Antioxidants KEIO_ID C107 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Caffeic Acid
A hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. 3,4-dihydroxycinnamic acid, also known as caffeic acid or trans-caffeate, is a member of the class of compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 3,4-dihydroxycinnamic acid is slightly soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxycinnamic acid can be found in fats and oils and nuts, which makes 3,4-dihydroxycinnamic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxycinnamic acid exists in all eukaryotes, ranging from yeast to humans. Caffeic acid is an organic compound that is classified as a hydroxycinnamic acid. This yellow solid consists of both phenolic and acrylic functional groups. It is found in all plants because it is a key intermediate in the biosynthesis of lignin, one of the principal components of plant biomass and its residues . Caffeic acid is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food. (PMID:16870009) [HMDB]. Caffeic acid is found in many foods, some of which are cardoon, coriander, common persimmon, and irish moss. D020011 - Protective Agents > D000975 - Antioxidants Annotation level-2 CONFIDENCE standard compound; INTERNAL_ID 167 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.412 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.403 Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Uridine
C26170 - Protective Agent > C2459 - Chemoprotective Agent > C2080 - Cytoprotective Agent COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; DRTQHJPVMGBUCF_STSL_0179_Uridine_8000fmol_180506_S2_LC02_MS02_83; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.088 Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond. Uridine (β-Uridine) is a glycosylated pyrimidine-analog containing uracil attached to a ribose ring (or more specifically, aribofuranose) via a β-N1-glycosidic bond.
Betulin
Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
AI3-63211
D020011 - Protective Agents > D000975 - Antioxidants Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Harzol
C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].
Stigmasterin
C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol
5162-01-6
(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1].
ARNEBIN-3
Acetylshikonin is an acetate ester and a hydroxy-1,4-naphthoquinone. Acetylshikonin is a natural product found in Echium plantagineum, Lithospermum erythrorhizon, and other organisms with data available. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3]. Acetylshikonin, derived from the root of Lithospermum erythrorhizon, has anti-cancer and antiinflammation activity. Acetylshikonin is a non-selective cytochrome P450 inhibitor against all P450s (IC50 values range from 1.4-4.0 μM). Acetylshikonin is an AChE inhibitor and exhibits potent antiapoptosis activity[1][2][3].
Isoarnebin I
Beta,beta-Dimethylacrylshikonin is a hydroxy-1,4-naphthoquinone. beta,beta-Dimethylacrylshikonin is a natural product found in Alkanna cappadocica, Lithospermum erythrorhizon, and other organisms with data available. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylshikonin (Isoarnebin I) is a naphthoquinone derivative isolated from Lithospermum erythrorhizon Sieb. et Zucc. , promotes angiogenesis by inducing eNOS, VEGF and HIF-1α expression through the PI3K-dependent pathway.β,β-Dimethylacrylshikonin has anti-tumor activity[1].
β,β-Dimethylacrylalkannin
(Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. (Rac)-Arnebin 1 ((Rac)-β,β-Dimethylacrylalkannin) is the racemate of β,β-Dimethylacrylalkannin and/or β,β-Dimethylacrylshikonin. β,β-Dimethylacrylalkannin and β,β-Dimethylacrylshikonin are napthoquinones isolated from Arnebia nobilis. β,β-Dimethylacrylshikonin has anti-tumor activity[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1]. β,β-Dimethylacrylalkannin (Arnebin 1) is a napthoquinone isolated from Alkanna cappadocica , increases collagen and involucrin content in skin cells[1].
Tetracosan-1-ol
A very long-chain primary fatty alcohol that is tetracosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group. It has been isolated from a variety of plants, including grape seeds, evening primrose (Oenothera biennis), pitaya fruits (Hylocereus polyrhizus and Hylocereus undatus), and the flowers of Arabian jasmine (Jasminum sambac).
hexacosan-1-ol
A very long-chain primary fatty alcohol that is hexacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group.