Subcellular Location: [Transferrin receptor protein 1, serum form]: Secreted
Found 164 associated metabolites.
1 associated genes.
TFRC
Danshensu
(2R)-3-(3,4-dihydroxyphenyl)lactic acid is a (2R)-2-hydroxy monocarboxylic acid that is (R)-lactic acid substituted at position 3 by a 3,4-dihydroxyphenyl group. It is a (2R)-2-hydroxy monocarboxylic acid and a 3-(3,4-dihydroxyphenyl)lactic acid. It is a conjugate acid of a (2R)-3-(3,4-dihydroxyphenyl)lactate. Danshensu is a natural product found in Salvia miltiorrhiza, Melissa officinalis, and other organisms with data available. Salvianic acid A. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=76822-21-4 (retrieved 2024-06-29) (CAS RN: 76822-21-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway. Danshensu, an active ingredient of?Salvia miltiorrhiza, shows wide cardiovascular benefit by activating Nrf2 signaling pathway.
Kukoamine A
Kukoamine A is an alkaloid from the root bark of Lycium chinense (Chinese boxthorn Kukoamine A is an amine. Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1]. Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1].
10-HCPT
10-Hydroxycamptothecin is a pyranoindolizinoquinoline. 10-hydroxycamptothecin is under investigation in clinical trial NCT00956787 (Study of AR-67 (DB-67) in Myelodysplastic Syndrome (MDS)). 10-Hydroxycamptothecin is a natural product found in Nothapodytes nimmoniana, Camptotheca acuminata, and Fusarium solani with data available. D000970 - Antineoplastic Agents (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4]. (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4].
L-Leucine
Leucine (Leu) or L-leucine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (‚ÄìNH2) and carboxyl (‚ÄìCOOH) functional groups, along with a side chain (R group) specific to each amino acid. L-leucine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Leucine is found in all organisms ranging from bacteria to plants to animals. It is classified as a non-polar, uncharged (at physiological pH) aliphatic amino acid. Leucine is essential in humans, meaning the body cannot synthesize it, and it must be obtained from the diet. Human dietary sources are foods that contain protein, such as meats, dairy products, soy products, beans and legumes. L-Leucine is a branched chain amino acid (BCAA). The BCAAs consist of leucine, valine and isoleucine (and occasionally threonine). BCAAs are essential amino acids whose carbon structure is marked by a branch point at the beta-carbon position. BCAAs are critical to human life and are particularly involved in stress, energy and muscle metabolism. BCAA supplementation as therapy, both oral and intravenous, in human health and disease holds great promise. BCAAs have different metabolic routes, with valine going solely to carbohydrates (glucogenic), leucine solely to fats (ketogenic) and isoleucine being both a glucogenic and a ketogenic amino acid. The different metabolism accounts for different requirements for these essential amino acids in humans: 12 mg/kg, 14 mg/kg and 16 mg/kg of valine, leucine and isoleucine respectively. The primary metabolic end products of leucine metabolism are acetyl-CoA and acetoacetate; consequently, it is one of the two exclusively ketogenic amino acids, with lysine being the other. Leucine is the most important ketogenic amino acid in humans. The vast majority of l-leucine metabolism is initially catalyzed by the branched-chain amino acid aminotransferase enzyme, producing alpha-ketoisocaproate (alpha-KIC). alpha-KIC is metabolized by the mitochondrial enzyme branched-chain alpha-ketoacid dehydrogenase, which converts it to isovaleryl-CoA. Isovaleryl-CoA is subsequently metabolized by the enzyme isovaleryl-CoA dehydrogenase and converted to beta-methylcrotonyl-CoA (MC-CoA), which is used in the synthesis of acetyl-CoA and other compounds. During biotin deficiency, HMB can be synthesized from MC-CoA via enoyl-CoA hydratase and an unknown thioesterase enzyme, which convert MC-CoA into HMB-CoA and HMB-CoA into HMB respectively. Leucine has the capacity to directly stimulate myofibrillar muscle protein synthesis (PMID 15051860). This effect of leucine arises results from its role as an activator of the mechanistic target of rapamycin (mTOR) (PMID 23551944) a serine-threonine protein kinase that regulates protein biosynthesis and cell growth. The activation of mTOR by leucine is mediated through Rag GTPases. Leucine, like other BCAAs, is associated with insulin resistance. In particular, higher levels of leucine are observed in the blood of diabetic mice, rats, and humans (PMID 25287287). BCAAs such as leucine have different deficiency symptoms. Valine deficiency is marked by neurological defects in the brain, while isoleucine deficiency is marked by muscle tremors. Persistently low leucine levels can result in decreased appetite, poor feeding, lethargy, poor growth, weight loss, skin rashes, hair loss, and desquamation. Many types of inborn errors of BCAA metabolism exist and these are marked by various abnormalities. The most common form is maple syrup urine disease, marked by a characteristic urinary odor. Other abnormalities are associated with a wide range of symptoms, such as mental retardation, ataxia, hypoglycemia, spinal muscle atrophy, rash, vomiting and excessive muscle movement. Most forms of BCAA metabolism errors are corrected by dietary res... L-leucine is the L-enantiomer of leucine. It has a role as a plant metabolite, an Escherichia coli metabolite, a Saccharomyces cerevisiae metabolite, a human metabolite, an algal metabolite and a mouse metabolite. It is a pyruvate family amino acid, a proteinogenic amino acid, a leucine and a L-alpha-amino acid. It is a conjugate base of a L-leucinium. It is a conjugate acid of a L-leucinate. It is an enantiomer of a D-leucine. It is a tautomer of a L-leucine zwitterion. An essential branched-chain amino acid important for hemoglobin formation. L-Leucine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Leucine is one of nine essential amino acids in humans (provided by food), Leucine is important for protein synthesis and many metabolic functions. Leucine contributes to regulation of blood-sugar levels; growth and repair of muscle and bone tissue; growth hormone production; and wound healing. Leucine also prevents breakdown of muscle proteins after trauma or severe stress and may be beneficial for individuals with phenylketonuria. Leucine is available in many foods and deficiency is rare. (NCI04) Leucine (abbreviated as Leu or L)[2] is a branched-chain л±-amino acid with the chemical formulaHO2CCH(NH2)CH2CH(CH3)2. Leucine is classified as a hydrophobic amino acid due to its aliphatic isobutyl side chain. It is encoded by six codons (UUA, UUG, CUU, CUC, CUA, and CUG) and is a major component of the subunits in ferritin, astacin, and other buffer proteins. Leucine is an essential amino acid, meaning that the human body cannot synthesize it, and it therefore must be ingested. It is important for hemoglobin formation. An essential branched-chain amino acid important for hemoglobin formation. See also: Isoleucine; Leucine (component of) ... View More ... Dietary supplement, nutrient [DFC]. (±)-Leucine is found in many foods, some of which are green bell pepper, italian sweet red pepper, green zucchini, and red bell pepper. L-Leucine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=61-90-5 (retrieved 2024-07-01) (CAS RN: 61-90-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1]. L-Leucine is an essential branched-chain amino acid (BCAA), which activates the mTOR signaling pathway[1].
Atractydin
Atractylodin is a member of furans. Atractylodin is a natural product found in Atractylodes japonica, Atractylodes macrocephala, and other organisms with data available. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Phorbol
Phorbol is a white solid. (NTP, 1992) Phorbol is a diterpenoid with the structure of tigliane hydroxylated at C-4, -9, -12(beta), -13 and -20, with an oxo group at C-3 and unsaturation at the 1- and 6-positions. It is a tetracyclic diterpenoid, an enone, a cyclic ketone, a tertiary alcohol and a tertiary alpha-hydroxy ketone. It derives from a hydride of a tigliane. Phorbol is a natural product found in Euphorbia tirucalli, Croton tiglium, and Rehmannia glutinosa with data available. Phorbol is a natural, plant-derived organic compound. It is a member of the tigliane family of diterpenes. Phorbol was first isolated in 1934 as the hydrolysis product of croton oil, which is derived from the seeds of the purging croton, Croton tiglium. The structure of phorbol was determined in 1967. It is very soluble in most polar organic solvents, as well as in water. Phorbol is a highly toxic diterpene, whose esters have important biological properties. Phorbol is a highly toxic diterpene, whose esters have important biological properties.
Myristic acid
Tetradecanoic acid is an oily white crystalline solid. (NTP, 1992) Tetradecanoic acid is a straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. It has a role as a human metabolite, an EC 3.1.1.1 (carboxylesterase) inhibitor, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a tetradecanoate. Myristic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Myristic acid is a natural product found in Gladiolus italicus, Staphisagria macrosperma, and other organisms with data available. Myristic Acid is a saturated long-chain fatty acid with a 14-carbon backbone. Myristic acid is found naturally in palm oil, coconut oil and butter fat. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed). Myristic acid is also commonly added to a penultimate nitrogen terminus glycine in receptor-associated kinases to confer the membrane localisation of the enzyme. this is achieved by the myristic acid having a high enough hydrophobicity to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of the eukaryotic cell.(wikipedia). myristic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. It is used to synthesize flavor and as an ingredient in soaps and cosmetics. (From Dorland, 28th ed) See also: Cod Liver Oil (part of); Saw Palmetto (part of). Myristic acid, also known as tetradecanoic acid or C14:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristic acid (its ester is called myristate) is a saturated fatty acid that has 14 carbons; as such, it is a very hydrophobic molecule that is practically insoluble in water. It exists as an oily white crystalline solid. Myristic acid is found in all living organisms ranging from bacteria to plants to animals, and is found in most animal and vegetable fats, particularly butterfat, as well as coconut, palm, and nutmeg oils. Industrially, myristic acid is used to synthesize a variety of flavour compounds and as an ingredient in soaps and cosmetics (Dorland, 28th ed). Within eukaryotic cells, myristic acid is also commonly conjugated to a penultimate N-terminal glycine residue in receptor-associated kinases to confer membrane localization of these enzymes (a post-translational modification called myristoylation via the enzyme N-myristoyltransferase). Myristic acid has a high enough hydrophobicity to allow the myristoylated protein to become incorporated into the fatty acyl core of the phospholipid bilayer of the plasma membrane of eukaryotic cells. Also, this fatty acid is known because it accumulates as fat in the body; however, its consumption also impacts positively on cardiovascular health (see, for example, PMID: 15936650). Myristic acid is named after the scientific name for nutmeg, Myristica fragrans, from which it was first isolated in 1841 by Lyon Playfair. Myristic acid, also known as 14 or N-tetradecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, myristic acid is considered to be a fatty acid lipid molecule. Myristic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Myristic acid can be found in a number of food items such as strawberry, barley, nutmeg, and soy bean, which makes myristic acid a potential biomarker for the consumption of these food products. Myristic acid can be found primarily in most biofluids, including cerebrospinal fluid (CSF), blood, saliva, and feces, as well as throughout most human tissues. Myristic acid exists in all living species, ranging from bacteria to humans. In humans, myristic acid is involved in the fatty acid biosynthesis. Moreover, myristic acid is found to be associated with schizophrenia. Myristic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Myristic acid (IUPAC systematic name: 1-tetradecanoic acid) is a common saturated fatty acid with the molecular formula CH3(CH2)12COOH. Its salts and esters are commonly referred to as myristates. It is named after the binomial name for nutmeg (Myristica fragrans), from which it was first isolated in 1841 by Lyon Playfair . A straight-chain, fourteen-carbon, long-chain saturated fatty acid mostly found in milk fat. Nutmeg butter has 75\\\% trimyristin, the triglyceride of myristic acid and a source from which it can be synthesised.[13] Besides nutmeg, myristic acid is found in palm kernel oil, coconut oil, butterfat, 8–14\\\% of bovine milk, and 8.6\\\% of breast milk as well as being a minor component of many other animal fats.[9] It is found in spermaceti, the crystallized fraction of oil from the sperm whale. It is also found in the rhizomes of the Iris, including Orris root.[14][15] Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Sinapine
Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. IPB_RECORD: 244; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Rhodamine_B
C.i. food red 15 appears as green crystals or reddish-violet powder. Used as a dye, especially for paper, as a metal chelating reagent, and in drugs and cosmetics. Rhodamine B is an organic chloride salt having N-[9-(2-carboxyphenyl)-6-(diethylamino)-3H-xanthen-3-ylidene]-N-ethylethanaminium as the counterion. An amphoteric dye commonly used as a fluorochrome. It has a role as a fluorochrome, a fluorescent probe and a histological dye. It is an organic chloride salt and a xanthene dye. It contains a rhodamine B(1+). D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D012235 - Rhodamines D004396 - Coloring Agents > D005456 - Fluorescent Dyes
Hernandezine
Hernandezine is a member of isoquinolines and a bisbenzylisoquinoline alkaloid. Hernandezine is a natural product found in Thalictrum delavayi, Thalictrum fendleri, and other organisms with data available. Origin: Plant; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids
Phytic acid
myo-Inositol hexakisphosphate is an intermediate in inositol phosphate metabolism. It can be generated from D-myo-inositol 1,3,4,5,6-pentakisphosphate via the enzyme inositol-pentakisphosphate 2-kinase (EC 2.7.1.158). myo-Inositol hexakisphosphate is also known as phytic acid. It can be used clinically as a complexing agent for the removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Phytic acid is a strong chelator of important minerals such as calcium, magnesium, iron, and zinc and can, therefore, contribute to mineral deficiencies in developing countries. For people with a particularly low intake of essential minerals, especially young children and those in developing countries, this effect can be undesirable. However, dietary mineral chelators help prevent over-mineralization of joints, blood vessels, and other parts of the body, which is most common in older persons. Phytic acid is a plant antioxidant (PMID: 3040709). Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. Widely distributed in many higher plants. The Ca salt is used as a sequestrant in food flavouring C26170 - Protective Agent > C275 - Antioxidant
Monensin
Monensin A is a spiroketal, monensin A is the major component of monensin, a mixture of antibiotic substances produced by Streptomyces cinnamonensis. An antiprotozoal, it is used as the sodium salt as a feed additive for the prevention of coccidiosis in poultry and as a growth promoter in cattle. It has a role as a coccidiostat, an antifungal agent and an ionophore. It is a monocarboxylic acid, a cyclic hemiketal, a spiroketal and a polyether antibiotic. Monensin is a polyether isolated from Streptomyces cinnamonensis that presents antibiotic properties. It is widely used in ruminant animal feeds. Monensin is a natural product found in Streptomyces glaucescens and Apis cerana with data available. An antiprotozoal agent produced by Streptomyces cinnamonensis. It exerts its effect during the development of first-generation trophozoites into first-generation schizonts within the intestinal epithelial cells. It does not interfere with hosts development of acquired immunity to the majority of coccidial species. Monensin is a sodium and proton selective ionophore and is widely used as such in biochemical studies. See also: Monensin Sodium (has salt form). A spiroketal, monensin A is the major component of monensin, a mixture of antibiotic substances produced by Streptomyces cinnamonensis. An antiprotozoal, it is used as the sodium salt as a feed additive for the prevention of coccidiosis in poultry and as a growth promoter in cattle. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D004791 - Enzyme Inhibitors > D014475 - Uncoupling Agents D007476 - Ionophores > D061209 - Proton Ionophores D007476 - Ionophores > D061210 - Sodium Ionophores C254 - Anti-Infective Agent > C258 - Antibiotic D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 8499
Folic acid
Folic acid appears as odorless orange-yellow needles or platelets. Darkens and chars from approximately 482 °F. Folic acid is an N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. It has a role as a human metabolite, a nutrient and a mouse metabolite. It is a member of folic acids and a N-acyl-amino acid. It is functionally related to a pteroic acid. It is a conjugate acid of a folate(2-). Folic acid, also known as folate or Vitamin B9, is a member of the B vitamin family and an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. For example, folic acid is present in green vegetables, beans, avocado, and some fruits. In order to function within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as [DB00563] as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF. When used in high doses such as for cancer therapy, or in low doses such as for Rheumatoid Arthritis or psoriasis, [DB00563] impedes the bodys ability to create folic acid. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects. As a result, supplementation with 1-5mg of folic acid is recommended to prevent deficiency and a number of side effects associated with MTX therapy including mouth ulcers and gastrointestinal irritation. [DB00650] (also known as folinic acid) supplementation is typically used for high-dose MTX regimens for the treatment of cancer. Levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF) and are able to bypass DHFR reduction to act as a cellular replacement for the co-factor THF. There are also several antiepileptic drugs (AEDs) that are associated with reduced serum and red blood cell folate, including [DB00564] (CBZ), [DB00252] (PHT), or barbiturates. Folic acid is therefore often provided as supplementation to individuals using these medications, particularly to women of child-bearing age. Inadequate folate levels can result in a number of health concerns including cardiovascular disease, megaloblastic anemias, cognitive deficiencies, and neural tube defects (NTDs). Folic acid is typically supplemented during pregnancy to prevent the development of NTDs and in individuals with alcoholism to prevent the development of neurological disorders, for example. Folic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). CID 6037 is a natural product found in Beta vulgaris, Angelica sinensis, and other organisms with data available. Folic Acid is a collective term for pteroylglutamic acids and their oligoglutamic acid conjugates. As a natural water-soluble substance, folic acid is involved in carbon transfer reactions of amino acid metabolism, in addition to purine and pyrimidine synthesis, and is essential for hematopoiesis and red blood cell production. (NCI05) A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treat... Folic acid or folate, is a vitamin that belongs to the class of compounds known as pterins. Chemically, folate consists of three distinct chemical moieties linked together. A pterin (2-amino-4-hydroxy-pteridine) linked by a methylene bridge to a p-aminobenzoyl group that in turn is linked through an amide linkage to glutamic acid. It is a member of the vitamin B family and is primarily known as vitamin B9. Folate is required for the body to make DNA and RNA and metabolize amino acids necessary for cell division for the hematopoietic system. As humans cannot make folate, it is required in the diet, making it an essential nutrient (i.e. a vitamin). Folate occurs naturally in many foods including mushrooms, spinach, yeast, green leaves, and grasses (poaceae). Folic acid, being biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by the enzyme known as dihydrofolate reductase. Tetrahydrofolate and methyltetrahydrofolate are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids and generate formic acid. Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Folic acid is also used as a supplement by women during pregnancy to reduce the risk of neural tube defects (NTDs) in babies. Low levels in early pregnancy are believed to be the cause of more than half of babies born with NTDs (PMID: 28097362). Folic acid is also a microbial metabolite produced by Bifidobacterium and Lactobacillus (PMID: 22254078). An N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Dietary supplement Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C19H19N7O6; Bottle Name:Folic acid ,approx; PRIME Parent Name:Folic acid; PRIME in-house No.:V0080; SubCategory_DNP: Pteridines and analogues, Pteridine alkaloids Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 CONFIDENCE standard compound; INTERNAL_ID 134 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].
Asparagusic acid
Asparagusic acid is a sulfur-containing carboxylic acid, a dithiolanecarboxylic acid and a member of dithiolanes. It is a conjugate acid of an asparagusate. It derives from a hydride of a 1,2-dithiolane. Asparagusic acid is a natural product found in Asparagus officinalis with data available. Asparagusic acid is found in asparagus. Asparagusic acid is isolated from asparagus (Asparagus officinalis Isolated from asparagus (Asparagus officinalis) [DFC] Asparagusic acid is a sulfur-containing flavor component produced by Asparagus officinalis Linn., with anti-parasitic effect. Asparagusic acid is a plant growth inhibitor[1][2][3].
Biotin
Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6] Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate. A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available. Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue. Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ... Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464). Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. [Raw Data] CB004_Biotin_pos_50eV_CB000006.txt [Raw Data] CB004_Biotin_pos_30eV_CB000006.txt [Raw Data] CB004_Biotin_pos_40eV_CB000006.txt [Raw Data] CB004_Biotin_pos_20eV_CB000006.txt [Raw Data] CB004_Biotin_pos_10eV_CB000006.txt [Raw Data] CB004_Biotin_neg_10eV_000006.txt [Raw Data] CB004_Biotin_neg_20eV_000006.txt Biosynthesis Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18] Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24] Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
beta-Thujaplicin
Beta-thujaplicin is a monoterpenoid that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2 and an isopropyl group at position 4. Isolated from Thuja plicata and Chamaecyparis obtusa, it exhibits antimicrobial activities. It has a role as an antifungal agent, an antibacterial agent, an antiplasmodial drug, an antineoplastic agent and a plant metabolite. It is an enol, a cyclic ketone and a monoterpenoid. It derives from a hydride of a cyclohepta-1,3,5-triene. Hinokitiol is a natural product found in Chamaecyparis obtusa, Thujopsis dolabrata, and other organisms with data available. A monoterpenoid that is cyclohepta-2,4,6-trien-1-one substituted by a hydroxy group at position 2 and an isopropyl group at position 4. Isolated from Thuja plicata and Chamaecyparis obtusa, it exhibits antimicrobial activities. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents beta-Thujaplicin is found in fruits. beta-Thujaplicin occurs in Juniperus communis (juniper Occurs in Juniperus communis (juniper). beta-Thujaplicin is found in fruits. D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities. Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities.
Isorhamnetin
3,4,5,7-tetrahydroxy-3-methoxyflavone is a tetrahydroxyflavone having the 4-hydroxy groups located at the 3- 4- 5- and 7-positions as well as a methoxy group at the 2-position. It has a role as a metabolite and an antimicrobial agent. It is a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of a 3,4,5-trihydroxy-3-methoxyflavon-7-olate. 3-O-Methylquercetin is a natural product found in Lotus ucrainicus, Wollastonia biflora, and other organisms with data available. See also: Tobacco Leaf (part of). 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1]. 3-O-Methylquercetin (3-MQ), a main constituent of Rhamnus nakaharai, inhibits total cAMP and cGMP-phosphodiesterase (PDE) of guinea pig trachealis. 3-O-Methylquercetin (3-MQ) exhibits IC50 values ranging from 1.6-86.9 μM for PDE isozymes (PDE1-5)[1].
Saponarin
7-O-(beta-D-glucosyl)isovitexin is a C-glycosyl compound that is isovitexin in which the hydroxyl hydrogen at position 7 is replaced by a beta-D-glucosyl residue. It has a role as a metabolite. It is a C-glycosyl compound, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an isovitexin. Saponarin is a natural product found in Hibiscus syriacus, Moraea sisyrinchium, and other organisms with data available. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3]. Saponarin is a natural flavonoid isolated from Gypsophila trichotoma, with antioxidant, anti-inflammatory and hepatoprotective activities. Saponarin activates AMPK in a calcium-dependent manner, thus regulating gluconeogenesis and glucose uptake[1][2][3].
2,3-Diphosphoglyceric acid
2,3-Bisphosphoglycerate (2,3-BPG, also known as 2,3-diphosphoglycerate or 2,3-DPG) is a three carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte)--at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. [HMDB] 2,3-Bisphosphoglycerate (CAS: 138-81-8), also known as 2,3-BPG or 2,3-diphosphoglycerate, is a three-carbon isomer of the glycolytic intermediate 1,3-bisphosphoglycerate and is present at high levels in the human red blood cell (RBC; erythrocyte) at the same molar concentration as hemoglobin. It is notable because it binds to deoxygenated hemoglobin in RBCs. In doing so, it allosterically upregulates the ability of RBCs to release oxygen near tissues that need it most. Its function was discovered in 1967 by Reinhold Benesch and Ruth Benesch. KEIO_ID D017
5-Aminolevulinic acid
5-Aminolevulinic acid, also known as 5-aminolevulinate or 5-amino-4-oxopentanoate, belongs to the class of organic compounds known as delta amino acids and derivatives. Delta amino acids and derivatives are compounds containing a carboxylic acid group and an amino group at the C5 carbon atom. 5-Aminolevulinic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. 5-Aminolevulinic acid exists in all living species, ranging from bacteria to humans. 5-aminolevulinic acid can be biosynthesized from glycine and succinyl-CoA by the enzyme 5-aminolevulinate synthase. The simplest delta-amino acid in which the hydrogens at the gamma position are replaced by an oxo group. In humans, 5-aminolevulinic acid is involved in the metabolic disorder called the dimethylglycine dehydrogenase deficiency pathway. Outside of the human body, 5-Aminolevulinic acid has been detected, but not quantified in several different foods, such as american butterfish, vaccinium (blueberry, cranberry, huckleberry), amaranths, purple mangosteens, and garden cress. Used (in the form of the hydrochloride salt) in combination with blue light illumination for the treatment of minimally to moderately thick actinic keratosis of the face or scalp. It is metabolised to protoporphyrin IX, a photoactive compound which accumulates in the skin. An intermediate in heme synthesis. This is the first compound in the porphyrin synthesis pathway. It is produced by the enzyme ALA synthase, from glycine and succinyl CoA. This reaction is known as the Shemin pathway. Aminolevulinic acid plus blue light illumination using a blue light photodynamic therapy illuminator is indicated for the treatment of minimally to moderately thick actinic keratoses of the face or scalp. [HMDB]. 5-Aminolevulinic acid is found in many foods, some of which are fireweed, chia, sesbania flower, and taro. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy Acquisition and generation of the data is financially supported in part by CREST/JST. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents KEIO_ID A052
L-Threoneopterin
L-Threoneopterin is a catabolic product of GTP. It is synthesized by macrophages upon stimulation by interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins. Neopterin is a pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections (From Stedman, 26th ed). Neopterin also serves as a precursor in the biosynthesis of biopterin. Neopterin is a catabolic product of GTP. It is synthesised by macrophages upon stimulation with interferon-gamma. It is used as a marker of HIV infection. It belongs to the chemical group known as pterins.A pteridine derivative present in body fluids; elevated levels result from immune system activation, malignant disease, allograft rejection, and viral infections. (From Stedman, 26th ed) Neopterin also serves as a precursor in the biosynthesis of biopterin. [HMDB] Neopterin (D-(+)-Neopterin), a catabolic product of guanosine triphosphate (GTM), serves as a marker of cellular immune system activation.
Parathion
Parathion is a highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors A highly toxic cholinesterase inhibitor that is used as an acaricide and as an insecticide. [HMDB] C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals
Picolinic acid
Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. Children with acrodermatitis enteropathica (AE) are treated with oral zinc dipicolinate (zinc-PA). The concentration of picolinic acid in the plasma of asymptomatic children with AE was significantly less than that of normal children. However, oral treatment with PA alone is ineffective. The results support the hypothesis that the genetic defect in AE is in the tryptophan pathway, although the role of PA in zinc metabolism remains to be defined. (PMID:15206716, 8473748, 1701787, 6694049). Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents [Raw Data] CBA16_Picolinic-acid_pos_10eV_1-8_01_816.txt [Raw Data] CBA16_Picolinic-acid_pos_20eV_1-8_01_817.txt KEIO_ID P045 Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.
Sepiapterin
Sepiapterin, also known as 2-amino-6-lactoyl-7,8-dihydropteridin-4(3H)-one, belongs to the class of organic compounds known as pterins and derivatives. These are polycyclic aromatic compounds containing a pterin moiety, which consist of a pteridine ring bearing a ketone and an amine group to form 2-aminopteridin-4(3H)-one. Sepiapterin is also classified as a member of the pteridine class of organic chemicals. It is a yellow fluorescing pigment. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). More specifically, sepiapterin can be metabolized into tetrahydrobiopterin via the BH(4) salvage pathway. Tetrahydrobiopterin is an essential cofactor in humans for breakdown of phenylalanine and a catalyst of the metabolism of phenylalanine, tyrosine, and tryptophan to the neurotransmitters dopamine and serotonin. A deficiency of tetrahydrobiopterin can cause toxic buildup of phenylalanine (phenylketonuria) as well as deficiencies of dopamine, norepinephrine, and epinephrine, leading to dystonia and other neurological illnesses. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency, an inborn error of metabolism. Sepiapterin reductase deficiency is a condition characterized by movement problems, most often a pattern of involuntary, sustained muscle contractions known as dystonia. Other movement problems can include muscle stiffness (spasticity), tremors, problems with coordination and balance (ataxia), and involuntary jerking movements (chorea). People with sepiapterin reductase deficiency can experience episodes called oculogyric crises. These episodes involve abnormal rotation of the eyeballs; extreme irritability and agitation; and pain, muscle spasms, and uncontrolled movements, especially of the head and neck. Movement abnormalities are often worse late in the day. Most affected individuals have delayed development of motor skills such as sitting and crawling, and they typically are not able to walk unassisted. The problems with movement tend to worsen over time. Within humans, sepiapterin participates in a number of enzymatic reactions. In particular, sepiapterin can be converted into 7,8-dihydroneopterin; which is mediated by the enzyme sepiapterin reductase. In addition, sepiapterin can be converted into 7,8-dihydroneopterin through its interaction with the enzyme carbonyl reductase [NADPH] 1. Sepiapterin is an intermediate in the salvage pathway of tetrahydrobiopterin (BH(4)). It is a yellow fluorescing pigment. Sepiapterin accumulates in the brain of patients with sepiapterin reductase (SR) deficiency. [HMDB] C307 - Biological Agent
Methylmalonic acid
Methylmalonic acid is a malonic acid derivative, which is a vital intermediate in the metabolism of fat and protein. In particular, the coenzyme A-linked form of methylmalonic acid, methylmalonyl-CoA, is converted into succinyl-CoA by methylmalonyl-CoA mutase in a reaction that requires vitamin B12 as a cofactor. In this way, methylmalonic acid enters the Krebs cycle and is thus part of one of the anaplerotic reactions. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This inborn error of metabolism is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. Methylmalonic acid is also found to be associated with other inborn errors of metabolism, including cobalamin deficiency, cobalamin malabsorption, malonyl-CoA decarboxylase deficiency, and transcobalamin II deficiency. When present in sufficiently high levels, methylmalonic acid can act as an acidogen and a metabotoxin. An acidogen is an acidic compound that induces acidosis, which has multiple adverse effects on many organ systems. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methylmalonic acid are associated with at least 5 inborn errors of metabolism, including Malonyl CoA decarboxylase deficiency, Malonic Aciduria, Methylmalonate Semialdehyde Dehydrogenase Deficiency, Methylmalonic Aciduria and Methylmalonic Aciduria Due to Cobalamin-Related Disorders. Methylmalonic acid is an organic acid and abnormally high levels of organic acids in the blood (organic acidemia), urine (organic aciduria), the brain, and other tissues lead to general metabolic acidosis. Acidosis typically occurs when arterial pH falls below 7.35. In infants with acidosis, the initial symptoms include poor feeding, vomiting, loss of appetite, weak muscle tone (hypotonia), and lack of energy (lethargy). These can progress to heart abnormalities, kidney abnormalities, liver damage, seizures, coma, and possibly death. These are also the characteristic symptoms of the untreated IEMs mentioned above. Many affected children with organic acidemias experience intellectual disability or delayed development. In adults, acidosis or acidemia is characterized by headaches, confusion, feeling tired, tremors, sleepiness, and seizures. A malonic acid derivative which is a vital intermediate in the metabolism of fat and protein. Abnormalities in methylmalonic acid metabolism lead to methylmalonic aciduria. This metabolic disease is attributed to a block in the enzymatic conversion of methylmalonyl CoA to succinyl CoA. [HMDB] KEIO_ID M014 Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.
Acridine orange
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D009153 - Mutagens
Protoporphyrin IX
Protoporphyrins are tetrapyrroles containing 4 methyl, 2 propionic, and 2 vinyl side chains. Protoporphyrin is produced by oxidation of the methylene bridge of protoporphyrinogen. Protoporphyrin IX is the only naturally occurring isomer; it is an intermediate in heme biosynthesis, combining with ferrous iron to form protoheme IX, the heme prosthetic group of hemoglobin. Protoporphyrin IX is created by the enzyme protoporphyrinogen oxidase. The enzyme ferrochelatase converts it into heme. Protoporphyrin IX naturally occurs in small amounts in feces. Protoporphyrin IX is also responsible for the brown pigment (ooporphyrin) of birds eggs. Protoporphyrin IX is used as a branch point in the biosynthetic pathway leading to heme (by insertion of iron) and chlorophylls (by insertion of Mg and further side-chain transformation). Protoporphyrin IX can be used to treat liver disorders, mainly as the sodium salt. Under certain conditions, protoporphyrin IX can act as a neurotoxin, a phototoxin, and a metabotoxin. A neurotoxin causes damage to nerve cells and nerve tissues. A phototoxin causes cell damage upon exposure to light. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of porphyrins are associated with porphyrias such as porphyria variegate, acute intermittent porphyria, and hereditary coproporphyria (HCP). In particular, it is accumulated and excreted excessively in the feces in acute intermittent porphyria, protoporphyria, and variegate porphyria. There are several types of porphyrias (most are inherited). Hepatic porphyrias are characterized by acute neurological attacks (seizures, psychosis, extreme back and abdominal pain, and an acute polyneuropathy), while the erythropoietic forms present with skin problems (usually a light-sensitive blistering rash and increased hair growth). The neurotoxicity of porphyrins may be due to their selective interactions with tubulin, which disrupt microtubule formation and cause neural malformations (PMID: 3441503). obtained by demetallation of Haemin, occurs in small amounts in faeces. Brown pigment (Ooporphyrin) of birds eggs. Isolated from Atolla wyvillei (CCD). Protoporphyrin is found in red beetroot. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents COVID info from COVID-19 Disease Map C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway. Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway.
Dibutyl succinate
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
Chlorpromazine
The prototypical phenothiazine antipsychotic drug. Like the other drugs in this class, chlorpromazines antipsychotic actions are thought to be due to long-term adaptation by the brain to blocking dopamine receptors. Chlorpromazine has several other actions and therapeutic uses, including as an antiemetic and in the treatment of intractable hiccup. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2886; ORIGINAL_PRECURSOR_SCAN_NO 2881 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8394; ORIGINAL_PRECURSOR_SCAN_NO 8393 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8389; ORIGINAL_PRECURSOR_SCAN_NO 8387 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2875; ORIGINAL_PRECURSOR_SCAN_NO 2871 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8406; ORIGINAL_PRECURSOR_SCAN_NO 8404 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2956; ORIGINAL_PRECURSOR_SCAN_NO 2953 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2893; ORIGINAL_PRECURSOR_SCAN_NO 2890 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2891; ORIGINAL_PRECURSOR_SCAN_NO 2889 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8400; ORIGINAL_PRECURSOR_SCAN_NO 8399 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8476; ORIGINAL_PRECURSOR_SCAN_NO 8474 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2886; ORIGINAL_PRECURSOR_SCAN_NO 2882 CONFIDENCE standard compound; INTERNAL_ID 774; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8410; ORIGINAL_PRECURSOR_SCAN_NO 8408 N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; INTERNAL_ID 1121 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Thiamcol
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01B - Amphenicols > J01BA - Amphenicols D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic C784 - Protein Synthesis Inhibitor
Primaquine
An aminoquinoline that is given by mouth to produce a radical cure and prevent relapse of vivax and ovale malarias following treatment with a blood schizontocide. It has also been used to prevent transmission of falciparum malaria by those returning to areas where there is a potential for re-introduction of malaria. Adverse effects include anemias and GI disturbances. (From Martindale, The Extra Pharmacopeia, 30th ed, p404) P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1600 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3009
Oxyquinoline
G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AC - Quinoline derivatives A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AH - Quinoline derivatives R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AA - Antiseptics C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent CONFIDENCE standard compound; ML_ID 55
Nitrilotriacetic acid
D064449 - Sequestering Agents > D002614 - Chelating Agents
Benzidine
Benzidine is prepared in a two step process from nitrobenzene. First, the nitrobenzene is converted to 1,2-diphenylhydrazine, usually using iron powder as the reducing agent. Treatment of this hydrazine with mineral acids induces a rearrangement reaction to 4,4-benzidine. Smaller amounts of other isomers are also formed. The benzidine rearrangement, which proceeds intramolecularly, is a classic mechanistic puzzle in organic chemistry. Benzidine, the trivial name for 4,4-diaminobiphenyl, is the solid organic compound with the formula (C6H4NH2)2. This aromatic amine is a component of a test for cyanide and also in the production of dyes. Benzidine has been linked to bladder and pancreatic cancer. Since August 2010 benzidine dyes are included in the EPAs List of Chemicals of Concern.
nystatin
A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptomyces species. It is an antifungal antibiotic used for the treatment of topical fungal infections caused by a broad spectrum of fungal pathogens comprising yeast-like and filamentous species. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D049990 - Membrane Transport Modulators D007476 - Ionophores A polyene macrolide antibiotic; part of the nystatin complex produced by several Streptococcus species. The keto-form of nystatin A1. CONFIDENCE standard compound; EAWAG_UCHEM_ID 3140
Praziquantel
Praziquantel is only found in individuals that have used or taken this drug. It is an anthelmintic used in most schistosome and many cestode infestations. [PubChem]Praziquantel works by causing severe spasms and paralysis of the worms muscles. This paralysis is accompanied - and probably caused - by a rapid Ca 2+ influx inside the schistosome. Morphological alterations are another early effect of praziquantel. These morphological alterations are accompanied by an increased exposure of schistosome antigens at the parasite surface. The worms are then either completely destroyed in the intestine or passed in the stool. An interesting quirk of praziquantel is that it is relatively ineffective against juvenile schistosomes. While initially effective, effectiveness against schistosomes decreases until it reaches a minimum at 3-4 weeks. Effectiveness then increases again until it is once again fully effective at 6-7 weeks. Glutathione S-transferase (GST), an essential detoxification enzyme in parasitic helminths, is a major vaccine target and a drug target against schistosomiasis. Schistosome calcium ion channels are currently the only known target of praziquantel. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent
Gambogic acid
Isolated from Gamboge resin (exudate of Garcinia morella). Gambogic acid is found in herbs and spices and fruits. Gambogic acid is found in fruits. Gambogic acid is isolated from Gamboge resin (exudate of Garcinia morella). Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM. Gambogic Acid (Beta-Guttiferrin) is derived from the gamboges resin of the tree Garcinia hanburyi. Gambogic Acid (Beta-Guttiferrin) inhibits Bcl-XL, Bcl-2, Bcl-W, Bcl-B, Bfl-1 and Mcl-1 with IC50s of 1.47 μM, 1.21 μM, 2.02 μM, 0.66 μM, 1.06 μM and 0.79 μM.
TRIBUTYL PHOSPHATE
D020011 - Protective Agents > D011837 - Radiation-Protective Agents
Artemisinin
D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides D000890 - Anti-Infective Agents (+)-artemisinin is a sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria. It has a role as an antimalarial and a plant metabolite. It is a sesquiterpene lactone and an organic peroxide. Artemisinin has been used in trials studying the treatment of Schizophrenia, Malaria, Falciparum, and Plasmodium Falciparum. Artemisinin is a natural product found in Microliabum polymnioides, Artemisia tenuisecta, and other organisms with data available. A sesquiterpene lactone obtained from sweet wormwood, Artemisia annua, which is used as an antimalarial for the treatment of multi-drug resistant strains of falciparum malaria. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BE - Artemisinin and derivatives, plain C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Origin: Plant; SubCategory_DNP: Sesquiterpenoids CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 9 INTERNAL_ID 9; CONFIDENCE Reference Standard (Level 1) relative retention time with respect to 9-anthracene Carboxylic Acid is 1.152 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.156 [Raw Data] CB176_Artemisinin_pos_30eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_20eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_10eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_40eV_isCID-10eV_rep000004.txt [Raw Data] CB176_Artemisinin_pos_50eV_isCID-10eV_rep000004.txt Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2]. Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2]. Artemisinin (Qinghaosu), a sesquiterpene lactone, is an anti-malarial agent isolated from the aerial parts of Artemisia annua L. plants[1]. Artemisinin inhibits AKT signaling pathway by decreasing pAKT in a dose-dependent manner. Artemisinin reduces cancer cell proliferation, migration, invasion, tumorigenesis and metastasis and has neuroprotective effects[2].
Diacetoxyscirpenol
Diacetoxyscirpenol is a constituent of Fusarium species Mycotoxin D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Constituent of Fusarium subspecies Mycotoxin C784 - Protein Synthesis Inhibitor D000970 - Antineoplastic Agents
Maltol
Maltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. annuum), and coffee and coffee products. Maltols sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances. Maltol is a white crystalline powder with a fragrant caramel-butterscotch odor. pH (5\\\\% aqueous solution) 5.3. (NTP, 1992) 3-hydroxy-2-methyl-4-pyrone is a member of 4-pyranones. It has a role as a metabolite. Maltol is a natural product found in Cercidiphyllum japonicum, Coffea arabica, and other organisms with data available. 3-Hydroxy-2-methyl-4-pyrone is a metabolite found in or produced by Saccharomyces cerevisiae. Found in chicory, roasted malt, breads, milk, heated butter, uncured smoked pork, cocoa, coffee, roasted barley, roasted peanuts, roasted filbert, soybean etc. Flavour enhancer and flavouring agent C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].
Chloroquine
Chloroquine is only found in individuals that have used or taken this drug. It is a prototypical antimalarial agent with a mechanism that is not well understood. It has also been used to treat rheumatoid arthritis, systemic lupus erythematosus, and in the systemic therapy of amebic liver abscesses. [PubChem]The mechanism of plasmodicidal action of chloroquine is not completely certain. Like other quinoline derivatives, it is thought to inhibit heme polymerase activity. This results in accumulation of free heme, which is toxic to the parasites. nside red blood cells, the malarial parasite must degrade hemoglobin to acquire essential amino acids, which the parasite requires to construct its own protein and for energy metabolism. Digestion is carried out in a vacuole of the parasite cell.During this process, the parasite produces the toxic and soluble molecule heme. The heme moiety consists of a porphyrin ring called Fe(II)-protoporphyrin IX (FP). To avoid destruction by this molecule, the parasite biocrystallizes heme to form hemozoin, a non-toxic molecule. Hemozoin collects in the digestive vacuole as insoluble crystals.Chloroquine enters the red blood cell, inhabiting parasite cell, and digestive vacuole by simple diffusion. Chloroquine then becomes protonated (to CQ2+), as the digestive vacuole is known to be acidic (pH 4.7); chloroquine then cannot leave by diffusion. Chloroquine caps hemozoin molecules to prevent further biocrystallization of heme, thus leading to heme buildup. Chloroquine binds to heme (or FP) to form what is known as the FP-Chloroquine complex; this complex is highly toxic to the cell and disrupts membrane function. Action of the toxic FP-Chloroquine and FP results in cell lysis and ultimately parasite cell autodigestion. In essence, the parasite cell drowns in its own metabolic products. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines COVID info from Guide to PHARMACOLOGY, DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018501 - Antirheumatic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
4-Hydroxyquinoline
CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 53 CONFIDENCE standard compound; INTERNAL_ID 2492 KEIO_ID H139
Hydroxyhydroquinone
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Oxymetholone
A - Alimentary tract and metabolism > A14 - Anabolic agents for systemic use > A14A - Anabolic steroids > A14AA - Androstan derivatives D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D045930 - Anabolic Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D000728 - Androgens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2360 - Anabolic Steroid
2-Amino-3-phosphonopropionic acid
2-Amino-3-phosphonopropionic acid (AP-3 or 2-AP3), also known as 3-phosphonoalanine, is a non-proteinogenc alpha-amino acid that is alanine in which one of the hydrogens of the terminal methyl group has been replaced by a dihydroxy(oxido)-lambda(5)-phosphanyl group. It is found in many organisms ranging from microbes to invertebrates to animals. In humans AP-3 is found in diverse tissues, such as liver, intestine and spleen. (PMID: 2627760). 2-Amino-3-phosphonopropionic acid is a ubiquitous naturally occurring phosphonate used as a source of phosphorus by many prokaryotic organisms (PMID: 30119975). The natural occurrence of 2-amino-3-phosphonopropionic acid. the phosphonate analogue of aspartic acid, was first reported by Kittredge & Hughes (PMID: 14214094) in the sea anemone Zoanthus sociatus and the protozoon Tetrahymena pyriformis. It has since been established to be one of the most widely distributed of the biogenic C–P compounds, particularly among the lower marine invertebrates (PMID: 19191873). AP-3 has been determined to be a metabotropic glutamate receptor agonist (PMID: 8836635). It has been shown to block the amyloid precursor protein (APP) release evoked by glutamate receptor stimulation in neurons of the cortex and hippocampus. APP accumulation is believed to produce the damage in Alzheimer’s disease (PMID: 7644542). 2-Amino-3-phosphonopropionic acid (AP-3)is a normal human metabolite found in diverse tissues, such as liver, intestine and spleen. (PMID 2627760) AP-3 is a metabotropic glutamate receptor agonist (PMID 8836635) shown to block the amyloid precursor protein (APP) release evoked by glutamate receptor stimulation in neurons of the cortex and hippocampus; APP accumulation is believed to produce the damage in Alzheimer disease (PMID 7644542) [HMDB] D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists KEIO_ID A131 DL-AP3 is a competitive mGluR1 and mGluR5 antagonist. DL-AP3 is also an inhibitor of phosphoserine phosphatase. DL-AP3 has neuroprotective effect[1][2][3].
Hydroxyurea
Hydroxyurea is only found in individuals that have used or taken this drug. It is an antineoplastic agent that inhibits DNA synthesis through the inhibition of ribonucleoside diphosphate reductase. [PubChem]Hydroxyurea is converted to a free radical nitroxide (NO) in vivo, and transported by diffusion into cells where it quenches the tyrosyl free radical at the active site of the M2 protein subunit of ribonucleotide reductase, inactivating the enzyme. The entire replicase complex, including ribonucleotide reductase, is inactivated and DNA synthesis is selectively inhibited, producing cell death in S phase and synchronization of the fraction of cells that survive. Repair of DNA damaged by chemicals or irradiation is also inhibited by hydroxyurea, offering potential synergy between hydroxyurea and radiation or alkylating agents. Hydroxyurea also increases the level of fetal hemoglobin, leading to a reduction in the incidence of vasoocclusive crises in sickle cell anemia. Levels of fetal hemoglobin increase in response to activation of soluble guanylyl cyclase (sGC) by hydroxyurea-derived NO. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C471 - Enzyme Inhibitor > C2150 - Ribonucleotide Reductase Inhibitor D006401 - Hematologic Agents > D000986 - Antisickling Agents D000970 - Antineoplastic Agents KEIO_ID H104
Pralidoxime
Pralidoxime is an antidote to organophosphate pesticides and chemicals. Organophosphates bind to the esteratic site of acetylcholinesterase, which results initially in reversible inactivation of the enzyme. If given within 24 hours,after organophosphate exposure, pralidoxime reactivates the enzyme cholinesterase by cleaving the phosphate-ester bond formed between the organophosphate and acetylcholinesterase. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators Acquisition and generation of the data is financially supported in part by CREST/JST. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D020011 - Protective Agents > D000931 - Antidotes D004793 - Enzyme Reactivators
Enniatin B
An enniatin obtained from formal cyclocondensation of three N-[(2R)-2-hydroxy-3-methylbutanoyl]-N-methyl-L-valine units. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents CONFIDENCE Reference Standard (Level 1)
Bufogein
Bufogenin is a steroid lactone of Chan su (toad venom), a Chinese medicine obtained from the skin venom gland of toads. A specific Na/K-ATPase protein inhibitor, it is used as a cardiotonic and central nervous system (CNS) respiratory agent, an analgesic and anesthetic, and as a remedy for ulcers. It has a role as an EC 3.6.3.9 (Na(+)/K(+)-transporting ATPase) inhibitor. It is a steroid lactone and an epoxy steroid. It is functionally related to a bufanolide. Resibufogenin is a natural product found in Sclerophrys mauritanica, Bufo gargarizans, and other organisms with data available. Bufogenin is a bufadienolide toxin originally isolated from the venom of the Chinese toad Bufo gargarizans; it is also one of the glycosides in the traditional Chinese medicine ChanSu, with potential cardiotonic activity. Although the mechanism of action of bufogenin is still under investigation, this agent is a specific Na+/K+-ATPase inhibitor and has been shown to reduce blood pressure in a rat model of preeclampsia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides D002317 - Cardiovascular Agents C471 - Enzyme Inhibitor Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.
Penicillamine
Penicillamine is only found in individuals that have used or taken this drug. It is the most characteristic degradation product of the penicillin antibiotics. It is used as an antirheumatic and as a chelating agent in Wilsons disease. [PubChem]Penicillamine is a chelating agent recommended for the removal of excess copper in patients with Wilsons disease. From in vitro studies which indicate that one atom of copper combines with two molecules of penicillamine. Penicillamine also reduces excess cystine excretion in cystinuria. This is done, at least in part, by disulfide interchange between penicillamine and cystine, resulting in formation of penicillamine-cysteine disulfide, a substance that is much more soluble than cystine and is excreted readily. Penicillamine interferes with the formation of cross-links between tropocollagen molecules and cleaves them when newly formed. The mechanism of action of penicillamine in rheumatoid arthritis is unknown although it appears to suppress disease activity. Unlike cytotoxic immunosuppressants, penicillamine markedly lowers IgM rheumatoid factor but produces no significant depression in absolute levels of serum immunoglobulins. Also unlike cytotoxic immunosuppressants which act on both, penicillamine in vitro depresses T-cell activity but not B-cell activity. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01C - Specific antirheumatic agents > M01CC - Penicillamine and similar agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents Penicillamine (D-(-)-Penicillamine) is a penicillin metabolic degradation product, can be used as a heavy metal chelator. Penicillamine increases free copper and enhances oxidative stress. Penicillamine has effect of seizures through nitric oxide/NMDA pathways. Penicillamine is a potential immune modulator. Penicillamine can be used for the research of Wilson disease, rheumatoid arthritis, and cystinuria[1][2][3][4].
Phenylhydrazine
Phenylhydrazine, also known as hydrazinobenzene or phenyldiazane, is a member of the class of compounds known as phenylhydrazines. Phenylhydrazines are compounds containing a phenylhydrazide moiety, which consists of a hydrazide substituent attached to a phenyl group. Phenylhydrazine is soluble (in water) and a very strong basic compound (based on its pKa). Phenylhydrazine can be found in sweet bay, which makes phenylhydrazine a potential biomarker for the consumption of this food product. Phenylhydrazine is the chemical compound with the formula C6H5NHNH2. It is often abbreviated as PhNHNH2 . D009676 - Noxae > D016877 - Oxidants
Retinol(Vitamin A)
Vitamin A (retinol) is a yellow fat-soluble, antioxidant vitamin important in vision and bone growth. It belongs to the family of chemical compounds known as retinoids. Retinol is ingested in a precursor form; animal sources (milk and eggs) contain retinyl esters, whereas plants (carrots, spinach) contain pro-vitamin A carotenoids. Hydrolysis of retinyl esters results in retinol while pro-vitamin A carotenoids can be cleaved to produce retinal. Retinal, also known as retinaldehyde, can be reversibly reduced to produce retinol or it can be irreversibly oxidized to produce retinoic acid. Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of carotenoids found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products. Retinyl esters from animal-sourced foods (or synthesized for dietary supplements for humans and domesticated animals) are acted upon by retinyl ester hydrolases in the lumen of the small intestine to release free retinol. Retinol enters intestinal absorptive cells by passive diffusion. Absorption efficiency is in the range of 70 to 90\%. Humans are at risk for acute or chronic vitamin A toxicity because there are no mechanisms to suppress absorption or excrete the excess in urine.[5] Within the cell, retinol is there bound to retinol binding protein 2 (RBP2). It is then enzymatically re-esterified by the action of lecithin retinol acyltransferase and incorporated into chylomicrons that are secreted into the lymphatic system. Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1). The protein is upregulated in times of vitamin A deficiency. If vitamin A status is in the normal range, SCARB1 is downregulated, reducing absorption.[6] Also downregulated is the enzyme beta-carotene 15,15'-dioxygenase (formerly known as beta-carotene 15,15'-monooxygenase) coded for by the BCMO1 gene, responsible for symmetrically cleaving β-carotene into retinal.[8] Absorbed β-carotene is either incorporated as such into chylomicrons or first converted to retinal and then retinol, bound to RBP2. After a meal, roughly two-thirds of the chylomicrons are taken up by the liver with the remainder delivered to peripheral tissues. Peripheral tissues also can convert chylomicron β-carotene to retinol.[6][15] The capacity to store retinol in the liver means that well-nourished humans can go months on a vitamin A deficient diet without manifesting signs and symptoms of deficiency. Two liver cell types are responsible for storage and release: hepatocytes and hepatic stellate cells (HSCs). Hepatocytes take up the lipid-rich chylomicrons, bind retinol to retinol-binding protein 4 (RBP4), and transfer the retinol-RBP4 to HSCs for storage in lipid droplets as retinyl esters. Mobilization reverses the process: retinyl ester hydrolase releases free retinol which is transferred to hepatocytes, bound to RBP4, and put into blood circulation. Other than either after a meal or when consumption of large amounts exceeds liver storage capacity, more than 95\% of retinol in circulation is bound to RBP4.[15] Vitamin A is a fat-soluble vitamin, hence an essential nutrient. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinal (also known as retinaldehyde), retinoic acid, and several provitamin (precursor) carotenoids, most notably beta-carotene.[3][4][5][6] Vitamin A has multiple functions: essential in embryo development for growth, maintaining the immune system, and healthy vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light (scotopic vision) and color vision.[7] Vitamin A occurs as two principal forms in foods: A) retinol, found in animal-sourced foods, either as retinol or bound to a fatty acid to become a retinyl ester, and B) the carotenoids alpha-carotene, β-carotene, gamma-carotene, and the xanthophyll beta-cryptoxanthin (all of which contain β-ionone rings) that function as provitamin A in herbivore and omnivore animals which possess the enzymes that cleave and convert provitamin carotenoids to retinal and then to retinol.[8] Some carnivore species lack this enzyme. The other carotenoids have no vitamin activity.[6] Dietary retinol is absorbed from the digestive tract via passive diffusion. Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1), which is upregulated in times of vitamin A deficiency.[6] Storage of retinol is in lipid droplets in the liver. A high capacity for long-term storage of retinol means that well-nourished humans can go months on a vitamin A- and β-carotene-deficient diet, while maintaining blood levels in the normal range.[4] Only when the liver stores are nearly depleted will signs and symptoms of deficiency show.[4] Retinol is reversibly converted to retinal, then irreversibly to retinoic acid, which activates hundreds of genes.[9] Vitamin A deficiency is common in developing countries, especially in Sub-Saharan Africa and Southeast Asia. Deficiency can occur at any age but is most common in pre-school age children and pregnant women, the latter due to a need to transfer retinol to the fetus. Vitamin A deficiency is estimated to affect approximately one-third of children under the age of five around the world, resulting in hundreds of thousands of cases of blindness and deaths from childhood diseases because of immune system failure.[10] Reversible night blindness is an early indicator of low vitamin A status. Plasma retinol is used as a biomarker to confirm vitamin A deficiency. Breast milk retinol can indicate a deficiency in nursing mothers. Neither of these measures indicates the status of liver reserves.[6] The European Union and various countries have set recommendations for dietary intake, and upper limits for safe intake. Vitamin A toxicity also referred to as hypervitaminosis A, occurs when there is too much vitamin A accumulating in the body. Symptoms may include nervous system effects, liver abnormalities, fatigue, muscle weakness, bone and skin changes, and others. The adverse effects of both acute and chronic toxicity are reversed after consumption of high dose supplements is stopped.[6]
Proanthocyanidin A2
Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A1 (Proanthocyanidin A1) is a procyanidin dimer, which inhibits degranulation downstream of protein kinase C activation or Ca2+ influx from an internal store in RBL-213 cells. Procyanidin A1 has antiallergic effects[1]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Heme
Heme is the color-furnishing portion of hemoglobin. It is found free in tissues and as the prosthetic group in many hemeproteins. A heme or haem is a prosthetic group that consists of an iron atom contained in the center of a large heterocyclic organic ring called a porphyrin. Not all porphyrins contain iron, but a substantial fraction of porphyrin-containing metalloproteins have heme as their prosthetic subunit; these are known as hemoproteins. Protoheme ix, also known as ferroprotoheme or [fe(ppix)], is a member of the class of compounds known as metalloporphyrins. Metalloporphyrins are polycyclic compounds containing a porphyrin moiety and a metal atom. Protoheme ix can be found in a number of food items such as orange mint, cucumber, deerberry, and pear, which makes protoheme ix a potential biomarker for the consumption of these food products. Ferroheme, a complex of ferrous iron and a porphyrin, is an isosteric inhibitor of fatty acid binding to rat liver fatty acid binding protein[1][2]. Ferroheme, a complex of ferrous iron and a porphyrin, is an isosteric inhibitor of fatty acid binding to rat liver fatty acid binding protein[1][2].
Manganese
D018977 - Micronutrients > D014131 - Trace Elements Manganese is a chemical element, designated by the symbol Mn. It has the atomic number 25. Manganese(II) ions function as cofactors for a number of enzymes in higher organisms, where they are essential in detoxification of superoxide free radicals. The element is a required trace mineral for all known living organisms. [Wikipedia]. Manganese is found in many foods, some of which are egg roll, hyacinth bean, popcorn, and nutmeg.
Glyceric acid 1,3-biphosphate
Glyceric acid 1,3-biphosphate (CAS: 1981-49-3), also known as 1,3-bisphosphoglycerate (1,3BPG) or PGAP, is a 3-carbon organic molecule present in most, if not all living creatures. It primarily exists as a metabolic intermediate in glycolysis during respiration. 1,3BPG has been recognized as regulatory signal implicated in the control of metabolism, oxygen affinity of red cells, and other cellular functions. 1,3BPG concentration in erythrocytes changes in a number of pathological conditions, such as inherited phosphoglycerate kinase deficiency in erythrocytes (involved in the synthesis and breakdown of 1,3BPG) (PMID: 3555887). Glyceric acid 1,3-biphosphate is phosphorylated at the number 1 and 3 carbons. The result of this phosphorylation gives 1,3BPG important biological properties such as the ability to phosphorylate ADP to form the energy storage molecule ATP (Wikipedia). 3-phospho-d-glyceroyl phosphate, also known as 1,3-bisphospho-D-glycerate or D-glycerate 1,3-diphosphate, is a member of the class of compounds known as acyl monophosphates. Acyl monophosphates are organic compounds containing a monophosphate linked to an acyl group. They have the general structure R-CO-P(O)(O)OH, R=H or organyl. 3-phospho-d-glyceroyl phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). 3-phospho-d-glyceroyl phosphate can be found in a number of food items such as tamarind, narrowleaf cattail, mustard spinach, and cereals and cereal products, which makes 3-phospho-d-glyceroyl phosphate a potential biomarker for the consumption of these food products. 3-phospho-d-glyceroyl phosphate exists in E.coli (prokaryote) and yeast (eukaryote).
Ferricyanide
D006401 - Hematologic Agents > D006397 - Hematinics > D005290 - Ferric Compounds
myo-Inositol 1,3,4,5,6-pentakisphosphate
myo-Inositol 1,3,4,5,6-pentakisphosphate, also known as Ins(1,3,4,5,6)P5 or inositol pentaphosphate, is an inositol polyphosphate of emerging significance in cellular signalling. Both Ins(1,3,4,5,6)P5 and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesized from the same myo-inositol-based precursor (PMID: 16755629). InsP6, Ins(1,3,4,5,6)P5, and their close metabolic relatives are amongst the more abundant intracellular inositol polyphosphates. They are involved in chromatin organization, DNA maintenance, gene transcription, nuclear mRNA transport, membrane trafficking, and control of cell proliferation (PMID: 14992690). myo-Inositol 1,3,4,5,6-pentakisphosphate (Ins(1,3,4,5,6)P(5)), an inositol polyphosphate of emerging significance in cellular signalling, and its C-2 epimer scyllo-inositol pentakisphosphate (scyllo-InsP(5)) were synthesised from the same myo-inositol-based precursor. (PMID: 16755629)
Iodine
Elemental iodine (I2) is poisonous if taken orally in larger amounts; 2?3 grams of it is a lethal dose for an adult human.; Elemental iodine is an oxidizing irritant and direct contact with skin can cause lesions, so iodine crystals should be handled with care. Solutions with high elemental iodine concentration such as tincture of iodine are capable of causing tissue damage if use for cleaning and antisepsis is prolonged.; In many ways, 129I is similar to 36Cl. It is a soluble halogen, fairly non-reactive, exists mainly as a non-sorbing anion, and is produced by cosmogenic, thermonuclear, and in-situ reactions. In hydrologic studies, 129I concentrations are usually reported as the ratio of 129I to total I (which is virtually all 127I). As is the case with 36Cl/Cl, 129I/I ratios in nature are quite small, 10?14 to 10?10 (peak thermonuclear 129I/I during the 1960s and 1970s reached about 10?7). 129I differs from 36Cl in that its halflife is longer (15.7 vs. 0.301 million years), it is highly biophilic, and occurs in multiple ionic forms (commonly, I? and IO3?) which have different chemical behaviors. This makes it fairly easy for 129I to enter the biosphere as it becomes incorporated into vegetation, soil, milk, animal tissue, etc.; Iodic acid (HIO3) and its salts are strong oxidizers. Periodic acid (HIO4) cleaves vicinal diols along the C-C bond to give aldehyde fragments. 2-Iodoxybenzoic acid and Dess-Martin periodinane are hypervalent iodine oxidants used to specifically oxidize alcohols to ketones or aldehydes. Iodine pentoxide is a strong oxidant as well.; Iodine (pronounced /?a?.?da?n/ EYE-o-dyne, /?a?.?d?n/ EYE-o-d?n, or in chemistry /?a?.?di?n/ EYE-o-deen; from Greek: ????? iodes "violet"), is a chemical element that has the symbol I and atomic number 53. Naturally-occurring iodine is a single isotope with 74 neutrons. Chemically, iodine is the second least reactive of the halogens, and the second most electropositive halogen, trailing behind astatine in both of these categories. However, the element does not occur in the free state in nature. As with all other halogens (members of Group 17 in the periodic table), when freed from its compounds iodine forms diatomic molecules (I2).; Iodine forms many compounds. Potassium iodide is the most commercially significant iodine compound. It is a convenient source of the iodide anion; it is easier to handle than sodium iodide because it is not hygroscopic. Sodium iodide is especially useful in the Finkelstein reaction, because it is soluble in acetone, while potassium iodide is poorly so. In this reaction, an alkyl chloride is converted to an alkyl iodide. This relies on the insolubility of sodium chloride in acetone to drive the reaction:; Iodine is a common general stain used in thin-layer chromatography. It is also used in the Gram stain as a mordant, after the sample is treated with crystal violet.; Iodine is an essential trace element for life, the heaviest element commonly needed by living organisms, and the second-heaviest known to be used by any form of life (only tungsten, a component of a few bacterial enzymes, has a higher atomic number and atomic weight). Iodines main role in animal biology is as constituents of the thyroid hormones, thyroxine (T4) and triiodothyronine (T3). These are made from addition condensation products of the amino acid tyrosine, and are stored prior to release in an iodine-containing protein called thyroglobulin. T4 and T3 contain four and three atoms of iodine per molecule, respectively. The thyroid gland actively absorbs iodide from the blood to make and release these hormones into the blood, actions which are regulated by a second hormone TSH from the pituitary. Thyroid hormones are phylogenetically very old molecules which are synthesized by most multicellular organisms, and which even have some effect on unicellular organisms.; Iodine is an essential trace element. Chemically, iodine is the least reactive of the halogens, and the most ele... Iodine is an essential trace element. Chemically, iodine is the least reactive of the halogens, and the most electropositive halogen after astatine. However, iodine does not occur in the free state in nature. As with all other halogens , when freed from its compounds iodine forms diatomic molecules (I2). Iodine and its compounds are primarily used in medicine, photography, and dyes. Iodine is required for the production of thyroid hormones, which are essential for normal brain development, and the fetus, newborn, and young child are particularly vulnerable to iodine deficiency. Physiologically, iodine exists as an ion in the body. The iodine requirement increases during pregnancy and recommended intakes are in the range of 220-250 microg/day. Monitoring iodine status during pregnancy is a challenge. New recommendations from World Health Organization suggest that a median urinary iodine concentration >250 microg/L and <500 microg/L indicates adequate iodine intake in pregnancy. Based on this range, it appears that many pregnant women in have inadequate intakes. Thyroid-stimulating hormone concentration in the newborn is a sensitive indicator of mild iodine deficiency in late pregnancy. The potential adverse effects of mild iodine deficiency during pregnancy are uncertain. Controlled trials of iodine supplementation in mildly iodine-deficient pregnant women suggest beneficial effects on maternal and newborn serum thyroglobulin and thyroid volume, but no effects on maternal and newborn total or free thyroid hormone concentrations. There are no long-term data on the effect of iodine supplementation on birth outcomes or infant development. New data from well-controlled studies indicate that iodine repletion in moderately iodine-deficient school-age children has clear benefits: it improves cognitive and motor function; it also increases concentrations of insulin-like growth factor 1 and insulin-like growth factor-binding protein 3, and improves somatic growth. (PMID: 17956157). D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants > D08AG - Iodine products D018977 - Micronutrients > D014131 - Trace Elements D000890 - Anti-Infective Agents
(1S,2R)-1-C-(indol-3-yl)glycerol 3-phosphate
Indole-3-glycerol phosphate, also known as c1-(3-indolyl)-glycerol 3-phosphate, is a member of the class of compounds known as 3-alkylindoles. 3-alkylindoles are compounds containing an indole moiety that carries an alkyl chain at the 3-position. Indole-3-glycerol phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Indole-3-glycerol phosphate can be found in a number of food items such as german camomile, lambsquarters, other soy product, and hazelnut, which makes indole-3-glycerol phosphate a potential biomarker for the consumption of these food products. Indole-3-glycerol phosphate may be a unique E.coli metabolite. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents
4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone
4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone is found in fruits. 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone is a component of peach aroma. Component of peach aroma. 4-(2,6,6-Trimethyl-1-cyclohexen-1-yl)-2-butanone is found in fruits and red raspberry.
LysoSM(d18:1)
D-erythro-sphingosylphosphorylcholine is an intermediate in Sphingolipid metabolism. D-erythro-sphingosylphosphorylcholine is the 5th to last step in the synthesis of Digalactosylceramidesulfate and is converted from Sphingosine via the enzyme sphingosine cholinephosphotransferase ( EC 2.7.8.10). It is then converted to Sphingomyelin via the enzyme sphingosine N-acyltransferase (EC 2.3.1.24). [HMDB] D-erythro-sphingosylphosphorylcholine is an intermediate in Sphingolipid metabolism. D-erythro-sphingosylphosphorylcholine is the 5th to last step in the synthesis of Digalactosylceramidesulfate and is converted from Sphingosine via the enzyme sphingosine cholinephosphotransferase ( EC 2.7.8.10). It is then converted to Sphingomyelin via the enzyme sphingosine N-acyltransferase (EC 2.3.1.24).
2-Hydroxyestrone
2-Hydroxyestrone (2-OHE1), also known as estra-1,3,5(10)-trien-2,3-diol-17-one, is an endogenous, naturally occurring catechol estrogen and a major metabolite of estrone and estradiol. 2-Hydroxyestrone belongs to the class of organic compounds known as estrogens and derivatives. These are steroids with a structure containing a 3-hydroxylated estrane. Thus, 2-Hydroxyestrone is considered to be a steroid molecule. It is formed irreversibly from estrone in the liver and to a lesser extent in other tissues via 2-hydroxylation mediated by cytochrome P450 enzymes, mainly the CYP3A and CYP1A subfamilies. 2-OHE1 is the most abundant catechol estrogen in the body. 2-Hydroxyestrone is found in all vertebrates. Vertebrates, especially mammals, metabolizes estrogen into two major pathways and one minor. The two major pathways lead to 2-hydroxyestrone and 16a-hydroxyestrone (2-OHE1 and 16a OHE1, respectively). The minor pathway leads to 4-hydroxyestrone (4-OHE1). 2a-hydroxyestrone is considered to be the good steroid metabolite (PMID: 8943806) as 2-hydroxyestrone does not stimulate cell growth and it blocks the action of stronger estrogens that may be carcinogenic. 2-hydroxyestrone is not significantly uterotrophic, whereas other hydroxylated estrogen metabolites including 2-hydroxyestradiol, 16a-hydroxyestrone, estriol, 4-hydroxyestradiol, and 4-hydroxyestrone all are. A low urinary ratio of 2-hydroxyestrone to 16-alpha-hydroxyestrone is a strong predictor of breast cancer risk among women (PMID: 19502596). Estrone (also oestrone) is an estrogenic hormone secreted by the ovary. Its molecular formula is C18H22O2. estrone has a melting point of 254.5 degrees Celsius. estrone is one of the three estrogens, which also include estriol and estradiol. estrone is the least prevalent of the three hormones, estradiol being prevalent almost always in a female body, estriol being prevalent primarily during pregnancy. estrone sulfate is relevant to health and disease due to its conversion to estrone sulfate, a long-lived derivative of estrone. estrone sulfate acts as a pool of estrone which can be converted as needed to the more active estradiol. [HMDB] C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
Nystatin
Nystatin is a polyene antifungal drug to which many molds and yeasts are sensitive, including Candida spp. Nystatin has some toxicity associated with it when given intravenously, but it is not absorbed across intact skin or mucous membranes. It is considered a relatively safe drug for treating oral or gastrointestinal fungal infections. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids > G01AA - Antibiotics A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use > D01AA - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent D049990 - Membrane Transport Modulators D007476 - Ionophores
Deferoxamine
Deferoxamine is only found in individuals that have used or taken this drug. It is a natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. [PubChem]Deferoxamine works in treating iron toxicity by binding trivalent (ferric) iron (for which it has a strong affinity), forming ferrioxamine, a stable complex which is eliminated via the kidneys. 100 mg of deferoxamine is capable of binding approximately 8.5 mg of trivalent (ferric) iron. Deferoxamine works in treating aluminum toxicity by binding to tissue-bound aluminum to form aluminoxamine, a stable, water-soluble complex. The formation of aluminoxamine increases blood concentrations of aluminum, resulting in an increased concentration gradient between the blood and dialysate, boosting the removal of aluminum during dialysis. 100 mg of deferoxamine is capable of binding approximately 4.1 mg of aluminum. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
Maleic imide
Maleimide can be used for production of antibody-drug conjugate (ADC) which is used in cancer research. Maleimide also be leveraged for the preparation of fluorogenic probe, which is mainly used for the specific detection of thiol analytes[1][2].
alpha-Irone
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids alpha-Irone is a flavouring ingredien Flavouring ingredient
deoxymannojirimycin
D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents
C-1027
An enediyne antibiotic that has formula C43H42ClN3O13. It is a natural product found in Streptomyces globisporus and exhibits antimicrobial and antineoplastic properties. A natural product found in Streptomyces globisporus and Streptomyces globisporus. D000970 - Antineoplastic Agents
Foscan
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Same as: D06066
undecylprodigiosin
A member of the class of tripyrroles that is 1H-pyrrole substituted by (4-methoxy-1H,5H-[2,2-bipyrrol]-5-ylidene)methyl and undecyl groups at positions 2 and 5, respectively. It is a pigment produced by Stveptomyces coelicolor. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents
Ansamitocin P3
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Ansamitocin P-3 (Antibiotic C 15003P3) is a microtubule inhibitor. Ansamitocin P-3 is a macrocyclic antitumor antibiotic.
Ammonium Chloride
B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BA - Acidifiers C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent Same as: D01139
Nocodazole
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197
Aceteugenol
Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.
concanamycin a
A concanamycin in which the lactone ring contains 4 double bonds and is substituted by 4 methyl groups, 2 hydroxy groups, 2 methoxy groups and an ethyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors
Yessotoxin
Yessotoxin is found in mollusks. Toxic constituent of scallops (Patinopecten yessoensis). Toxic constituent of scallops (Patinopecten yessoensis). Yessotoxin is found in mollusks. D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Cinobufotalin
Cinobufotalin is a natural product found in Bufo and Bufo bufo with data available. Cinobufotalin is a bufadienolide isolated from toad venom and utilized in traditional Chinese medicine (TCM) for its cardiotonic, diuretic and hemostatic effects, with potential cytotoxic and antineoplastic activities. Upon administration and although the exact mechanism of action(s) (MoAs) through which this agent exerts its effects have yet to be fully discovered, cinobufotalin causes DNA fragmentation, decreases mitochondrial membrane potential (MMP), increases intracellular calcium (Ca2+) ion concentrations and reactive oxygen species (ROS) production, upregulates Fas protein and activates cytochrome C, various caspases, Bid and Bax. This causes cell cycle arrest, induces apoptosis and inhibits tumor cell growth and survival. In addition, cinobufotalin inhibits the activity of sphingosine kinase 1 (SphK1) and induces pro-apoptotic ceramide production, which further promotes tumor cell apoptosis. Cinobufotalin also induces mitochondrial protein cyclophilin D (Cyp-D)-dependent opening of the mitochondrial permeability transition pore (mPTP), which may contribute to cinobufotalin-induced non-apoptotic death of certain tumor cells. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002018 - Bufanolides Cinobufotalin is a cardiotonic steroids or bufadienolides, is extracted from the skin secretions of the giant toads. Cinobufotalin has been used as a cardiotonic, diuretic and a hemostatic agent, Cinobufotalin is also a potential anti-lung cancer agent[1].
G-418
D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D005839 - Gentamicins
Nystatin A1
Ansamitocin P-3
concanamycin a
undecylprodigiosin
C14:0
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Proanthocyanidin A2
Proanthocyanidin A2 is a proanthocyanidin obtained by the condensation of (-)-epicatechin units. It has a role as an antioxidant, an anti-HIV agent, a metabolite and an angiogenesis modulating agent. It is a hydroxyflavan and a proanthocyanidin. It is functionally related to a (-)-epicatechin. Proanthocyanidin A2 is a natural product found in Cinnamomum iners, Cinnamomum aromaticum, and other organisms with data available. See also: Litchi fruit (part of). Isolated from cassia bark (Cinnamomum aromaticum). Proanthocyanidin A2 is found in many foods, some of which are herbs and spices, cinnamon, avocado, and lingonberry. Proanthocyanidin A2 is found in apple. Proanthocyanidin A2 is isolated from cassia bark (Cinnamomum aromaticum). A proanthocyanidin obtained by the condensation of (-)-epicatechin units. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2]. Procyanidin A2 is a flavonoid found in grapes, with anti-cancer, antioxidant, antimicrobial and anti-inflammation activity[1][2].
Methylmalonic acid
A dicarboxylic acid that is malonic acid in which one of the methylene hydrogens is substituted by a methyl group. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer. Methylmalonic acid (Methylmalonate) is an indicator of Vitamin B-12 deficiency in cancer.
hydroxyurea
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C272 - Antimetabolite L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C471 - Enzyme Inhibitor > C2150 - Ribonucleotide Reductase Inhibitor D006401 - Hematologic Agents > D000986 - Antisickling Agents D000970 - Antineoplastic Agents
Aceteugenol
Aceteugenol, also known as eugenol acetate, belongs to the class of organic compounds known as phenol esters. These are aromatic compounds containing a benzene ring substituted by a hydroxyl group and an ester group. Aceteugenol is an extremely weak basic (essentially neutral) compound (based on its pKa). Aceteugenol is a sweet-, carnation-, and clove-tasting compound. Outside of the human body, aceteugenol is found, on average, in the highest concentration in a few different foods, such as cloves, Ceylon cinnamons, and sweet bay. Aceteugenol has also been detected, but not quantified in, several different foods, such as nutmegs, herbs and spices, cumins, star anises, and lemon balms. This could make aceteugenol a potential biomarker for the consumption of these foods. Aceteugenol is a flavouring agent found in Caraway, oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum), and other essential oils. Acetyleugenol is a member of phenols and a benzoate ester. Acetyleugenol is a natural product found in Myrtus communis, Illicium verum, and other organisms with data available. See also: Clove Oil (part of). Flavouring agent. Found in oil of clove (Syzygium aromaticum), cinnamon leaf (Cinnamomum verum) and other essential oils Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.
praziquantel
P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02B - Antitrematodals > P02BA - Quinoline derivatives and related substances D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8927; ORIGINAL_PRECURSOR_SCAN_NO 8925 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8934; ORIGINAL_PRECURSOR_SCAN_NO 8932 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8954; ORIGINAL_PRECURSOR_SCAN_NO 8953 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8977; ORIGINAL_PRECURSOR_SCAN_NO 8976 CONFIDENCE standard compound; INTERNAL_ID 164; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8993; ORIGINAL_PRECURSOR_SCAN_NO 8991 CONFIDENCE standard compound; INTERNAL_ID 2202 [Raw Data] CB144_Praziquantel_pos_50eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_40eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_30eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_20eV_CB000054.txt [Raw Data] CB144_Praziquantel_pos_10eV_CB000054.txt CONFIDENCE standard compound; EAWAG_UCHEM_ID 3272
PRIMAQUINE
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent [Raw Data] CB203_Primaquine_pos_50eV_CB000073.txt [Raw Data] CB203_Primaquine_pos_40eV_CB000073.txt [Raw Data] CB203_Primaquine_pos_30eV_CB000073.txt [Raw Data] CB203_Primaquine_pos_20eV_CB000073.txt [Raw Data] CB203_Primaquine_pos_10eV_CB000073.txt
Sinapine
Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2601; CONFIDENCE confident structure Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Resibufogenin
Annotation level-1 Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration. Resibufogenin is a component of cinobufogenin and has the function of inhibiting oxidative stress and tumor regeneration.
Biotin
A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2876; ORIGINAL_PRECURSOR_SCAN_NO 2873 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2877; ORIGINAL_PRECURSOR_SCAN_NO 2875 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2896; ORIGINAL_PRECURSOR_SCAN_NO 2894 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2875; ORIGINAL_PRECURSOR_SCAN_NO 2872 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2894; ORIGINAL_PRECURSOR_SCAN_NO 2891 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2908; ORIGINAL_PRECURSOR_SCAN_NO 2906 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6231; ORIGINAL_PRECURSOR_SCAN_NO 6229 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6248; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6251; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6253; ORIGINAL_PRECURSOR_SCAN_NO 6251 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6265; ORIGINAL_PRECURSOR_SCAN_NO 6263 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6256; ORIGINAL_PRECURSOR_SCAN_NO 6253 CONFIDENCE standard compound; INTERNAL_ID 219 INTERNAL_ID 219; CONFIDENCE standard compound relative retention time with respect to 9-anthracene Carboxylic Acid is 0.474 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.471 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.469 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.470 Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
DL-Leucine
relative retention time with respect to 9-anthracene Carboxylic Acid is 0.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.057 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055
10-Hydroxycamptothecin
SubCategory_DNP: : Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.944 D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.947 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.929 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.928 (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4]. (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4].
thiamphenicol
J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01B - Amphenicols > J01BA - Amphenicols D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic C784 - Protein Synthesis Inhibitor
deferoxamine
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
Folic acid
CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2727; ORIGINAL_PRECURSOR_SCAN_NO 2725 B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2742; ORIGINAL_PRECURSOR_SCAN_NO 2740 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2705; ORIGINAL_PRECURSOR_SCAN_NO 2702 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2726; ORIGINAL_PRECURSOR_SCAN_NO 2724 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2724; ORIGINAL_PRECURSOR_SCAN_NO 2722 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2722; ORIGINAL_PRECURSOR_SCAN_NO 2720 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5826; ORIGINAL_PRECURSOR_SCAN_NO 5821 CONFIDENCE standard compound; INTERNAL_ID 452; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5819; ORIGINAL_PRECURSOR_SCAN_NO 5814 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].
Aminolevulinic Acid
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents
Hinokitiol
Origin: Plant; Formula(Parent): C10H12O2; Bottle Name:Hinokitiol; PRIME Parent Name:Hinokitiol; PRIME in-house No.:S0323; SubCategory_DNP: Monoterpenoids, Tropolone monoterpenoids D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities. Hinokitiol is a component of essential oils isolated from Chymacyparis obtusa, reduces Nrf2 expression, and decreases DNMT1 and UHRF1 mRNA and protein expression, with anti-infective, anti-oxidative, and anti-tumor activities.
Myristic Acid
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
2-hydroxyestrone
C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones A 2-hydroxy steroid that is estrone substituted by a hydroxy group at position 2. D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents
picolinic acid
A pyridinemonocarboxylic acid in which the carboxy group is located at position 2. It is an intermediate in the metabolism of tryptophan. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.
chloroquine
P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BA - Aminoquinolines COVID info from Guide to PHARMACOLOGY, DrugBank, clinicaltrial, clinicaltrials, clinical trial, clinical trials D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D018501 - Antirheumatic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Phytic acid
1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate, also known as phytate or phytic acid, is a member of the class of compounds known as inositol phosphates. Inositol phosphates are compounds containing a phosphate group attached to an inositol (or cyclohexanehexol) moiety. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is soluble (in water) and an extremely strong acidic compound (based on its pKa). 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found in a number of food items such as scarlet bean, arrowroot, salmonberry, and roman camomile, which makes 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate a potential biomarker for the consumption of these food products. 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate can be found primarily in blood and urine, as well as throughout most human tissues. In humans, 1d-myo-inositol 1,2,3,4,5,6-hexakisphosphate is involved in a couple of metabolic pathways, which include inositol metabolism and inositol phosphate metabolism. C26170 - Protective Agent > C275 - Antioxidant
chlorpromazine
N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AA - Phenothiazines with aliphatic side-chain D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent > C740 - Phenothiazine D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent D005765 - Gastrointestinal Agents > D000932 - Antiemetics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
ST 18:4;O3
D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents 4-Hydroxyestrone (4-OHE1), an estrone metabolite, has strong neuroprotective effect against oxidative neurotoxicity. 4-Hydroxyestrone increases cytoplasmic translocation of p53 resulting from SIRT1-mediated deacetylation of p53. 4-Hydroxyestrone has little estrogenic activity[1].
Retinol
A retinoid consisting of 3,7-dimethylnona-2,4,6,8-tetraen-1-ol substituted at position 9 by a 2,6,6-trimethylcyclohex-1-en-1-yl group (geometry of the four exocyclic double bonds is not specified). D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Ansamitocin P-3
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Ansamitocin P-3 (Antibiotic C 15003P3) is a microtubule inhibitor. Ansamitocin P-3 is a macrocyclic antitumor antibiotic.
Ammonium Chloride
Dough conditioner, dough strengthener, flavour enhancer, leavening agent, processing aid and yeast food B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05X - I.v. solution additives > B05XA - Electrolyte solutions G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals > G04BA - Acidifiers C78275 - Agent Affecting Blood or Body Fluid > C29730 - Electrolyte Replacement Agent
nocodazole
C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents Same as: D05197
TEMOPORFIN
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents
Atractylodin
Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Atractylodin (Atractydin) is an active component of the essential oil contained in the rhizomes of Atractylodes lancea and A. chinensis. Atractylodin is natural insecticide and is active against Tribolium castaneum[1][2]. Atractylodin is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Crodacid
Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils. Myristic acid is a saturated 14-carbon fatty acid occurring in most animal and vegetable fats, particularly butterfat and coconut, palm, and nutmeg oils.
Kukoamine A
Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1]. Kukoamine A is a natural occurring spermine derivative, acts as a potent inhibitor of trypanothione reductase (Ki, 1.8 μM), with antihypertensive activity[1].
c0264
1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Vetol
C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].
Avita
D - Dermatologicals > D10 - Anti-acne preparations > D10A - Anti-acne preparations for topical use > D10AD - Retinoids for topical use in acne A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain R - Respiratory system > R01 - Nasal preparations > R01A - Decongestants and other nasal preparations for topical use COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins S - Sensory organs > S01 - Ophthalmologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Aceteugenol
Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata. Eugenol acetate (Eugenyl acetate), a major phytochemical constituent of the essential oil exhibits antibacterial, antioxidant, and anti-virulence activities. Eugenol acetate (Eugenyl acetate), a phytochemical in clove essential oil, against clinical isolates of Candida albicans, Candida parapsilosis, Candida tropicalis, and Candida glabrata.
Sinapine
Sugar phosphate, also known as sinapoylcholine or sinapine, belongs to coumaric acids and derivatives class of compounds. Those are aromatic compounds containing Aromatic compounds containing a cinnamic acid moiety (or a derivative thereof) hydroxylated at the C2 (ortho-), C3 (meta-), or C4 (para-) carbon atom of the benzene ring. Sugar phosphate is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sugar phosphate can be found in a number of food items such as common sage, tea leaf willow, broccoli, and sweet bay, which makes sugar phosphate a potential biomarker for the consumption of these food products. Sugar phosphate exists in all living organisms, ranging from bacteria to humans. Sinapine (CAS: 18696-26-9), also known as sinapoylcholine, belongs to the class of organic compounds known as morphinans. These are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Sinapine is an extremely weak basic (essentially neutral) compound (based on its pKa). Sinapine has been detected, but not quantified, in garden cress and horseradish. Sinapine is found in brassicas. It is a storage protein isolated from the seeds of Brassica napus (rape). This could make sinapine a potential biomarker for the consumption of these foods. Sinapine is an acylcholine in which the acyl group specified is sinapoyl. It has a role as a photosynthetic electron-transport chain inhibitor, an antioxidant and a plant metabolite. It is functionally related to a trans-sinapic acid. Sinapine is a natural product found in Alliaria petiolata, Isatis quadrialata, and other organisms with data available. An acylcholine in which the acyl group specified is sinapoyl. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4]. Sinapine is an alkaloid isolated from seeds of the cruciferous species. Sinapine exhibits anti-inflammatory, anti-oxidant, anti-tumor, anti-angiogenic and radio-protective effects. Sinapine is also an acetylcholinesterase (AChE) inhibitor and can be used for the research of Alzheimer’s disease, ataxia, myasthenia gravis, and Parkinson’s disease[1][2][3][4].
Phytic_acid
Myo-inositol hexakisphosphate is a myo-inositol hexakisphosphate in which each hydroxy group of myo-inositol is monophosphorylated. It has a role as an iron chelator, an antineoplastic agent, a signalling molecule, an Escherichia coli metabolite, a mouse metabolite and a cofactor. It is a conjugate acid of a myo-inositol hexakisphosphate(12-). Phytic acid is under investigation in clinical trial NCT01000233 (Value of Oral Phytate (InsP6) in the Prevention of Progression of the Cardiovascular Calcifications). Myo-inositol hexakisphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Phytic acid is a natural product found in Chloris gayana, Vachellia nilotica, and other organisms with data available. Myo-Inositol hexakisphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. Complexing agent for removal of traces of heavy metal ions. It acts also as a hypocalcemic agent. C26170 - Protective Agent > C275 - Antioxidant
Pralidoxime
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist D020011 - Protective Agents > D000931 - Antidotes D004793 - Enzyme Reactivators
Protoporphyrin
A cyclic tetrapyrrole that consists of porphyrin bearing four methyl substituents at positions 3, 8, 13 and 17, two vinyl substituents at positions 7 and 12 and two 2-carboxyethyl substituents at positions 2 and 18. The parent of the class of protoporphyrins. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents COVID info from COVID-19 Disease Map C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway. Protoporphyrin IX is the final intermediate in the heme biosynthetic pathway.
DIBUTYL SUCCINATE
P - Antiparasitic products, insecticides and repellents > P03 - Ectoparasiticides, incl. scabicides, insecticides and repellents > P03B - Insecticides and repellents
1,2,4-BENZENETRIOL
A benzenetriol carrying hydroxy groups at positions 1, 2 and 4. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1]. 1,2,4-Trihydroxybenzene (Hydroxyhydroquinone), a by-product of coffee bean roasting, increases intracellular Ca2+ concentration in rat thymic lymphocytes[1].
Acridine orange
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes D009676 - Noxae > D009153 - Mutagens
DL-AP3
D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists DL-AP3 is a competitive mGluR1 and mGluR5 antagonist. DL-AP3 is also an inhibitor of phosphoserine phosphatase. DL-AP3 has neuroprotective effect[1][2][3].
NITRILOTRIACETIC ACID
D064449 - Sequestering Agents > D002614 - Chelating Agents
Foscan
L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01X - Other antineoplastic agents > L01XD - Sensitizers used in photodynamic/radiation therapy D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents D000970 - Antineoplastic Agents C1420 - Photosensitizing Agent D003879 - Dermatologic Agents Same as: D06066
DL-Penicillamine
D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000931 - Antidotes D018501 - Antirheumatic Agents
Tributyl phosphate
D020011 - Protective Agents > D011837 - Radiation-Protective Agents
{34-hydroxy-40-[(3E)-2-hydroxy-5-methylideneocta-3,7-dien-2-yl]-13,25,27,30,35-pentamethyl-39-methylidene-13-[2-(sulfooxy)ethyl]-4,8,12,17,21,26,32,36,41,45,49-undecaoxaundecacyclo[25.22.0.0^{3,25}.0^{5,22}.0^{7,20}.0^{9,18}.0^{11,16}.0^{31,48}.0^{33,46}.0^{35,44}.0^{37,42}]nonatetracontan-14-yl}oxidanesulfonic acid
D009676 - Noxae > D011042 - Poisons > D008978 - Mollusk Venoms D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D011042 - Poisons > D014688 - Venoms
Calcein AM
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes > D005452 - Fluoresceins D000970 - Antineoplastic Agents
Glyceric acid 1,3-biphosphate
1,3-Bisphosphoglycerate. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=1981-49-3 (retrieved 2024-10-16) (CAS RN: 1981-49-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
1-C-(Indol-3-yl)glycerol 3-phosphate
D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents