Subcellular Location: synaptic vesicle lumen

Found 130 associated metabolites.

1 associated genes. PENK

Colchicine

N-{3,4,5,14-tetramethoxy-13-oxotricyclo[9.5.0.0²,⁷]hexadeca-1(16),2(7),3,5,11,14-hexaen-10-yl}acetamide

C22H25NO6 (399.1682)


Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). Colchicine is only found in individuals that have used or taken this drug. It is a major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (periodic disease). [PubChem]The precise mechanism of action has not been completely established. In patients with gout, colchicine apparently interrupts the cycle of monosodium urate crystal deposition in joint tissues and the resultant inflammatory response that initiates and sustains an acute attack. Colchicine decreases leukocyte chemotaxis and phagocytosis and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. Colchicine also inhibits urate crystal deposition, which is enhanced by a low pH in the tissues, probably by inhibiting oxidation of glucose and subsequent lactic acid production in leukocytes. Colchicine has no analgesic or antihyperuricemic activity. Colchicine inhibits microtubule assembly in various cells, including leukocytes, probably by binding to and interfering with polymerization of the microtubule subunit tubulin. Although some studies have found that this action probably does not contribute significantly to colchicines antigout action, a recent in vitro study has shown that it may be at least partially involved. CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7704; ORIGINAL_PRECURSOR_SCAN_NO 7702 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7690; ORIGINAL_PRECURSOR_SCAN_NO 7687 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7668; ORIGINAL_PRECURSOR_SCAN_NO 7666 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7693; ORIGINAL_PRECURSOR_SCAN_NO 7689 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7645; ORIGINAL_PRECURSOR_SCAN_NO 7643 CONFIDENCE standard compound; INTERNAL_ID 328; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7687; ORIGINAL_PRECURSOR_SCAN_NO 7684 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 INTERNAL_ID 2258; CONFIDENCE Reference Standard (Level 1) [Raw Data] CB194_Colchicine_pos_30eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_50eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_10eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_20eV_CB000068.txt [Raw Data] CB194_Colchicine_pos_40eV_CB000068.txt CONFIDENCE standard compound; INTERNAL_ID 1171 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].

   

Nicotine

(S)-(-)-NICOTINE; 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1157)


Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.

   

Reserpine

methyl (1R,15S,17R,18R,19S,20S)-6,18-dimethoxy-17-[(3,4,5-trimethoxyphenyl)carbonyloxy]-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4,6,8-tetraene-19-carboxylate

C33H40N2O9 (608.2734)


Reserpine appears as white or cream to slightly yellow crystals or crystalline powder. Odorless with a bitter taste. (NTP, 1992) Reserpine is an alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. It has a role as an antihypertensive agent, a first generation antipsychotic, an adrenergic uptake inhibitor, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, an environmental contaminant, a xenobiotic and a plant metabolite. It is an alkaloid ester, a methyl ester and a yohimban alkaloid. It is functionally related to a reserpic acid. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. The FDA withdrew its approval for the use of all oral dosage form drug products containing more than 1 mg of reserpine. Reserpine is a Catecholamine-depleting Sympatholytic. The physiologic effect of reserpine is by means of Decreased Sympathetic Activity. Reserpine is an oral antihypertensive medication that acts through inhibitor of alpha-adrenergic transmission and was one of the first antihypertensive agents introduced into clinical practice. Despite widescale use for many years, reserpine has not been shown to cause clinically apparent liver injury. Reserpine is a natural product found in Rauvolfia yunnanensis, Alstonia constricta, and other organisms with data available. Reserpine is an alkaloid, derived from the roots of Rauwolfia serpentine and vomitoria, and an adrenergic uptake inhibitor with antihypertensive effects. Reserpine is lipid soluble and can penetrate blood-brain barrier. This agent binds and inhibits catecholamine pump on the storage vesicles in central and peripheral adrenergic neurons, thereby inhibiting the uptake of norepinephrine, dopamine serotonin into presynaptic storage vesicles. This results in catecholamines and serotonin lingering in the cytoplasm where they are destroyed by intraneuronal monoamine oxidase, thereby causing the depletion of catecholamine and serotonin stores in central and peripheral nerve terminals. Depletion results in a lack of active transmitter discharge from nerve endings upon nerve depolarization, and consequently leads to a decreased heart rate and decreased arterial blood pressure as well as sedative effects. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. See also: Hydroflumethiazide; reserpine (component of); Polythiazide; reserpine (component of); Chlorthalidone; reserpine (component of) ... View More ... An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. Reserpine inhibits the uptake of norepinephrine into storage vesicles resulting in depletion of catecholamines and serotonin from central and peripheral axon terminals. It has been used as an antihypertensive and an antipsychotic as well as a research tool, but its adverse effects limit its clinical use. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants An alkaloid found in the roots of Rauwolfia serpentina and R. vomitoria. C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators C1744 - Multidrug Resistance Modulator CONFIDENCE standard compound; EAWAG_UCHEM_ID 2682 [Raw Data] CBA02_Reserpine_pos_30eV.txt [Raw Data] CBA02_Reserpine_pos_10eV.txt [Raw Data] CBA02_Reserpine_pos_20eV.txt [Raw Data] CBA02_Reserpine_pos_40eV.txt [Raw Data] CBA02_Reserpine_pos_50eV.txt Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2). Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2).

   

L-Dopa

(2S)-2-Amino-3-(3,4-dihydroxyphenyl)-2-methylpropanoic acid

C9H11NO4 (197.0688)


L-dopa is an optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease It has a role as a prodrug, a hapten, a neurotoxin, an antiparkinson drug, a dopaminergic agent, an antidyskinesia agent, an allelochemical, a plant growth retardant, a human metabolite, a mouse metabolite and a plant metabolite. It is a dopa, a L-tyrosine derivative and a non-proteinogenic L-alpha-amino acid. It is a conjugate acid of a L-dopa(1-). It is an enantiomer of a D-dopa. It is a tautomer of a L-dopa zwitterion. Levodopa is a prodrug of dopamine that is administered to patients with Parkinsons due to its ability to cross the blood-brain barrier. Levodopa can be metabolised to dopamine on either side of the blood-brain barrier and so it is generally administered with a dopa decarboxylase inhibitor like carbidopa to prevent metabolism until after it has crossed the blood-brain barrier. Once past the blood-brain barrier, levodopa is metabolized to dopamine and supplements the low endogenous levels of dopamine to treat symptoms of Parkinsons. The first developed drug product that was approved by the FDA was a levodopa and carbidopa combined product called Sinemet that was approved on May 2, 1975. 3,4-Dihydroxy-L-phenylalanine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Levodopa is an Aromatic Amino Acid. Levodopa is an amino acid precursor of dopamine with antiparkinsonian properties. Levodopa is a prodrug that is converted to dopamine by DOPA decarboxylase and can cross the blood-brain barrier. When in the brain, levodopa is decarboxylated to dopamine and stimulates the dopaminergic receptors, thereby compensating for the depleted supply of endogenous dopamine seen in Parkinsons disease. To assure that adequate concentrations of levodopa reach the central nervous system, it is administered with carbidopa, a decarboxylase inhibitor that does not cross the blood-brain barrier, thereby diminishing the decarboxylation and inactivation of levodopa in peripheral tissues and increasing the delivery of dopamine to the CNS. L-Dopa is used for the treatment of Parkinsonian disorders and Dopa-Responsive Dystonia and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. Peripheral tissue conversion may be the mechanism of the adverse effects of levodopa. It is standard clinical practice to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue.The naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. It is used for the treatment of parkinsonian disorders and is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. [PubChem]L-Dopa is the naturally occurring form of dihydroxyphenylalanine and the immediate precursor of dopamine. Unlike dopamine itself, L-Dopa can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. The naturally occurring form of DIHYDROXYPHENYLALANINE and the immediate precursor of DOPAMINE. Unlike dopamine itself, it can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to DOPAMINE. It is used for the treatment of PARKINSONIAN DISORDERS and is usually given with agents that inhibit its conversion to dopamine outside ... L-DOPA, also known as levodopa or 3,4-dihydroxyphenylalanine is an alpha amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). L-DOPA is found naturally in both animals and plants. It is made via biosynthesis from the amino acid L-tyrosine by the enzyme tyrosine hydroxylase.. L-DOPA is the precursor to the neurotransmitters dopamine, norepinephrine (noradrenaline), and epinephrine (adrenaline), which are collectively known as catecholamines. The Swedish scientist Arvid Carlsson first showed in the 1950s that administering L-DOPA to animals with drug-induced (reserpine) Parkinsonian symptoms caused a reduction in the intensity of the animals symptoms. Unlike dopamine itself, L-DOPA can be taken orally and crosses the blood-brain barrier. It is rapidly taken up by dopaminergic neurons and converted to dopamine. In particular, it is metabolized to dopamine by aromatic L-amino acid decarboxylase. Pyridoxal phosphate (vitamin B6) is a required cofactor for this decarboxylation, and may be administered along with levodopa, usually as pyridoxine. As a result, L-DOPA is a drug that is now used for the treatment of Parkinsonian disorders and DOPA-Responsive Dystonia. It is usually given with agents that inhibit its conversion to dopamine outside of the central nervous system. It is standard clinical practice in treating Parkinsonism to co-administer a peripheral DOPA decarboxylase inhibitor - carbidopa or benserazide - and often a catechol-O-methyl transferase (COMT) inhibitor, to prevent synthesis of dopamine in peripheral tissue. Side effects of L-DOPA treatment may include: hypertension, arrhythmias, nausea, gastrointestinal bleeding, disturbed respiration, hair loss, disorientation and confusion. L-DOPA can act as an L-tyrosine mimetic and be incorporated into proteins by mammalian cells in place of L-tyrosine, generating protease-resistant and aggregate-prone proteins in vitro and may contribute to neurotoxicity with chronic L-DOPA administration. L-phenylalanine, L-tyrosine, and L-DOPA are all precursors to the biological pigment melanin. The enzyme tyrosinase catalyzes the oxidation of L-DOPA to the reactive intermediate dopaquinone, which reacts further, eventually leading to melanin oligomers. An optically active form of dopa having L-configuration. Used to treat the stiffness, tremors, spasms, and poor muscle control of Parkinsons disease DOPA. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-92-7 (retrieved 2024-07-01) (CAS RN: 59-92-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-Dopa is a beta-hydroxylated derivative of phenylalanine. DL-Dopa is a beta-hydroxylated derivative of phenylalanine.

   

Quisqualic_acid

2-Amino-3-(3,5-dioxo-[1,2,4]oxadiazolidin-2-yl)-propionic acid(Quisqualic acid)

C5H7N3O5 (189.0386)


Quisqualic acid is a non-proteinogenic alpha-amino acid. Quisqualic acid is an agonist at two subsets of excitatory amino acid receptors, ionotropic receptors that directly control membrane channels and metabotropic receptors that indirectly mediate calcium mobilization from intracellular stores. The compound is obtained from the seeds and fruit of Quisqualis chinensis. An agonist at two subsets of excitatory amino acid receptors, ionotropic receptors that directly control membrane channels and metabotropic receptors that indirectly mediate calcium mobilization from intracellular stores. The compound is obtained from the seeds and fruit of Quisqualis chinensis. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID Q003 Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2]. Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2]. Quisqualic acid (L-Quisqualic acid), a natural analog of glutamate, is a potent and pan two subsets (iGluR and mGluR) of excitatory amino acid (EAA) agonist with an EC50 of 45 nM and a Ki of 10 nM for mGluR1R. Quisqualic acid is isolated from the fruits of Quisqualis indica[1][2].

   

Dopamine

alpha-(3,4-Dihydroxyphenyl)-beta-aminoethane

C8H11NO2 (153.079)


Dopamine is a member of the catecholamine family of neurotransmitters in the brain and is a precursor to epinephrine (adrenaline) and norepinephrine (noradrenaline). Dopamine is synthesized in the body (mainly by nervous tissue and adrenal glands) first by the hydration of the amino acid tyrosine to DOPA by tyrosine hydroxylase and then by the decarboxylation of DOPA by aromatic-L-amino-acid decarboxylase. Dopamine is a major transmitter in the extrapyramidal system of the brain, and important in regulating movement. A family of receptors (dopamine receptors) mediates its action, which plays a major role in reward-motivated behaviour. Dopamine has many other functions outside the brain. In blood vessels, dopamine inhibits norepinephrine release and acts as a vasodilator (at normal concentrations); in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. Parkinsons disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists, which reduce dopamine activity. Attention deficit hyperactivity disorder, bipolar disorder, and addiction are also characterized by defects in dopamine production or metabolism. It has been suggested that animals derived their dopamine-synthesizing machinery from bacteria via horizontal gene transfer that may have occurred relatively late in evolutionary time. This is perhaps a result of the symbiotic incorporation of bacteria into eukaryotic cells that gave rise to mitochondria. Dopamine is elevated in the urine of people who consume bananas. When present in sufficiently high levels, dopamine can be a neurotoxin and a metabotoxin. A neurotoxin is a compound that disrupts or attacks neural tissue. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of dopamine are associated with neuroblastoma, Costello syndrome, leukemia, phaeochromocytoma, aromatic L-amino acid decarboxylase deficiency, and Menkes disease (MNK). High levels of dopamine can lead to hyperactivity, insomnia, agitation and anxiety, depression, delusions, excessive salivation, nausea, and digestive problems. A study has shown that urinary dopamine is produced by Bacillus and Serratia (PMID: 24621061) Occurs in several higher plants, such as banana (Musa sapientum). As a member of the catecholamine family, dopamine is a precursor to norepinephrine (noradrenaline) and then epinephrine (adrenaline) in the biosynthetic pathways for these neurotransmitters. Dopamine is elevated in the urine of people who consume bananas. Dopamine is found in many foods, some of which are garden onion, purslane, garden tomato, and swiss chard. Dopamine (DA, a contraction of 3,4-dihydroxyphenethylamine) is a neuromodulatory molecule that plays several important roles in cells. It is an organic chemical of the catecholamine and phenethylamine families. Dopamine constitutes about 80\% of the catecholamine content in the brain. It is an amine synthesized by removing a carboxyl group from a molecule of its precursor chemical, L-DOPA, which is synthesized in the brain and kidneys. Dopamine is also synthesized in plants and most animals. In the brain, dopamine functions as a neurotransmitter—a chemical released by neurons (nerve cells) to send signals to other nerve cells. Neurotransmitters are synthesized in specific regions of the brain, but affect many regions systemically. The brain includes several distinct dopamine pathways, one of which plays a major role in the motivational component of reward-motivated behavior. The anticipation of most types of rewards increases the level of dopamine in the brain,[4] and many addictive drugs increase dopamine release or block its reuptake into neurons following release.[5] Other brain dopamine pathways are involved in motor control and in controlling the release of various hormones. These pathways and cell groups form a dopamine system which is neuromodulatory.[5] In popular culture and media, dopamine is often portrayed as the main chemical of pleasure, but the current opinion in pharmacology is that dopamine instead confers motivational salience;[6][7][8] in other words, dopamine signals the perceived motivational prominence (i.e., the desirability or aversiveness) of an outcome, which in turn propels the organism's behavior toward or away from achieving that outcome.[8][9] Outside the central nervous system, dopamine functions primarily as a local paracrine messenger. In blood vessels, it inhibits norepinephrine release and acts as a vasodilator; in the kidneys, it increases sodium excretion and urine output; in the pancreas, it reduces insulin production; in the digestive system, it reduces gastrointestinal motility and protects intestinal mucosa; and in the immune system, it reduces the activity of lymphocytes. With the exception of the blood vessels, dopamine in each of these peripheral systems is synthesized locally and exerts its effects near the cells that release it. Several important diseases of the nervous system are associated with dysfunctions of the dopamine system, and some of the key medications used to treat them work by altering the effects of dopamine. Parkinson's disease, a degenerative condition causing tremor and motor impairment, is caused by a loss of dopamine-secreting neurons in an area of the midbrain called the substantia nigra. Its metabolic precursor L-DOPA can be manufactured; Levodopa, a pure form of L-DOPA, is the most widely used treatment for Parkinson's. There is evidence that schizophrenia involves altered levels of dopamine activity, and most antipsychotic drugs used to treat this are dopamine antagonists which reduce dopamine activity.[10] Similar dopamine antagonist drugs are also some of the most effective anti-nausea agents. Restless legs syndrome and attention deficit hyperactivity disorder (ADHD) are associated with decreased dopamine activity.[11] Dopaminergic stimulants can be addictive in high doses, but some are used at lower doses to treat ADHD. Dopamine itself is available as a manufactured medication for intravenous injection. It is useful in the treatment of severe heart failure or cardiogenic shock.[12] In newborn babies it may be used for hypotension and septic shock.[13] Dopamine is synthesized in a restricted set of cell types, mainly neurons and cells in the medulla of the adrenal glands.[22] The primary and minor metabolic pathways respectively are: Primary: L-Phenylalanine → L-Tyrosine → L-DOPA → Dopamine[19][20] Minor: L-Phenylalanine → L-Tyrosine → p-Tyramine → Dopamine[19][20][21] Minor: L-Phenylalanine → m-Tyrosine → m-Tyramine → Dopamine[21][23][24] The direct precursor of dopamine, L-DOPA, can be synthesized indirectly from the essential amino acid phenylalanine or directly from the non-essential amino acid tyrosine.[25] These amino acids are found in nearly every protein and so are readily available in food, with tyrosine being the most common. Although dopamine is also found in many types of food, it is incapable of crossing the blood–brain barrier that surrounds and protects the brain.[26] It must therefore be synthesized inside the brain to perform its neuronal activity.[26] L-Phenylalanine is converted into L-tyrosine by the enzyme phenylalanine hydroxylase, with molecular oxygen (O2) and tetrahydrobiopterin as cofactors. L-Tyrosine is converted into L-DOPA by the enzyme tyrosine hydroxylase, with tetrahydrobiopterin, O2, and iron (Fe2+) as cofactors.[25] L-DOPA is converted into dopamine by the enzyme aromatic L-amino acid decarboxylase (also known as DOPA decarboxylase), with pyridoxal phosphate as the cofactor.[25] Dopamine itself is used as precursor in the synthesis of the neurotransmitters norepinephrine and epinephrine.[25] Dopamine is converted into norepinephrine by the enzyme dopamine β-hydroxylase, with O2 and L-ascorbic acid as cofactors.[25] Norepinephrine is converted into epinephrine by the enzyme phenylethanolamine N-methyltransferase with S-adenosyl-L-methionine as the cofactor.[25] Some of the cofactors also require their own synthesis.[25] Deficiency in any required amino acid or cofactor can impair the synthesis of dopamine, norepinephrine, and epinephrine.[25] Degradation Dopamine is broken down into inactive metabolites by a set of enzymes—monoamine oxidase (MAO), catechol-O-methyl transferase (COMT), and aldehyde dehydrogenase (ALDH), acting in sequence.[27] Both isoforms of monoamine oxidase, MAO-A and MAO-B, effectively metabolize dopamine.[25] Different breakdown pathways exist but the main end-product is homovanillic acid (HVA), which has no known biological activity.[27] From the bloodstream, homovanillic acid is filtered out by the kidneys and then excreted in the urine.[27] The two primary metabolic routes that convert dopamine into HVA are:[28] Dopamine → DOPAL → DOPAC → HVA – catalyzed by MAO, ALDH, and COMT respectively Dopamine → 3-Methoxytyramine → HVA – catalyzed by COMT and MAO+ALDH respectively In clinical research on schizophrenia, measurements of homovanillic acid in plasma have been used to estimate levels of dopamine activity in the brain. A difficulty in this approach however, is separating the high level of plasma homovanillic acid contributed by the metabolism of norepinephrine.[29][30] Although dopamine is normally broken down by an oxidoreductase enzyme, it is also susceptible to oxidation by direct reaction with oxygen, yielding quinones plus various free radicals as products.[31] The rate of oxidation can be increased by the presence of ferric iron or other factors. Quinones and free radicals produced by autoxidation of dopamine can poison cells, and there is evidence that this mechanism may contribute to the cell loss that occurs in Parkinson's disease and other conditions.[32]

   

(RS)-3,5-DHPG

(S)-3,5-Dihydroxyphenylglycine

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

L-Methionine

(2S)-2-amino-4-(methylsulfanyl)butanoic acid

C5H11NO2S (149.051)


Methionine (Met), also known as L-methionine, is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Methionine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Methionine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, non-polar amino acid. Methionine is an essential amino acid (there are 9 essential amino acids), meaning the body cannot synthesize it, and it must be obtained from the diet. It is required for normal growth and development of humans, other mammals, and avian species. In addition to being a substrate for protein synthesis, methionine is an intermediate in transmethylation reactions, serving as the major methyl group donor in vivo, including the methyl groups for DNA and RNA intermediates. Methionine is a methyl acceptor for 5-methyltetrahydrofolate-homocysteine methyltransferase (methionine synthase), the only reaction that allows for the recycling of this form of folate, and is also a methyl acceptor for the catabolism of betaine. Methionine is the metabolic precursor for cysteine. Only the sulfur atom from methionine is transferred to cysteine; the carbon skeleton of cysteine is donated by serine (PMID: 16702340 ). There is a general consensus concerning normal sulfur amino acid (SAA) requirements. WHO recommendations amount to 13 mg/kg per 24 h in healthy adults. This amount is roughly doubled in artificial nutrition regimens. In disease or after trauma, requirements may be altered for methionine, cysteine, and taurine. Although in specific cases of congenital enzyme deficiency, prematurity, or diminished liver function, hypermethioninemia or hyperhomocysteinemia may occur, SAA supplementation can be considered safe in amounts exceeding 2-3 times the minimum recommended daily intake. Apart from some very specific indications (e.g. acetaminophen poisoning) the usefulness of SAA supplementation is not yet established (PMID: 16702341 ). Methionine is known to exacerbate psychopathological symptoms in schizophrenic patients, but there is no evidence of similar effects in healthy subjects. The role of methionine as a precursor of homocysteine is the most notable cause for concern. Acute doses of methionine can lead to acute increases in plasma homocysteine, which can be used as an index of the susceptibility to cardiovascular disease. Sufficiently high doses of methionine can actually result in death. Longer-term studies in adults have indicated no adverse consequences of moderate fluctuations in dietary methionine intake, but intakes higher than 5 times the normal amount resulted in elevated homocysteine levels. These effects of methionine on homocysteine and vascular function are moderated by supplements of vitamins B-6, B-12, C, and folic acid (PMID: 16702346 ). When present in sufficiently high levels, methionine can act as an atherogen and a metabotoxin. An atherogen is a compound that when present at chronically high levels causes atherosclerosis and cardiovascular disease. A metabotoxin is an endogenously produced metabolite that causes adverse health effects at chronically high levels. Chronically high levels of methionine are associated with at least ten inborn errors of metabolism, including cystathionine beta-synthase deficiency, glycine N-methyltransferase deficiency, homocystinuria, tyrosinemia, galactosemia, homocystinuria-megaloblastic anemia due to defects in cobalamin metabolism, methionine adenosyltransferase deficiency, methylenetetrahydrofolate reductase deficiency, and S-adenosylhomocysteine (SAH) hydrolase deficiency. Chronically elevated levels of methionine in infants can lead to intellectual disability and othe... [Spectral] L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] L-Methionine (exact mass = 149.05105) and Tyramine (exact mass = 137.08406) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. l-Methionine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=63-68-3 (retrieved 2024-07-01) (CAS RN: 63-68-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

Baclofen

beta-(Aminomethyl)-4-chlorobenzenepropanoic acid

C10H12ClNO2 (213.0557)


Baclofen is a gamma-amino-butyric acid (GABA) derivative used as a skeletal muscle relaxant. Baclofen stimulates GABA-B receptors leading to decreased frequency and amplitude of muscle spasms. It is especially useful in treating muscle spasticity associated with spinal cord injury. It appears to act primarily at the spinal cord level by inhibiting spinal polysynaptic afferent pathways and, to a lesser extent, monosynaptic afferent pathways. M - Musculo-skeletal system > M03 - Muscle relaxants > M03B - Muscle relaxants, centrally acting agents D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018755 - GABA Agonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant D002491 - Central Nervous System Agents (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1]. Baclofen, a lipophilic derivative of γ-aminobutyric acid (GABA), is an orally active, selective metabotropic GABAB receptor (GABABR) agonist. Baclofen mimics the action of GABA and produces slow presynaptic inhibition through the GABAB receptor. Baclofen has high blood brain barrier penetrance. Baclofen has the potential for muscle spasticity research[1][2][3].

   

Scopolamine

(1R,2R,4S,5S,7S)-9-methyl-3-oxa-9-azatricyclo[3.3.1.0^{2,4}]nonan-7-yl (2S)-3-hydroxy-2-phenylpropanoate

C17H21NO4 (303.1471)


Scopolamine, also known as hyoscine, is a tropane alkaloid drug obtained from plants of the family Solanaceae (nightshades), such as henbane or jimson weed (Datura species). It is part of the secondary metabolites of plants. Scopolamine is used criminally as a date rape drug and as an aid to robbery, the most common act being the clandestine drugging of a victims drink. It is preferred because it induces retrograde amnesia, or an inability to recall events prior to its administration. Victims of this crime are often admitted to a hospital in police custody, under the assumption that the patient is experiencing a psychotic episode. A telltale sign is a fever accompanied by a lack of sweat. An alkaloid from Solanaceae, especially Datura metel L. and Scopola carniolica. Scopolamine and its quaternary derivatives act as antimuscarinics like atropine, but may have more central nervous system effects. Among the many uses are as an anesthetic premedication, in urinary incontinence, in motion sickness, as an antispasmodic, and as a mydriatic and cycloplegic. Scopolamine, also known as hyoscine, is a tropane alkaloid drug obtained from plants of the family Solanaceae (nightshades), such as henbane or jimson weed (Datura species). It is part of the secondary metabolites of plants. A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents KEIO_ID S040; [MS2] KO009233 KEIO_ID S040

   

(R)-Amphetamine

(R)-alpha-Methyl-benzeneethanamine

C9H13N (135.1048)


==(R)==-Amphetamine is an enantiomer of amphetamine that is urinary metabolite from selegeline (drug used for the treatment of early-stage Parkinsons disease, depression and senile dementia). ==(R)==-Amphetamine as stereoisomer is not considered psychoactive and has little abuse potential. The stimulatory effect on locomotor activity and dopamine synthesis may be contributed to by the action of R-methamphetamine. If anyone is prescribed and takes selegiline, they can and will test positive for amphetamine/methamphetamine on most drug tests. [HMDB] (R)-amphetamine is an enantiomer of amphetamine that is urinary metabolite from selegeline (drug used for the treatment of early-stage Parkinsons disease, depression and senile dementia). (R)-amphetamine as stereoisomer is not considered psychoactive and has little abuse potential. The stimulatory effect on locomotor activity and dopamine synthesis may be contributed to by the action of R-methamphetamine. If anyone is prescribed and takes selegiline, they can and will test positive for amphetamine/methamphetamine on most drug tests. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Heroin

Diacetylmorphine (Heroin)

C21H23NO5 (369.1576)


A morphinane alkaloid that is morphine bearing two acetyl substituents on the O-3 and O-6 positions. As with other opioids, heroin is used as both an analgesic and a recreational drug. Frequent and regular administration is associated with tolerance and physical dependence, which may develop into addiction. Its use includes treatment for acute pain, such as in severe physical trauma, myocardial infarction, post-surgical pain, and chronic pain, including end-stage cancer and other terminal illnesses. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BC - Drugs used in opioid dependence D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; INTERNAL_ID 1533

   

Naltrexone

(1S,5R,13R,17S)-4-(cyclopropylmethyl)-10,17-dihydroxy-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C20H23NO4 (341.1627)


Derivative of noroxymorphone that is the N-cyclopropylmethyl congener of naloxone. It is a narcotic antagonist that is effective orally, longer lasting and more potent than naloxone, and has been proposed for the treatment of heroin addiction. The FDA has approved naltrexone for the treatment of alcohol dependence. [PubChem] N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist CONFIDENCE standard compound; EAWAG_UCHEM_ID 2830 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Morphine

(1S,5R,13R,14S,17R)-4-methyl-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10,15-tetraene-10,14-diol

C17H19NO3 (285.1365)


Morphine, also known as (-)-morphine or morphine sulfate, is a member of the class of compounds known as morphinans. Morphinans are polycyclic compounds with a four-ring skeleton with three condensed six-member rings forming a partially hydrogenated phenanthrene moiety, one of which is aromatic while the two others are alicyclic. Morphine is soluble (in water) and a very weakly acidic compound (based on its pKa). Morphine can be synthesized from morphinan. Morphine is also a parent compound for other transformation products, including but not limited to, myrophine, heroin, and codeine. Morphine can be found in a number of food items such as nanking cherry, eggplant, millet, and common hazelnut, which makes morphine a potential biomarker for the consumption of these food products. Morphine can be found primarily in blood and urine, as well as in human kidney and liver tissues. In humans, morphine is involved in several metabolic pathways, some of which include heroin action pathway, morphine metabolism pathway, heroin metabolism pathway, and codeine metabolism pathway. Morphine is a non-carcinogenic (not listed by IARC) potentially toxic compound. Morphine is a drug which is used for the relief and treatment of severe pain. The primary source of morphine is isolation from poppy straw of the opium poppy. In 2013, an estimated 523 000 kg of morphine were produced. About 45 000 kg were used directly for pain, a four-time increase over the last twenty years. Most use for this purpose was in the developed world. About 70\\% of morphine is used to make other opioids such as hydromorphone, oxymorphone, and heroin. It is a Schedule II drug in the United States, Class A in the United Kingdom, and Schedule I in Canada. It is on the World Health Organizations List of Essential Medicines, the most effective and safe medicines needed in a health system. Morphine is sold under many trade names . Primarily hepatic (90\\%), converted to dihydromorphinone and normorphineand is) also converted to morphine-3-glucuronide (M3G) and morphine-6-glucuronide. Virtually all morphine is converted to glucuronide metabolites; only a small fraction (less than 5\\%) of absorbed morphine is demethylated (DrugBank). In the treatment of morphine overdosage, primary attention should be given to the re- establishment of a patent airway and institution of assisted or controlled ventilation. Supportive measures (including oxygen, vasopressors) should be employed in the management of circulatory shock and pulmonary edema accompanying overdose as indicated. Cardiac arrest or arrhythmias may require cardiac massage or defibrillation. The pure opioid antagonists, such as naloxone, are specific antidotes against respiratory depression which results from opioid overdose. Naloxone should be administered intravenously; however, because its duration of action is relatively short, the patient must be carefully monitored until spontaneous respiration is reliably re-established. If the response to naloxone is suboptimal or not sustained, additional naloxone may be administered, as needed, or given by continuous infusion to maintain alertness and respiratory function; however, there is no information available about the cumulative dose of naloxone that may be safely administered (L1712) (T3DB). Morphine is the principal alkaloid in opium and the prototype opiate analgesic and narcotic. In 2017, morphine was the 155th most commonly prescribed medication in the United States, with more than four million prescriptions. Morphine is used primarily to treat both acute and chronic severe pain. Its duration of analgesia is about three to seven hours. A large overdose of morphine can cause asphyxia and death by respiratory depression if the person does not receive medical attention immediately. Morphine is naturally produced by several plants (such as the opium poppy) and animals (PMID: 22578954). Morphine was first isolated between 1803 and 1805 by Friedrich Sertürner. Sertürner originally named the substance morphium after the Greek god of dreams, Morpheus, as it has a tendency to cause sleep. The primary source of morphine is isolation from poppy straw of the opium poppy. Morphine is also endogenously produced by humans. In the mid 2000s it was found morphine can be synthesized by white blood cells (PMID 22578954). CYP2D6, a cytochrome P450 isoenzyme, catalyzes the biosynthesis of morphine from codeine and dopamine from tyramine. The morphine biosynthetic pathway in humans occurs as follows: L-tyrosine -> para-tyramine or L-DOPA -> dopamine -> (S)-norlaudanosoline -> (S)-reticuline -> 1,2-dehydroretinulinium -> (R)-reticuline -> salutaridine -> salutaridinol -> thebaine -> neopinone -> codeinone -> codeine -> morphine. (S)-Norlaudanosoline (also known as tetrahydropapaveroline) which is an important intermediate in the WBC biosynthesis of morphine can also be synthesized from 3,4-dihydroxyphenylacetaldehyde (DOPAL), a metabolite of L-DOPA and dopamine. Morphine has widespread effects in the central nervous system and on smooth muscle (PMID: 4582903). The precise mechanism of the analgesic action of morphine is not fully known. However, specific CNS opiate receptors have been identified and likely play a role in the induction of analgesic effects. Morphine first acts on the mu-opioid receptors. The mechanism of respiratory depression involves a reduction in the responsiveness of the brain stem respiratory centers to increases in carbon dioxide tension and electrical stimulation. It has been shown that morphine binds to and inhibits GABA inhibitory interneurons. These interneurons normally inhibit the descending pain inhibition pathway. So, without the inhibitory signals, pain modulation can proceed downstream. When the dose of morphine is reduced after long-term use, opioid withdrawal symptoms such as drowsiness, vomiting, and constipation may also occur (PMID: 23244430). Morphine is only found in easily detectable quantities in individuals that have used or taken this drug. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.056 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.054 D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 2744 CONFIDENCE standard compound; INTERNAL_ID 1580

   

Quinolinic acid

Pyridine-2,3-dicarboxylic acid

C7H5NO4 (167.0219)


Quinolinic acid, also known as quinolinate, belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. It is also classified as a pyridine-2,3-dicarboxylic acid, which is a dicarboxylic acid with a pyridine backbone. Quinolinic acid is a colorless solid. In plants, it is the biosynthetic precursor to nicotine. Quinolinic acid is found in all organisms, from microbes to plants to animals. Quinolinic acid can be biosynthesized via aspartic acid in plants. Oxidation of aspartate by the enzyme aspartate oxidase gives iminosuccinate, containing the two carboxylic acid groups that are found in quinolinic acid. Condensation of iminosuccinate with glyceraldehyde-3-phosphate, mediated by quinolinate synthase, affords quinolinic acid Quinolinic acid is also a downstream product of the kynurenine pathway, which metabolizes the amino acid tryptophan ((PMID: 22678511). The kynurenine/tryptophan degradation pathway is important for its production of the coenzyme nicotinamide adenine dinucleotide (NAD+) and produces several neuroactive intermediates including quinolinic acid, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA). In animals quinolinic acid acts as an NMDA receptor agonist and has a possible role in neurodegenerative disorders (PMID: 22678511). It also acts as a neurotoxin, gliotoxin, proinflammatory mediator, and pro-oxidant molecule (PMID: 22248144). Quinolinic acid can act as an endogenous brain excitotoxin when released by activated macrophages (PMID: 15013955). Within the brain, quinolinic acid is only produced by activated microglia and macrophages. Quinolinic acid is unable to pass through the blood-brain barrier (BBB) and must be produced within the brain by microglial cells or macrophages that have passed the BBB (PMID: 22248144). While quinolinic acid cannot pass through the BBB, kynurenic acid, tryptophan and 3-hydroxykynurenine can and can subsequently act as precursors to the production of quinolinic acid in the brain (PMID: 22248144). Quinolinic acid has potent neurotoxic effects. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders and neurodegenerative diseases in the brain including ALS, Alzheimer’s disease, brain ischemia, Parkinson’s disease, Huntington’s disease and AIDS-dementia. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Indeed, levels of quinolinic acid in the CSF of AIDS patients suffering from AIDS-dementia can be up to twenty times higher than normal (PMID: 10936623). Quinolinic acid levels are increased in the brains of children infected with a range of bacterial infections of the central nervous system (CNS), of poliovirus patients, and of Lyme disease with CNS involvement patients. In addition, raised quinolinic acid levels have been found in traumatic CNS injury patients, patients suffering from cognitive decline with ageing, hyperammonaemia patients, hypoglycaemia patients, and systemic lupus erythematosus patients. Quinolinic acid has also been detected, but not quantified in, several different foods, such as Ceylon cinnamons, pitanga, Oregon yampahs, red bell peppers, and durians. This could make quinolinic acid a potential biomarker for the consumption of these foods. Quinolinic acid, also known as pyridine-2,3-dicarboxylate or 2,3-pyridinedicarboxylic acid, is a member of the class of compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. Quinolinic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Quinolinic acid can be found in a number of food items such as coconut, pistachio, chinese chives, and common bean, which makes quinolinic acid a potential biomarker for the consumption of these food products. Quinolinic acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Quinolinic acid exists in all living species, ranging from bacteria to humans. In humans, quinolinic acid is involved in a couple of metabolic pathways, which include nicotinate and nicotinamide metabolism and tryptophan metabolism. Moreover, quinolinic acid is found to be associated with malaria, anemia, cNS tumors, and aIDS. Quinolinic acid has a potent neurotoxic effect. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders, neurodegenerative processes in the brain, as well as other disorders. Within the brain, quinolinic acid is only produced by activated microglia and macrophages . Quinolinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=89-00-9 (retrieved 2024-07-09) (CAS RN: 89-00-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2]. Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].

   

Methamphetamine

Abbott brand OF methamphetamine hydrochloride

C10H15N (149.1204)


Methamphetamine is a psychostimulant and sympathomimetic drug. It is a member of the amphetamine group of sympathomimetic amines. Methamphetamine can induce effects such as euphoria, increased alertness and energy, and enhanced self-esteem. It is a scheduled drug in most countries due to its high potential for addiction and abuse. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2829 D049990 - Membrane Transport Modulators

   

Flupentixol

cis-(Z)-Flupenthixol

C23H25F3N2OS (434.164)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AF - Thioxanthene derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66885 - Serotonin Antagonist C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

Fluphenazine

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethan-1-ol

C22H26F3N3OS (437.1749)


Fluphenazine is only found in individuals that have used or taken this drug. It is a phenothiazine used in the treatment of psychoses. Its properties and uses are generally similar to those of chlorpromazine. [PubChem]Fluphenazine blocks postsynaptic mesolimbic dopaminergic D1 and D2 receptors in the brain; depresses the release of hypothalamic and hypophyseal hormones and is believed to depress the reticular activating system thus affecting basal metabolism, body temperature, wakefulness, vasomotor tone, and emesis. N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Clemastine

(+)-(2R)-2-(2-(((R)-p-Chloro-alpha-methyl-alpha-phenylbenzyl)oxy)ethyl)-1-methylpyrrolidine

C21H26ClNO (343.1703)


Clemastine is only found in individuals that have used or taken this drug. It is an ethanolamine-derivative, first generation histamine H1 antagonist used in hay fever, rhinitis, allergic skin conditions, and pruritus. It causes drowsiness. [PubChem]Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

m-chlorophenylpiperazine (m-CPP)

1-(3-Chlorophenyl)piperazine monohydrochloride

C10H13ClN2 (196.0767)


m-chlorophenylpiperazine (m-CPP) is a metabolite of trazodone. Trazodone (also sold under the brand names Desyrel, Oleptro, Beneficat, Deprax, Desirel, Molipaxin, Thombran, Trazorel, Trialodine, Trittico, and Mesyrel) is an antidepressant of the serotonin antagonist and reuptake inhibitor (SARI) class. It is a phenylpiperazine compound. Trazodone also has anxiolytic and hypnotic effects. Trazodone has considerably fewer prominent anticholinergic and sexual side effects than most of the tricyclic antidepressants (TCAs). (Wikipedia) D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1300 EAWAG_UCHEM_ID 2818; CONFIDENCE standard compound CONFIDENCE standard compound; EAWAG_UCHEM_ID 2818

   

Cocaine

[1R-(exo,exo)]-3-(Benzoyloxy)-8-methyl-8-azabicyclo[3.2.1]octane-2-carboxylic acid, methyl ester

C17H21NO4 (303.1471)


Cocaine, also known as coke, is an alkaloid ester obtained from the leaves of the coca plant (PMID: 20857618). It is a weakly alkaline compound and can therefore combine with acidic compounds to form white salts or powders (which is how it is typically sold and consumed). Cocaine is a strong stimulant that is most frequently used as a recreational drug. It is the second most frequently used illegal drug globally, after cannabis. The stimulant and hunger suppression properties of cocaine and coca leaf extracts have been known for thousands of years by indigenous groups in central and South America. The coca leaf was, and still is, chewed almost universally by some indigenous communities. Cocaine acts by inhibiting the reuptake of serotonin, norepinephrine, and dopamine. This inhibition leads to a number of mental and physical effects that may include loss of contact with reality, an intense feeling of happiness, periods of agitation, along with a rapid heart rate, sweating, and dialated pupils. Cocaine is highly addictive due to its effect on the reward pathway in the brain (PMID: 22856655). Cocaine addiction occurs through overexpression of the FosB protein in the nucleus accumbens of the brain, which results in altered transcriptional regulation in neurons within the nucleus accumbens. Cocaine is harmful. Its use increases the risk of stroke, myocardial infarction, lung problems (in those who smoke it), blood infections, and sudden cardiac death. Medically, cocaine is infrequently used as a local anesthetic and vasoconstrictor to cause loss of feeling or numbness before certain medical procedures (e.g., biopsy, stitches, wound cleaning) (PMID: 28956316). Topical cocaine is occasionally used as a local numbing agent to help with painful procedures in the mouth or nose. Cocaine is now predominantly used for nasal and lacrimal duct surgery. It works quickly to numb certain areas of the body (e.g., nose, ear, or throat) about 1-2 minutes after application. Cocaine functions as an anesthesia by reversibly binding to and inactivating sodium channels, thereby inhibiting excitation of nerve endings or by blocking conduction in peripheral nerves. Cocaine and its major metabolites are only found in individuals that have used or taken this drug. D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BC - Esters of benzoic acid S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents CONFIDENCE standard compound; EAWAG_UCHEM_ID 2817 EAWAG_UCHEM_ID 2817; CONFIDENCE standard compound CONFIDENCE standard compound; INTERNAL_ID 1619 D049990 - Membrane Transport Modulators

   

Haloperidol

4-[4-(4-chlorophenyl)-4-hydroxypiperidin-1-yl]-1-(4-fluorophenyl)butan-1-one

C21H23ClFNO2 (375.1401)


A phenyl-piperidinyl-butyrophenone that is used primarily to treat schizophrenia and other psychoses. It is also used in schizoaffective disorder, delusional disorders, ballism, and tourette syndrome (a drug of choice) and occasionally as adjunctive therapy in mental retardation and the chorea of huntington disease. It is a potent antiemetic and is used in the treatment of intractable hiccups. (From AMA Drug Evaluations Annual, 1994, p279) CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7649; ORIGINAL_PRECURSOR_SCAN_NO 7647 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7684; ORIGINAL_PRECURSOR_SCAN_NO 7682 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7681; ORIGINAL_PRECURSOR_SCAN_NO 7680 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7678; ORIGINAL_PRECURSOR_SCAN_NO 7677 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7604; ORIGINAL_PRECURSOR_SCAN_NO 7602 CONFIDENCE standard compound; INTERNAL_ID 588; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7639; ORIGINAL_PRECURSOR_SCAN_NO 7638 D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3566 CONFIDENCE standard compound; INTERNAL_ID 1122 Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.

   

Trihexyphenidyl

Pharmaceutical associates brand OF trihexyphenidyl hydrochloride

C20H31NO (301.2406)


Trihexyphenidyl is only found in individuals that have used or taken this drug. It is one of the centrally acting muscarinic antagonists used for treatment of parkinsonian disorders and drug-induced extrapyramidal movement disorders and as an antispasmodic. [PubChem]Trihexyphenidyl is a selective M1 muscarinic acetylcholine receptor antagonist. It is able to discriminate between the M1 (cortical or neuronal) and the peripheral muscarinic subtypes (cardiac and glandular). Trihexyphenidyl partially blocks cholinergic activity in the CNS, which is responsible for the symptoms of Parkinsons disease. It is also thought to increase the availability of dopamine, a brain chemical that is critical in the initiation and smooth control of voluntary muscle movement. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Ropinirole

4-[2-(dipropylamino)ethyl]-2,3-dihydro-1H-indol-2-one

C16H24N2O (260.1889)


Ropinirole is a non-ergoline dopamine agonist, manufactured by GlaxoSmithKline. It is used in the treatment of Parkinsons disease, and is also one of two medications in the United States with an FDA-approved indication for the treatment of restless legs syndrome (the other being Pramipexole). [Wikipedia] D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Naloxone

(1S,5R,13R,17S)-10,17-dihydroxy-4-(prop-2-en-1-yl)-12-oxa-4-azapentacyclo[9.6.1.0¹,¹³.0⁵,¹⁷.0⁷,¹⁸]octadeca-7(18),8,10-trien-14-one

C19H21NO4 (327.1471)


Naloxone is only found in individuals that have used or taken this drug. It is a specific opiate antagonist that has no agonist activity. It is a competitive antagonist at mu, delta, and kappa opioid receptors. [PubChem]While the mechanism of action of naloxone is not fully understood, the preponderance of evidence suggests that naloxone antagonizes the opioid effects by competing for the same receptor sites, especially the opioid mu receptor. Recently, naloxone has been shown to bind all three opioid receptors (mu, kappa and gamma) but the strongest binding is to the mu receptor. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AH - Peripheral opioid receptor antagonists V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

Fenfluramine

Ethyl-[1-methyl-2-(3-trifluoromethyl-phenyl)-ethyl]-amine

C12H16F3N (231.1235)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators KEIO_ID F016; [MS2] KO009107 KEIO_ID F016

   

Estradiol Benzoate

(17-hydroxy-13-methyl-6,7,8,9,11,12,14,15,16,17-decahydrocyclopenta[a]phenanthren-3-yl) benzoate

C25H28O3 (376.2038)


C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents Same as: D01953

   

Bromocriptine

(4R,7R)-10-bromo-N-[(1S,2S,4R,7S)-2-hydroxy-7-(2-methylpropyl)-5,8-dioxo-4-(propan-2-yl)-3-oxa-6,9-diazatricyclo[7.3.0.0²,⁶]dodecan-4-yl]-6-methyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),2,9,12,14-pentaene-4-carboxamide

C32H40BrN5O5 (653.2213)


Bromocriptine mesylate is a semisynthetic ergot alkaloid derivative with potent dopaminergic activity. It is indicated for the management of signs and symptoms of Parkinsonian Syndrome. Bromocriptine also inhibits prolactin secretion and may be used to treat dysfunctions associated with hyperprolactinemia. It also causes sustained suppression of somatotropin (growth hormone) secretion in some patients with acromegaly. Bromocriptine has been associated with pulmonary fibrosis. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CB - Prolactine inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist C26170 - Protective Agent > C1509 - Neuroprotective Agent

   

Dermorphin

Dermorphin

C40H50N8O10 (802.365)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1]. Dermorphin is a natural heptapeptide μ-opioid receptor (MOR) agonist found in amphibian skin. Inhibition of neuropathic pain[1].

   

Levallorphan

(1R,9R,10R)-17-(prop-2-en-1-yl)-17-azatetracyclo[7.5.3.0¹,¹⁰.0²,⁷]heptadeca-2(7),3,5-trien-4-ol

C19H25NO (283.1936)


An opioid antagonist with properties similar to those of naloxone; in addition it also possesses some agonist properties. It should be used cautiously; levallorphan reverses severe opioid-induced respiratory depression but may exacerbate respiratory depression such as that induced by alcohol or other non-opioid central depressants. (From Martindale, The Extra Pharmacopoeia, 30th ed, p683) D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

Molindone

3-ethyl-2-methyl-5-(morpholin-4-ylmethyl)-4,5,6,7-tetrahydro-1H-indol-4-one

C16H24N2O2 (276.1838)


An indole derivative effective in schizophrenia and other psychoses and possibly useful in the treatment of the aggressive type of undersocialized conduct disorder. Molindone has much lower affinity for D2 receptors than most antipsychotic agents and has a relatively low affinity for D1 receptors. It has only low to moderate affinity for cholinergic and alpha-adrenergic receptors. Some electrophysiologic data from animals indicate that molindone has certain characteristics that resemble those of clozapine. (From AMA Drug Evaluations Annual, 1994, p283) D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

LSM-1839

Naltrindole

C26H26N2O3 (414.1943)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

Pergolide

(2R,4R,7R)-4-[(methylsulfanyl)methyl]-6-propyl-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene

C19H26N2S (314.1817)


Pergolide is a long-acting dopamine agonist approved in 1982 for the treatment of Parkinsons Disease. It is an ergot derivative that acts on the dopamine D2 and D3, alpha2- and alpha1-adrenergic, and 5-hydroxytryptamine (5-HT) receptors. It was indicated as adjunct therapy with levodopa/carbidopa in the symptomatic treatment of parkinsonian syndrome. It was later found that pergolide increased the risk of cardiac valvulopathy. The drug was withdrawn from the US market in March 2007 and from the Canadian market in August 2007. N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist

   

Tetrahydrocannabinol

(6aR,10aR)-6,6,9-trimethyl-3-pentyl-6H,6aH,7H,8H,10aH-benzo[c]isochromen-1-ol

C21H30O2 (314.2246)


Tetrahydrocannabinol, abbreviated THC, is a cannabinoid identified in cannabis and is its principal psychoactive constituent. First isolated in 1964, in its pure form, it is a glassy solid when cold, and becomes viscous and sticky if warmed. Synthetically prepared THC, officially referred to by its INN, dronabinol, is available by prescription in the U.S. and Canada under the brand name Marinol. The mechanism of action of THC is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of cannabinoids. Animal studies suggest that Marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata. A literature review on the subject concluded that "Cannabis use appears to be neither a sufficient nor a necessary cause for psychosis. It is a component cause, part of a complex constellation of factors leading to psychosis." Likewise, a French review from 2009 came to a conclusion that cannabis use, particularly that before age 15, was a factor in the development of schizophrenic disorders. An aromatic terpenoid, THC has a very low solubility in water, but good solubility in most organic solvents, specifically lipids and alcohols. The presence of these specialized cannabinoid receptors in the brain led researchers to the discovery of endocannabinoids, such as anandamide and 2-arachidonoyl glyceride (2-AG). THC targets receptors in a manner far less selective than endocannabinoid molecules released during retrograde signalling, as the drug has a relatively low cannabinoid receptor efficacy and affinity. In populations of low cannabinoid receptor density, THC may act to antagonize endogenous agonists that possess greater receptor efficacy. THC is a lipophilic molecule and may bind non-specifically to a variety of receptors in the brain and body, such as adipose tissue. Dronabinol is only found in individuals that have used or taken this drug. It is extracted from the resin of Cannabis sativa (marijuana, hashish). The isomer delta-9-tetrahydrocannabinol is considered the most active form, producing the characteristic mood and perceptual changes associated with this compound. In the United States, Marinol has been rescheduled from Schedule II to Schedule III of the Controlled Substances Act in 1999, reflecting a finding that THC had a potential for abuse less than that of cocaine and heroin. As a Schedule III drug, it is available by prescription and is considered to be non-narcotic and to have a low risk of physical or mental dependence. Marinol has been approved by the U.S. Food and Drug Administration (FDA) in the treatment of anorexia in AIDS patients, as well as for refractory nausea and vomiting of patients undergoing chemotherapy, which has raised much controversy as to why natural THC is still a Schedule I drug. Efforts to get cannabis rescheduled as analogous to Marinol have not succeeded thus far. In April 2005, Canadian authorities approved the marketing of Sativex, a mouth spray for multiple sclerosis patients, who can use it to alleviate neuropathic pain and spasticity. Sativex contains tetrahydrocannabinol together with cannabidiol and is a preparation of whole cannabis rather than individual cannabinoids. It is marketed in Canada by GW Pharmaceuticals, being the first cannabis-based prescription drug in the world (in modern times). In addition, Sativex received European regulatory approval in 2010. An analog of dronabinol, nabilone, is available commercially in Canada under the trade name Cesamet, manufactured by Valeant Pharmaceuticals. Cesamet has also received FDA approval and began marketing in the U.S. in 2006. It is a Schedule II drug. Δ9tetrahydrocannabinol, also known as delta(9)-thc or marinol, is a member of the class of compounds known as 2,2-dimethyl-1-benzopyrans. 2,2-dimethyl-1-benzopyrans are organic compounds containing a 1-benzopyran moiety that carries two methyl groups at the 2-position. Δ9tetrahydrocannabinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Δ9tetrahydrocannabinol can be found in a number of food items such as wakame, cloves, burbot, and black cabbage, which makes Δ9tetrahydrocannabinol a potential biomarker for the consumption of these food products. Δ9tetrahydrocannabinol can be found primarily in blood and urine. Δ9tetrahydrocannabinol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Δ9tetrahydrocannabinol is a drug which is used for the treatment of anorexia associated with weight loss in patients with aids, and nausea and vomiting associated with cancer chemotherapy in patients who have failed to respond adequately to conventional antiemetic treatment. The mechanism of action of marinol is not completely understood. It is thought that cannabinoid receptors in neural tissues may mediate the effects of dronabinol and other cannabinoids. Animal studies with other cannabinoids suggest that marinols antiemetic effects may be due to inhibition of the vomiting control mechanism in the medulla oblongata (DrugBank). A potentially serious oral ingestion, if recent, should be managed with gut decontamination. In unconscious patients with a secure airway, instill activated charcoal (30 to 100 g in adults, 1 to 2 g/kg in infants) via a nasogastric tube. A saline cathartic or sorbitol may be added to the first dose of activated charcoal. Patients experiencing depressive, hallucinatory or psychotic reactions should be placed in a quiet area and offered reassurance. Benzodiazepines (5 to 10 mg diazepam po) may be used for treatment of extreme agitation. Hypotension usually responds to Trendelenburg position and IV fluids. Pressors are rarely required (L1712) (T3DB). D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

DAMGO

(D-Ala(2)-mephe(4)-gly-ol(5))enkephalin

C26H35N5O6 (513.2587)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins KEIO_ID A226; [MS2] KO008836 KEIO_ID A226; [MS3] KO008837 KEIO_ID A226 DAMGO is a μ-opioid receptor (μ-OPR ) selective agonist with a Kd of 3.46 nM for native μ-OPR[1].

   

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

C12H15N (173.1204)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D009676 - Noxae > D009498 - Neurotoxins KEIO_ID M034

   

Mecamylamine

N,2,3,3-tetramethylbicyclo[2.2.1]heptan-2-amine

C11H21N (167.1674)


A nicotinic antagonist that is well absorbed from the gastrointestinal tract and crosses the blood-brain barrier. Mecamylamine has been used as a ganglionic blocker in treating hypertension, but, like most ganglionic blockers, is more often used now as a research tool. [PubChem] C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BB - Secondary and tertiary amines D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists Acquisition and generation of the data is financially supported in part by CREST/JST. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents KEIO_ID M039

   

MET-enkephalin

Met-Enkephalin acetate salt

C27H35N5O7S (573.2257)


A pentapeptide comprising L-tyrosine, glycine, glycine, L-phenylalanine and L-methionine residues joined in sequence by peptide linkages. It is an endogenous opioid peptide with antitumor, analgesic, and immune-boosting properties. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, DrugBank C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins C308 - Immunotherapeutic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor. Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor.

   

Digenin

(2S,3S,4S)-3-(carboxymethyl)-4-prop-1-en-2-ylpyrrolidine-2-carboxylic acid

C10H15NO4 (213.1001)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].

   

Oxytocin

(2S)-2-[({1-[(4R,7S,10S,13S,16S,19R)-19-amino-13-[(2S)-butan-2-yl]-6,9,12,15,18-pentahydroxy-10-[2-(C-hydroxycarbonimidoyl)ethyl]-7-[(C-hydroxycarbonimidoyl)methyl]-16-[(4-hydroxyphenyl)methyl]-1,2-dithia-5,8,11,14,17-pentaazacycloicosa-5,8,11,14,17-pentaene-4-carbonyl]pyrrolidin-2-yl}(hydroxy)methylidene)amino]-N-[(C-hydroxycarbonimidoyl)methyl]-4-methylpentanimidate

C43H66N12O12S2 (1006.4364)


Oxytocin is a mammalian hormone that also acts as a neurotransmitter in the brain. In women, it is released mainly after distention of the cervix and vagina during labor, and after stimulation of the nipples, facilitating birth and breastfeeding, respectively. Oxytocin is released during orgasm in both sexes. In the brain, oxytocin is involved in social recognition and bonding, and might be involved in the formation of trust between people. -- Wikipedia; In the pituitary gland, oxytocin is packaged in large, dense-core vesicles, where it is bound to neurophysin as shown in the inset of the figure; neurophysin is a large peptide fragment of the giant precursor protein molecule from which oxytocin is derived by enzymatic cleavage. -- Wikipedia; Oxytocin is a peptide of nine amino acids (a nonapeptide). The sequence is cysteine - tyrosine - isoleucine - glutamine - asparagine - cysteine - proline - leucine - glycine (CYIQNCPLG). The cysteine residues form a sulfur bridge. Oxytocin has a molecular mass of 1007 daltons. One international unit (IU) of oxytocin is the equivalent of about 2 micrograms of pure peptide. -- Wikipedia; Oxytocin has peripheral (hormonal) actions, and also has actions in the brain. The actions of oxytocin are mediated by specific, high affinity oxytocin receptors. The oxytocin receptor is a G-protein-coupled receptor which requires Mg2+ and cholesterol. It belongs to the rhodopsin-type (class I) group of G-protein-coupled receptors. -- Wikipedia [HMDB] Oxytocin is a mammalian hormone that also acts as a neurotransmitter in the brain. In women, it is released mainly after distention of the cervix and vagina during labor, and after stimulation of the nipples, facilitating birth and breastfeeding, respectively. Oxytocin is released during orgasm in both sexes. In the brain, oxytocin is involved in social recognition and bonding, and might be involved in the formation of trust between people. -- Wikipedia; In the pituitary gland, oxytocin is packaged in large, dense-core vesicles, where it is bound to neurophysin as shown in the inset of the figure; neurophysin is a large peptide fragment of the giant precursor protein molecule from which oxytocin is derived by enzymatic cleavage. -- Wikipedia; Oxytocin is a peptide of nine amino acids (a nonapeptide). The sequence is cysteine - tyrosine - isoleucine - glutamine - asparagine - cysteine - proline - leucine - glycine (CYIQNCPLG). The cysteine residues form a sulfur bridge. Oxytocin has a molecular mass of 1007 daltons. One international unit (IU) of oxytocin is the equivalent of about 2 micrograms of pure peptide. -- Wikipedia; Oxytocin has peripheral (hormonal) actions, and also has actions in the brain. The actions of oxytocin are mediated by specific, high affinity oxytocin receptors. The oxytocin receptor is a G-protein-coupled receptor which requires Mg2+ and cholesterol. It belongs to the rhodopsin-type (class I) group of G-protein-coupled receptors. -- Wikipedia. H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BB - Oxytocin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2348 - Pituitary Agent D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D012102 - Reproductive Control Agents > D010120 - Oxytocics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxytocin (α-Hypophamine; Oxytocic hormone) is a pleiotropic, hypothalamic peptide known for facilitating parturition, lactation, and prosocial behaviors. Oxytocin can function as a stress-coping molecule with anti-inflammatory, antioxidant, and protective effects especially in the face of adversity or trauma[1][2].

   

AMASTATIN

CHEMBL27693

C21H38N4O8 (474.269)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

(2-Mercaptomethyl-3-phenyl-propionyl)-glycine

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Biotin amide

5-[(3AS,6R,6ar)-2-hydroxy-1H,3ah,4H,6H,6ah-thieno[3,4-D]imidazol-6-yl]pentanimidate

C10H17N3O2S (243.1041)


The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927). Late-onset multiple carboxylase deficiency (MCD) with biotinidase deficiency is caused by mutation in the biotinidase gene. MCD is an autosomal recessive metabolic disorder characterized primarily by cutaneous and neurologic abnormalities. Symptoms result from the patients inability to reutilize biotin, a necessary nutrient. (OMIM 253260). The enzyme biotinidase (EC-Number 3.5.1.12 ) is involved in the recycling of the vitamin biotin, cleaving D-biotinylamides and esters, in a reaction including biotin amide and water. (PMID 1719240, 171927)

   

PPACK

D-Phe-Pro-Arg-CH2Cl

C21H31ClN6O3 (450.2146)


   

Kyotorphin

(2S)-2-[(2S)-2-amino-3-(4-hydroxyphenyl)propanamido]-5-carbamimidamidopentanoic acid

C15H23N5O4 (337.175)


Kyotorphin (L-tyrosyl-L-arginine) is a neuroactive dipeptide which plays a role in pain regulation in the brain. It was first isolated from bovine brain by Japanese scientists in 1979. Kyotorphin was named for the site of its discovery, Kyoto, Japan and because of its morphine- (or endorphin-) like analgesic activity. Kyotorphin has an analgesic effect, but it does not interact with the opioid receptors. Instead, it acts by releasing an Met-enkephalin and stabilizing it from degradation. It may also possess properties of neuromediator/neuromodulator. It has been shown that kyotorphin is present in the human cerebrospinal fluid and that it is lower in patients with persistent pain. [HMDB] Kyotorphin (L-tyrosyl-L-arginine) is a neuroactive dipeptide which plays a role in pain regulation in the brain. It was first isolated from bovine brain by Japanese scientists in 1979. Kyotorphin was named for the site of its discovery, Kyoto, Japan and because of its morphine- (or endorphin-) like analgesic activity. Kyotorphin has an analgesic effect, but it does not interact with the opioid receptors. Instead, it acts by releasing an Met-enkephalin and stabilizing it from degradation. It may also possess properties of neuromediator/neuromodulator. It has been shown that kyotorphin is present in the human cerebrospinal fluid and that it is lower in patients with persistent pain. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004723 - Endorphins Kyotorphin is an endogenou neuroactive dipeptide with analgesic properties. Kyotorphin possesses anti-inflammatory and antimicrobial activity. Kyotorphin levels in cerebro-spinal fluid correlate negatively with the progression of neurodegeneration in Alzheimer's Disease patients[1].

   

Veratridine

[(1R,2S,6S,9S,10R,11S,12S,14R,15S,18S,19S,22S,23S,25R)-1,10,11,12,14,23-hexahydroxy-6,10,19-trimethyl-24-oxa-4-azaheptacyclo[12.12.0.02,11.04,9.015,25.018,23.019,25]hexacosan-22-yl] 3,4-dimethoxybenzoate

C36H51NO11 (673.3462)


Veratridine is a steroid. It has a role as a sodium channel modulator. It is functionally related to a cevane. A benzoate-cevane found in VERATRUM and Schoenocaulon. It activates SODIUM CHANNELS to stay open longer than normal. D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents > D014704 - Veratrum Alkaloids Veratridine (3-Veratroylveracevine) is a plant neurotoxin, a voltage-gated sodium channels (VGSCs) agonist. Veratridine inhibits the peak current of Nav1.7, with an IC50 of 18.39?μM. Veratridine regulates sodium ion channels mainly by activating sodium ion channels, preventing channel inactivation and increasing sodium ion flow[1][2].

   

Oxotremorine

1-[4-(pyrrolidin-1-yl)but-2-yn-1-yl]pyrrolidin-2-one

C12H18N2O (206.1419)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Entacapone

(2E)-2-cyano-3-(3,4-dihydroxy-5-nitrophenyl)-N,N-diethylprop-2-enamide

C14H15N3O5 (305.1012)


Entacapone is an inhibitor drug of catechol O-methyltransferase, which catalyzes the reaction between catechol and S-adenosyl-L-methionine to produce guaiacol and S-adenosyl-L-homocysteine. [HMDB] Entacapone is an inhibitor drug of catechol O-methyltransferase, which catalyzes the reaction between catechol and S-adenosyl-L-methionine to produce guaiacol and S-adenosyl-L-homocysteine. D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Fluphenazine decanoate

2-(4-{3-[2-(trifluoromethyl)-10H-phenothiazin-10-yl]propyl}piperazin-1-yl)ethyl decanoate

C32H44F3N3O2S (591.3106)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].

   

Cabergoline

1-[3-(dimethylamino)propyl]-3-ethyl-1-[(2R,4R,7R)-6-(prop-2-en-1-yl)-6,11-diazatetracyclo[7.6.1.0²,⁷.0¹²,¹⁶]hexadeca-1(16),9,12,14-tetraene-4-carbonyl]urea

C26H37N5O2 (451.2947)


Cabergoline is only found in individuals that have used or taken this drug. It is a long-acting dopamine agonist and prolactin inhibitor. It is used to treat hyperprolactinemic disorders and Parkinsonian Syndrome. Cabergoline possesses potent agonist activity on dopamine D2 receptors. The dopamine D2 receptor is a 7-transmembrane G-protein coupled receptor associated with Gi proteins. In lactotrophs, stimulation of dopamine D2 causes inhibition of adenylyl cyclase, which decreases intracellular cAMP concentrations and blocks IP3-dependent release of Ca2+ from intracellular stores. Decreases in intracellular calcium levels may also be brought about via inhibition of calcium influx through voltage-gated calcium channels, rather than via inhibition of adenylyl cyclase. Additionally, receptor activation blocks phosphorylation of p42/p44 MAPK and decreases MAPK/ERK kinase phosphorylation. Inhibition of MAPK appears to be mediated by c-Raf and B-Raf-dependent inhibition of MAPK/ERK kinase. Dopamine-stimulated growth hormone release from the pituitary gland is mediated by a decrease in intracellular calcium influx through voltage-gated calcium channels rather than via adenylyl cyclase inhibition. Stimulation of dopamine D2 receptors in the nigrostriatal pathway leads to improvements in coordinated muscle activity in those with movement disorders. Cabergoline is a long-acting dopamine receptor agonist with a high affinity for D2 receptors. Receptor-binding studies indicate that cabergoline has low affinity for dopamine D1, alpha1,- and alpha2- adrenergic, and 5-HT1- and 5-HT2-serotonin receptors. G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CB - Prolactine inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Cabergoline is an ergot derived-dopamine D2-like receptor agonist that has high affinity for D2, D3, and 5-HT2B receptors (Ki=0.7, 1.5, and 1.2, respectively).

   

Amanitin

Alpha-Amanitine

C39H54N10O14S (918.3542)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins

   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Ibotenic acid

2-amino-2-(3-hydroxy-1,2-oxazol-5-yl)acetic acid

C5H6N2O4 (158.0328)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites. Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites.

   

Tetrabenazine

9,10-dimethoxy-3-(2-methylpropyl)-1H,2H,3H,4H,6H,7H,11bH-pyrido[2,1-a]isoquinolin-2-one

C19H27NO3 (317.1991)


A drug formerly used as an antipsychotic but now used primarily in the treatment of various movement disorders including tardive dyskinesia. Tetrabenazine blocks uptake into adrenergic storage vesicles and has been used as a high affinity label for the vesicle transport system. [PubChem] D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575

   

Bremazocine

Bremazocine

C20H29NO2 (315.2198)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Etorphine

6,14-Ethenomorphinan-7-methanol, 4,5-epoxy-3-hydroxy-6-methoxy-alpha,17-dimethyl-alpha-propyl-, (5alpha,7alpha(R))-

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D002491 - Central Nervous System Agents > D000700 - Analgesics Same as: D07937

   

Diprenorphine

Diprenorphine

C26H35NO4 (425.2566)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist Same as: D07863

   

Ethylketocyclazocine

Ethylketocyclazocine

C19H25NO2 (299.1885)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Ascomycin

(3S,4R,5S,8R,9E,12S,14S,15R,16S,18R ,19R,26aS)-8-Ethyl-5,6,8,11,12,13,14,15,16,17,18,1 9,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(1E )-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetrameth yl-15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)tetrone

C43H69NO12 (791.482)


Ascomycin is a macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. It has a role as an immunosuppressive agent, an antifungal agent and a bacterial metabolite. It is a macrolide, an ether, a lactol and a secondary alcohol. Ascomycin is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and Streptomyces ascomycinicus with data available. A macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Ascomycin (Immunomycin; FR-900520; FK520) is an ethyl analog of Tacrolimus (FK506) with strong immunosuppressant properties. Ascomycin is also a macrocyclic polyketide antibiotic with multiple biological activities such as anti-malarial, anti-fungal and anti-spasmodic. Ascomycin prevents graft rejection and has potential for varying skin ailments research[1][2].

   

3-Amino-2,3-dihydrobenzoic acid

5-Amino-1,3-cyclohexadiene-1-carboxylic acid

C7H9NO2 (139.0633)


D004791 - Enzyme Inhibitors

   

nemonapride

nemonapride

C21H26ClN3O2 (387.1713)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Same as: D01468

   

Tetrahydrodeoxycorticosterone

2-hydroxy-1-[(1S,2S,5R,7S,10R,11S,14S,15S)-5-hydroxy-2,15-dimethyltetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]ethan-1-one

C21H34O3 (334.2508)


The neurosteroid allotetrahydrodeoxycorticosterone (THDOC) is an allosteric modulator of the GABA(A) receptor. Although the role of THDOC within the brain is undefined, recent studies indicate that stress induces THDOC to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, post-traumatic stress disorder and depression. (PMID 12628349) [HMDB] The neurosteroid allotetrahydrodeoxycorticosterone (THDOC) is an allosteric modulator of the GABA(A) receptor. Although the role of THDOC within the brain is undefined, recent studies indicate that stress induces THDOC to levels that can activate GABA(A) receptors. These results might have significant implications for human stress-sensitive conditions such as epilepsy, post-traumatic stress disorder and depression. (PMID 12628349). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids 3α,21-Dihydroxy-5α-pregnan-20-one (THDOC), an endogenous neurosteroid, is a positive modulator of GABAA receptors. 3α,21-Dihydroxy-5α-pregnan-20-one potentiates neuronal response to low concentrations of GABA at α4β1δ GABAA receptors in vitro.

   

Nafoxidine

1-{2-[4-(6-methoxy-2-phenyl-3,4-dihydronaphthalen-1-yl)phenoxy]ethyl}pyrrolidine

C29H31NO2 (425.2355)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent

   

Neuromedin K

Neurokinin B trifluoroacetate salt

C55H79N13O14S2 (1209.5311)


D018377 - Neurotransmitter Agents > D015320 - Tachykinins

   

Adrenorphin

(2R)-2-{[(2S)-2-{[(2S)-2-{[(2S)-2-({2-[(2-{[(2S)-2-amino-1-hydroxy-3-(4-hydroxyphenyl)propylidene]amino}-1-hydroxyethylidene)amino]-1-hydroxyethylidene}amino)-1-hydroxy-3-phenylpropylidene]amino}-1-hydroxy-4-(methylsulfanyl)butylidene]amino}-5-carbamimidamido-1-hydroxypentylidene]amino}-5-carbamimidamido-N-[(1S)-1-(C-hydroxycarbonimidoyl)-2-methylpropyl]pentanimidic acid

C44H69N15O9S (983.5123)


Adrenorphin is an endogenous, C-terminally amidated, opioid octapeptide (Tyr-Gly-Gly-Phe-Met-Arg-Arg-Val-NH2) that is produced from the proteolyic cleavage of proenkephalin A. It is widely distributed throughout the mammalian brain. It was originally detected in human phaeochromocytoma tumours derived from the adrenal medulla, and was subsequently found in the normal human adrenal medulla as well. Adrenorphin exhibits potent opioid activity, acting as a μ- and κ-opioid receptor agonist while having no effects on δ-opioid receptors. It possesses analgesic and respiratory depressive properties. D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins Adrenorphin is a opioid octapeptide, acting as a potent agonist of μ-opioid receptor, with Ki of 12 nM.

   

Deltorphin

Deltorphin A; Dermenkephalin

C44H62N10O10S2 (954.4092)


   

Racemethionine

alpha-Amino-gamma-methylmercaptobutyric acid

C5H11NO2S (149.051)


Racemethionine, also known as DL-methionine or hmet, belongs to the class of organic compounds known as methionine and derivatives. Methionine and derivatives are compounds containing methionine or a derivative thereof resulting from reaction of methionine at the amino group or the carboxy group, or from the replacement of any hydrogen of glycine by a heteroatom. Methionine is an alpha-amino acid with the chemical formula HO2CCH(NH2)CH2CH2SCH3. This essential amino acid is classified as nonpolar. Racemethionine exists in all living organisms, ranging from bacteria to humans. Racemethionine is a mild, acidic, and sulfurous tasting compound. Racemethionine is found, on average, in the highest concentration within a few different foods, such as wheats, oats, and ryes and in a lower concentration in spinachs, white cabbages, and green zucchinis. Racemethionine is used as a flavouring ingredient and dietary supplement. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C26170 - Protective Agent > C2081 - Hepatoprotective Agent Flavouring ingredient; dietary supplement DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3]. DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3].

   

Methionine enkephalin

Met-Enkephalin acetate salt

C27H35N5O7S (573.2257)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, DrugBank C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004745 - Enkephalins C308 - Immunotherapeutic Agent Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor. Tyr-Gly-Gly-Phe-Met-OH regulates human immune function and inhibits tumor growth via binding to the opioid receptor.

   

Dexfenfluramine

ethyl[(2S)-1-[3-(trifluoromethyl)phenyl]propan-2-yl]amine

C12H16F3N (231.1235)


Dexfenfluramine, also marketed under the name Redux, is a serotoninergic anorectic drug. It was for some years in the mid-1990s approved by the United States Food and Drug Administration for the purposes of weight loss. However, following multiple concerns about the cardiovascular side-effects of the drug, such approval was withdrawn. A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors C78272 - Agent Affecting Nervous System > C47794 - Serotonin Agonist N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators

   

Amphetamine

[1-(3-Methoxyphenyl)-2-propyl]amine

C9H13N (135.1048)


Amphetamine is a chiral compound. The racemic mixture can be divided into its optical antipodes: levo- and dextro-amphetamine. Amphetamine is the parent compound of its own structural class, comprising a broad range of psychoactive derivatives, e.g., MDMA (Ecstasy) and the N-methylated form, methamphetamine. Amphetamine is a homologue of phenethylamine. N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Etorphine

19-(2-hydroxypentan-2-yl)-15-methoxy-3-methyl-13-oxa-3-azahexacyclo[13.2.2.1^{2,8}.0^{1,6}.0^{6,14}.0^{7,12}]icosa-7,9,11,16-tetraen-11-ol

C25H33NO4 (411.2409)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D006993 - Hypnotics and Sedatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

3,5-Dihydroxyphenylglycine

2-amino-2-(3,5-dihydroxyphenyl)acetic acid

C8H9NO4 (183.0532)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists DHPG ((RS)-3,5-DHPG) is an amino acid, which acts as a selective and potent agonist of group I mGluR (mGluR 1 and mGluR 5), shows no effect on Group II or Group III mGluRs[1]. DHPG ((RS)-3,5-DHPG) is also an effective antagonist of mGluRs linked to phospholipase D[2].

   

alpha-amanitin

2-[34-(Butan-2-yl)-13-(3,4-dihydroxybutan-2-yl)-2,8,11,14,22,30,33,36,39-nonahydroxy-5,27-dioxo-27-thia-3,6,12,15,25,29,32,35,38-nonaazapentacyclo[14.12.11.0,.0,.0,]nonatriaconta-2,11,14,18(26),19(24),20,22,29,32,35,38-undecaen-4-yl]ethanimidate

C39H54N10O14S (918.3542)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins

   

ascomycin

17-ethyl-1,14-dihydroxy-12-[1-(4-hydroxy-3-methoxycyclohexyl)prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H69NO12 (791.482)


   

Ppack

N-[1-Chloro-2-oxo-6-[(aminoiminomethyl)amino]hexane-3-yl]-1-(1-oxo-2-amino-3-phenylpropyl)pyrrolidine-2-carboxamide

C21H31ClN6O3 (450.2146)


   

METHIONINE

poly-l-methionine

C5H11NO2S (149.051)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

Nicotine

L-(-)-Nicotine

C10H14N2 (162.1157)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3008 D000077444 - Smoking Cessation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Scopolamine

BENZENEACETIC ACID, .ALPHA.(HYDROXYMETHYL)-,(1.ALPHA.,2.BETA.,4.BETA.,5.ALPHA.,7.BETA.)-9-METHYL-3-OXA-9-AZATRICYCLO(3.3.1.02,4)NON-7-YL ESTER, (.ALPHA.S)-

C17H21NO4 (303.1471)


A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Scopolamine hydrobromide appears as colorless crystals or white powder or solid. Has no odor. pH (of 5\\% solution): 4-5.5. Slightly efflorescent in dry air. Bitter, acrid taste. (NTP, 1992) Scopolamine is a tropane alkaloid that is the (S)-tropic acid ester of 6beta,7beta-epoxy-1alphaH,5alphaH-tropan-3alpha-ol. It has a role as a muscarinic antagonist, an antiemetic, an adjuvant, a mydriatic agent, an antispasmodic drug, an anaesthesia adjuvant, an antidepressant and a metabolite. It is a propanoate ester, an epoxide, a tertiary amino compound and a tropane alkaloid. It is functionally related to a (S)-tropic acid. It is a conjugate base of a scopolamine(1+). Scopolamine is a tropane alkaloid isolated from members of the Solanaceae family of plants, similar to [atropine] and [hyoscyamine], all of which structurally mimic the natural neurotransmitter [acetylcholine]. Scopolamine was first synthesized in 1959, but to date, synthesis remains less efficient than extracting scopolamine from plants. As an acetylcholine analogue, scopolamine can antagonize muscarinic acetylcholine receptors (mAChRs) in the central nervous system and throughout the body, inducing several therapeutic and adverse effects related to alteration of parasympathetic nervous system and cholinergic signalling. Due to its dose-dependent adverse effects, scopolamine was the first drug to be offered commercially as a transdermal delivery system, Scopoderm TTS®, in 1981. As a result of its anticholinergic effects, scopolamine is being investigated for diverse therapeutic applications; currently, it is approved for the prevention of nausea and vomiting associated with motion sickness and surgical procedures. Scopolamine was first approved by the FDA on December 31, 1979, and is currently available as both oral tablets and a transdermal delivery system. Scopolamine is an Anticholinergic. The mechanism of action of scopolamine is as a Cholinergic Antagonist. Hyoscine is a natural product found in Duboisia leichhardtii, Duboisia myoporoides, and other organisms with data available. Scopolamine is a tropane alkaloid derived from plants of the nightshade family (Solanaceae), specifically Hyoscyamus niger and Atropa belladonna, with anticholinergic, antiemetic and antivertigo properties. Structurally similar to acetylcholine, scopolamine antagonizes acetylcholine activity mediated by muscarinic receptors located on structures innervated by postganglionic cholinergic nerves as well as on smooth muscles that respond to acetylcholine but lack cholinergic innervation. The agent is used to cause mydriasis, cycloplegia, to control the secretion of saliva and gastric acid, to slow gut motility, and prevent vomiting. An alkaloid from SOLANACEAE, especially DATURA and SCOPOLIA. Scopolamine and its quaternary derivatives act as antimuscarinics like ATROPINE, but may have more central nervous system effects. Its many uses include an anesthetic premedication, the treatment of URINARY INCONTINENCE and MOTION SICKNESS, an antispasmodic, and a mydriatic and cycloplegic. A tropane alkaloid that is the (S)-tropic acid ester of 6beta,7beta-epoxy-1alphaH,5alphaH-tropan-3alpha-ol. C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent C78283 - Agent Affecting Organs of Special Senses > C29706 - Mydriatic Agent CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5225; ORIGINAL_PRECURSOR_SCAN_NO 5222 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5230; ORIGINAL_PRECURSOR_SCAN_NO 5228 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5252; ORIGINAL_PRECURSOR_SCAN_NO 5251 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5243; ORIGINAL_PRECURSOR_SCAN_NO 5241 CONFIDENCE standard compound; INTERNAL_ID 1149; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5254; ORIGINAL_PRECURSOR_SCAN_NO 5252 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2318 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.290 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.274 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.276

   

Kainic acid

(2S,3S,4S)-3-(carboxymethyl)-4-prop-1-en-2-ylpyrrolidine-2-carboxylic acid

C10H15NO4 (213.1001)


Kainic acid is a dicarboxylic acid, a pyrrolidinecarboxylic acid, a L-proline derivative and a non-proteinogenic L-alpha-amino acid. It has a role as an antinematodal drug and an excitatory amino acid agonist. It is a conjugate acid of a kainate(1-). (2S-(2 alpha,3 beta,4 beta))-2-Carboxy-4-(1-methylethenyl)-3-pyrrolidineacetic acid. Ascaricide obtained from the red alga Digenea simplex. It is a potent excitatory amino acid agonist at some types of excitatory amino acid receptors and has been used to discriminate among receptor types. Like many excitatory amino acid agonists it can cause neurotoxicity and has been used experimentally for that purpose. D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2]. Kainic acid is a potent excitotoxic agent. Kainic acid hydrate also is an agonist for a subtype of ionotropic glutamate receptor. Kainic acid induces seizures[1][2].

   

Benzeneethanamine, a-methyl-

Benzeneethanamine, a-methyl-

C9H13N (135.1048)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1540 CONFIDENCE standard compound; EAWAG_UCHEM_ID 2822

   

Methamphetamine

D-Methamphetamine

C10H15N (149.1204)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BA - Centrally acting sympathomimetics D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators CONFIDENCE standard compound; INTERNAL_ID 1560

   

fenfluramine

fenfluramine hydrochloride

C12H16F3N (231.1235)


A - Alimentary tract and metabolism > A08 - Antiobesity preparations, excl. diet products > A08A - Antiobesity preparations, excl. diet products > A08AA - Centrally acting antiobesity products D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017367 - Selective Serotonin Reuptake Inhibitors D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors N - Nervous system > N03 - Antiepileptics > N03A - Antiepileptics C78272 - Agent Affecting Nervous System > C29728 - Anorexiant D049990 - Membrane Transport Modulators CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 600 CONFIDENCE standard compound; INTERNAL_ID 2248

   

Reserpine

NCGC00091250-14_C33H40N2O9_Serpalan

C33H40N2O9 (608.2734)


CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3638; ORIGINAL_PRECURSOR_SCAN_NO 3636 C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29747 - Adrenergic Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators C1744 - Multidrug Resistance Modulator CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3640; ORIGINAL_PRECURSOR_SCAN_NO 3636 CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7960; ORIGINAL_PRECURSOR_SCAN_NO 7956 CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7955 CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7953 CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7990; ORIGINAL_PRECURSOR_SCAN_NO 7988 CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7985; ORIGINAL_PRECURSOR_SCAN_NO 7982 CONFIDENCE standard compound; INTERNAL_ID 1013; DATASET 20200303_ENTACT_RP_MIX502; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7983; ORIGINAL_PRECURSOR_SCAN_NO 7980 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2263 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.022 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.021 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2261; CONFIDENCE confident structure Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2). Reserpine is an inhibitor of the vesicular monoamine transporter 2 (VMAT2).

   

Methionine

2-amino-4-(methylthio)butanoic acid

C5H11NO2S (149.051)


A sulfur-containing amino acid that is butyric acid bearing an amino substituent at position 2 and a methylthio substituent at position 4. Methionine (symbol Met or M)[3] (⫽mɪˈθaɪəniːn⫽)[4] is an essential amino acid in humans. As the precursor of other non-essential amino acids such as cysteine and taurine, versatile compounds such as SAM-e, and the important antioxidant glutathione, methionine plays a critical role in the metabolism and health of many species, including humans. Methionine is also involved in angiogenesis and various processes related to DNA transcription, epigenetic expression, and gene regulation. Methionine was first isolated in 1921 by John Howard Mueller.[5] It is encoded by the codon AUG. It was named by Satoru Odake in 1925, as an abbreviation of its structural description 2-amino-4-(methylthio)butanoic acid. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant. L-Methionine is the L-isomer of Methionine, an essential amino acid for human development. Methionine acts as a hepatoprotectant.

   

naltrexone

naltrexone

C20H23NO4 (341.1627)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BB - Drugs used in alcohol dependence D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Colchicine

(1e)-N-[(7s)-1,2,3,10-tetramethoxy-9-oxo-5,6,7,9-tetrahydrobenzo[a]heptalen-7-yl] ethanimidic acid

C22H25NO6 (399.1682)


An alkaloid that is a carbotricyclic compound comprising 5,6,7,9-tetrahydrobenzo[a]heptalene having four methoxy substituents at the 1-, 2-, 3- and 10-positions as well as an oxo group at the 9-position and an acetamido group at the 7-position. It has been isolated from the plants belonging to genus Colchicum. Colchicine appears as odorless or nearly odorless pale yellow needles or powder that darkens on exposure to light. Used to treat gouty arthritis, pseudogout, sarcoidal arthritis and calcific tendinitis. (EPA, 1998) (S)-colchicine is a colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. It has a role as a mutagen, an anti-inflammatory agent and a gout suppressant. It is a colchicine and an alkaloid. It is an enantiomer of a (R)-colchicine. Colchicine is an Alkaloid. Colchicine is a plant alkaloid that is widely used for treatment of gout. Colchicine has not been associated with acute liver injury or liver test abnormalities except with serious overdoses. Colchicine is a natural product found in Colchicum arenarium, Colchicum bivonae, and other organisms with data available. Colchicine is an alkaloid isolated from Colchicum autumnale with anti-gout and anti-inflammatory activities. The exact mechanism of action by which colchicines exerts its effect has not been completely established. Colchicine binds to tubulin, thereby interfering with the polymerization of tubulin, interrupting microtubule dynamics, and disrupting mitosis. This leads to an inhibition of migration of leukocytes and other inflammatory cells, thereby reducing the inflammatory response to deposited urate crystals. Colchicine may also interrupt the cycle of monosodium urate crystal deposition in joint tissues, thereby also preventing the resultant inflammatory response. Overall, colchicine decreases leukocyte chemotaxis/migration and phagocytosis to inflamed areas, and inhibits the formation and release of a chemotactic glycoprotein that is produced during phagocytosis of urate crystals. A major alkaloid from Colchicum autumnale L. and found also in other Colchicum species. Its primary therapeutic use is in the treatment of gout, but it has been used also in the therapy of familial Mediterranean fever (PERIODIC DISEASE). See also: Colchicine; probenecid (component of). A colchicine that has (S)-configuration. It is a secondary metabolite, has anti-inflammatory properties and is used to treat gout, crystal-induced joint inflammation, familial Mediterranean fever, and many other conditions. M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AC - Preparations with no effect on uric acid metabolism COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, Guide to PHARMACOLOGY C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D018501 - Antirheumatic Agents > D006074 - Gout Suppressants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2258 CONFIDENCE standard compound; INTERNAL_ID 1172 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.982 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.979 Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4]. Colchicine is a tubulin inhibitor and a microtubule disrupting agent. Colchicine inhibits microtubule polymerization with an IC50 of 3 nM[1][2][3]. Colchicine is also a competitive antagonist of the α3 glycine receptors (GlyRs)[4].

   

Pergolide

Pergolide

C19H26N2S (314.1817)


N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist relative retention time with respect to 9-anthracene Carboxylic Acid is 0.736 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.732 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731

   

Nicotine

(S)-(-)-NICOTINE, 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1157)


An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2. It has been isolated from Nicotiana tabacum. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000077444 - Smoking Cessation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2264 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

haloperidol

Haloperidol (Haldol)

C21H23ClFNO2 (375.1401)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AD - Butyrophenone derivatives D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist C78272 - Agent Affecting Nervous System > C323 - Butyrophenone D005765 - Gastrointestinal Agents > D000932 - Antiemetics Haloperidol is a potent dopamine D2 receptor antagonist, widely used as an antipsychotic.

   

Entacapone

Entacapone

C14H15N3O5 (305.1012)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents D004791 - Enzyme Inhibitors > D065098 - Catechol O-Methyltransferase Inhibitors N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

Dopamine

Dopamine

C8H11NO2 (153.079)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics Catechol in which the hydrogen at position 4 is substituted by a 2-aminoethyl group. D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; VYFYYTLLBUKUHU_STSL_0097_Dopamine_2000fmol_180430_S2_LC02_MS02_90; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

quinolinic acid

2,3-Pyridinedicarboxylic acid

C7H5NO4 (167.0219)


A pyridinedicarboxylic acid that is pyridine substituted by carboxy groups at positions 2 and 3. It is a metabolite of tryptophan. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2]. Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].

   

Fluphenazine (oxide)

FLUPHENAZINE aka 2-[4-[3-[2-(trifluoromethyl)phenothiazin-10-yl]propyl]piperazin-1-yl]ethanol

C22H26F3N3OS (437.1749)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Naltrindole

Naltrindole

C26H26N2O3 (414.1943)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists

   

cocaine

cocaine

C17H21NO4 (303.1471)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018765 - Dopamine Uptake Inhibitors D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics R - Respiratory system > R02 - Throat preparations > R02A - Throat preparations > R02AD - Anesthetics, local S - Sensory organs > S02 - Otologicals > S02D - Other otologicals > S02DA - Analgesics and anesthetics N - Nervous system > N01 - Anesthetics > N01B - Anesthetics, local > N01BC - Esters of benzoic acid S - Sensory organs > S01 - Ophthalmologicals > S01H - Local anesthetics > S01HA - Local anesthetics A tropane alkaloid obtained from leaves of the South American shrub Erythroxylon coca. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D049990 - Membrane Transport Modulators

   

Bromocriptine

Bromocriptine

C32H40BrN5O5 (653.2213)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CB - Prolactine inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist C26170 - Protective Agent > C1509 - Neuroprotective Agent

   

ropinirole

ropinirole

C16H24N2O (260.1889)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent CONFIDENCE standard compound; INTERNAL_ID 2711

   

Atroscine

[(4R)-9-methyl-3-oxa-9-azatricyclo[3.3.1.02,4]nonan-7-yl] 3-hydroxy-2-phenylpropanoate

C17H21NO4 (303.1471)


A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics N - Nervous system > N05 - Psycholeptics > N05C - Hypnotics and sedatives D005765 - Gastrointestinal Agents > D000932 - Antiemetics D002491 - Central Nervous System Agents Origin: Plant; SubCategory_DNP: Alkaloids derived from ornithine, Tropane alkaloids

   

Naloxone

Naloxone

C19H21NO4 (327.1471)


A synthetic morphinane alkaloid that is morphinone in which the enone double bond has been reduced to a single bond, the hydrogen at position 14 has been replaced by a hydroxy group, and the methyl group attached to the nitrogen has been replaced by an allyl group. A specific opioid antagonist, it is used (commonly as its hydrochloride salt) to reverse the effects of opioids, both following their use of opioids during surgery and in cases of known or suspected opioid overdose. A - Alimentary tract and metabolism > A06 - Drugs for constipation > A06A - Drugs for constipation > A06AH - Peripheral opioid receptor antagonists V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

caryophyllene

(-)-beta-Caryophyllene

C15H24 (204.1878)


A beta-caryophyllene in which the stereocentre adjacent to the exocyclic double bond has S configuration while the remaining stereocentre has R configuration. It is the most commonly occurring form of beta-caryophyllene, occurring in many essential oils, particularly oil of cloves. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

THDOC

3alpha,21-dihydroxy-5alpha-pregnane-20-one

C21H34O3 (334.2508)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014151 - Anti-Anxiety Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones D018377 - Neurotransmitter Agents > D000081227 - Neurosteroids 3α,21-Dihydroxy-5α-pregnan-20-one (THDOC), an endogenous neurosteroid, is a positive modulator of GABAA receptors. 3α,21-Dihydroxy-5α-pregnan-20-one potentiates neuronal response to low concentrations of GABA at α4β1δ GABAA receptors in vitro.

   

Neurokinin B

Neurokinin B trifluoroacetate salt

C55H79N13O14S2 (1209.5311)


D018377 - Neurotransmitter Agents > D015320 - Tachykinins

   

TETRABENAZINE

TETRABENAZINE

C19H27NO3 (317.1991)


D018377 - Neurotransmitter Agents > D014179 - Neurotransmitter Uptake Inhibitors > D018759 - Adrenergic Uptake Inhibitors D018377 - Neurotransmitter Agents > D018663 - Adrenergic Agents D049990 - Membrane Transport Modulators N - Nervous system Same as: D08575

   

Marinol

InChI=1\C21H30O2\c1-5-6-7-8-15-12-18(22)20-16-11-14(2)9-10-17(16)21(3,4)23-19(20)13-15\h11-13,16-17,22H,5-10H2,1-4H

C21H30O2 (314.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Dopamin

1,2-Benzenediol, 4-(2-aminoethyl)-, labeled with tritium

C8H11NO2 (153.079)


C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CA - Adrenergic and dopaminergic agents D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D013566 - Sympathomimetics D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents

   

Unkie

MORPHINE, (5A,6A)-7,8-DIDEHYDRO-4,5-EPOXY-17-METHYLMORPHINIAN-3,6-DIOL, MORPHIUM, MORPHIA, DOLCONTIN, DUROMORPH, MORPHINA, NEPENTHE

C17H19NO3 (285.1365)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Morphine

D-(-)-Morphine

C17H19NO3 (285.1365)


A morphinane alkaloid that is a highly potent opiate analgesic psychoactive drug. Morphine acts directly on the central nervous system (CNS) to relieve pain but has a high potential for addiction, with tolerance and both physical and psychological dependence developing rapidly. Morphine is the most abundant opiate found in Papaver somniferum (the opium poppy). D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids C78272 - Agent Affecting Nervous System > C67413 - Opioid Receptor Agonist > C1657 - Opiate N - Nervous system > N02 - Analgesics > N02A - Opioids > N02AA - Natural opium alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Dronabinol

(-)-δ9-trans-Tetrahydrocannabinol

C21H30O2 (314.2246)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D063385 - Cannabinoid Receptor Modulators D018377 - Neurotransmitter Agents > D063385 - Cannabinoid Receptor Modulators > D063386 - Cannabinoid Receptor Agonists A - Alimentary tract and metabolism > A04 - Antiemetics and antinauseants > A04A - Antiemetics and antinauseants D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C267 - Antiemetic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics

   

Racemethionine

poly-l-methionine

C5H11NO2S (149.051)


V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes C26170 - Protective Agent > C2081 - Hepatoprotective Agent DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3]. DL-Methionine is an essential amino acid containing sulfur with oxidative stress defense effects. DL-Methionine can be used for animal natural feed. DL-Methionine also kills H. rostochiensis on potato plants[1][2][3].

   

Oxytocin

Oxytocin acetate salt

C43H66N12O12S2 (1006.4364)


H - Systemic hormonal preparations, excl. sex hormones and insulins > H01 - Pituitary and hypothalamic hormones and analogues > H01B - Posterior pituitary lobe hormones > H01BB - Oxytocin and analogues C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C2348 - Pituitary Agent D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D012102 - Reproductive Control Agents > D010120 - Oxytocics Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Oxytocin (α-Hypophamine; Oxytocic hormone) is a pleiotropic, hypothalamic peptide known for facilitating parturition, lactation, and prosocial behaviors. Oxytocin can function as a stress-coping molecule with anti-inflammatory, antioxidant, and protective effects especially in the face of adversity or trauma[1][2].

   

trihexyphenidyl

Trihexylphenedyl

C20H31NO (301.2406)


D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04A - Anticholinergic agents > N04AA - Tertiary amines C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent

   

mecamylamine

methyl(2,3,3-trimethyltrinorbornan-2-yl)amine

C11H21N (167.1674)


C - Cardiovascular system > C02 - Antihypertensives > C02B - Antiadrenergic agents, ganglion-blocking > C02BB - Secondary and tertiary amines D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005730 - Ganglionic Blockers D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents

   

levallorphan

levallorphan

C19H25NO (283.1936)


D002492 - Central Nervous System Depressants > D009294 - Narcotics > D053610 - Opiate Alkaloids D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D009292 - Narcotic Antagonists C78272 - Agent Affecting Nervous System > C681 - Opiate Antagonist

   

MOLINDONE

MOLINDONE

C16H24N2O2 (276.1838)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AE - Indole derivatives D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent

   

Cabergoline

Cabergoline

C26H37N5O2 (451.2947)


G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02C - Other gynecologicals > G02CB - Prolactine inhibitors D002491 - Central Nervous System Agents > D018726 - Anti-Dyskinesia Agents > D000978 - Antiparkinson Agents N - Nervous system > N04 - Anti-parkinson drugs > N04B - Dopaminergic agents > N04BC - Dopamine agonists D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018491 - Dopamine Agonists C78272 - Agent Affecting Nervous System > C38149 - Antiparkinsonian Agent C78272 - Agent Affecting Nervous System > C66884 - Dopamine Agonist Cabergoline is an ergot derived-dopamine D2-like receptor agonist that has high affinity for D2, D3, and 5-HT2B receptors (Ki=0.7, 1.5, and 1.2, respectively).

   

MPTP

1-Methyl-4-phenyl-1,2,3,6-tetrahydropyridine

C12H15N (173.1204)


D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents D009676 - Noxae > D009498 - Neurotoxins

   

alpha-Amatoxin

alpha-Amatoxin

C39H54N10O14S (918.3542)


D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D000546 - Amanitins

   

Fluphenazine decanoate

Fluphenazine decanoate

C32H44F3N3O2S (591.3106)


D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29710 - Antipsychotic Agent Fluphenazine decanoate is a dopamine D2 receptor inhibitor, is a long-acting phenothiazine neuroleptic. Fluphenazine can be used for schizophrenia research[1][2][3].

   

Oxotremorine

Oxotremorine

C12H18N2O (206.1419)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists

   

Arbaclofen

(R)-Baclofen

C10H12ClNO2 (213.0557)


C78281 - Agent Affecting Musculoskeletal System > C29696 - Muscle Relaxant (R)-Baclofen (Arbaclofen) is a selective GABAB receptor agonist[1].

   

Kyotorphin

Kyotorphin acetate salt

C15H23N5O4 (337.175)


D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D018377 - Neurotransmitter Agents > D018847 - Opioid Peptides D018377 - Neurotransmitter Agents > D004723 - Endorphins Kyotorphin is an endogenou neuroactive dipeptide with analgesic properties. Kyotorphin possesses anti-inflammatory and antimicrobial activity. Kyotorphin levels in cerebro-spinal fluid correlate negatively with the progression of neurodegeneration in Alzheimer's Disease patients[1].

   

THIORPHAN

THIORPHAN

C12H15NO3S (253.0773)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Biotinamide

Biotin amide

C10H17N3O2S (243.1041)


A monocarboxylic acid amide derived from biotin.

   

CID 443409

CID 443409

C19H25NO2 (299.1885)


D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics

   

D-Phe-Pro-Arg-CH2Cl

D-Phe-Pro-Arg-CH2Cl

C21H31ClN6O3 (450.2146)


   

Clemastine

Clemastine

C21H26ClNO (343.1703)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

3-Chlorophenyl piperazine

1-(3-Chlorophenyl)piperazine

C10H13ClN2 (196.0767)


A N-arylpiperazine that is piperazine carrying a 3-chlorophenyl substituent at position 1. It is a metabolite of the antidepressant drug trazodone. D018377 - Neurotransmitter Agents > D018490 - Serotonin Agents > D017366 - Serotonin Receptor Agonists

   

gabaculine

3-Amino-2,3-dihydrobenzoic acid

C7H9NO2 (139.0633)


D004791 - Enzyme Inhibitors

   

Ibotenic acid

Ibotenic acid

C5H6N2O4 (158.0328)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites. Ibotenic acid has agonist activity at both the N-methyl-D-aspartate (NMDA) and trans-ACPD or metabolotropic quisqualate (Qm) receptor sites.

   

Nafoxidine

Nafoxidine

C29H31NO2 (425.2355)


D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D004965 - Estrogen Antagonists C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent