NCBI Taxonomy: 1913637
Mucoromycota (ncbi_taxid: 1913637)
found 88 associated metabolites at phylum taxonomy rank level.
Ancestor: Fungi incertae sedis
Child Taxonomies: Mucoromycotina, Glomeromycotina, Mortierellomycotina, environmental samples, unclassified Mucoromycota, Mucoromycota incertae sedis
Protocatechuic acid
Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.
Nicotinic acid
Nicotinic acid is an odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3\\\\\% solution) 3-3.5. (NTP, 1992) Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate. Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Nicotinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Niacin is a Nicotinic Acid. Niacin, also known as nicotinic acid and vitamin B3, is a water soluble, essential B vitamin that, when given in high doses, is effective in lowering low density lipoprotein (LDL) cholesterol and raising high density lipoprotein (HDL) cholesterol, which makes this agent of unique value in the therapy of dyslipidemia. Niacin can cause mild-to-moderate serum aminotransferase elevations and high doses and certain formulations of niacin have been linked to clinically apparent, acute liver injury which can be severe as well as fatal. Niacin is a water-soluble vitamin belonging to the vitamin B family, which occurs in many animal and plant tissues, with antihyperlipidemic activity. Niacin is converted to its active form niacinamide, which is a component of the coenzymes nicotinamide adenine dinucleotide (NAD) and its phosphate form, NADP. These coenzymes play an important role in tissue respiration and in glycogen, lipid, amino acid, protein, and purine metabolism. Although the exact mechanism of action by which niacin lowers cholesterol is not fully understood, it may act by inhibiting the synthesis of very low density lipoproteins (VLDL), inhibiting the release of free fatty acids from adipose tissue, increasing lipoprotein lipase activity, and reducing the hepatic synthesis of VLDL-C and LDL-C. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan (see below), but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. Nicotinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-67-6 (retrieved 2024-06-29) (CAS RN: 59-67-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].
Biotin
Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6] Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate. A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available. Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue. Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ... Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464). Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. [Raw Data] CB004_Biotin_pos_50eV_CB000006.txt [Raw Data] CB004_Biotin_pos_30eV_CB000006.txt [Raw Data] CB004_Biotin_pos_40eV_CB000006.txt [Raw Data] CB004_Biotin_pos_20eV_CB000006.txt [Raw Data] CB004_Biotin_pos_10eV_CB000006.txt [Raw Data] CB004_Biotin_neg_10eV_000006.txt [Raw Data] CB004_Biotin_neg_20eV_000006.txt Biosynthesis Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18] Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24] Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
3-Hydroxyanthranilic acid
3-Hydroxyanthranilic acid, also known as 2-amino-3-hydroxy-benzoate or 3-ohaa, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3-Hydroxyanthranilic acid is a drug. 3-Hydroxyanthranilic acid exists in all living species, ranging from bacteria to humans. Within humans, 3-hydroxyanthranilic acid participates in a number of enzymatic reactions. In particular, 3-hydroxyanthranilic acid and L-alanine can be biosynthesized from L-3-hydroxykynurenine through the action of the enzyme kynureninase. In addition, 3-hydroxyanthranilic acid can be converted into cinnavalininate through the action of the enzyme catalase. 3-Hydroxyanthranilic acid is an intermediate in the metabolism of tryptophan. In humans, 3-hydroxyanthranilic acid is involved in tryptophan metabolism. Outside of the human body, 3-hydroxyanthranilic acid has been detected, but not quantified in brassicas. This could make 3-hydroxyanthranilic acid a potential biomarker for the consumption of these foods. It is new antioxidant isolated from methanol extract of tempeh. It is effective in preventing autoxidation of soybean oil and powder, while antioxidant 6,7,4-trihydroxyisoflavone is not. D000975 - Antioxidants > D016166 - Free Radical Scavengers [Raw Data] CBA14_3-OH-anthranili_pos_30eV_1-6_01_808.txt [Raw Data] CBA14_3-OH-anthranili_neg_40eV_1-6_01_832.txt [Raw Data] CBA14_3-OH-anthranili_pos_40eV_1-6_01_809.txt [Raw Data] CBA14_3-OH-anthranili_neg_20eV_1-6_01_830.txt [Raw Data] CBA14_3-OH-anthranili_neg_10eV_1-6_01_829.txt [Raw Data] CBA14_3-OH-anthranili_pos_10eV_1-6_01_806.txt [Raw Data] CBA14_3-OH-anthranili_pos_20eV_1-6_01_807.txt [Raw Data] CBA14_3-OH-anthranili_neg_30eV_1-6_01_831.txt D020011 - Protective Agents > D000975 - Antioxidants Isolated from Brassica oleracea (cauliflower) 3-Hydroxyanthranilic acid is a tryptophan metabolite in the kynurenine pathway.
Stearic acid
Stearic acid, also known as stearate or N-octadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, stearic acid is considered to be a fatty acid lipid molecule. Stearic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Stearic acid can be synthesized from octadecane. Stearic acid is also a parent compound for other transformation products, including but not limited to, 3-oxooctadecanoic acid, (9S,10S)-10-hydroxy-9-(phosphonooxy)octadecanoic acid, and 16-methyloctadecanoic acid. Stearic acid can be found in a number of food items such as green bell pepper, common oregano, ucuhuba, and babassu palm, which makes stearic acid a potential biomarker for the consumption of these food products. Stearic acid can be found primarily in most biofluids, including urine, feces, cerebrospinal fluid (CSF), and sweat, as well as throughout most human tissues. Stearic acid exists in all living species, ranging from bacteria to humans. In humans, stearic acid is involved in the plasmalogen synthesis. Stearic acid is also involved in mitochondrial beta-oxidation of long chain saturated fatty acids, which is a metabolic disorder. Moreover, stearic acid is found to be associated with schizophrenia. Stearic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Stearic acid ( STEER-ik, stee-ARR-ik) is a saturated fatty acid with an 18-carbon chain and has the IUPAC name octadecanoic acid. It is a waxy solid and its chemical formula is C17H35CO2H. Its name comes from the Greek word στέαρ "stéar", which means tallow. The salts and esters of stearic acid are called stearates. As its ester, stearic acid is one of the most common saturated fatty acids found in nature following palmitic acid. The triglyceride derived from three molecules of stearic acid is called stearin . Stearic acid, also known as octadecanoic acid or C18:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Stearic acid (its ester is called stearate) is a saturated fatty acid that has 18 carbons and is therefore a very hydrophobic molecule that is practically insoluble in water. It exists as a waxy solid. In terms of its biosynthesis, stearic acid is produced from carbohydrates via the fatty acid synthesis machinery wherein acetyl-CoA contributes two-carbon building blocks, up to the 16-carbon palmitate, via the enzyme complex fatty acid synthase (FA synthase), at which point a fatty acid elongase is needed to further lengthen it. After synthesis, there are a variety of reactions it may undergo, including desaturation to oleate via stearoyl-CoA desaturase (PMID: 16477801). Stearic acid is found in all living organisms ranging from bacteria to plants to animals. It is one of the useful types of saturated fatty acids that comes from many animal and vegetable fats and oils. For example, it is a component of cocoa butter and shea butter. It is used as a food additive, in cleaning and personal care products, and in lubricants. Its name comes from the Greek word stear, which means ‚Äòtallow‚Äô or ‚Äòhard fat‚Äô. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
Pimelic acid
Pimelic acid, also known as heptanedioic acid is a dicarboxylic acid. Derivatives of pimelic acid are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is one methylene longer than a related dicarboxylic acid, adipic acid, a precursor to many polyesters and polyamides. Pimelic acid is essential for the synthesis of biotin (also called vitamin B7). Biotin is a heterocyclic, S-containing monocarboxylic acid that is made from two precursors, alanine and pimeloyl-CoA. Biotin is important in fatty acid synthesis, branched-chain amino acid catabolism, and gluconeogenesis. Biotin is found in a wide range of foods. Likewise, intestinal bacteria synthesize biotin, which is then absorbed by the host animal. Pimelic acid (which is the precursor for pimeloyl-CoA) is synthesized in many bacteria via a head-to-tail incorporation of acetate units through a modified fatty acid synthetic pathway using O-methyl esters disguised to resemble the canonical intermediates of the fatty acid synthetic pathway (PMID:21435937). Some bacteria and yeast synthesize pimelic acid not by biosynthesis, but via cleavage of longer chain fatty acids (such as linolenic acid) via a cytochrome P450-like enzyme (PMID:28196402, 21435937, 3236079). Pimelic acid is excreted in elevated amounts in the urine of individuals with mitochondrial beta-oxidation disorders and peroxisomal beta oxidation disorders (PMID:1527989) A group of compounds that are derivatives of heptanedioic acid with the general formula R-C7H11O4. KEIO_ID P063 Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.
Cholesterol
Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
Prenol
Prenol is found in blackcurrant. Prenol is a constituent of ylang-ylang and hop oils. Prenol is found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Prenol is a flavouring ingredient Constituent of ylang-ylang and hop oils. Found in orange peel oil and various fruits e.g. orange, lemon, lime, grape, pineapple, purple passion fruit, loganberry etc. Flavouring ingredient. 3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.
Chorismate
Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia [HMDB]. Chorismate is found in many foods, some of which are pigeon pea, ucuhuba, beech nut, and fireweed. Chorismic acid, more commonly known as its anionic form chorismate, is an important biochemical intermediate in plants and microorganisms. It is a precursor for the aromatic amino acids phenylalanine and tyrosine,indole, indole derivatives and tryptophan,2,3-dihydroxybenzoic acid (DHB) used for enterobactin biosynthesis,the plant hormone salicylic acid and many alkaloids and other aromatic metabolites. -- Wikipedia. CONFIDENCE standard compound; INTERNAL_ID 114
gamma-Carotene
gamma-Carotene is a cyclic carotene obtained by the cyclization of lycopene. It is found in human serum and breast milk (PMID: 9164160). Carotenoids are isoprenoid molecules that are widespread in nature and are typically seen as pigments in fruits, flowers, birds, and crustacea. Animals are unable to synthesize carotenoids de novo and rely upon the diet as a source of these compounds. Over recent years there has been considerable interest in dietary carotenoids with respect to their potential in alleviating age-related diseases in humans. This attention has been mirrored by significant advances in cloning most of the carotenoid genes and in the genetic manipulation of crop plants with the intention of increasing levels in the diet. Studies have shown an inverse relationship between the consumption of certain fruits and vegetables and the risk of epithelial cancer. Since carotenoids are among the micronutrients found in cancer-preventive foods, detailed qualitative and quantitative determination of these compounds, particularly in fruits and vegetables and in human plasma, have recently become increasingly important (PMID: 1416048, 15003396). Gamma-carotene, also known as γ-carotene, is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Gamma-carotene can be found in a number of food items such as corn, yellow bell pepper, fig, and papaya, which makes gamma-carotene a potential biomarker for the consumption of these food products.
Lanosterol
Lanosterol, also known as lanosterin, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Thus, lanosterol is considered to be a sterol lipid molecule. Lanosterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Lanosterol is biochemically synthesized starting from acetyl-CoA by the HMG-CoA reductase pathway. The critical step is the enzymatic conversion of the acyclic terpene squalene to the polycylic lanosterol via 2,3-squalene oxide. Constituent of wool fat used e.g. as chewing-gum softenerand is) also from yeast COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
Neurosporene
Neurosporene, also known as all-trans-neurosporene or 7,8-dihydro-ψ,ψ-carotene, is a member of the class of compounds known as carotenes. Carotenes are a type of unsaturated hydrocarbons containing eight consecutive isoprene units. They are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Carotenes belonging form a subgroup of the carotenoids family. Thus, neurosporene is considered to be an isoprenoid lipid molecule. Neurosporene can be found in a number of food items such as chicory, poppy, silver linden, and towel gourd, which makes neurosporene a potential biomarker for the consumption of these food products. Neurosporene can be found primarily in blood and breast milk. Neurosporene is a carotenoid pigment. It is an intermediate in the biosynthesis of lycopene and a variety of bacterial carotenoids . Neurosporene is a triterpenoid carotenoid identified in human plasma, (PMID: 1416048), serum (PMID: 1416048), milk (PMID: 9164160), and tissues of the human eye (PMID: 11180970). D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
24-Methylenecholesterol
24-Methylenecholesterol, also known as chalinasterol or ostreasterol, belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 24-methylenecholesterol is considered to be a sterol lipid molecule. 24-Methylenecholesterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 24-Methylenecholesterol is involved in the biosynthesis of steroids. 24-Methylenecholesterol is converted from 5-dehydroepisterol by 7-dehydrocholesterol reductase (EC 1.3.1.21). 24-Methylenecholesterol is converted into campesterol by delta24-sterol reductase (EC 1.3.1.72). 24-methylenecholesterol is a 3beta-sterol having the structure of cholesterol with a methylene group at C-24. It has a role as a mouse metabolite. It is a 3beta-sterol and a 3beta-hydroxy-Delta(5)-steroid. It is functionally related to a cholesterol. 24-Methylenecholesterol is a natural product found in Echinometra lucunter, Ulva fasciata, and other organisms with data available. A 3beta-sterol having the structure of cholesterol with a methylene group at C-24. Constituent of clams and oysters 24-Methylenecholesterol (Ostreasterol), a natural marine sterol, stimulates cholesterol acyltransferase in human macrophages. 24-Methylenecholesterol possess anti-aging effects in yeast. 24-methylenecholesterol enhances honey bee longevity and improves nurse bee physiology[1][2][3].
5-Dehydroepisterol
5-Dehydroepisterol belongs to the class of organic compounds known as ergosterols and derivatives. These are steroids containing ergosta-5,7,22-trien-3beta-ol or a derivative thereof, which is based on the 3beta-hydroxylated ergostane skeleton. Thus, 5-dehydroepisterol is considered to be a sterol lipid molecule. 5-Dehydroepisterol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 5-Dehydroepisterol is an intermediate in the biosynthesis of steroids and is converted from episterol via the enzyme lathosterol oxidase (EC 1.14.21.6). It is then converted into 24-methylenecholesterol via the enzyme 7-dehydrocholesterol reductase (EC 1.3.1.21). 5-Dehydroepisterol is an intermediate in the biosynthesis of steroids (KEGG ID C15780), and is converted from Episterol via the enzyme lathosterol oxidase [EC:1.14.21.6]. It is then converted to 24-Methylenecholesterol via the enzyme 7-dehydrocholesterol reductase [EC:1.3.1.21]. [HMDB]
Phytofluene
Phytofluene is a carotenoid pigment with an orange colour found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis (Wikipedia).
Naringenin 7-sulfate
C15H12O8S (352.02528720000004)
y,y-Carotene, 7,7',8,8',11,12-hexahydro-, cis-(9CI)
2-(3,7,12,16,20,24-Hexamethylpentacosa-1,3,5,7,9,11,13,15,17,19,23-undecaenyl)-1,3,3-trimethylcyclohexene
Bioepiderm
C10H16N2O3S (244.08815859999999)
Dehydroergosterol
Fungisterol
An ergostanoid that is 5alpha-ergost-7-ene substituted by a beta-hydroxy group at position 3. It has been isolated from the mycelia of Cordyceps sinensis.
zeta-Carotene
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 5 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Cholesterol
A cholestanoid consisting of cholestane having a double bond at the 5,6-position as well as a 3beta-hydroxy group. Disclaimer: While authors make an effort to ensure that the content of this record is accurate, the authors make no representations or warranties in relation to the accuracy or completeness of the record. This record do not reflect any viewpoints of the affiliation and organization to which the authors belong. Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].
phytofluene
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. It is formed from phytoene in a desaturation reaction leading to the formation of five conjugated double bonds. In the following step, addition of carbon-carbon conjugated double bonds leads to the formation of z-carotene and appearance of visible color.; Phytofluene is a carotenoid pigment with an orange color found naturally in tomatoes and other vegetables. It is the second product of carotenoid biosynthesis. Phytofluene is found in many foods, some of which are bitter gourd, yellow bell pepper, caraway, and pepper (c. annuum).
Biotin
C10H16N2O3S (244.08815859999999)
A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2876; ORIGINAL_PRECURSOR_SCAN_NO 2873 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2877; ORIGINAL_PRECURSOR_SCAN_NO 2875 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2896; ORIGINAL_PRECURSOR_SCAN_NO 2894 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2875; ORIGINAL_PRECURSOR_SCAN_NO 2872 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2894; ORIGINAL_PRECURSOR_SCAN_NO 2891 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2908; ORIGINAL_PRECURSOR_SCAN_NO 2906 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6231; ORIGINAL_PRECURSOR_SCAN_NO 6229 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6248; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6251; ORIGINAL_PRECURSOR_SCAN_NO 6246 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6253; ORIGINAL_PRECURSOR_SCAN_NO 6251 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6265; ORIGINAL_PRECURSOR_SCAN_NO 6263 CONFIDENCE standard compound; INTERNAL_ID 1328; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6256; ORIGINAL_PRECURSOR_SCAN_NO 6253 CONFIDENCE standard compound; INTERNAL_ID 219 INTERNAL_ID 219; CONFIDENCE standard compound relative retention time with respect to 9-anthracene Carboxylic Acid is 0.474 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.471 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.469 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.470 Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].
stearic acid
Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils. Stearic acid is a long chain dietary saturated fatty acid which exists in many animal and vegetable fats and oils.
pimelic acid
An alpha,omega-dicarboxylic acid that is pentane with two carboxylic acid groups at positions C-1 and C-5. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine. Pimelic acid is the organic compound and its derivatives are involved in the biosynthesis of the amino acid called lysine.
3-Hydroxyanthranilic acid
An aminobenzoic acid that is benzoic acid substituted at C-2 by an amine group and at C-3 by a hydroxy group. It is an intermediate in the metabolism of the amino acid tryptophan. D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WJXSWCUQABXPFS-UHFFFAOYSA-N_STSL_0003_3-hydroxyanthranillic acid_8000fmol_180416_S2_LC02_MS02_37; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Hydroxyanthranilic acid is a tryptophan metabolite in the kynurenine pathway.
Prenol
3-Methyl-2-buten-1-ol is an endogenous metabolite. 3-Methyl-2-buten-1-ol is an endogenous metabolite.
Octadecanoic acid
A C18 straight-chain saturated fatty acid component of many animal and vegetable lipids. As well as in the diet, it is used in hardening soaps, softening plastics and in making cosmetics, candles and plastics.
gamma-Carotene
A cyclic carotene obtained by the cyclisation of lycopene. Window width to select the precursor ion was 3 Da.; CONE_VOLTAGE is 10 V.; This record was created by the financial support of MEXT/JSPS KAKENHI Grant Number 19HP8024 to the Mass Spectrometry Society of Japan.
Neurosporene
D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids
linoleic
Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1]. Linolelaidic acid (Linoelaidic acid), an omega-6 trans fatty acid, acts as a source of energy. Linolelaidic acid is an essential nutrient, adding in enteral, parenteral, and infant formulas. Linolelaidic acid can be used for heart diseases research[1].
Chorismic acid
The (3R,4R)-stereoisomer of 5-[(1-carboxyethenyl)oxy]-6-hydroxycyclohexa-1,3-diene-1-carboxylic acid.
Dehydroergosterol
A phytosterol consiting of ergostane having double bonds at the 5,6-, 7,8- 9,11- and 22,23-positions as well as a 3beta-hydroxy group.
2,6,10,14,19,23,27,31-octamethyldotriaconta-2,6,10,12,14,16,18,22,26,30-decaene
1,3,3-trimethyl-2-[(9e,11e,13e,15e,17e)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene
(3s,6r,9r,12r,15s,18r,21r)-3-benzyl-6,12,21-tris[(2r)-butan-2-yl]-15-[(2s)-butan-2-yl]-9-isopropyl-18-methyl-1,4,7,10,13,16,19-heptaazacyclohenicosa-1,4,7,10,13,16,19-heptaene-2,5,8,11,14,17,20-heptol
C41H67N7O7 (769.5101712000001)
6,12-dihydroxy-15-[1-(5-hydroxy-4-methyl-6-oxo-2,3-dihydropyran-2-yl)ethyl]-2,16-dimethyl-8-oxapentacyclo[9.7.0.0²,⁷.0⁷,⁹.0¹²,¹⁶]octadec-4-en-3-one
(4e,8e,12e,16e)-4,8,13,17,21-pentamethyldocosa-4,8,12,16,20-pentaenoic acid
n-[(1s)-3-amino-1-{[(1s,2r)-1-{[(1s)-3-amino-1-{[(3s,6s,9s,12s,15r,18s,21s)-6,9,18-tris(2-aminoethyl)-2,5,8,11,14,17,20-heptahydroxy-3-[(1r)-1-hydroxyethyl]-12,15-bis(2-methylpropyl)-1,4,7,10,13,16,19-heptaazacyclotricosa-1,4,7,10,13,16,19-heptaen-21-yl]-c-hydroxycarbonimidoyl}propyl]-c-hydroxycarbonimidoyl}-2-hydroxypropyl]-c-hydroxycarbonimidoyl}propyl]-5-methylheptanimidic acid
methyl 2-[3-({2,4-dihydroxy-3-[4-hydroxy-2-methoxy-6-(methoxycarbonyl)benzoyl]-6-methylphenyl}methyl)-2,6-dihydroxy-4-methylbenzoyl]-5-hydroxy-3-methoxybenzoate
[(1r,2s,4s,7e,10r,12r,13r,14e,16r)-2,12-dihydroxy-4-[(2s,3r,4e,6e,8z)-3-methoxy-4,8-dimethyl-9-(2-methyl-1,3-oxazol-4-yl)nona-4,6,8-trien-2-yl]-1,13-dimethyl-6-oxo-5,17-dioxabicyclo[14.1.0]heptadeca-7,14-dien-10-yl]acetic acid
(1s,3s,7s,9r,10s,11r,16s,17s,26r,28s,29r)-22-chloro-16,17,34,34-tetramethyl-25-methylidene-11-(prop-1-en-2-yl)-2,8,12,33-tetraoxa-19-azadecacyclo[26.4.2.0³,¹⁷.0⁶,¹⁶.0⁷,⁹.0⁷,¹³.0¹⁸,³².0²⁰,³¹.0²³,³⁰.0²⁶,²⁹]tetratriaconta-18(32),20,22,30-tetraene-3,10,29-triol
C37H44ClNO7 (649.2806143999999)
3a,6,6,9a,11a-pentamethyl-1-(6-methylhept-5-en-2-yl)-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl acetate
3-benzyl-9-isopropyl-18-methyl-6,12,15,21-tetrakis(sec-butyl)-1,4,7,10,13,16,19-heptaazacyclohenicosa-1,4,7,10,13,16,19-heptaene-2,5,8,11,14,17,20-heptol
C41H67N7O7 (769.5101712000001)
(1r,3ar,5ar,7s,9as,11ar)-3a,6,6,9a,11a-pentamethyl-1-[(2s)-6-methylhept-5-en-2-yl]-1h,2h,3h,4h,5h,5ah,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-yl acetate
(3ar,7s,11ar)-1-[(2r,5s)-5,6-dimethylheptan-2-yl]-11a-methyl-1h,2h,3h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthren-7-ol
n-{3-[(2r,5r,8s,11r,14s)-3,6,9,12,15-pentahydroxy-14-[(4-hydroxyphenyl)methyl]-5,11-diisopropyl-8-(2-methylpropyl)-1,4,7,10,13-pentaazacyclopentadeca-1(15),3,6,9,12-pentaen-2-yl]propyl}guanidine
C31H50N8O6 (630.3853120000001)
methyl (1s)-1,3-dimethyl-2-[(1e,3e)-3-methyl-7-oxoocta-1,3-dien-1-yl]-4-oxocyclohex-2-ene-1-carboxylate
{8,14-dihydroxy-16-[3-hydroxy-4,8-dimethyl-9-(2-methyl-1,3-oxazol-4-yl)nona-4,6,8-trien-2-yl]-9,13-dimethyl-2-oxo-1-oxacyclohexadeca-3,10,12-trien-6-yl}acetic acid
3-(3,3-dichloro-2-hydroxypropyl)-6-methoxy-8-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}isochromen-1-one
4,5,6,19-tetrahydroxy-10-oxo-18-pentyl-2,9,22-trioxatricyclo[15.3.1.1³,⁷]docos-15-en-21-yl hexadecanoate
(2e,6e,9e)-10-[(2r,5r)-5-(2-hydroxypropan-2-yl)-2-methyloxolan-2-yl]-3,7-dimethyldeca-2,6,9-trienoic acid
9-hydroxy-7-[3-hydroxy-4,8-dimethyl-9-(2-methyl-1,3-oxazol-4-yl)nona-4,6,8-trien-2-yl]-10,14-dimethyl-6,16-dioxabicyclo[13.3.1]nonadeca-3,10,12-triene-5,17-dione
(4e)-5-[(1s)-1-hydroxy-2,6,6-trimethyl-4-oxocyclohex-2-en-1-yl]-3-methylpenta-2,4-dienoic acid
{2,12-dihydroxy-4-[3-hydroxy-4,8-dimethyl-9-(2-methyl-1,3-oxazol-4-yl)nona-4,6,8-trien-2-yl]-1,13-dimethyl-6-oxo-5,17-dioxabicyclo[14.1.0]heptadeca-7,14-dien-10-yl}acetic acid
(1r,3ar,7s,9as,11ar)-1-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-7-hydroxy-9a,11a-dimethyl-1h,2h,3ah,6h,7h,8h,9h,10h,11h-cyclopenta[a]phenanthrene-3,4-dione
8,11,24-trihydroxy-18-[2-(2-hydroxypropan-2-yl)-4-(prop-1-en-2-yl)cyclobutyl]-1,2-dimethyl-7-(prop-1-en-2-yl)-23-azapentacyclo[12.10.0.0²,¹¹.0⁵,¹⁰.0¹⁷,²²]tetracosa-9,17(22),18,20,23-pentaen-16-one
(z,2z,4e)-4-(methoxyimino)-n-[(1e)-3-[(2e,4s,5r,7s,8r,10s)-4,8,14-trihydroxy-12-oxo-6,11-dioxatricyclo[11.4.0.0⁵,⁷]heptadeca-1(17),2,13,15-tetraen-10-yl]prop-1-en-1-yl]but-2-enimidic acid
2,4-dihydroxy-n-(2-methoxy-2-oxoethyl)-3,5,6-trimethylbenzenecarboximidic acid
2-(3,7,12,16,20,24-hexamethylpentacosa-1,3,5,7,9,11,15,19,23-nonaen-1-yl)-1,3,3-trimethylcyclohex-1-ene
(1s,2s,4s,5s,9r,10s,13r)-5,14-bis(hydroxymethyl)-5,9-dimethyltetracyclo[11.2.1.0¹,¹⁰.0⁴,⁹]hexadec-14-en-2-ol
6-(hydroxymethyl)-2,6,12-trimethyltetracyclo[11.2.1.0¹,¹⁰.0²,⁷]hexadecan-12-ol
4-hydroxy-3-[(1s)-1-(3-hydroxyphenyl)-3-oxobutyl]chromen-2-one
2-(3,7,12,16,20,24-hexamethylpentacosa-1,3,5,7,9,11,13,15,19,23-decaen-1-yl)-1,3,3-trimethylcyclohex-1-ene
{2,12-dihydroxy-4-[3-methoxy-4,8-dimethyl-9-(2-methyl-1,3-oxazol-4-yl)nona-4,6,8-trien-2-yl]-1,13-dimethyl-6-oxo-5,17-dioxabicyclo[14.1.0]heptadeca-7,14-dien-10-yl}acetic acid
(2r,3s,4s,5s)-2-{[(1r,2s,4s,7s,10s,12s,13s)-4-hydroxy-2,6,6,13-tetramethyltetracyclo[10.3.1.0¹,¹⁰.0²,⁷]hexadecan-13-yl]oxy}-5-(hydroxymethyl)oxolane-3,4-diol
(3r,6s,8s)-6,8-dihydroxy-4,9-dioxa-2-azatricyclo[8.4.0.0³,⁸]tetradeca-1(10),11,13-triene-14-carboxylic acid
(5e,11e)-19-benzyl-7,21-dihydroxy-7,9,16,17-tetramethyl-2,4,15-trioxa-20-azatetracyclo[11.8.0.0¹,¹⁸.0¹⁴,¹⁶]henicosa-5,11,20-triene-3,8-dione
C28H33NO7 (495.22569080000005)