Gamma-Linolenic acid (BioDeep_00000000999)

   

human metabolite PANOMIX_OTCML-2023 blood metabolite BioNovoGene_Lab2019 natural product


代谢物信息卡片


(6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid

化学式: C18H30O2 (278.2246)
中文名称: r-亚麻酸, γ-亚麻酸
谱图信息: 最多检出来源 Homo sapiens(feces) 21.98%

Reviewed

Last reviewed on 2024-09-13.

Cite this Page

Gamma-Linolenic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China. https://query.biodeep.cn/s/gamma-linolenic_acid_alpha-linolenic_acid (retrieved 2024-12-22) (BioDeep RN: BioDeep_00000000999). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

分子结构信息

SMILES: C(=C/C/C=C\C/C=C\CCCCC)/CCCCC(=O)O
InChI: InChI=1S/C18H30O2/c1-2-3-4-5-6-7-8-9-10-11-12-13-14-15-16-17-18(19)20/h6-7,9-10,12-13H,2-5,8,11,14-17H2,1H3,(H,19,20)/b7-6-,10-9-,13-12-

描述信息

Gamma-linolenic acid is a C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12. It has a role as a human metabolite, a plant metabolite and a mouse metabolite. It is an omega-6 fatty acid and a linolenic acid. It is a conjugate acid of a gamma-linolenate.
Gamolenic acid, or gamma-linolenic acid (γ-Linolenic acid) or GLA, is an essential fatty acid (EFA) comprised of 18 carbon atoms with three double bonds that is most commonly found in human milk and other botanical sources. It is an omega-6 polyunsaturated fatty acid (PUFA) also referred to as 18:3n-6; 6,9,12-octadecatrienoic acid; and cis-6, cis-9, cis-12- octadecatrienoic acid. Gamolenic acid is produced minimally in the body as the delta 6-desaturase metabolite of [DB00132]. It is converted to [DB00154], a biosynthetic precursor of monoenoic prostaglandins such as PGE1. While Gamolenic acid is found naturally in the fatty acid fractions of some plant seed oils, [DB11358] and [DB11238] are rich sources of gamolenic acid. Evening primrose oil has been investigated for clinical use in menopausal syndrome, diabetic neuropathy, and breast pain, where gamolenic acid is present at concentrations of 7-14\\\\\%. Gamolenic acid may be found in over-the-counter dietary supplements. Gamolenic acid is also found in some fungal sources and also present naturally in the form of triglycerides. Various clinical indications of gamolenic acid have been studied, including rheumatoid arthritis, atopic eczema, acute respiratory distress syndrome, asthma, premenstrual syndrome, cardiovascular disease, ulcerative colitis, ADHD, cancer, osteoporosis, diabetic neuropathy, and insomnia.
gamma-Linolenic acid is a natural product found in Anemone cylindrica, Eurhynchium striatum, and other organisms with data available.
Gamolenic Acid is a polyunsaturated long-chain fatty acid with an 18-carbon backbone and exactly three double bonds, originating from the 6th, 9th and 12th positions from the methyl end, with all double bonds in the cis- configuration.
An omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted to dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1. (From Merck Index, 11th ed)
gamma-Linolenic acid, also known as 18:3n6 or GLA, belongs to the class of organic compounds known as linoleic acids and derivatives. These are derivatives of linoleic acid. Linoleic acid is a polyunsaturated omega-6 18-carbon long fatty acid, with two CC double bonds at the 9- and 12-positions. gamma-Linolenic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. gamma-Linolenic acid is an omega-6 fatty acid produced in the body as the delta 6-desaturase metabolite of linoleic acid. It is converted into dihomo-gamma-linolenic acid, a biosynthetic precursor of monoenoic prostaglandins such as PGE1 (PubChem).
A C18, omega-6 acid fatty acid comprising a linolenic acid having cis- double bonds at positions 6, 9 and 12.

gamma-Linolenic acid or GLA (γ-linolenic acid) (INN: gamolenic acid) is an n−6, or omega-6, fatty acid found primarily in seed oils. When acting on GLA, arachidonate 5-lipoxygenase produces no leukotrienes and the conversion by the enzyme of arachidonic acid to leukotrienes is inhibited.

GLA is obtained from vegetable oils such as evening primrose (Oenothera biennis) oil (EPO), blackcurrant seed oil, borage seed oil, and hemp seed oil. GLA is also found in varying amounts in edible hemp seeds, oats, barley,[3] and spirulina.[4] Normal safflower (Carthamus tinctorius) oil does not contain GLA, but a genetically modified GLA safflower oil available in commercial quantities since 2011 contains 40\\\% GLA.[5] Borage oil contains 20\\\% GLA, evening primrose oil ranges from 8\\\% to 10\\\% GLA, and black-currant oil contains 15–20\\\%.[6]

The human body produces GLA from linoleic acid (LA). This reaction is catalyzed by Δ6-desaturase (D6D), an enzyme that allows the creation of a double bond on the sixth carbon counting from the carboxyl terminus. LA is consumed sufficiently in most diets, from such abundant sources as cooking oils and meats. However, a lack of GLA can occur when there is a reduction of the efficiency of the D6D conversion (for instance, as people grow older or when there are specific dietary deficiencies) or in disease states wherein there is excessive consumption of GLA metabolites.[7]

From GLA, the body forms dihomo-γ-linolenic acid (DGLA). This is one of the body's three sources of eicosanoids (along with AA and EPA.) DGLA is the precursor of the prostaglandin PGH1, which in turn forms PGE1 and the thromboxane TXA1. Both PGE11 and TXA1 are anti-inflammatory; thromboxane TXA1, unlike its series-2 variant, induces vasodilation, and inhibits platelet[8] consequently, TXA1 modulates (reduces) the pro-inflammatory properties of the thromboxane TXA2. PGE1 has a role in regulation of immune system function and is used as the medicine alprostadil.

Unlike AA and EPA, DGLA cannot yield leukotrienes. However, it can inhibit the formation of pro-inflammatory leukotrienes from AA.[9]

Although GLA is an n−6 fatty acid, a type of acid that is, in general, pro-inflammatory[citation needed], it has anti-inflammatory properties. (See discussion at Essential fatty acid interactions: The paradox of dietary GLA.)
Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].
Gamma-linolenic acid (γ-Linolenic acid) is an omega-6 (n-6), 18 carbon (18C-) polyunsaturated fatty acid (PUFA) extracted from Perilla frutescens. Gamma-linolenic acid supplements could restore needed PUFAs and mitigate the disease[1].

同义名列表

118 个代谢物同义名

cis,cis,cis,6,9,12-Octa-decatrienoic acid-18:3 n6 lithium salt; GAMMA-LINOLENIC ACID (CONSTITUENT OF SPIRULINA) [DSC]; C18H30O2 (cis,cis,cis-octadeca-6,9,12-trienoic acid); cis-6, cis-9, cis-12-octadecatrienoic acid; 6,9,12-Octadecatrienoic acid, (6Z,9Z,12Z)-; (6Z,9Z,12Z)-octadeca-6,9,12-trienoic acid; gamma-Linolenic acid, analytical standard; 6-cis,9-cis,12-cis-Octadecatrienoic acid; (6Z,9Z,12Z)-6,9,12-Octadecatrienoic acid; cis-6,cis-9,cis-12-Octadecatrienoic acid; cis,cis,cis-6,9,12-Octadecatrienoic acid; cis-Delta(6,9,12)-octadecatrienoic acid; Octadecatrienoic acid, 6,9,12-(Z,Z,Z)-; 6,9,12-Octadecatrienoic acid, (Z,Z,Z)-; 6(Z),9(Z),12(Z)-Octadecatrienoic acid; (Z,Z,Z)-6,9,12-Octadecatrienoic acid; 6-cis,9-cis,12-cis-Octadecatrienoate; 6,9,12-all-cis-Octadecatrienoic acid; gamma Linolenic Acid, Potassium Salt; gamma-Linolenic Acid, Potassium Salt; D58CCA4A-7FFA-4E8B-A758-EAA7D073B343; gamma-Linolenic acid, >=99\\%, liquid; all-cis-6,9,12-Octadecatrienoic acid; z,z,z-octadeca-6,9,12-trienoic acid; gamma-Linolenic Acid, Ammonium Salt; cis-Delta(6,9,12)-octadecatrienoate; gamma Linolenic Acid, Ammonium Salt; cis-Δ(6,9,12)-octadecatrienoic acid; z,z,z-6,9,12-Octadecatrienoic acid; gamma-Linolenic Acid, Lithium Salt; gamma Linolenic Acid, Lithium Salt; gamma-Linolenic Acid, Sodium Salt; gamma -Linolenic Acid (18:3, n-6); gamma-Linolenic Acid, Cerium Salt; gamma Linolenic Acid, Indium Salt; gamma Linolenic Acid, Sodium Salt; 6(Z),9(Z),12(Z)-Octadecatrienoate; (6Z,9Z,12Z)-Octadecatrienoic acid; gamma Linolenic Acid, Cerium Salt; gamma-Linolenic Acid, Indium Salt; all-cis-6,9,12-octadecatrienoate; (Z,Z,Z)-6,9,12-Octadecatrienoate; (Z,Z,Z)-6,9,12-Octatrienoic acid; (6z,9z,12z-octadecatrienoic acid; 6,9,12-all-cis-Octadecatrienoate; cis-Δ(6,9,12)-octadecatrienoate; GAMMA-LINOLENIC ACID (18:3 n-6); 6Z,9Z,12Z-octadecatrienoic acid; gamma-Linolenic Acid, Zinc Salt; gamma Linolenic Acid, Zinc Salt; (6Z,9Z,12Z)-Octadecatrienoate; 6,9,12-Octadecatrienoic acid; 6Z,9Z,12Z-octadecatrienoate; .GAMMA.-LINOLENIC ACID [MI]; Octadeca-6,9,12-triensaeure; Acido gamolenico [Spanish]; Acide gamolenique [French]; Acidum gamolenicum [Latin]; Gamolenic acid [INN:BAN]; 6,9,12-Octadecatrienoate; (6,9,12)-linolenic acid; GAMOLENIC ACID [WHO-DD]; C18:3, n-6,9,12 all-cis; GAMOLENIC ACID [MART.]; .gamma.-Linolenic Acid; Acid, gamma-Linolenic; gamma Linolenic Acid; gamma-Llnolenic acid; GAMOLENIC ACID [INN]; Gamma-Linolenic acid; Delta-linolenic acid; Gamolenic acid (INN); gamma-linolenic-acid; FA(18:3(6Z,9Z,12Z)); gammalinolenic acid; (6,9,12)-Linolenate; gamma-Linolensaeure; Gamma-linoleic acid; Acidum gamolenicum; Acide gamolenique; g-Linolenic acid; Acido gamolenico; γ-Linolenic acid; y-Linolenic acid; gamma-Linolenate; g-Linolensaeure; Acid, Gamolenic; Γ-linolensaeure; UNII-78YC2MAX4O; Gammolenic acid; Gamolenic-acid; Gamolenic Acid; C18:3n-6,9,12; gamoleic acid; g-Linolenate; Tox21_111835; Γ-linolenate; IDI1_033808; C18:3 (n-6); FA(18:3n6); Gamolenate; 18:3 (n-6); linolenate; 78YC2MAX4O; Gamoleate; 18:3(N-6); C18:3,n-6; BML3-B06; Efamast; FA 18:3; Epogam; Ligla; GLA; octadeca-6,9,12-trienoic acid; γ-Linolenic Acid; Gamma-Linolenic acid; (6Z,9Z,12Z)-Octadecatrienoic acid; gamma-Linolenic acid



数据库引用编号

28 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(0)

BioCyc(0)

PlantCyc(0)

代谢反应

407 个相关的代谢反应过程信息。

Reactome(0)

BioCyc(0)

WikiPathways(4)

Plant Reactome(0)

INOH(0)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(403)

PharmGKB(0)

422 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 9 ALB, ALOX5, APOE, AXIN2, BCL2, CAT, FASN, GLA, PPARG
Peripheral membrane protein 1 ALOX5
Endoplasmic reticulum membrane 6 BCL2, FADS1, FADS2, GLA, HMGCR, SCD
Nucleus 5 ALB, APOE, AXIN2, BCL2, PPARG
cytosol 8 ALB, ALOX5, AXIN2, BCL2, CAT, FASN, LIPE, PPARG
dendrite 1 APOE
centrosome 2 ALB, AXIN2
nucleoplasm 2 ALOX5, PPARG
RNA polymerase II transcription regulator complex 1 PPARG
Cell membrane 2 LIPE, TNF
Multi-pass membrane protein 4 FADS1, FADS2, HMGCR, SCD
cell surface 1 TNF
glutamatergic synapse 1 APOE
Golgi apparatus 4 ALB, APOE, FASN, GLA
Golgi membrane 1 INS
neuronal cell body 2 APOE, TNF
Cytoplasm, cytosol 2 ALOX5, LIPE
Lysosome 1 GLA
plasma membrane 7 APOE, AXIN2, FADS2, FASN, IFNLR1, IGHE, TNF
Membrane 11 APOE, BCL2, CAT, FADS1, FADS2, FASN, GLA, HMGCR, IFNLR1, LIPE, SCD
caveola 1 LIPE
extracellular exosome 5 ALB, APOE, CAT, FASN, GLA
endoplasmic reticulum 5 ALB, APOE, BCL2, HMGCR, SCD
extracellular space 8 ALB, ALOX5, APOE, CRP, IGHE, IL6, INS, TNF
lysosomal lumen 1 GLA
perinuclear region of cytoplasm 2 ALOX5, PPARG
mitochondrion 3 BCL2, CAT, FADS1
protein-containing complex 3 ALB, BCL2, CAT
intracellular membrane-bounded organelle 3 CAT, FADS1, PPARG
Single-pass type I membrane protein 2 IFNLR1, IGHE
Secreted 5 ALB, APOE, CRP, IL6, INS
extracellular region 10 ALB, ALOX5, APOE, CAT, CRP, GLA, IGHE, IL6, INS, TNF
Mitochondrion outer membrane 1 BCL2
Single-pass membrane protein 1 BCL2
mitochondrial outer membrane 1 BCL2
mitochondrial matrix 1 CAT
anchoring junction 1 ALB
Nucleus membrane 2 ALOX5, BCL2
Bcl-2 family protein complex 1 BCL2
nuclear membrane 2 ALOX5, BCL2
external side of plasma membrane 1 TNF
Endosome, multivesicular body 1 APOE
Extracellular vesicle 1 APOE
Secreted, extracellular space, extracellular matrix 1 APOE
chylomicron 1 APOE
high-density lipoprotein particle 1 APOE
low-density lipoprotein particle 1 APOE
multivesicular body 1 APOE
very-low-density lipoprotein particle 1 APOE
beta-catenin destruction complex 1 AXIN2
nucleolus 1 SCD
Early endosome 1 APOE
recycling endosome 1 TNF
Single-pass type II membrane protein 1 TNF
Cytoplasm, perinuclear region 1 ALOX5
Membrane raft 1 TNF
pore complex 1 BCL2
focal adhesion 1 CAT
extracellular matrix 1 APOE
Peroxisome 1 CAT
Peroxisome matrix 1 CAT
peroxisomal matrix 1 CAT
peroxisomal membrane 2 CAT, HMGCR
collagen-containing extracellular matrix 1 APOE
receptor complex 1 PPARG
ciliary basal body 1 ALB
chromatin 1 PPARG
IgE immunoglobulin complex 1 IGHE
phagocytic cup 1 TNF
centriole 1 ALB
Secreted, extracellular space 1 APOE
spindle pole 1 ALB
blood microparticle 2 ALB, APOE
[Isoform 2]: Cell membrane 1 IGHE
nuclear envelope 1 ALOX5
Nucleus envelope 1 ALOX5
endosome lumen 1 INS
Lipid droplet 1 LIPE
Membrane, caveola 1 LIPE
[Isoform 1]: Endoplasmic reticulum membrane 1 FADS1
Melanosome 2 APOE, FASN
myelin sheath 1 BCL2
Peroxisome membrane 1 HMGCR
ficolin-1-rich granule lumen 2 ALOX5, CAT
secretory granule lumen 3 ALOX5, CAT, INS
Golgi lumen 1 INS
endoplasmic reticulum lumen 4 ALB, APOE, IL6, INS
nuclear matrix 1 ALOX5
platelet alpha granule lumen 1 ALB
transport vesicle 1 INS
azurophil granule lumen 1 GLA
Endoplasmic reticulum-Golgi intermediate compartment membrane 2 GLA, INS
Nucleus matrix 1 ALOX5
nuclear envelope lumen 1 ALOX5
clathrin-coated endocytic vesicle membrane 1 APOE
endoplasmic reticulum-Golgi intermediate compartment 1 GLA
synaptic cleft 1 APOE
[Isoform 2]: Endoplasmic reticulum membrane 1 FADS1
[Isoform 3]: Cell membrane 1 IGHE
discoidal high-density lipoprotein particle 1 APOE
endocytic vesicle lumen 1 APOE
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
chylomicron remnant 1 APOE
intermediate-density lipoprotein particle 1 APOE
lipoprotein particle 1 APOE
multivesicular body, internal vesicle 1 APOE
catalase complex 1 CAT
interleukin-6 receptor complex 1 IL6
Nucleus intermembrane space 1 ALOX5
BAD-BCL-2 complex 1 BCL2
glycogen granule 1 FASN
ciliary transition fiber 1 ALB
interleukin-28 receptor complex 1 IFNLR1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Kun-Pyo Kim, Kyung-Oh Shin, Sangmin Lee, Jihyeon Yun, Taehoon Lee, Yunhi Cho. PNPLA1 knockdown inhibits esterification of γ-linolenic acid to ceramide 1 in differentiated keratinocytes. Biochemical and biophysical research communications. 2024 Apr; 702(?):149618. doi: 10.1016/j.bbrc.2024.149618. [PMID: 38340658]
  • Melika Sharifi, Nasim Nourani, Sarvin Sanaie, Sanaz Hamedeyazdan. The effect of Oenothera biennis (Evening primrose) oil on inflammatory diseases: a systematic review of clinical trials. BMC complementary medicine and therapies. 2024 Feb; 24(1):89. doi: 10.1186/s12906-024-04378-5. [PMID: 38360611]
  • Heba Nageh Gad El-Hak, Safaa M Kishk, Heba M A Abdelrazek. Evening primrose oil enriched with gamma linolenic acid and D/L-alpha tocopherol acetate attenuated carbon tetrachloride-induced hepatic injury model in male rats via TNF-α, IL-1β, and IL-6 pathway. Toxicology mechanisms and methods. 2024 Jan; ?(?):1-15. doi: 10.1080/15376516.2023.2301357. [PMID: 38166523]
  • Jin-Yi Tang, Mei-Ling Chen, Mei Wan, Jin-Yu Wei, Tian Qian, Yu-Kun Fan, Zhi Yang, Jian Fu, Jian Li. Associations of serum gamma-linolenic acid levels with erythema severity and anxiety/depression status in patients with rosacea. Anais brasileiros de dermatologia. 2023 Dec; ?(?):. doi: 10.1016/j.abd.2023.01.008. [PMID: 38061964]
  • Francisc Vasile Dulf, Dan Cristian Vodnar, Eva-Henrietta Dulf. Solid-state fermentation with Zygomycetes fungi as a tool for biofortification of apple pomace with γ-linolenic acid, carotenoid pigments and phenolic antioxidants. Food research international (Ottawa, Ont.). 2023 11; 173(Pt 2):113448. doi: 10.1016/j.foodres.2023.113448. [PMID: 37803774]
  • Hyo-Suk Ahn, Eun Young Cho, Keun-Sang Yum. Efficacy of γ-linolenic acid, Vitis vinifera extract, and acetyl-L-carnitine combination therapy for improving arterial stiffness in Korean adults: Real-world evidence. Journal of clinical hypertension (Greenwich, Conn.). 2023 Aug; ?(?):. doi: 10.1111/jch.14708. [PMID: 37608640]
  • Ana Paredes, Raquel Justo-Méndez, Daniel Jiménez-Blasco, Vanessa Núñez, Irene Calero, María Villalba-Orero, Andrea Alegre-Martí, Thierry Fischer, Ana Gradillas, Viviane Aparecida Rodrigues Sant'Anna, Felipe Were, Zhiqiang Huang, Pablo Hernansanz-Agustín, Carmen Contreras, Fernando Martínez, Emilio Camafeita, Jesús Vázquez, Jesús Ruiz-Cabello, Estela Area-Gómez, Fátima Sánchez-Cabo, Eckardt Treuter, Juan Pedro Bolaños, Eva Estébanez-Perpiñá, Francisco Javier Rupérez, Coral Barbas, José Antonio Enríquez, Mercedes Ricote. γ-Linolenic acid in maternal milk drives cardiac metabolic maturation. Nature. 2023 May; ?(?):. doi: 10.1038/s41586-023-06068-7. [PMID: 37225978]
  • Adam Yasgar, Danielle Bougie, Richard T Eastman, Ruili Huang, Misha Itkin, Jennifer Kouznetsova, Caitlin Lynch, Crystal McKnight, Mitch Miller, Deborah K Ngan, Tyler Peryea, Pranav Shah, Paul Shinn, Menghang Xia, Xin Xu, Alexey V Zakharov, Anton Simeonov. Quantitative Bioactivity Signatures of Dietary Supplements and Natural Products. ACS pharmacology & translational science. 2023 May; 6(5):683-701. doi: 10.1021/acsptsci.2c00194. [PMID: 37200814]
  • Aleksandra Arsic, Predrag Krstic, Marija Paunovic, Jasmina Nedovic, Vladimir Jakovljevic, Vesna Vucic. Anti-inflammatory effect of combining fish oil and evening primrose oil supplementation on breast cancer patients undergoing chemotherapy: a randomized placebo-controlled trial. Scientific reports. 2023 04; 13(1):6449. doi: 10.1038/s41598-023-28411-8. [PMID: 37081029]
  • S G Yammine, I Huybrechts, C Biessy, L Dossus, S Panico, M J Sánchez, V Benetou, R Turzanski-Fortner, V Katzke, A Idahl, G Skeie, K Standahl Olsen, A Tjønneland, J Halkjaer, S Colorado-Yohar, A K Heath, E Sonestedt, H Sartor, M B Schulze, D Palli, M Crous-Bou, A Dorronsoro, K Overvad, A Barricarte Gurrea, G Severi, R C H Vermeulen, T M Sandanger, R C Travis, T Key, P Amiano, B Van Guelpen, M Johansson, M Sund, R Tumino, N Wareham, C Sacerdote, V Krogh, P Brennan, E Riboli, E Weiderpass, M J Gunter, V Chajès. Dietary fatty acids and endometrial cancer risk within the European Prospective Investigation into Cancer and Nutrition. BMC cancer. 2023 Feb; 23(1):159. doi: 10.1186/s12885-023-10611-0. [PMID: 36797668]
  • Makoto Noguchi, Makoto Shimizu, Peng Lu, Yu Takahashi, Yoshio Yamauchi, Shintaro Sato, Hiroshi Kiyono, Shigenobu Kishino, Jun Ogawa, Koji Nagata, Ryuichiro Sato. Lactic acid bacteria-derived γ-linolenic acid metabolites are PPARδ ligands that reduce lipid accumulation in human intestinal organoids. The Journal of biological chemistry. 2022 11; 298(11):102534. doi: 10.1016/j.jbc.2022.102534. [PMID: 36162507]
  • Emilia Neag, Zamfira Stupar, Cerasel Varaticeanu, Marin Senila, Cecilia Roman. Optimization of Lipid Extraction from Spirulina spp. by Ultrasound Application and Mechanical Stirring Using the Taguchi Method of Experimental Design. Molecules (Basel, Switzerland). 2022 Oct; 27(20):. doi: 10.3390/molecules27206794. [PMID: 36296385]
  • Syusuke Egoshi, Kosuke Dodo, Mikiko Sodeoka. Deuterium Raman imaging for lipid analysis. Current opinion in chemical biology. 2022 10; 70(?):102181. doi: 10.1016/j.cbpa.2022.102181. [PMID: 35792373]
  • Maryam Sadat Mirbagheri Firoozabad, Hamidreza Akhbariyoon. Engineering and fermenter production of fungi GLA in Pichia pastoris GS115 using oil waste. Archives of microbiology. 2022 Sep; 204(10):635. doi: 10.1007/s00203-022-03182-4. [PMID: 36127512]
  • Ruohui Xu, Xiaoli Xiao, Shengan Zhang, Jiashu Pan, Yingjue Tang, Wenjun Zhou, Guang Ji, Yanqi Dang. The methyltransferase METTL3-mediated fatty acid metabolism revealed the mechanism of cinnamaldehyde on alleviating steatosis. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2022 Sep; 153(?):113367. doi: 10.1016/j.biopha.2022.113367. [PMID: 35780619]
  • Hassan Mohamed, Mohamed F Awad, Aabid Manzoor Shah, Beenish Sadaqat, Yusuf Nazir, Tahira Naz, Wu Yang, Yuanda Song. Coculturing of Mucor plumbeus and Bacillus subtilis bacterium as an efficient fermentation strategy to enhance fungal lipid and gamma-linolenic acid (GLA) production. Scientific reports. 2022 07; 12(1):13111. doi: 10.1038/s41598-022-17442-2. [PMID: 35908106]
  • Agnieszka Kaźmierska, Izabela Bolesławska, Adriana Polańska, Aleksandra Dańczak-Pazdrowska, Paweł Jagielski, Sławomira Drzymała-Czyż, Zygmunt Adamski, Juliusz Przysławski. Effect of Evening Primrose Oil Supplementation on Selected Parameters of Skin Condition in a Group of Patients Treated with Isotretinoin-A Randomized Double-Blind Trial. Nutrients. 2022 Jul; 14(14):. doi: 10.3390/nu14142980. [PMID: 35889936]
  • Sarwar Beg, Sagar S Panda, Kamalinder K Singh. Chemometrics-assisted development of a validated LC method for simultaneous estimation of temozolomide and γ-linolenic acid: Greenness assessment and application to lipidic nanoparticles. Journal of chromatography. B, Analytical technologies in the biomedical and life sciences. 2022 Jun; 1200(?):123261. doi: 10.1016/j.jchromb.2022.123261. [PMID: 35533423]
  • Zuzanna J Krysiak, Piotr K Szewczyk, Krzysztof Berniak, Ewa A Sroczyk, Elżbieta Boratyn, Urszula Stachewicz. Stretchable skin hydrating PVB patches with controlled pores' size and shape for deliberate evening primrose oil spreading, transport and release. Biomaterials advances. 2022 May; 136(?):212786. doi: 10.1016/j.bioadv.2022.212786. [PMID: 35929319]
  • S M Kawish, Abdul Qadir, Suma Saad, Sarwar Beg, Gaurav K Jain, Mohd Aqil, Amer M Alanazi, Azmat Ali Khan, Md Abdur Rashid, Rehan A Rab, Waleed H Almalki, Farhan J Ahmad. A Validated, Rapid and Cost-Efficient HPTLC Method for Quantification of Gamma-Linolenic Acid in Borage Oil and Evaluation of Antioxidant Activity. Journal of chromatographic science. 2022 Apr; 60(4):364-371. doi: 10.1093/chromsci/bmab059. [PMID: 34080615]
  • Yao Zhang, Yanxia Wang, Junhuan Yang, Wu Yang, Xiuwen Wang, Chen Wu, Yuanda Song. Improved γ-Linolenic Acid Production from Cellulose in Mucor circinelloides via Coexpression of Cellobiohydrolase and Delta-6 Desaturase. Journal of agricultural and food chemistry. 2022 Apr; 70(14):4373-4381. doi: 10.1021/acs.jafc.2c00359. [PMID: 35357816]
  • Mohammad M Abd-Alhaseeb, Sarah M Massoud, Fatma Elsayed, Gamal A Omran, Ahmad Salahuddin. Evening Primrose Oil Enhances Tamoxifen's Anticancer Activity against Breast Cancer Cells by Inducing Apoptosis, Inhibiting Angiogenesis, and Arresting the Cell Cycle. Molecules (Basel, Switzerland). 2022 Apr; 27(8):. doi: 10.3390/molecules27082391. [PMID: 35458590]
  • B B Sharma, P J Lamey. Multiple oral mucoceles treated with evening primrose oil: a report of two cases. The British journal of oral & maxillofacial surgery. 2022 04; 60(3):365-367. doi: 10.1016/j.bjoms.2021.07.001. [PMID: 34690016]
  • Agnieszka Kaźmierska, Izabela Bolesławska, Paweł Jagielski, Adriana Polańska, Aleksandra Dańczak-Pazdrowska, Grzegorz Kosewski, Zygmunt Adamski, Juliusz Przysławski. Effect of Evening Primrose Oil Supplementation on Biochemical Parameters and Nutrition of Patients Treated with Isotretinoin for Acne Vulgaris: A Randomized Double-Blind Trial. Nutrients. 2022 Mar; 14(7):. doi: 10.3390/nu14071342. [PMID: 35405955]
  • Łukasz Kaniuk, Agnieszka Podborska, Urszula Stachewicz. Enhanced mechanical performance and wettability of PHBV fiber blends with evening primrose oil for skin patches improving hydration and comfort. Journal of materials chemistry. B. 2022 03; 10(11):1763-1774. doi: 10.1039/d1tb02805g. [PMID: 35254375]
  • Yu Ri Woo, Seok Hoon Moon, Jeesuk Yu, Sang Hyun Cho. Synergistic Effects of Korean Red Ginseng Extract and the Conventional Systemic Therapeutics of Atopic Dermatitis in a Murine Model. Nutrients. 2021 Dec; 14(1):. doi: 10.3390/nu14010133. [PMID: 35011005]
  • Yanqiu Yue, Fengbin Jin, Xiaohui Yue. The effect of Borago officinalis on the signaling pathway of the NLRP3 inflammasome complex, TLR4 and some inflammatory cytokines in type II diabetic patients with acute respiratory distress syndrome. Cellular and molecular biology (Noisy-le-Grand, France). 2021 Nov; 67(3):178-183. doi: 10.14715/cmb/2021.67.3.28. [PMID: 34933712]
  • Yan Wang, Yiwei Tang, Ye Ji, Wenhui Xu, Naeem Ullah, Haitao Yu, Yixia Wu, Lin Xie. Association between FADS1 rs174547 and levels of long-chain PUFA: a meta-analysis. The British journal of nutrition. 2021 10; 126(8):1121-1129. doi: 10.1017/s0007114520005103. [PMID: 33331250]
  • Robert A DiSilvestro, Susan Olivo Marston, Autumn Zimmerman, Elizabeth Joseph, Carolynn Boeh McCarty. Borage oil intake by overweight young adults: no effect on metabolic rate; beneficial effects on plasma triglyceride and HDL cholesterol readings. Food & function. 2021 Oct; 12(19):8882-8886. doi: 10.1039/d1fo01887f. [PMID: 34606560]
  • Maryam Moradi, Azin Niazi, Hamid Heydarian Miri, Violeta Lopez. The effect of evening primrose oil on labor induction and cervical ripening: A systematic review and meta-analysis. Phytotherapy research : PTR. 2021 Oct; 35(10):5374-5383. doi: 10.1002/ptr.7147. [PMID: 33913585]
  • Alicia Leikin-Frenkel, Aya Mohr-Sasson, Matan Anteby, Michal Kandel-Kfir, Ayelet Harari, Roni Rahav, Yehuda Kamari, Aviv Shaish, Dror Harats, Hofit Cohen, Israel Hendler. Blood fatty acid analysis reveals similar n-3 fatty acid composition in non-pregnant and pregnant women and their neonates in an Israeli pilot study. Prostaglandins, leukotrienes, and essential fatty acids. 2021 10; 173(?):102339. doi: 10.1016/j.plefa.2021.102339. [PMID: 34487973]
  • Shahla Hemmatzadeh, Fatemeh Abbasalizadeh, Sakineh Mohammad-Alizadeh-Charandabi, Mohammad Asghari Jafarabady, Mojgan Mirghafourvand. Developing and validating the Caesarean risk assessment nomogram and comparing the effect of cervical ripening balloon, evening primrose oil and misoprostol on childbirth outcomes in term pregnancies: A study protocol. Nursing open. 2021 09; 8(5):2892-2900. doi: 10.1002/nop2.846. [PMID: 33689238]
  • Abdur Rehman, Qunyi Tong, Seid Mahdi Jafari, Sameh A Korma, Imran Mahmood Khan, Ali Mohsin, Muhammad Faisal Manzoor, Waqas Ashraf, Bilal Sajid Mushtaq, Saadia Zainab, Ilaria Cacciotti. Spray dried nanoemulsions loaded with curcumin, resveratrol, and borage seed oil: The role of two different modified starches as encapsulating materials. International journal of biological macromolecules. 2021 Sep; 186(?):820-828. doi: 10.1016/j.ijbiomac.2021.07.076. [PMID: 34280445]
  • Ekaterina Golovenko, Svetlana Lyashenko, Svetlana Akimova, Lyubov Mitina, Elena Mulenkova, El-Hassan Belarbi, José Luis Guil-Guerrero. Gamma-linolenic Acid from Fifty-seven Ribes Species and Cultivars. Plant foods for human nutrition (Dordrecht, Netherlands). 2021 Sep; 76(3):385-393. doi: 10.1007/s11130-021-00913-8. [PMID: 34328593]
  • Joanna Paciorek-Sadowska, Marcin Borowicz, Marek Isbrandt. Effect of Evening Primrose (Oenothera biennis) Oil Cake on the Properties of Polyurethane/Polyisocyanurate Bio-Composites. International journal of molecular sciences. 2021 Aug; 22(16):. doi: 10.3390/ijms22168950. [PMID: 34445654]
  • Yaxu Liang, Zhen Zhang, Jiayu Tu, Zhibo Wang, Xiaoxiao Gao, Kaiping Deng, M A El-Samahy, Peihua You, Yixuan Fan, Feng Wang. γ-Linolenic Acid Prevents Lipid Metabolism Disorder in Palmitic Acid-Treated Alpha Mouse Liver-12 Cells by Balancing Autophagy and Apoptosis via the LKB1-AMPK-mTOR Pathway. Journal of agricultural and food chemistry. 2021 Jul; 69(29):8257-8267. doi: 10.1021/acs.jafc.1c02596. [PMID: 34281337]
  • Svetlana Lyashenko, María José González-Fernández, Sargilana Borisova, El-Hassan Belarbi, José Luis Guil-Guerrero. Mertensia (Boraginaceae) seeds are new sources of γ-linolenic acid and minor functional compounds. Food chemistry. 2021 Jul; 350(?):128635. doi: 10.1016/j.foodchem.2020.128635. [PMID: 33317855]
  • Yogamaya D Prabhu, Monica Bhati, Balachandar Vellingiri, Abilash Valsala Gopalakrishnan. The effect of γ-linolenic acid on Polycystic Ovary Syndrome associated Focal Segmental Glomerulosclerosis via TGF-β pathway. Life sciences. 2021 Jul; 276(?):119456. doi: 10.1016/j.lfs.2021.119456. [PMID: 33811895]
  • Naoko Kanda, Toshihiko Hoashi, Hidehisa Saeki. Nutrition and Atopic Dermatitis. Journal of Nippon Medical School = Nippon Ika Daigaku zasshi. 2021 Jun; 88(3):171-177. doi: 10.1272/jnms.jnms.2021_88-317. [PMID: 33692290]
  • Lina Liana Ahmad Adni, Mohd Noor Norhayati, Ritzzaleena Rosli Mohd Rosli, Juliawati Muhammad. A Systematic Review and Meta-Analysis of the Efficacy of Evening Primrose Oil for Mastalgia Treatment. International journal of environmental research and public health. 2021 06; 18(12):. doi: 10.3390/ijerph18126295. [PMID: 34200727]
  • Kwang Ho Yoo, Dong Sik Bang, Mi Le Kim, Sung Eun Lee, Kapsok Li, Beom Joon Kim. Oral evening primrose oil as an adjuvant treatment option in chronic lichenoid dermatitis. Dermatologic therapy. 2021 05; 34(3):e14914. doi: 10.1111/dth.14914. [PMID: 33629429]
  • Kun-Pyo Kim, Kyong-Oh Shin, Kyungho Park, Yunhi Cho. Borage Oil Enhances Lamellar Body Content and Alters Fatty Acid Composition of Epidermal Ceramides in Essential Fatty Acid-Deficient Guinea Pigs. Lipids. 2021 05; 56(3):345-353. doi: 10.1002/lipd.12295. [PMID: 33378788]
  • Kosuke Dodo, Ayato Sato, Yuki Tamura, Syusuke Egoshi, Koichi Fujiwara, Kana Oonuma, Shuhei Nakao, Naoki Terayama, Mikiko Sodeoka. Synthesis of deuterated γ-linolenic acid and application for biological studies: metabolic tuning and Raman imaging. Chemical communications (Cambridge, England). 2021 Mar; 57(17):2180-2183. doi: 10.1039/d0cc07824g. [PMID: 33527102]
  • Lúcia de Fátima Cahino da Costa Hime, Ceci Mendes Carvalho Lopes, Cristiane Lima Roa, Lea Tami Suzuki Zuchelo, Edmund C Baracat, Januário de Andrade, José Maria Soares. Is there a beneficial effect of gamma-linolenic acid supplementation on body fat in postmenopausal hypertensive women? A prospective randomized double-blind placebo-controlled trial. Menopause (New York, N.Y.). 2021 02; 28(6):699-705. doi: 10.1097/gme.0000000000001740. [PMID: 33534427]
  • Marijana Andjic, Nevena Draginic, Kristina Radoman, Jovana Jeremic, Tamara Nikolic Turnic, Ivan Srejovic, Vladimir Zivkovic, Marija Kovacevic, Sergey Bolevich, Vladimir Jakovljevic. Flaxseed and evening primrose oil slightly affect systolic and diastolic function of isolated heart in male but not in female rats. International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition. 2021 Jan; 91(1-2):99-107. doi: 10.1024/0300-9831/a000612. [PMID: 31699009]
  • Stefanie F Maurer, Sebastian Dieckmann, Jens Lund, Tobias Fromme, Anne Lundby Hess, Cécilia Colson, Louise Kjølbaek, Arne Astrup, Matthew Paul Gillum, Lesli Hingstrup Larsen, Gerhard Liebisch, Ez-Zoubir Amri, Martin Klingenspor. No Effect of Dietary Fish Oil Supplementation on the Recruitment of Brown and Brite Adipocytes in Mice or Humans under Thermoneutral Conditions. Molecular nutrition & food research. 2021 01; 65(2):e2000681. doi: 10.1002/mnfr.202000681. [PMID: 33274552]
  • Fatih Levent Balci, Cihan Uras, Sheldon Feldman. ASO Author Reflection: Getting Closer to Solving the Mystery Behind Mastalgia: Evening Primrose Oil and Factors Affecting Its Therapeutic Efficacy. Annals of surgical oncology. 2020 Dec; 27(Suppl 3):717-718. doi: 10.1245/s10434-020-09032-1. [PMID: 32812105]
  • José Luis Guil-Guerrero, María José González-Fernández, Svetlana Lyashenko, Dmitri Fabrikov, Miguel Ángel Rincón-Cervera, Miguel Urrestarazu, Francisco Gómez-Mercado. γ-Linolenic and Stearidonic Acids from Boraginaceae of Diverse Mediterranean Origin. Chemistry & biodiversity. 2020 Dec; 17(12):e2000627. doi: 10.1002/cbdv.202000627. [PMID: 33045128]
  • Fatih Levent Balci, Cihan Uras, Sheldon Feldman. Clinical Factors Affecting the Therapeutic Efficacy of Evening Primrose Oil on Mastalgia. Annals of surgical oncology. 2020 Nov; 27(12):4844-4852. doi: 10.1245/s10434-020-08949-x. [PMID: 32748152]
  • Jin A Shin, Meixiang Sun, Jong-Moon Jeong. Borage Oil Treated with Immobilized Lipase Inhibits Melanogenesis. Lipids. 2020 11; 55(6):649-659. doi: 10.1002/lipd.12266. [PMID: 33128473]
  • Ella J Baker, Carina A Valenzuela, Wies T M van Dooremalen, Leyre Martínez-Fernández, Parveen Yaqoob, Elizabeth A Miles, Philip C Calder. Gamma-Linolenic and Pinolenic Acids Exert Anti-Inflammatory Effects in Cultured Human Endothelial Cells Through Their Elongation Products. Molecular nutrition & food research. 2020 10; 64(20):e2000382. doi: 10.1002/mnfr.202000382. [PMID: 32898315]
  • Masoud Khorshidi, Meysam Zarezadeh, Omid Moradi Moghaddam, Mohammad Reza Emami, Hamed Kord-Varkaneh, Seyed Mohammad Mousavi, Shahab Alizadeh, Javad Heshmati, Beheshteh Olang, Naheed Aryaeian. Effect of evening primrose oil supplementation on lipid profile: A systematic review and meta-analysis of randomized clinical trials. Phytotherapy research : PTR. 2020 Oct; 34(10):2628-2638. doi: 10.1002/ptr.6716. [PMID: 32441049]
  • Juliano Andreoli Miyake, Renata Nascimento Gomes, Alison Colquhoun. Gamma-Linolenic acid alters migration, proliferation and apoptosis in human and rat glioblastoma cells. Prostaglandins & other lipid mediators. 2020 10; 150(?):106452. doi: 10.1016/j.prostaglandins.2020.106452. [PMID: 32439412]
  • Paula Mosińska, Adrian Szczepaniak, Tatiana Wojciechowicz, Marek Skrzypski, Krzysztof Nowak, Jakub Fichna. Chain length of dietary fatty acids determines gastrointestinal motility and visceromotor function in mice in a fatty acid binding protein 4-dependent manner. European journal of nutrition. 2020 Sep; 59(6):2481-2496. doi: 10.1007/s00394-019-02094-2. [PMID: 31562532]
  • Souha Hammouda, Imen Ghzaiel, Wided Khamlaoui, Sonia Hammami, Samia Younes Mhenni, Slim Samet, Mohamed Hammami, Amira Zarrouk. Genetic variants in FADS1 and ELOVL2 increase level of arachidonic acid and the risk of Alzheimer's disease in the Tunisian population. Prostaglandins, leukotrienes, and essential fatty acids. 2020 09; 160(?):102159. doi: 10.1016/j.plefa.2020.102159. [PMID: 32682282]
  • Sahar Y Al-Okbi, Shaimaa E Mohammed, Enas S K Al-Siedy, Naglaa A Ali. Fish Oil and Primrose Oil Suppress the Progression of Alzheimer's Like Disease Induced by Aluminum in Rats. Journal of oleo science. 2020 Jul; 69(7):771-782. doi: 10.5650/jos.ess20015. [PMID: 32522946]
  • Anthony W Watson, Arjan Scheepens, David O Kennedy, Janine M Cooney, Tania M Trower, Crystal F Haskell-Ramsay. The pharmacodynamic profile of 'Blackadder' blackcurrant juice effects upon the monoamine axis in humans: A randomised controlled trial. Nutritional neuroscience. 2020 Jul; 23(7):516-525. doi: 10.1080/1028415x.2018.1525950. [PMID: 30289026]
  • Lihong Gao, Wei Chen, Xiaoyu Xu, Jing Zhang, Tanoj K Singh, Shiming Liu, Dongmei Zhang, Lijun Tian, Adam White, Pushkar Shrestha, Xue-Rong Zhou, Danny Llewellyn, Allan Green, Surinder P Singh, Qing Liu. Engineering Trienoic Fatty Acids into Cottonseed Oil Improves Low-Temperature Seed Germination, Plant Photosynthesis and Cotton Fiber Quality. Plant & cell physiology. 2020 Jul; 61(7):1335-1347. doi: 10.1093/pcp/pcaa062. [PMID: 32379869]
  • Abdur Rehman, Seid Mahdi Jafari, Qunyi Tong, Aiman Karim, Amer Ali Mahdi, Muhammad Waheed Iqbal, Rana Muhammad Aadil, Ahmad Ali, Muhammad Faisal Manzoor. Role of peppermint oil in improving the oxidative stability and antioxidant capacity of borage seed oil-loaded nanoemulsions fabricated by modified starch. International journal of biological macromolecules. 2020 Jun; 153(?):697-707. doi: 10.1016/j.ijbiomac.2020.02.292. [PMID: 32112831]
  • Tayvich Vorapreeda, Chinae Thammarongtham, Thanaporn Palasak, Tanawut Srisuk, Piroon Jenjaroenpun, Thidathip Wongsurawat, Intawat Nookaew, Kobkul Laoteng. Systematic genome analysis of a novel arachidonic acid-producing strain uncovered unique metabolic traits in the production of acetyl-CoA-derived products in Mortierellale fungi. Gene. 2020 May; 741(?):144559. doi: 10.1016/j.gene.2020.144559. [PMID: 32169630]
  • Susan Sergeant, Brian Hallmark, Rasika A Mathias, Tammy L Mustin, Priscilla Ivester, Maggie L Bohannon, Ingo Ruczinski, Laurel Johnstone, Michael C Seeds, Floyd H Chilton. Prospective clinical trial examining the impact of genetic variation in FADS1 on the metabolism of linoleic acid- and ɣ-linolenic acid-containing botanical oils. The American journal of clinical nutrition. 2020 05; 111(5):1068-1078. doi: 10.1093/ajcn/nqaa023. [PMID: 32167131]
  • Josyf C Mychaleckyj, Dadong Zhang, Uma Nayak, E Ross Colgate, Marya Carmolli, Dorothy Dickson, Tahmeed Ahmed, Masud Alam, Beth D Kirkpatrick, Rashidul Haque, William A Petri. Association of breast milk gamma-linolenic acid with infant anthropometric outcomes in urban, low-income Bangladeshi families: a prospective, birth cohort study. European journal of clinical nutrition. 2020 05; 74(5):698-707. doi: 10.1038/s41430-019-0498-6. [PMID: 31501475]
  • Francisc Vasile Dulf, Dan Cristian Vodnar, Monica Ioana Toşa, Eva-Henrietta Dulf. Simultaneous enrichment of grape pomace with γ-linolenic acid and carotenoids by solid-state fermentation with Zygomycetes fungi and antioxidant potential of the bioprocessed substrates. Food chemistry. 2020 Apr; 310(?):125927. doi: 10.1016/j.foodchem.2019.125927. [PMID: 31835232]
  • Soheila Rezapour-Firouzi, Mahshid Mohammadian, Maryam Sadeghzadeh, Sahar Mehranfar, Ebrahim Mazloomi. The Effects of Evening Primrose/Hemp Seed Oil Compared to Rapamycin on the Gene Expression of Immunological Parameters in Experimental Autoimmune Encephalomyelitis Splenocytes. Iranian journal of allergy, asthma, and immunology. 2020 Apr; 19(2):183-192. doi: 10.18502/ijaai.v19i2.2771. [PMID: 32372631]
  • Xin Tang, Haiqin Chen, Zhennan Gu, Hao Zhang, Yong Q Chen, Yuanda Song, Wei Chen. Role of g6pdh and leuB on Lipid Accumulation in Mucor circinelloides. Journal of agricultural and food chemistry. 2020 Apr; 68(14):4245-4251. doi: 10.1021/acs.jafc.9b08155. [PMID: 32181644]
  • Yuhong Yang, Lei Du, Masashi Hosokawa, Kazuo Miyashita. Spirulina Lipids Alleviate Oxidative Stress and Inflammation in Mice Fed a High-Fat and High-Sucrose Diet. Marine drugs. 2020 Mar; 18(3):. doi: 10.3390/md18030148. [PMID: 32143330]
  • Seyedeh Nazanin Sharif, Fatemeh Darsareh. Impact of evening primrose oil consumption on psychological symptoms of postmenopausal women: a randomized double-blinded placebo-controlled clinical trial. Menopause (New York, N.Y.). 2020 02; 27(2):194-198. doi: 10.1097/gme.0000000000001434. [PMID: 31738736]
  • Anamaria Balić, Domagoj Vlašić, Kristina Žužul, Branka Marinović, Zrinka Bukvić Mokos. Omega-3 Versus Omega-6 Polyunsaturated Fatty Acids in the Prevention and Treatment of Inflammatory Skin Diseases. International journal of molecular sciences. 2020 Jan; 21(3):. doi: 10.3390/ijms21030741. [PMID: 31979308]
  • Hassan Mohamed, Abdel-Rahim El-Shanawany, Aabid Manzoor Shah, Yusuf Nazir, Tahira Naz, Samee Ullah, Kiren Mustafa, Yuanda Song. Comparative Analysis of Different Isolated Oleaginous Mucoromycota Fungi for Their γ-Linolenic Acid and Carotenoid Production. BioMed research international. 2020; 2020(?):3621543. doi: 10.1155/2020/3621543. [PMID: 33204691]
  • Takashi Ide, Izumi Origuchi. An Oil Rich in γ-Linolenic Acid Differently Affects Hepatic Fatty Acid Oxidation in Mice and Rats. Biological & pharmaceutical bulletin. 2020; 43(9):1382-1392. doi: 10.1248/bpb.b20-00322. [PMID: 32879213]
  • Hanaa H Abd El Baky, Gamal S El Baroty, Enas M Mostafa. Optimization Growth of Spirulina (Arthrospira) Platensis in Photobioreactor Under Varied Nitrogen Concentration for Maximized Biomass, Carotenoids and Lipid Contents. Recent patents on food, nutrition & agriculture. 2020; 11(1):40-48. doi: 10.2174/2212798410666181227125229. [PMID: 30588890]
  • Marija Knez, Ana Pantovic, Milica Zekovic, Zoran Pavlovic, Maria Glibetic, Manja Zec. Is There a Link between Zinc Intake and Status with Plasma Fatty Acid Profile and Desaturase Activities in Dyslipidemic Subjects?. Nutrients. 2019 Dec; 12(1):. doi: 10.3390/nu12010093. [PMID: 31905662]
  • Svetlana Lyashenko, María José González-Fernández, Francisco Gómez-Mercado, Svetlana Yunusova, Oleg Denisenko, José Luis Guil-Guerrero. Ribes taxa: A promising source of γ-linolenic acid-rich functional oils. Food chemistry. 2019 Dec; 301(?):125309. doi: 10.1016/j.foodchem.2019.125309. [PMID: 31398673]
  • Ju-Young Lee, Kwang-Hyeon Liu, Yunhi Cho, Kun-Pyo Kim. Enhanced Triacylglycerol Content and Gene Expression for Triacylglycerol Metabolism, Acyl-Ceramide Synthesis, and Corneocyte Lipid Formation in the Epidermis of Borage Oil Fed Guinea Pigs. Nutrients. 2019 Nov; 11(11):. doi: 10.3390/nu11112818. [PMID: 31752143]
  • Felipe Bachion de Santana, Waldomiro Borges Neto, Ronei J Poppi. Random forest as one-class classifier and infrared spectroscopy for food adulteration detection. Food chemistry. 2019 Sep; 293(?):323-332. doi: 10.1016/j.foodchem.2019.04.073. [PMID: 31151619]
  • Marijana Tomic-Smiljanic, Dragan Vasiljevic, Aleksandra Lucic-Tomic, Nebojsa Andjelkovic, Vladimir Jakovljevic, Sergey Bolovich, Mirjana Veselinovic. Influence of different supplementation on platelet aggregation in patients with rheumatoid arthritis. Clinical rheumatology. 2019 Sep; 38(9):2443-2450. doi: 10.1007/s10067-019-04569-3. [PMID: 31076942]
  • Beibei Zhao, Haodi Gong, Hua Li, Yan Zhang, Jiawen Deng, Zhicheng Chen. Fatty Acid, Triacylglycerol and Unsaponifiable Matters Profiles and Physicochemical Properties of Chinese Evening Primrose Oil. Journal of oleo science. 2019 Aug; 68(8):719-728. doi: 10.5650/jos.ess19091. [PMID: 31292343]
  • Sukanya Jeennor, Jutamas Anantayanon, Sarocha Panchanawaporn, Sakda Khoomrung, Chanikul Chutrakul, Kobkul Laoteng. Reengineering lipid biosynthetic pathways of Aspergillus oryzae for enhanced production of γ-linolenic acid and dihomo-γ-linolenic acid. Gene. 2019 Jul; 706(?):106-114. doi: 10.1016/j.gene.2019.04.074. [PMID: 31039437]
  • Vishal Kapoor, Manoj N Malviya, Roger Soll. Lipid emulsions for parenterally fed preterm infants. The Cochrane database of systematic reviews. 2019 06; 6(?):CD013163. doi: 10.1002/14651858.cd013163.pub2. [PMID: 31158919]
  • Marie Chas, Caroline Goupille, Flavie Arbion, Philippe Bougnoux, Michelle Pinault, Marie Lise Jourdan, Stephan Chevalier, Lobna Ouldamer. Low eicosapentaenoic acid and gamma-linolenic acid levels in breast adipose tissue are associated with inflammatory breast cancer. Breast (Edinburgh, Scotland). 2019 Jun; 45(?):113-117. doi: 10.1016/j.breast.2019.04.001. [PMID: 30959386]
  • Md Ahsanul Kabir Khan, Junhuan Yang, Syed Ammar Hussain, Huaiyuan Zhang, Victoriano Garre, Yuanda Song. Genetic Modification of Mucor circinelloides to Construct Stearidonic Acid Producing Cell Factory. International journal of molecular sciences. 2019 Apr; 20(7):. doi: 10.3390/ijms20071683. [PMID: 30987311]
  • Md Ahsanul Kabir Khan, Junhuan Yang, Syed Ammar Hussain, Huaiyuan Zhang, Li Liang, Victoriano Garre, Yuanda Song. Construction of DGLA producing cell factory by genetic modification of Mucor circinelloides. Microbial cell factories. 2019 Apr; 18(1):64. doi: 10.1186/s12934-019-1110-4. [PMID: 30943965]
  • Kyeong-Ryeol Lee, Kyung-Hwan Kim, Jung Bong Kim, Seung-Bum Hong, Inhwa Jeon, Hyun Uk Kim, Myung Hee Lee, Jae Kwang Kim. High accumulation of γ-linolenic acid and Stearidonic acid in transgenic Perilla (Perilla frutescens var. frutescens) seeds. BMC plant biology. 2019 Apr; 19(1):120. doi: 10.1186/s12870-019-1713-2. [PMID: 30935415]
  • Seraphim Papanikolaou, George Aggelis. Sources of microbial oils with emphasis to Mortierella (Umbelopsis) isabellina fungus. World journal of microbiology & biotechnology. 2019 Mar; 35(4):63. doi: 10.1007/s11274-019-2631-z. [PMID: 30923965]
  • Miguel Urrestarazu, Victor Manuel Gallegos-Cedillo, Francisca Ferrón-Carrillo, José Luis Guil-Guerrero, María Teresa Lao, Juan Eugenio Álvaro. Effects of the electrical conductivity of a soilless culture system on gamma linolenic acid levels in borage seed oil. PloS one. 2019; 14(2):e0207106. doi: 10.1371/journal.pone.0207106. [PMID: 30779750]
  • Mingjie Jin, Rui Zhai, Zhaoxian Xu, Zhiqiang Wen. Production of High-Value Polyunsaturated Fatty Acids Using Microbial Cultures. Methods in molecular biology (Clifton, N.J.). 2019; 1995(?):229-248. doi: 10.1007/978-1-4939-9484-7_15. [PMID: 31148133]
  • Kun-Pyo Kim, Sanghun Jeon, Mi-Ju Kim, Yunhi Cho. Borage oil restores acidic skin pH by up-regulating the activity or expression of filaggrin and enzymes involved in epidermal lactate, free fatty acid, and acidic free amino acid metabolism in essential fatty acid-deficient Guinea pigs. Nutrition research (New York, N.Y.). 2018 10; 58(?):26-35. doi: 10.1016/j.nutres.2018.06.003. [PMID: 30340812]
  • Justine Fenner, Nanette B Silverberg. Oral supplements in atopic dermatitis. Clinics in dermatology. 2018 Sep; 36(5):653-658. doi: 10.1016/j.clindermatol.2018.05.010. [PMID: 30217278]
  • David Navarro-Herrera, Paula Aranaz, Laura Eder-Azanza, María Zabala, Ana Romo-Hualde, Cristina Hurtado, Diego Calavia, Miguel López-Yoldi, J Alfredo Martínez, Carlos J González-Navarro, José L Vizmanos. Borago officinalis seed oil (BSO), a natural source of omega-6 fatty acids, attenuates fat accumulation by activating peroxisomal beta-oxidation both in C. elegans and in diet-induced obese rats. Food & function. 2018 Aug; 9(8):4340-4351. doi: 10.1039/c8fo00423d. [PMID: 30043014]
  • Mahnaz Kalati, Maryam Kashanian, Fereshteh Jahdi, Mohsen Naseri, Hamid Haghani, Narges Sheikhansari. Evening primrose oil and labour, is it effective? A randomised clinical trial. Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology. 2018 May; 38(4):488-492. doi: 10.1080/01443615.2017.1386165. [PMID: 29426270]
  • Robin A C Graham-Brown, Mark F Healsmith. From folklore to pharmacy: Putting plants into practice. Clinics in dermatology. 2018 May; 36(3):282-288. doi: 10.1016/j.clindermatol.2018.03.002. [PMID: 29908569]
  • Jacqueline K Innes, Philip C Calder. Omega-6 fatty acids and inflammation. Prostaglandins, leukotrienes, and essential fatty acids. 2018 05; 132(?):41-48. doi: 10.1016/j.plefa.2018.03.004. [PMID: 29610056]
  • Joseph D Ho, Betty Chau, Logan Rodgers, Frances Lu, Kelly L Wilbur, Keith A Otto, Yanyun Chen, Min Song, Jonathan P Riley, Hsiu-Chiung Yang, Nichole A Reynolds, Steven D Kahl, Anjana Patel Lewis, Christopher Groshong, Russell E Madsen, Kris Conners, Jayana P Lineswala, Tarun Gheyi, Melbert-Brian Decipulo Saflor, Matthew R Lee, Jordi Benach, Kenton A Baker, Chahrzad Montrose-Rafizadeh, Michael J Genin, Anne R Miller, Chafiq Hamdouchi. Structural basis for GPR40 allosteric agonism and incretin stimulation. Nature communications. 2018 04; 9(1):1645. doi: 10.1038/s41467-017-01240-w. [PMID: 29695780]
  • Assia Hamdi, Kaouther Majouli, Amal Abdelhamid, Belsem Marzouk, Hèla Belghith, Imed Chraief, Abderrahman Bouraoui, Zohra Marzouk, Yvan Vander Heyden. Pharmacological activities of the organic extracts and fatty acid composition of the petroleum ether extract from Haplophyllum tuberculatum leaves. Journal of ethnopharmacology. 2018 Apr; 216(?):97-103. doi: 10.1016/j.jep.2018.01.012. [PMID: 29331316]
  • Simone Alves da Silva, Elizabeth A F da Silva Torres, Adriana Palma de Almeida, Geni Rodrigues Sampaio. Polycyclic aromatic hydrocarbons content and fatty acids profile in coconut, safflower, evening primrose and linseed oils. Food chemistry. 2018 Apr; 245(?):798-805. doi: 10.1016/j.foodchem.2017.11.109. [PMID: 29287444]
  • Jing Guo, Haiqin Chen, Bo Yang, Hao Zhang, Wei Chen, Yong Q Chen. The role of acyl-CoA thioesterase ACOT8I in mediating intracellular lipid metabolism in oleaginous fungus Mortierella alpina. Journal of industrial microbiology & biotechnology. 2018 Apr; 45(4):281-291. doi: 10.1007/s10295-018-2006-8. [PMID: 29442208]
  • Allen L Rodgers, Dalielah Jappie-Mahomed, Paul J van Jaarsveld. Different effects of γ-linolenic acid (GLA) supplementation on plasma and red blood cell phospholipid fatty acid composition and calcium oxalate kidney stone risk factors in healthy subjects from two race groups with different risk profiles pose questions about the GLA-arachidonic acid-oxaluria metabolic pathway: pilot study. Urolithiasis. 2018 Apr; 46(2):137-147. doi: 10.1007/s00240-017-0989-7. [PMID: 28623397]
  • Maria Notarnicola, Dionigi Lorusso, Valeria Tutino, Valentina De Nunzio, Giampiero De Leonardis, Gisella Marangelli, Vito Guerra, Nicola Veronese, Maria Gabriella Caruso, Gianluigi Giannelli. Differential Tissue Fatty Acids Profiling between Colorectal Cancer Patients with and without Synchronous Metastasis. International journal of molecular sciences. 2018 Mar; 19(4):. doi: 10.3390/ijms19040962. [PMID: 29570667]
  • Subhadeep Roy, Manjari Singh, Atul Rawat, Uma Devi, Swetlana Gautam, Rajnish Kumar Yadav, Jitendra Kumar Rawat, Md Nazam Ansari, Abdulaziz S Saeedan, Dinesh Kumar, Gaurav Kaithwas. GLA supplementation regulates PHD2 mediated hypoxia and mitochondrial apoptosis in DMBA induced mammary gland carcinoma. The international journal of biochemistry & cell biology. 2018 03; 96(?):51-62. doi: 10.1016/j.biocel.2018.01.011. [PMID: 29355756]