Prostaglandin E2 (BioDeep_00000001683)
Secondary id: BioDeep_00000629489, BioDeep_00001867832
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Volatile Flavor Compounds natural product
代谢物信息卡片
化学式: C20H32O5 (352.2249622)
中文名称: 前列腺素 E2, 地诺前列酮
谱图信息:
最多检出来源 Viridiplantae(plant) 0.03%
Last reviewed on 2024-09-13.
Cite this Page
Prostaglandin E2. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/prostaglandin_e2 (retrieved
2024-11-22) (BioDeep RN: BioDeep_00000001683). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: CCCCCC(C=CC1C(CC(=O)C1CC=CCCCC(=O)O)O)O
InChI: InChI=1S/C20H32O5/c1-2-3-6-9-15(21)12-13-17-16(18(22)14-19(17)23)10-7-4-5-8-11-20(24)25/h4,7,12-13,15-17,19,21,23H,2-3,5-6,8-11,14H2,1H3,(H,24,25)/b7-4-,13-12+/t15-,16+,17+,19+/m0/s1
描述信息
The naturally occurring prostaglandin E2 (PGE2) is known in medicine as dinoprostone, and it is the most common and most biologically active of the mammalian prostaglandins. It has important effects during labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 is also the prostaglandin that ultimately induces fever. PGE2 has been shown to increase vasodilation and cAMP production, enhance the effects of bradykinin and histamine, and induce uterine contractions and platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus, decreasing T-cell proliferation and lymphocyte migration, and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation, and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC). PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype (PMID:16978535). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways.
Dinoprostone is a naturally occurring prostaglandin E2 (PGE2) and the most common and most biologically active of the mammalian prostaglandins. It has important effects in labour and also stimulates osteoblasts to release factors which stimulate bone resorption by osteoclasts (a type of bone cell that removes bone tissue by removing the bones mineralized matrix). PGE2 has been shown to increase vasodilation and cAMP production, to enhance the effects of bradykinin and histamine, induction of uterine contractions and of platelet aggregation. PGE2 is also responsible for maintaining the open passageway of the fetal ductus arteriosus; decreasing T-cell proliferation and lymphocyte migration and activating the secretion of IL-1α and IL-2. PGE2 exhibits both pro- and anti-inflammatory effects, particularly on dendritic cells (DC). Depending on the nature of maturation signals, PGE2 has different and sometimes opposite effects on DC biology. PGE2 exerts an inhibitory action, reducing the maturation of DC and their ability to present antigen. PGE2 has also been shown to stimulate DC and promote IL-12 production when given in combination with TNF-alpha. PGE2 is an environmentally bioactive substance. Its action is prolonged and sustained by other factors especially IL-10. It modulates the activities of professional DC by acting on their differentiation, maturation and their ability to secrete cytokines. PGE2 is a potent inducer of IL-10 in bone marrow-derived DC (BM-DC), and PGE2-induced IL-10 is a key regulator of the BM-DC pro-inflammatory phenotype. (PMID: 16978535)
G - Genito urinary system and sex hormones > G02 - Other gynecologicals > G02A - Uterotonics > G02AD - Prostaglandins
Chemical was purchased from CAY14010, (Lot 0410966-34); Diagnostic ions: 351.8, 333.1, 271.1, 188.9
D012102 - Reproductive Control Agents > D010120 - Oxytocics
C78568 - Prostaglandin Analogue
Prostaglandin E2 (PGE2) is a hormone-like substance that participate in a wide range of body functions such as the contraction and relaxation of smooth muscle, the dilation and constriction of blood vessels, control of blood pressure, and modulation of inflammation.
同义名列表
60 个代谢物同义名
(5Z)-7-[(1R,2R,3R)-3-hydroxy-2-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-5-oxocyclopentyl]hept-5-enoic acid; (e,Z)-(1R,2R,3R)-7-(3-Hydroxy-2-((3S)-(3-hydroxy-1-octenyl))-5-oxocyclopentyl)-5-heptenoic acid; (Z)-7-((1R,2R,3R)-3-Hydroxy-2-((S,e)-3-hydroxyoct-1-enyl)-5-oxocyclopentyl)hept-5-enoic acid; (e,Z)-(1R,2R,3R)-7-(3-Hydroxy-2-((3S)-(3-hydroxy-1-octenyl))-5-oxocyclopentyl)-5-heptenoate; (Z)-7-((1R,2R,3R)-3-Hydroxy-2-((S,e)-3-hydroxyoct-1-enyl)-5-oxocyclopentyl)hept-5-enoate; (5Z,11alpha,13E,15S)-11,15-Dihydroxy-9-oxoprosta-5,13-dien-1-Oic acid; (5Z,13E)-(15S)-11alpha,15-Dihydroxy-9-oxoprosta-5,13-dienoic acid; (5Z,11a,13E,15S)-11,15-Dihydroxy-9-oxoprosta-5,13-dien-1-Oic acid; (5Z,11alpha,13E,15S)-11,15-Dihydroxy-9-oxoprosta-5,13-dien-1-Oate; (5Z,11Α,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-Oic acid; (5Z,13E,15S)-11-alpha,15-Dihydroxy-9-oxoprost-5,13-dienoic acid; (5Z,11a,13E,15S)-11,15-Dihydroxy-9-oxoprosta-5,13-dien-1-Oate; (5Z,11Α,13E,15S)-11,15-dihydroxy-9-oxoprosta-5,13-dien-1-Oate; (5Z,13E)-(15S)-11alpha,15-Dihydroxy-9-oxoprosta-5,13-dienoate; (5Z,13E)-(15S)-11Α,15-dihydroxy-9-oxoprosta-5,13-dienoic acid; (5Z,13E)-(15S)-11a,15-Dihydroxy-9-oxoprosta-5,13-dienoic acid; (5Z,13E)-(15S)-11alpha,15-Dihydroxy-9-oxoprost-13-enoic acid; (5Z,13E,15S)-11-alpha,15-Dihydroxy-9-oxoprost-5,13-dienoate; (5Z,13E)-(15S)-11a,15-Dihydroxy-9-oxoprosta-5,13-dienoate; (5Z,13E)-(15S)-11Α,15-dihydroxy-9-oxoprosta-5,13-dienoate; (5Z,13E)-(15S)-11alpha,15-Dihydroxy-9-oxoprost-13-enoate; (5Z,13E)-(15S)-11a,15-Dihydroxy-9-oxoprost-13-enoic acid; (5Z,13E)-(15S)-11Α,15-dihydroxy-9-oxoprost-13-enoic acid; (5Z,13E)-(15S)-11a,15-Dihydroxy-9-oxoprost-13-enoate; (5Z,13E)-(15S)-11Α,15-dihydroxy-9-oxoprost-13-enoate; 9-oxo-11R,15S-dihydroxy-5Z,13E-prostadienoic acid; e2 alpha, Prostaglandin; alpha, Prostaglandin e2; (15S)-Prostaglandin e2; Prostaglandin e2 alpha; e2alpha, Prostaglandin; Prostaglandin e2alpha; ent-Prostaglandin E2; (-)-Prostaglandin e2; L-Prostaglandin e2; e2, Prostaglandin; Prostaglandin E2; Prostaglandin e; Minprositin e2; Gel, prepidil; Minprostin e2; Dinoprostonum; Dinoprostone; 5-trans-PGE2; Prostarmon e; Prepidil gel; Dinoprostona; Dinoproston; alpha, PGE2; Prostin E2; PGE2 alpha; PGE2alpha; Prostenon; Cervidil; Prepidil; Prostin; Propess; Glandin; PGE2; Prostaglandin E2
数据库引用编号
36 个数据库交叉引用编号
- ChEBI: CHEBI:15551
- KEGG: C00584
- KEGGdrug: D00079
- PubChem: 5280360
- PubChem: 158
- HMDB: HMDB0001220
- Metlin: METLIN421
- DrugBank: DB00917
- ChEMBL: CHEMBL548
- Wikipedia: Prostaglandin_E2
- MeSH: Dinoprostone
- MetaCyc: 5Z13E-15S-1115-DIHYDROXY-9-OXOPROS
- foodb: FDB022498
- chemspider: 4444059
- CAS: 363-24-6
- MoNA: UT000351
- MoNA: UT000348
- MoNA: UT000347
- MoNA: UT000350
- MoNA: UT000345
- MoNA: UT000343
- MoNA: UT000346
- MoNA: UT000349
- MoNA: UT000344
- MoNA: MSJ00053
- PMhub: MS000000971
- PubChem: 3863
- LipidMAPS: LMFA03010003
- PDB-CCD: P2E
- 3DMET: B01290
- NIKKAJI: J9.243F
- RefMet: PGE2
- medchemexpress: HY-101952
- KNApSAcK: 15551
- LOTUS: LTS0000856
- LOTUS: LTS0074404
分类词条
相关代谢途径
Reactome(11)
BioCyc(0)
PlantCyc(0)
代谢反应
233 个相关的代谢反应过程信息。
Reactome(181)
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- G alpha (i) signalling events:
ATP ⟶ PPi + cAMP
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
H2O + cAMP ⟶ AMP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin E2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
prostaglandin H2 ⟶ prostaglandin E2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin E2
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + e- + prostaglandin G2 ⟶ H2O + prostaglandin H2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + TPNH + prostaglandin D2 ⟶ 11epi-PGF2a + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Arachidonic acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin D2
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin D2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + TPNH + prostaglandin D2 ⟶ 11epi-PGF2a + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Fatty acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Arachidonic acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Fatty acid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin E2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Fatty acid metabolism:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Arachidonic acid metabolism:
H2O + leukotriene A4 ⟶ leukotriene B4
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
H+ + TPNH + prostaglandin D2 ⟶ 11epi-PGF2a + TPN
- Synthesis of Prostaglandins (PG) and Thromboxanes (TX):
prostaglandin H2 ⟶ prostaglandin D2
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + F1MCJ0 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + F1PUR8 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + Homologues of OXER1 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
Homologues of PTGDR2 + prostaglandin D2 ⟶ PTGDR2:PGD2
- GPCR ligand binding:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + OXER1_HUMAN ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
Ptgdr + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
Ptgdr + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
F1RIB0 + prostaglandin D2 ⟶ PTGDR2:PGD2
- GPCR ligand binding:
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
Ade-Rib + H0YT13 ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
LTB4R,LTB4R2 + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- GPCR ligand binding:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Class A/1 (Rhodopsin-like receptors):
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- Eicosanoid ligand-binding receptors:
5-oxoETE + A0A6I8PVP2 ⟶ OXER1:5-oxoETE
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
- Eicosanoid ligand-binding receptors:
CrzR + leukotriene B4 ⟶ LTB4R,LTB4R2:LTB
- Prostanoid ligand receptors:
PTGDR + prostaglandin D2 ⟶ PTGDR:PGD2
BioCyc(0)
WikiPathways(5)
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
- Arachidonic acid (AA, ARA) oxylipin metabolism:
HXB3 ⟶ Trioxilin B3
- Eicosanoid lipid synthesis map:
PGH2 ⟶ PGE2
- Eicosanoid synthesis:
PGD2 ⟶ PGJ2
- Eicosanoid metabolism via cyclooxygenases (COX):
Arachidonic acid ⟶ 15(S)-HETE
Plant Reactome(0)
INOH(1)
- Prostaglandin and Leukotriene metabolism ( Prostaglandin and Leukotriene metabolism ):
Glutathione + Leucotriene A4 ⟶ Leucotriene C4
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(46)
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Piroxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetylsalicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etodolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ibuprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Rofecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diclofenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Sulindac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Celecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Ketorolac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Suprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Bromfenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Indomethacin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Mefenamic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Oxaprozin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nabumetone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Naproxen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Diflunisal Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Meloxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Valdecoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antipyrine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Antrafenine Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Carprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Etoricoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Fenoprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Flurbiprofen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Magnesium Salicylate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lumiracoxib Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Lornoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Phenylbutazone Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Nepafenac Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Trisalicylate-Choline Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tolmetin Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tiaprofenic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Tenoxicam Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salsalate Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylate-Sodium Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Salicylic Acid Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Acetaminophen Action Pathway:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Arachidonic Acid Metabolism:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
- Leukotriene C4 Synthesis Deficiency:
Glutathione + Leukotriene A4 ⟶ Leukotriene C4
PharmGKB(0)
67 个相关的物种来源信息
- 40678 - Alcyoniidae: LTS0000856
- 40678 - Alcyoniidae: LTS0074404
- 6101 - Anthozoa: LTS0000856
- 6101 - Anthozoa: LTS0074404
- 9850 - Cervidae: LTS0000856
- 9850 - Cervidae: LTS0074404
- 9859 - Cervus: LTS0000856
- 9859 - Cervus: LTS0074404
- 9863 - Cervus nippon: 10.1007/BF02219253
- 9863 - Cervus nippon: LTS0000856
- 9863 - Cervus nippon: LTS0074404
- 7711 - Chordata: LTS0000856
- 7711 - Chordata: LTS0074404
- 6073 - Cnidaria: LTS0000856
- 6073 - Cnidaria: LTS0074404
- 33682 - Euglenozoa: LTS0074404
- 2759 - Eukaryota: LTS0000856
- 2759 - Eukaryota: LTS0074404
- 134439 - Gersemia: LTS0000856
- 134439 - Gersemia: LTS0074404
- 134440 - Gersemia fruticosa: 10.1016/S0040-4039(00)73658-6
- 134440 - Gersemia fruticosa: LTS0000856
- 134440 - Gersemia fruticosa: LTS0074404
- 9606 - Homo sapiens: -
- 9606 - Homo sapiens: 10.1007/S11306-016-1051-4
- 5653 - Kinetoplastea: LTS0074404
- 3325 - Larix: LTS0000856
- 3325 - Larix: LTS0074404
- 62751 - Larix sibirica:
- 62751 - Larix sibirica: 10.1007/BF00580060
- 62751 - Larix sibirica: 10.1007/BF00598571
- 62751 - Larix sibirica: LTS0000856
- 62751 - Larix sibirica: LTS0074404
- 3398 - Magnoliopsida: LTS0000856
- 3398 - Magnoliopsida: LTS0074404
- 40674 - Mammalia: LTS0000856
- 40674 - Mammalia: LTS0074404
- 33208 - Metazoa: LTS0000856
- 33208 - Metazoa: LTS0074404
- 10066 - Muridae: LTS0074404
- 10088 - Mus: LTS0074404
- 10090 - Mus musculus: LTS0074404
- 10090 - Mus musculus: NA
- 51108 - Nephtheidae: LTS0000856
- 51108 - Nephtheidae: LTS0074404
- 3318 - Pinaceae: LTS0000856
- 3318 - Pinaceae: LTS0074404
- 58019 - Pinopsida: LTS0000856
- 58019 - Pinopsida: LTS0074404
- 3689 - Populus: LTS0000856
- 3689 - Populus: LTS0074404
- 73824 - Populus balsamifera: 10.1007/BF00580060
- 73824 - Populus balsamifera: LTS0000856
- 73824 - Populus balsamifera: LTS0074404
- 1616482 - Populus candicans: 10.1007/BF00580060
- 3688 - Salicaceae: LTS0000856
- 3688 - Salicaceae: LTS0074404
- 35493 - Streptophyta: LTS0000856
- 35493 - Streptophyta: LTS0074404
- 58023 - Tracheophyta: LTS0000856
- 58023 - Tracheophyta: LTS0074404
- 5690 - Trypanosoma: LTS0074404
- 5691 - Trypanosoma brucei: 10.1128/AAC.00044-13
- 5691 - Trypanosoma brucei: LTS0074404
- 5654 - Trypanosomatidae: LTS0074404
- 33090 - Viridiplantae: LTS0000856
- 33090 - Viridiplantae: LTS0074404
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Yazhen Xie, Haifeng Xu, Zhijuan Gu. Ge-gen decoction alleviates primary dysmenorrhoea symptoms in a rat model.
Journal of obstetrics and gynaecology : the journal of the Institute of Obstetrics and Gynaecology.
2024 Dec; 44(1):2337691. doi:
10.1080/01443615.2024.2337691
. [PMID: 38594870] - Xiaoying Wu, Li Li, Jinhabure, Xiaofeng, Eerdunchaolu. Radix Sophorae Flavescentis of Sophora flavescens Aiton inhibits LPS-induced macrophage pro-inflammatory response via regulating CFHR2 expression.
Journal of ethnopharmacology.
2024 Sep; 331(?):118210. doi:
10.1016/j.jep.2024.118210
. [PMID: 38641074] - Larisse Ricardo Gadelha, Maria Juliana Bezerra Costa, João Paulo Alecrim de Abreu, Larissa Paola Rodrigues Venancio, Mary Hellen Fabres-Klein, Raphael Contelli Klein, Jonilson Berlink Lima, Théo Araújo-Santos. Prostaglandin E2/Leukotriene B4 balance and viral load in distinct clinical stages of COVID-19: A cross-sectional study.
Prostaglandins & other lipid mediators.
2024 Jun; 172(?):106820. doi:
10.1016/j.prostaglandins.2024.106820
. [PMID: 38346573] - Ian E Cock. Terminalia ferdinandiana Exell. extracts reduce pro-inflammatory cytokine and PGE2 secretion, decrease COX-2 expression and down-regulate cytosolic NF-κB levels.
Inflammopharmacology.
2024 Jun; 32(3):1839-1853. doi:
10.1007/s10787-024-01462-7
. [PMID: 38581641] - Karen T Feehan, Hannah E Bridgewater, Jan Stenkiewicz-Witeska, Roel P H De Maeyer, John Ferguson, Matthias Mack, Jeremy Brown, Giuseppe Ercoli, Connar M Mawer, Arne N Akbar, James R W Glanville, Parinaaz Jalali, Olivia V Bracken, Anna Nicolaou, Alexandra C Kendall, Michelle A Sugimoto, Derek W Gilroy. Post-resolution macrophages shape long-term tissue immunity and integrity in a mouse model of pneumococcal pneumonia.
Nature communications.
2024 May; 15(1):4326. doi:
10.1038/s41467-024-48138-y
. [PMID: 38773113] - Luisa Frusciante, Michela Geminiani, Alfonso Trezza, Tommaso Olmastroni, Pierfrancesco Mastroeni, Laura Salvini, Stefania Lamponi, Andrea Bernini, Daniela Grasso, Elena Dreassi, Ottavia Spiga, Annalisa Santucci. Phytochemical Composition, Anti-Inflammatory Property, and Anti-Atopic Effect of Chaetomorpha linum Extract.
Marine drugs.
2024 May; 22(5):. doi:
10.3390/md22050226
. [PMID: 38786617] - Zhi-Qiang Lin, Yao Yao, Yu-Fei Zhang, Xiao-Yan Zhang, You-Fei Guan. Role of prostaglandin E2 and its receptors in chronic liver disease.
Sheng li xue bao : [Acta physiologica Sinica].
2024 Apr; 76(2):329-340. doi:
"
. [PMID: 38658381] - Sapna I, A Jayadeep. Enzyme-treated red rice (Oryza sativa L.) bran extracts mitigate inflammatory markers in RAW 264.7 macrophage cells and exhibit anti-inflammatory efficacy greater/comparable to ferulic acid, catechin, γ-tocopherol, and γ-oryzanol.
Journal of ethnopharmacology.
2024 Apr; 323(?):117616. doi:
10.1016/j.jep.2023.117616
. [PMID: 38142877] - Shu-Tao Chen, Shuang Ji, Mei-Na Guo, Li-Hong Chen. [Research advances of prostaglandin E2 receptor 1 (EP1)].
Sheng li xue bao : [Acta physiologica Sinica].
2024 Feb; 76(1):105-118. doi:
"
. [PMID: 38444136] - Guo-Liang Shao, Shao-Lei Huang, Rui Li, Dian-Hui Yang, Meng-Meng Wang. The curative efficacy of auricular comprehensive therapy on menstrual migraine and its effect on serum prostaglandin.
Zhen ci yan jiu = Acupuncture research.
2024 Feb; 49(2):177-184. doi:
10.13702/j.1000-0607.20221424
. [PMID: 38413039] - Cheng-Chao Xu, Xu-Hao Li, Jin-Ling Li. Comparative study on curative effect and recurrence rate of chronic scapulohumeral periarthritis treated with different acupuncture techniques.
Zhen ci yan jiu = Acupuncture research.
2024 Feb; 49(2):164-170. doi:
10.13702/j.1000-0607.20221004
. [PMID: 38413037] - Yiyun Geng, Weichao Li, Nai-Kei Wong, Fuchong Xue, Qing Li, Yang Zhang, Jingyuan Xu, Zhangshuang Deng, Yiqing Zhou. Discovery of Artemisinins as Microsomal Prostaglandins Synthase-2 Inhibitors for the Treatment of Colorectal Cancer via Chemoproteomics.
Journal of medicinal chemistry.
2024 Feb; 67(3):2083-2094. doi:
10.1021/acs.jmedchem.3c01989
. [PMID: 38287228] - Xin Qi, Xin Chen, Wen-Bo An, Zhi-Ming Xu, Duo-Xian Wang, Peng-Fei Luo, Yi-Xin Chen, Jiao-Jiao Ma, Zi-Yang Hu, Wei Qi, Jian-Jun Liu, Jun-Xi Liu. [Ligusticum cycloprolactam inhibits IL-1β-induced apoptosis and inflammation of rat chondrocytes via HMGB1/TLR4/NF-κB signaling pathway].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2024 Feb; 49(4):1007-1016. doi:
10.19540/j.cnki.cjcmm.20230904.401
. [PMID: 38621908] - Yingke Liu, Jiao He, Man Li, Kebai Ren, Zhihe Zhao. Inflammation-Driven Nanohitchhiker Enhances Postoperative Immunotherapy by Alleviating Prostaglandin E2-Mediated Immunosuppression.
ACS applied materials & interfaces.
2024 Feb; ?(?):. doi:
10.1021/acsami.3c17357
. [PMID: 38300288] - Yuan Sun, Zhaoyao Qi, Yuanhui Xu, Chenyang Li, Jun Zhao, Tao Liu. Anti-inflammatory, analgesic, antitussive and antipyretic activities of polyphenol-enriched fraction from Nymphaea candida.
Journal of ethnopharmacology.
2024 Jan; 324(?):117789. doi:
10.1016/j.jep.2024.117789
. [PMID: 38266950] - Huina Ma, Hehua Huang, Chenyu Li, Shasha Li, Juefang Gan, Chunrong Lian, Yanwu Ling. The antidepressive mechanism of Longya Lilium combined with Fluoxetine in mice with depression-like behaviors.
NPJ systems biology and applications.
2024 Jan; 10(1):5. doi:
10.1038/s41540-024-00329-5
. [PMID: 38218856] - Luís Almeida, Ruthger van Roey, Thiago Andrade Patente, Frank Otto, Tom Veldhuizen, Mohan Ghorasaini, Angela van Diepen, Gabriele Schramm, Jianyang Liu, Helena Idborg, Marina Korotkova, Per-Johan Jakobsson, Martin Giera, Cornelis Hendrik Hokke, Bart Everts. High-mannose glycans from Schistosoma mansoni eggs are important for priming of Th2 responses via Dectin-2 and prostaglandin E2.
Frontiers in immunology.
2024; 15(?):1372927. doi:
10.3389/fimmu.2024.1372927
. [PMID: 38742105] - Quanxin Wang, Ruiqi Zhang, Yijun He, Guangmin Mao, Zhaolu Kong. Taraxasterol enhanced bladder cancer cells radiosensitivity via inhibiting the COX-2/PGE2/JAK2/STAT3/MMP pathway.
International journal of radiation biology.
2024; 100(5):791-801. doi:
10.1080/09553002.2024.2324475
. [PMID: 38442139] - V A Shipelin, N A Biryulina, Yu S Sidorova, N A Petrov, S N Zorin, V K Mazo, V V Bessonov. [Physiological and biochemical in vivo study of polyphenols and 20-hydroxyecdisone from quinoa grains effect on resistance to physical exercise in Wistar rats].
Voprosy pitaniia.
2024; 93(1):80-91. doi:
10.33029/0042-8833-2024-93-1-80-91
. [PMID: 38555612] - Yifei Xu, Linsun Lin, Huantian Zheng, Siyuan Xu, Xinxin Hong, Tiantian Cai, Jianqu Xu, Weijian Zhang, Yanzhen Mai, Jingwei Li, Bin Huang, Zhu Liu, Shaoju Guo. Protective effect of Amauroderma rugosum ethanol extract and its primary bioactive compound, ergosterol, against acute gastric ulcers based on LXR-mediated gastric mucus secretions.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 123(?):155236. doi:
10.1016/j.phymed.2023.155236
. [PMID: 38016383] - Mario F C Santos, Karen de J Nicácio, Albert Katchborian-Neto, Miller S Ferreira, Daniel de Oliveira Miranda, João V Andrade, Herinque de A Pereira, Ester Gonçalves de Jesus, Thamires B, Silva Souza, Raquel P Morais-Urano, Danielle Ferreira Dias, Daniela A Chagas-Paula, Marisi G Soares. Ex vivo inhibition of PGE2 formation in human blood by four bicyclico [3.2.1] octane neolignans isolated from Aniba firmula bark, two with unusual structural pattern.
Natural product research.
2024 Jan; 38(3):393-401. doi:
10.1080/14786419.2022.2124248
. [PMID: 36106991] - Jorge Cuenca-Escalona, Georgina Flórez-Grau, Koen van den Dries, Alessandra Cambi, I Jolanda M de Vries. PGE2-EP4 signaling steers cDC2 maturation toward the induction of suppressive T-cell responses.
European journal of immunology.
2023 Dec; ?(?):e2350770. doi:
10.1002/eji.202350770
. [PMID: 38088451] - Xu Yang, Yunyuan Tian, Jincai Liu, Yaoyao Kou, Yanhua Xie, Siwang Wang, Ye Zhao. Peony Pollen Protects against Primary Dysmenorrhea in Mice by Inhibiting Inflammatory Response and Regulating the COX2/PGE2 Pathway.
International journal of molecular sciences.
2023 Dec; 24(24):. doi:
10.3390/ijms242417245
. [PMID: 38139073] - Stefan Gahbauer, Chelsea DeLeon, Joao M Braz, Veronica Craik, Hye Jin Kang, Xiaobo Wan, Xi-Ping Huang, Christian B Billesbølle, Yongfeng Liu, Tao Che, Ishan Deshpande, Madison Jewell, Elissa A Fink, Ivan S Kondratov, Yurii S Moroz, John J Irwin, Allan I Basbaum, Bryan L Roth, Brian K Shoichet. Docking for EP4R antagonists active against inflammatory pain.
Nature communications.
2023 Dec; 14(1):8067. doi:
10.1038/s41467-023-43506-6
. [PMID: 38057319] - Mengyao Song, Cheng Qian, Teng Zhang, Yu Tang, Yueke Zhou, Zhonghong Wei, Aiyun Wang, Chongjin Zhong, Yang Zhao, Yin Lu. Salvia mitiorrhiza Bunge aqueous extract attenuates infiltration of tumor-associated macrophages and potentiates anti-PD-L1 immunotherapy in colorectal cancer through modulating Cox2/PGE2 cascade.
Journal of ethnopharmacology.
2023 Nov; 316(?):116735. doi:
10.1016/j.jep.2023.116735
. [PMID: 37286115] - Taylor Richards, Scarlett Burron, Terence Connor McCorkell, Luciano Trevizan, Keely Patterson, Debbie Minikhiem, David W L Ma, Wendy Pearson, Anna K Shoveller. Effects of dietary camelina, flaxseed, and canola oil supplementation on transepidermal water loss, skin and coat health parameters, and plasma prostaglandin E2, glycosaminoglycan, and nitric oxide concentrations in healthy adult horses.
Journal of animal science.
2023 Nov; ?(?):. doi:
10.1093/jas/skad373
. [PMID: 37935917] - Albert Katchborian-Neto, Karen de Jesus Nicácio, Jonas C Cruz, Paula Carolina Pires Bueno, Michael Murgu, Danielle F Dias, Marisi G Soares, Ana C C Paula, Daniela A Chagas-Paula. Bioprospecting-based untargeted metabolomics identifies alkaloids as potential anti-inflammatory bioactive markers of Ocotea species (Lauraceae).
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Nov; 120(?):155060. doi:
10.1016/j.phymed.2023.155060
. [PMID: 37717309] - Lisbeth Berrueta, Dennis Muñoz-Vergara, Daniel Martin, Rebecca Thompson, Brian E Sansbury, Matthew Spite, Gary J Badger, Helene M Langevin. Effect of stretching on inflammation in a subcutaneous carrageenan mouse model analyzed at single-cell resolution.
Journal of cellular physiology.
2023 Nov; ?(?):. doi:
10.1002/jcp.31133
. [PMID: 37909412] - Xu Yifei, Hong Xinxin, Luo Liuru, Lin Yandan, Li Jingwei, Li Haiwen, Guo Shaoju, Huang Bin. Anti-inflammatory effects of Weiyan I decoction against gastric ulcers in a rat model via inhibition of p38 mitogen-activated protein kinases signaling.
Pakistan journal of pharmaceutical sciences.
2023 Nov; 36(6):1809-1822. doi:
. [PMID: 38124422]
- Liu-Jun Wu, Yan Chen, Zi-Wei Lin, Chen Sun, Liang Xiong, Xiao-Fang Xie, Cheng Peng. [Therapeutic effect of Leonuri Herba aqueous decoction on primary dysmenorrhea in rats and its metabolomic analysis].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Nov; 48(22):6093-6106. doi:
10.19540/j.cnki.cjcmm.20230803.401
. [PMID: 38114217] - Kiran Mashaal, Arham Shabbir, Muhammad Shahzad, Aisha Mobashar, Tasleem Akhtar, Tabinda Fatima, Bushra Riaz, Rana Alharbi, Afreen Fatima, Abdulkareem A Alanezi, Ashfaq Ahmad. Amelioration of Rheumatoid Arthritis by Fragaria nubicola (Wild Strawberry) via Attenuation of Inflammatory Mediators in Sprague Dawley Rats.
Medicina (Kaunas, Lithuania).
2023 Oct; 59(11):. doi:
10.3390/medicina59111917
. [PMID: 38003966] - Chien-Chung Yang, I-Ta Lee, Yan-Jyun Lin, Wen-Bin Wu, Li-Der Hsiao, Chuen-Mao Yang. Thrombin-Induced COX-2 Expression and PGE2 Synthesis in Human Tracheal Smooth Muscle Cells: Role of PKCδ/Pyk2-Dependent AP-1 Pathway Modulation.
International journal of molecular sciences.
2023 Oct; 24(20):. doi:
10.3390/ijms242015130
. [PMID: 37894811] - Dong Liu, Fei Tang, Li Zhang, Jing-Nan Zhang, Xiao-Lan Zhao, Li-Yue Xu, Cheng Peng, Hui Ao. Alpinia katsumadai Hayata Volatile Oil Is Effective in Treating 5-Fluorouracil-Induced Mucositis by Regulating Gut Microbiota and Modulating the GC/GR Pathway and the mPGES-1/PGE2/EP4 Pathways.
Journal of agricultural and food chemistry.
2023 Oct; ?(?):. doi:
10.1021/acs.jafc.3c05051
. [PMID: 37800952] - Rui Wang, Xiu-Qin Li, Meng-Ru Wang, Xiu-Mei Wu, Yu-Sheng Xu, Ahunova Hilola, Xue-Chang Wang, Heng Liu. Effect of Kangfuxiaomi suppository on pelvic inflammatory disease in rats.
Journal of reproductive immunology.
2023 Sep; 160(?):104154. doi:
10.1016/j.jri.2023.104154
. [PMID: 37774536] - Sophie Morin, Andréa Tremblay, Elizabeth Dumais, Pierre Julien, Nicolas Flamand, Roxane Pouliot. Eicosapentaenoic Acid Influences the Lipid Profile of an In Vitro Psoriatic Skin Model Produced with T Cells.
Biomolecules.
2023 09; 13(9):. doi:
10.3390/biom13091413
. [PMID: 37759812] - Sara Sattar, Arham Shabbir, Muhammad Shahzad, Tasleem Akhtar, Arfan Ahmad, Sulaiman Mohammed Alnasser, Bushra Riaz, Shaik Karimullah, Ashfaq Ahmad. Eichhornia crassipes Ameliorated Rheumatoid Arthritis by Modulating Inflammatory Cytokines and Metalloproteinase Enzymes in a Rat Model.
Medicina (Kaunas, Lithuania).
2023 Sep; 59(9):. doi:
10.3390/medicina59091594
. [PMID: 37763713] - Michael Kurz, Michaela Ulrich, Alwina Bittner, Magdalena Martina Scharf, Jingchen Shao, Imke Wallenstein, Horst Lemoine, Nina Wettschureck, Peter Kolb, Moritz Bünemann. EP4 Receptor Conformation Sensor Suited for Ligand Screening and Imaging of Extracellular Prostaglandins.
Molecular pharmacology.
2023 09; 104(3):80-91. doi:
10.1124/molpharm.122.000648
. [PMID: 37442628] - Pingping Lv, Huirong Zhang, Meiling Tai, Biao Che, Dan Yu, Ying Zhang, Haodong Li, Xianyao Meng, Miaomiao Guo, Li Li. Active Ingredients of Schisandra chinensis Fruit Oil and their Effect on Propionibacterium acnes-Induced Inflammation in HaCaT Cells.
Frontiers in bioscience (Landmark edition).
2023 08; 28(8):177. doi:
10.31083/j.fbl2808177
. [PMID: 37664918] - Bruno Anderson Fernandes da Silva, Renata Torres Pessoa, Roger Henrique Sousa da Costa, Maria Rayane Correia de Oliveira, Andreza Guedes Barbosa Ramos, Maria Gabriely de Lima Silva, Lucas Yure Santos da Silva, Cassio Rocha Medeiros, Sloana Giesta Lemos Florencio, Jaime Ribeiro-Filho, Henrique Douglas Melo Coutinho, António Raposo, Sunghoon Yoo, Heesup Han, Irwin Rose Alencar de Menezes, Lucindo José Quintans Júnior. Evaluation of the antiedematogenic and anti-inflammatory properties of Ximenia americana L. (Olacaceae) bark extract in experimental models of inflammation.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Aug; 166(?):115249. doi:
10.1016/j.biopha.2023.115249
. [PMID: 37597323] - Yang Jiao, Ti Zhang, Mei Liu, Luyang Zhou, Mengzhi Qi, Xin Xie, Xueyin Shi, Xiaoping Gu, Zhengliang Ma. Exosomal PGE2 from M2 macrophages inhibits neutrophil recruitment and NET formation through lipid mediator class switching in sepsis.
Journal of biomedical science.
2023 Aug; 30(1):62. doi:
10.1186/s12929-023-00957-9
. [PMID: 37533081] - Liu Di, Zhang Yingqi, Y U Tianyuan, Liu Zhifeng, Jiao Yi, Wang Hourong, X U Yajing, Guan Qian, Chen Lulu, H U Hui. Protective mechanisms of Tuina therapy against lipopolysaccharide-induced fever in young rabbits based on untargeted metabolomics analysis.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2023 Aug; 43(4):725-733. doi:
10.19852/j.cnki.jtcm.2023.04.007
. [PMID: 37454257] - Weixuan Wang, Mingjie Liang, Lexun Wang, Weijian Bei, Jiao Guo. 15-Hydroxyprostaglandin dehydrogenase inhibitor SW033291 ameliorates hepatic abnormal lipid metabolism, ER stress, and inflammation through PGE2/EP4 in T2DM mice.
Bioorganic chemistry.
2023 08; 137(?):106646. doi:
10.1016/j.bioorg.2023.106646
. [PMID: 37285764] - Jingwen Gan, Shi-Yang Zhu, Xiao Ma, Xue-Song Ding, Yan Deng, Yanfang Wang, Ai-Jun Sun. The effect of Ding-kun-dan comparing with Marvelon on primary dysmenorrhea: A prospective, double-blind, multicenter, randomized controlled trial.
Journal of ethnopharmacology.
2023 Jul; ?(?):116975. doi:
10.1016/j.jep.2023.116975
. [PMID: 37517569] - Ari Sérgio de O Lemos, Lara M Campos, Juliana da T Granato, Priscila V Z C Goliatt, Paula R B Dib, Eugenio D Hottz, Nícolas Glanzmann, Laíris C Campos, Heloisa D S Bizarro, Luciana M Chedier, Elaine S Coimbra, Rodrigo L Fabri. Mitracarpus frigidus reduces lipid metabolism and PGE2 levels in inflammatory cells.
The Journal of pharmacy and pharmacology.
2023 Jul; ?(?):. doi:
10.1093/jpp/rgad069
. [PMID: 37487573] - Piotr Kaczynski, Ewelina Goryszewska-Szczurek, Monika Baryla, Agnieszka Waclawik. Novel insights into conceptus-maternal signaling during pregnancy establishment in pigs.
Molecular reproduction and development.
2023 07; 90(7):658-672. doi:
10.1002/mrd.23567
. [PMID: 35385215] - Maggie E Phillips, Oluwabori Adekanye, Abdolsamad Borazjani, J Allen Crow, Matthew K Ross. CES1 Releases Oxylipins from Oxidized Triacylglycerol (oxTAG) and Regulates Macrophage oxTAG/TAG Accumulation and PGE2/IL-1β Production.
ACS chemical biology.
2023 Jun; ?(?):. doi:
10.1021/acschembio.3c00194
. [PMID: 37348046] - Wenbo Xie, Lu An, Zhaoyang Liu, Xindi Wang, Xueqi Fu, Junfeng Ma. Therapeutic Effect of Polaprezinc on Reflux Esophagitis in the Rat Model.
Digestive diseases and sciences.
2023 Jun; ?(?):. doi:
10.1007/s10620-023-07990-6
. [PMID: 37335414] - Hiroshi Nango, Komugi Tsuruta, Hiroko Miyagishi, Yuri Aono, Tadashi Saigusa, Yasuhiro Kosuge. Update on the pathological roles of prostaglandin E2 in neurodegeneration in amyotrophic lateral sclerosis.
Translational neurodegeneration.
2023 Jun; 12(1):32. doi:
10.1186/s40035-023-00366-w
. [PMID: 37337289] - Mingjie Liang, Lexun Wang, Weixuan Wang. The 15-hydroxyprostaglandin dehydrogenase inhibitor SW033291 ameliorates abnormal hepatic glucose metabolism through PGE2-EP4 receptor-AKT signaling in a type 2 diabetes mellitus mouse model.
Cellular signalling.
2023 May; 108(?):110707. doi:
10.1016/j.cellsig.2023.110707
. [PMID: 37164143] - Grace Adebayo-Gege, Zainab Shehu Uthman, Moses Dele Adams, Tarfa Florence, Danazumi Umar Haruna, Ngabea Murtala Audu, Hamidu Jabba Lawan, Ozegbe Queen, Onwuchekwa Chinedu, Ajibola Meraiyebu, Ojo Kafaru. Molecular docking and anti-ulcerative potential of Cucumis (L. Inodorous) on ibuprofen induced gastric ulceration in male wistar animals.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 May; 161(?):114531. doi:
10.1016/j.biopha.2023.114531
. [PMID: 36934555] - Jianyang Liu, Bing Peng, Julia Steinmetz-Späh, Helena Idborg, Marina Korotkova, Per-Johan Jakobsson. Microsomal prostaglandin E synthase-1 inhibition promotes shunting in arachidonic acid metabolism during inflammatory responses in vitro.
Prostaglandins & other lipid mediators.
2023 Apr; 167(?):106738. doi:
10.1016/j.prostaglandins.2023.106738
. [PMID: 37094780] - Jun Yang, Juan Wang, Yu Zhang, Wenjing Huang, Shaoqing Zhang, Peihao Yin, Wenfu Tan. c-Jun phosphorylated by JNK is required for protecting Gli2 from proteasomal-ubiquitin degradation by PGE2-JNK signaling axis.
Biochimica et biophysica acta. Molecular cell research.
2023 03; 1870(3):119418. doi:
10.1016/j.bbamcr.2022.119418
. [PMID: 36581088] - Momita Rani Baro, Manas Das, Anuradha Kalita, Bhabajyoti Das, Kishore Sarma. Exploring the anti-inflammatory potential of Colocasia esculenta root extract in in-vitro and in-vivo models of inflammation.
Journal of ethnopharmacology.
2023 Mar; 303(?):116021. doi:
10.1016/j.jep.2022.116021
. [PMID: 36516907] - Juliann B Burkett, Amanda C Doran, Maureen Gannon. Harnessing prostaglandin E2 signaling to ameliorate autoimmunity.
Trends in immunology.
2023 Mar; 44(3):162-171. doi:
10.1016/j.it.2023.01.004
. [PMID: 36707339] - Miyu Komatsu, Takeshi Funakoshi, Toshihiko Aki, Kana Unuma, Koichi Uemura. Aristolochic acid induces an inflammatory response with prostaglandin E2 production and apoptosis in NRK-52E proximal tubular cells.
Toxicology letters.
2023 Feb; ?(?):. doi:
10.1016/j.toxlet.2023.02.009
. [PMID: 36863539] - Harsharan Singh Bhatia, Matthias Apweiler, Lu Sun, Julian Baron, Ashwini Tirkey, Bernd L Fiebich. Licochalcone A Inhibits Prostaglandin E2 by Targeting the MAPK Pathway in LPS Activated Primary Microglia.
Molecules (Basel, Switzerland).
2023 Feb; 28(4):. doi:
10.3390/molecules28041927
. [PMID: 36838914] - Abdul Hasan, Shree Devi Ms, Geetika Sharma, Vimal Narayanan, P Sathiyarajeswaran, S Vinayak, Sujatha Sunil. Vathasura Kudineer, an Andrographis based polyherbal formulation exhibits immunomodulation and inhibits chikungunya virus (CHIKV) under invitro conditions.
Journal of ethnopharmacology.
2023 Feb; 302(Pt A):115762. doi:
10.1016/j.jep.2022.115762
. [PMID: 36181982] - Jingyuan Liu, Mahesha M Poojary, Ling Zhu, Andrew R Williams, Marianne N Lund. Phenolic Acid-Amino Acid Adducts Exert Distinct Immunomodulatory Effects in Macrophages Compared to Parent Phenolic Acids.
Journal of agricultural and food chemistry.
2023 Feb; 71(5):2344-2355. doi:
10.1021/acs.jafc.2c06658
. [PMID: 36715127] - Du-Yeol Choi, Yonggyun Kim. PGE2 mediation of egg development in Western flower thrip, Frankliniella occidentalis.
Archives of insect biochemistry and physiology.
2023 Feb; 112(2):e21949. doi:
10.1002/arch.21949
. [PMID: 35749583] - Nao Sugimoto, Yoshifumi Morita, Eri Sakai, Yutaka Yatomi, Makoto Kurano. Modulations of urinary lipid mediators in acute bladder cystitis.
Prostaglandins & other lipid mediators.
2023 02; 164(?):106690. doi:
10.1016/j.prostaglandins.2022.106690
. [PMID: 36332874] - Silvia Montoro-García, Sara Martínez-Sánchez, Miguel Carmena-Bargueño, Horacio Pérez-Sánchez, María Campillo, Camille Oger, Jean-Marie Galano, Thierry Durand, Ángel Gil-Izquierdo, José Antonio Gabaldón. A Phytoprostane from Gracilaria longissima Increases Platelet Activation, Platelet Adhesion to Leukocytes and Endothelial Cell Migration by Potential Binding to EP3 Prostaglandin Receptor.
International journal of molecular sciences.
2023 Feb; 24(3):. doi:
10.3390/ijms24032730
. [PMID: 36769052] - Minyi Tian, Dan Xie, Yao Yang, Yufeng Tian, Xiaoyan Jia, Qinqin Wang, Guodong Deng, Ying Zhou. Hedychium flavum flower essential oil: Chemical composition, anti-inflammatory activities and related mechanisms in vitro and in vivo.
Journal of ethnopharmacology.
2023 Jan; 301(?):115846. doi:
10.1016/j.jep.2022.115846
. [PMID: 36280015] - Xiao Xue, Yu Liu, Shao-Hua Wang, Han-Yu Yuan, Juan Li, Si-An Pan, Zeng-Hui Yue. [Effect of electroacupuncture intervention on relieving pain and inflammation by suppressing TLR4/NF-κB signaling in rats with primary dysmenorrhea].
Zhen ci yan jiu = Acupuncture research.
2023 Jan; 48(1):63-70. doi:
10.13702/j.1000-0607.20220224
. [PMID: 36734500] - Yoshinobu Nakamura, Chisato Aizawa, Hinako Kawata, Takeo Nakanishi. N-glycosylation modifies prostaglandin E2 uptake by reducing cell surface expression of SLCO2A1.
Prostaglandins & other lipid mediators.
2023 Jan; 165(?):106714. doi:
10.1016/j.prostaglandins.2023.106714
. [PMID: 36706979] - DruAnne L Maxwell, Timothy D Bryson, David Taube, Jiang Xu, Edward Peterson, Pamela Harding. Deleterious effects of cardiomyocyte-specific prostaglandin E2 EP3 receptor overexpression on cardiac function after myocardial infarction.
Life sciences.
2023 Jan; 313(?):121277. doi:
10.1016/j.lfs.2022.121277
. [PMID: 36521546] - Amir A Razmjou, Jennifer M Wang, Ani Shahbazian, Srinivasa Reddy, Christina Charles-Schoeman. Suppressed paraoxonase-1 activity associates with elevated oxylipins and the presence of small airways disease in patients with rheumatoid arthritis.
Clinical rheumatology.
2023 Jan; 42(1):75-82. doi:
10.1007/s10067-022-06375-w
. [PMID: 36138190] - Zhenyu Chen, Zhongbing Liu, Shuzao Wang, Cai Cheng, Xiaoduan Sun, Zerong Liu, Jun Wei, Jun Jiang, Huaqi Lan, Meiling Zhou, Pei Jing, Yan Lin, Xiangyu Zhou, Zhirong Zhong. Long-Circulating Lipid Nanospheres Loaded with Flurbiprofen Axetil for Targeted Rheumatoid Arthritis Treatment.
International journal of nanomedicine.
2023; 18(?):5159-5181. doi:
10.2147/ijn.s419502
. [PMID: 37705869] - Weixuan Wang, Mingjie Liang, Lexun Wang, Weijian Bei, Xianglu Rong, Jianqin Xu, Jiao Guo. Role of prostaglandin E2 in macrophage polarization: Insights into atherosclerosis.
Biochemical pharmacology.
2023 01; 207(?):115357. doi:
10.1016/j.bcp.2022.115357
. [PMID: 36455672] - Wei-Ping He, Jin-Cheng Li, Gao-Ming Wang. [Effect of total flavonoids of buckwheat flower and leaf on myocardial cell apoptosis and Wnt/β-catenin/PPARγ pathway in arrhythmic rats].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2023 Jan; 48(1):220-225. doi:
10.19540/j.cnki.cjcmm.20221014.701
. [PMID: 36725274] - Eugenia Martín-Vázquez, Nadia Cobo-Vuilleumier, Livia López-Noriega, Petra I Lorenzo, Benoit R Gauthier. The PTGS2/COX2-PGE2 signaling cascade in inflammation: Pro or anti? A case study with type 1 diabetes mellitus.
International journal of biological sciences.
2023; 19(13):4157-4165. doi:
10.7150/ijbs.86492
. [PMID: 37705740] - Behnia Akbari, Tahereh Soltantoyeh, Zahra Shahosseini, Farhad Jadidi-Niaragh, Jamshid Hadjati, Christine E Brown, Hamid Reza Mirzaei. PGE2-EP2/EP4 signaling elicits mesoCAR T cell immunosuppression in pancreatic cancer.
Frontiers in immunology.
2023; 14(?):1209572. doi:
10.3389/fimmu.2023.1209572
. [PMID: 37457723] - Ann-Marie Maier, Karsten Huth, Francesca Alessandrini, Benjamin Schnautz, Anela Arifovic, Fabien Riols, Mark Haid, Anja Koegler, Katrin Sameith, Carsten B Schmidt-Weber, Julia Esser-von-Bieren, Caspar Ohnmacht. The aryl hydrocarbon receptor regulates lipid mediator production in alveolar macrophages.
Frontiers in immunology.
2023; 14(?):1157373. doi:
10.3389/fimmu.2023.1157373
. [PMID: 37081886] - Ying Liu, Lin Zhou, Caihong Lv, Lingyun Liu, Shuying Miao, Yunfei Xu, Kexin Li, Yao Zhao, Jie Zhao. PGE2 pathway mediates oxidative stress-induced ferroptosis in renal tubular epithelial cells.
The FEBS journal.
2023 01; 290(2):533-549. doi:
10.1111/febs.16609
. [PMID: 36031392] - Yeke Wu, Min Liu, Hongling Zhou, Xiang He, Wei Shi, Qianghua Yuan, Yuling Zuo, Bin Li, Qiongying Hu, Yunfei Xie. COX-2/PGE2/VEGF signaling promotes ERK-mediated BMSCs osteogenic differentiation under hypoxia by the paracrine action of ECs.
Cytokine.
2023 01; 161(?):156058. doi:
10.1016/j.cyto.2022.156058
. [PMID: 36209650] - Nutthapong Kantrong, Jittranut Kumtawee, Teerasak Damrongrungruang, Subin Puasiri, Anupong Makeudom, Suttichai Krisanaprakornkit, Pattama Chailertvanitkul. An in vitro anti-inflammatory effect of Thai propolis in human dental pulp cells.
Journal of applied oral science : revista FOB.
2023; 31(?):e20230006. doi:
10.1590/1678-7757-2023-0006
. [PMID: 37283330] - Juliette Cholet, Caroline Decombat, Laetitia Delort, Maël Gainche, Alexandre Berry, Clémence Ogeron, Isabelle Ripoche, Marjolaine Vareille-Delarbre, Marion Vermerie, Didier Fraisse, Catherine Felgines, Adrien Rossary, Edwige Ranouille, Jean-Yves Berthon, Albert Tourrette, Julien Priam, Etienne Saunier, Yves Troin, François Senejoux, Pierre Chalard, Florence Caldefie-Chézet. Potential Anti-Inflammatory and Chondroprotective Effect of Luzula sylvatica.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010127
. [PMID: 36613576] - Hammad Ullah, Alessandro Di Minno, Cristina Santarcangelo, Ariyawan Tantipongpiradet, Marco Dacrema, Rita di Matteo, Hesham R El-Seedi, Shaden A M Khalifa, Alessandra Baldi, Antonietta Rossi, Maria Daglia. In Vitro Bioaccessibility and Anti-Inflammatory Activity of a Chemically Characterized Allium cepa L. Extract Rich in Quercetin Derivatives Optimized by the Design of Experiments.
Molecules (Basel, Switzerland).
2022 Dec; 27(24):. doi:
10.3390/molecules27249065
. [PMID: 36558199] - Duyeol Choi, Md Abdullah Al Baki, Shabbir Ahmed, Yonggyun Kim. Aspirin Inhibition of Prostaglandin Synthesis Impairs Mosquito Egg Development.
Cells.
2022 12; 11(24):. doi:
10.3390/cells11244092
. [PMID: 36552860] - Amel Bouhadoun, Hasanga D Manikpurage, Catherine Deschildre, Sara Zalghout, Marc Dubourdeau, Valérie Urbach, Benoît Ho-Tin-Noe, Lydia Deschamps, Jean-Baptiste Michel, Dan Longrois, Xavier Norel. DHA, RvD1, RvD5, and MaR1 reduce human coronary arteries contractions induced by PGE2.
Prostaglandins & other lipid mediators.
2022 Dec; 165(?):106700. doi:
10.1016/j.prostaglandins.2022.106700
. [PMID: 36528331] - Seul-Yong Jeong, Won Seok Choi, Oh Seong Kwon, Jong Seok Lee, Su Young Son, Choong Hwan Lee, Sarah Lee, Jin Yong Song, Yeon Jin Lee, Ji-Yun Lee. Extract of Pinus densiflora needles suppresses acute inflammation by regulating inflammatory mediators in RAW264.7 macrophages and mice.
Pharmaceutical biology.
2022 Dec; 60(1):1148-1159. doi:
10.1080/13880209.2022.2079679
. [PMID: 35695008] - X U Chang, L I Na, W U Xiaoling, Dai Xingye, Yang Zhiwen, Sun Qianhui, Shi Tianyu, Chai Yemao, Pang Dandan, Cheng Kai. Effect of electroacupuncture on inflammatory signal expression in local tissues of rats with chronic pelvic pain syndrome based on purinergic 2X7 receptor/NOD-like receptor pyrin domain-containing 3 signal pathway.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2022 12; 42(6):965-971. doi:
10.19852/j.cnki.jtcm.20220928.003
. [PMID: 36378055] - Gong Hui, L I Yang, Feng Lei, Xiao Yujie, Huang Lizhong, Mao Dan, Zhang Hui. Yanghe decoction attenuated pain hypersensitivity induced by michigan cancer foundation-7 injection in rats with bone metastases from breast cancer by inhibiting transient receptor potential ankyrin 1.
Journal of traditional Chinese medicine = Chung i tsa chih ying wen pan.
2022 12; 42(6):948-955. doi:
10.19852/j.cnki.jtcm.20220707.001
. [PMID: 36378053] - Bin Chen, Hong Liu, Liang-Zhi Zhang, Jing Liu, Zhen-Feng Hong, Zhong-Biao Xiu, Hong-Jia Zhao. [Visual acupotomy intervention mitigates pain reaction by improving intervertebral disc degeneration and inhibiting apoptosis of nucleus pulposus cells in rabbits with cervical spondylosis].
Zhen ci yan jiu = Acupuncture research.
2022 Nov; 47(11):1005-11. doi:
10.13702/j.1000-0607.20220300
. [PMID: 36453678] - Johirul Islam, Alpa Shree, Haider Ali Khan, Sarwat Sultana. Chemopreventive potential of Diosmin against benzo[a]pyrene induced lung carcinogenesis in Swiss Albino mice.
Journal of biochemical and molecular toxicology.
2022 Nov; 36(11):e23187. doi:
10.1002/jbt.23187
. [PMID: 35920545] - Di Zhang, Bei Jing, Zhenni Chen, Xin Li, Huimei Shi, Yachun Zheng, Shiquan Chang, Guoping Zhao. Ferulic acid alleviates sciatica by inhibiting peripheral sensitization through the RhoA/p38MAPK signalling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Nov; 106(?):154420. doi:
10.1016/j.phymed.2022.154420
. [PMID: 36115115] - Erkan Civelek, Gulsev Ozen. The biological actions of prostanoids in adipose tissue in physiological and pathophysiological conditions.
Prostaglandins, leukotrienes, and essential fatty acids.
2022 11; 186(?):102508. doi:
10.1016/j.plefa.2022.102508
. [PMID: 36270150] - Fan Zhang, Kang Sun, Wang-Sheng Wang. Identification of a Feed-Forward Loop Between 15(S)-HETE and PGE2 in Human Amnion at Parturition.
Journal of lipid research.
2022 11; 63(11):100294. doi:
10.1016/j.jlr.2022.100294
. [PMID: 36206855] - Veronica Sanda Chedea, Ștefan Octavian Macovei, Ioana Corina Bocșan, Dan Claudiu Măgureanu, Antonia Mihaela Levai, Anca Dana Buzoianu, Raluca Maria Pop. Grape Pomace Polyphenols as a Source of Compounds for Management of Oxidative Stress and Inflammation-A Possible Alternative for Non-Steroidal Anti-Inflammatory Drugs?.
Molecules (Basel, Switzerland).
2022 Oct; 27(20):. doi:
10.3390/molecules27206826
. [PMID: 36296420] - Guoxin Bai, Junyu Yi, Yuanyuan Yu, Hongxing Du. Clinical effect of Anwei Qingyou recipe on peptic ulcer and its effect on the levels of EGF and PGE2: A retrospective study.
Medicine.
2022 Oct; 101(40):e30898. doi:
10.1097/md.0000000000030898
. [PMID: 36221352] - Chaiwat Monmai, Jin-Suk Kim, So-Hyeon Baek. Transgenic Rice Seed Extracts Exert Immunomodulatory Effects by Modulating Immune-Related Biomarkers in RAW264.7 Macrophage Cells.
Nutrients.
2022 Oct; 14(19):. doi:
10.3390/nu14194143
. [PMID: 36235795] - Vijay L Kumar, Sneh Verma, Prasenjit Das. Anti-inflammatory and antioxidant effect of methanol extract of latex of Calotropis procera in rat model of colorectal cancer.
Journal of ethnopharmacology.
2022 Oct; 296(?):115503. doi:
10.1016/j.jep.2022.115503
. [PMID: 35753608] - Neven Žarković, Wojciech Łuczaj, Iwona Jarocka-Karpowicz, Biserka Orehovec, Bruno Baršić, Marko Tarle, Marta Kmet, Ivica Lukšić, Michał Biernacki, Elżbieta Skrzydlewska. Diversified Effects of COVID-19 as a Consequence of the Differential Metabolism of Phospholipids and Lipid Peroxidation Evaluated in the Plasma of Survivors and Deceased Patients upon Admission to the Hospital.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911810
. [PMID: 36233111] - Luyao Yang, Hongqing Chen, Qiongying Hu, Lu Liu, Yun Yuan, Chuantao Zhang, Jianyuan Tang, Xiaofei Shen. Eupalinolide B attenuates lipopolysaccharide-induced acute lung injury through inhibition of NF-κB and MAPKs signaling by targeting TAK1 protein.
International immunopharmacology.
2022 Oct; 111(?):109148. doi:
10.1016/j.intimp.2022.109148
. [PMID: 35988521] - You Lan, Bo Qian, Hai-Yan Huang, Pan Wang, Ting Li, Qi Yuan, Han-Yu Zhang, Yu-Chun Lin, Zhong-Ning Lin. Hepatocyte-Derived Prostaglandin E2-Modulated Macrophage M1-Type Polarization via mTOR-NPC1 Axis-Regulated Cholesterol Transport from Lysosomes to the Endoplasmic Reticulum in Hepatitis B Virus x Protein-Related Nonalcoholic Steatohepatitis.
International journal of molecular sciences.
2022 Oct; 23(19):. doi:
10.3390/ijms231911660
. [PMID: 36232960] - Randi K Johnson, Jonathan Manke, Monica Campbell, Michael Armstrong, Meher Preethi Boorgula, Gabriela Pinheiro, Cinthia Vila Nova Santana, Rasika A Mathias, Kathleen C Barnes, Alvaro Cruz, Nichole Reisdorph, Camila A Figueiredo. Lipid mediators are detectable in the nasal epithelium and differ by asthma status in female subjects.
The Journal of allergy and clinical immunology.
2022 10; 150(4):965-971.e8. doi:
10.1016/j.jaci.2022.02.026
. [PMID: 35304161] - Hakan Doneray, Ozlem Ziraatci Akbulut, Ayse Ozden, Abdulkadir Yildirim, Zerrin Orbak. Plasma renin, aldosterone, and urinary prostaglandin E2 levels in children with hypocalcemia due to vitamin D deficiency rickets.
Prostaglandins & other lipid mediators.
2022 10; 162(?):106652. doi:
10.1016/j.prostaglandins.2022.106652
. [PMID: 35688409] - Samia A Ahmed, Sylvia E Shaker, Heba Shawky. Solvent polarity dictates the anti-inflammatory potency and mechanism of two purslane (Portulaca oleracea) seed extracts.
Journal of food biochemistry.
2022 10; 46(10):e14281. doi:
10.1111/jfbc.14281
. [PMID: 35735134] - D Kratz, A Wilken-Schmitz, A Sens, L Hahnefeld, K Scholich, G Geisslinger, R Gurke, D Thomas. Post-mortem changes of prostanoid concentrations in tissues of mice: Impact of fast cervical dislocation and dissection delay.
Prostaglandins & other lipid mediators.
2022 10; 162(?):106660. doi:
10.1016/j.prostaglandins.2022.106660
. [PMID: 35714920] - Jin-Fang Luo, Hua Zhou, Chon-Kit Lio. Akebia Saponin D Inhibits the Inflammatory Reaction by Inhibiting the IL-6-STAT3-DNMT3b Axis and Activating the Nrf2 Pathway.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196236
. [PMID: 36234773]