NCBI Taxonomy: 392618

Cunila (ncbi_taxid: 392618)

found 164 associated metabolites at genus taxonomy rank level.

Ancestor: Mentheae

Child Taxonomies: Cunila incana, Cunila pycnantha, Cunila galioides, Cunila leucantha, Cunila lythrifolia, Cunila origanoides, Cunila microcephala

Scopoletin

7-hydroxy-6-methoxy-2H-chromen-2-one

C10H8O4 (192.0423)


Scopoletin is a hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. It has a role as a plant growth regulator and a plant metabolite. It is functionally related to an umbelliferone. Scopoletin is a natural product found in Ficus auriculata, Haplophyllum cappadocicum, and other organisms with data available. Scopoletin is a coumarin compound found in several plants including those in the genus Scopolia and the genus Brunfelsia, as well as chicory (Cichorium), redstem wormwood (Artemisia scoparia), stinging nettle (Urtica dioica), passion flower (Passiflora), noni (Morinda citrifolia fruit) and European black nightshade (Solanum nigrum) that is comprised of umbelliferone with a methoxy group substituent at position 6. Scopoletin is used to standardize and establish pharmacokinetic properties for products derived from the plants that produce it, such as noni extract. Although the mechanism(s) of action have not yet been established, this agent has potential antineoplastic, antidopaminergic, antioxidant, anti-inflammatory and anticholinesterase effects. Plant growth factor derived from the root of Scopolia carniolica or Scopolia japonica. See also: Arnica montana Flower (part of); Lycium barbarum fruit (part of); Viburnum opulus root (part of). Isolated from Angelica acutiloba (Dong Dang Gui). Scopoletin is found in many foods, some of which are lambsquarters, lemon, sunflower, and sherry. Scopoletin is found in anise. Scopoletin is isolated from Angelica acutiloba (Dong Dang Gui A hydroxycoumarin that is umbelliferone bearing a methoxy substituent at position 6. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA72_Scopoletin_pos_20eV.txt [Raw Data] CBA72_Scopoletin_pos_40eV.txt [Raw Data] CBA72_Scopoletin_neg_30eV.txt [Raw Data] CBA72_Scopoletin_neg_50eV.txt [Raw Data] CBA72_Scopoletin_pos_50eV.txt [Raw Data] CBA72_Scopoletin_pos_10eV.txt [Raw Data] CBA72_Scopoletin_neg_40eV.txt [Raw Data] CBA72_Scopoletin_neg_10eV.txt [Raw Data] CBA72_Scopoletin_pos_30eV.txt [Raw Data] CBA72_Scopoletin_neg_20eV.txt Scopoletin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=92-61-5 (retrieved 2024-07-12) (CAS RN: 92-61-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Scopoletin is an inhibitor of acetylcholinesterase (AChE). Scopoletin is an inhibitor of acetylcholinesterase (AChE).

   

Umbelliferone

7-Hydroxy-2H-1-benzopyran-2-one

C9H6O3 (162.0317)


Umbelliferone is a hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. It has a role as a fluorescent probe, a plant metabolite and a food component. Umbelliferone is a natural product found in Ficus septica, Artemisia ordosica, and other organisms with data available. See also: Chamomile (part of). Occurs widely in plants including Angelica subspecies Phytoalexin of infected sweet potato. Umbelliferone is found in many foods, some of which are macadamia nut, silver linden, quince, and capers. Umbelliferone is found in anise. Umbelliferone occurs widely in plants including Angelica species Phytoalexin of infected sweet potat A hydroxycoumarin that is coumarin substituted by a hydroxy group ay position 7. [Raw Data] CB220_Umbelliferone_pos_50eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_40eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_30eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_10eV_CB000077.txt [Raw Data] CB220_Umbelliferone_pos_20eV_CB000077.txt [Raw Data] CB220_Umbelliferone_neg_40eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_10eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_30eV_000039.txt [Raw Data] CB220_Umbelliferone_neg_20eV_000039.txt Umbelliferone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=93-35-6 (retrieved 2024-07-12) (CAS RN: 93-35-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent. Umbelliferone (7-Hydroxycoumarin), a natural product of the coumarin family, is a fluorescing compound which can be used as a sunscreen agent.

   

Rosmarinic acid

(2R)-3-(3,4-dihydroxyphenyl)-2-[(E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxypropanoic acid

C18H16O8 (360.0845)


Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. It is a red-orange powder that is slightly soluble in water, but well soluble is most organic solvents. Rosmarinic acid is one of the polyphenolic substances contained in culinary herbs such as perilla (Perilla frutescens L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). These herbs are commonly grown in the garden as kitchen herbs, and while used to add flavor in cooking, are also known to have several potent physiological effects (PMID: 12482446, 15120569). BioTransformer predicts that rosmarinic acid is a product of methylrosmarinic acid metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in humans and human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). (R)-rosmarinic acid is a stereoisomer of rosmarinic acid having (R)-configuration. It has a role as a plant metabolite and a geroprotector. It is a conjugate acid of a (R)-rosmarinate. It is an enantiomer of a (S)-rosmarinic acid. Rosmarinic acid is a natural product found in Dimetia scandens, Scrophularia scorodonia, and other organisms with data available. See also: Rosemary Oil (part of); Comfrey Root (part of); Holy basil leaf (part of) ... View More ... D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Isolated from rosemary, mint, sage, thyme, lemon balm and other plants D002491 - Central Nervous System Agents > D000700 - Analgesics A stereoisomer of rosmarinic acid having (R)-configuration. D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   

Agnuside

((1S,4AR,5S,7AS)-5-HYDROXY-1-(((2S,3R,4S,5S,6R)-3,4,5-TRIHYDROXY-6-(HYDROXYMETHYL)TETRAHYDRO-2H-PYRAN-2-YL)OXY)-1,4A,5,7A-TETRAHYDROCYCLOPENTA[C]PYRAN-7-YL)METHYL 4-HYDROXYBENZOATE

C22H26O11 (466.1475)


Agnuside is a benzoate ester resulting from the formal condensation of the carboxy group of 4-hydroxybenzoic acid with the primary hydroxy group of aucubin. It is an iridoid glycoside found in several Vitex plants including Vitex agnus-castus. It has a role as a plant metabolite, an anti-inflammatory agent, a pro-angiogenic agent and a cyclooxygenase 2 inhibitor. It is a terpene glycoside, an iridoid monoterpenoid, a benzoate ester, a member of phenols, a beta-D-glucoside, a cyclopentapyran and a monosaccharide derivative. It is functionally related to an aucubin. Agnuside is a natural product found in Crescentia cujete, Vitex peduncularis, and other organisms with data available. See also: Chaste tree fruit (part of); Vitex negundo leaf (part of). Isolated from Vitex agnus-castus (agnus castus). Agnuside is found in herbs and spices and fruits. Agnuside is found in fruits. Agnuside is isolated from Vitex agnus-castus (agnus castus). Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1]. Agnuside is used in the study of asthma, inflammation, and angiogenic diseases. Agnuside is an orally active compound that can be extracted from Vitex negundo[1][2][3][4]. Agnuside is a compound isolated from Vitex negundo, down-regulates pro-inflammatory mediators PGE2 and LTB4, and reduces the expression of cytokines, with anti-arthritic activity[1].

   

Hesperetin 7-neohesperidoside

(S)-7-(((2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-(((2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyltetrahydro-2H-pyran-2-yl)oxy)tetrahydro-2H-pyran-2-yl)oxy)-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)chroman-4-one

C28H34O15 (610.1898)


Neohesperidin is a flavanone glycoside that is hesperitin having an 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety attached to the 7-hydroxy group. It has a role as an antineoplastic agent and a plant metabolite. It is a neohesperidoside, a disaccharide derivative, a dihydroxyflavanone, a member of 3-hydroxyflavanones, a monomethoxyflavanone, a flavanone glycoside and a member of 4-methoxyflavanones. It is functionally related to a hesperetin. (S)-7-(((2-O-6-Deoxy-alpha-L-mannopyranosyl)-beta-D-glucopyranosyl)oxy)-2,3-dihydro-5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-4H-1-benzopyran-4-one is a natural product found in Citrus medica, Arabidopsis thaliana, and other organisms with data available. Constituent of Seville orange peel (Citrus aurantium) and other Citrus subspecies Very bitter flavouring agent. Hesperetin 7-neohesperidoside is found in many foods, some of which are grapefruit/pummelo hybrid, pummelo, citrus, and grapefruit. Hesperetin 7-neohesperidoside is found in citrus. Hesperetin 7-neohesperidoside is a constituent of Seville orange peel (Citrus aurantium) and other Citrus species Very bitter flavouring agent Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects. Neohesperidin is a flavonoid compound found in high amounts in citrus fruits with anti-oxidant and anti-inflammatory effects.

   

Neochlorogenic acid

(1R,3R,4S,5R)-3-{[(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylic acid

C16H18O9 (354.0951)


Constituent of coffee and many other plants. First isolated from peaches (Prunus persica). trans-Neochlorogenic acid is found in coffee and coffee products, fruits, and pear. [Raw Data] CBA73_Neochlorogenic-_neg_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_20eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_40eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_20eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_50eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_40eV.txt [Raw Data] CBA73_Neochlorogenic-_neg_30eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_10eV.txt [Raw Data] CBA73_Neochlorogenic-_pos_30eV.txt Neochlorogenic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=906-33-2 (retrieved 2024-07-17) (CAS RN: 906-33-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

Aesculetin

6,7-dihydroxychromen-2-one

C9H6O4 (178.0266)


Aesculetin, also known as cichorigenin or cichoriin aglucon, belongs to the class of organic compounds known as 6,7-dihydroxycoumarins. These are coumarins bearing two hydroxyl groups at positions 6 and 7 of the coumarin skeleton, respectively. Aesculetin is found, on average, in the highest concentration within sherries. Aesculetin has also been detected, but not quantified, in several different foods, such as horseradish, carrots, dandelions, grape wines, and highbush blueberries. This could make aesculetin a potential biomarker for the consumption of these foods. Esculetin is a hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. It has a role as an antioxidant, an ultraviolet filter and a plant metabolite. Esculetin is a natural product found in Artemisia eriopoda, Euphorbia decipiens, and other organisms with data available. A hydroxycoumarin that is umbelliferone in which the hydrogen at position 6 is substituted by a hydroxy group. It is used in filters for absorption of ultraviolet light. Metabolite of infected sweet potato. Aesculetin is found in many foods, some of which are root vegetables, wild carrot, sweet basil, and carrot. D020011 - Protective Agents > D000975 - Antioxidants Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB031_Aesculetin_pos_20eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_10eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_40eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_50eV_CB000017.txt [Raw Data] CB031_Aesculetin_pos_30eV_CB000017.txt [Raw Data] CB031_Aesculetin_neg_10eV_000010.txt [Raw Data] CB031_Aesculetin_neg_20eV_000010.txt [Raw Data] CB031_Aesculetin_neg_30eV_000010.txt CONFIDENCE standard compound; ML_ID 39 Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1]. Esculetin is an active ingredient extracted mainly from the bark of Fraxinus rhynchophylla. Esculetin inhibits platelet-derived growth factor (PDGF)-induced airway smooth muscle cells (ASMCs) phenotype switching through inhibition of PI3K/Akt pathway. Esculetin has antioxidant, antiinflammatory, and antitumor activities[1].

   

Caffeine

1,3,7-trimethyl-2,3,6,7-tetrahydro-1H-purine-2,6-dione

C8H10N4O2 (194.0804)


Caffeine is a methyl xanthine alkaloid that is also classified as a purine. Formally, caffeine belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Caffeine is chemically related to the adenine and guanine bases of deoxyribonucleic acid (DNA) and ribonucleic acid (RNA). It is found in the seeds, nuts, or leaves of a number of plants native to Africa, East Asia and South America and helps to protect them against predator insects and to prevent germination of nearby seeds. The most well-known source of caffeine is the coffee bean. Caffeine is the most widely consumed psychostimulant drug in the world. 85\\\% of American adults consumed some form of caffeine daily, consuming 164 mg on average. Caffeine is mostly is consumed in the form of coffee. Caffeine is a central nervous system stimulant that reduces fatigue and drowsiness. At normal doses, caffeine has variable effects on learning and memory, but it generally improves reaction time, wakefulness, concentration, and motor coordination. Caffeine is a proven ergogenic aid in humans. Caffeine improves athletic performance in aerobic (especially endurance sports) and anaerobic conditions. Moderate doses of caffeine (around 5 mg/kg) can improve sprint performance, cycling and running time trial performance, endurance and cycling power output (PMID: 32551869). At intake levels associated with coffee consumption, caffeine appears to exert most of its biological effects through the antagonism of the A1 and A2A subtypes of the adenosine receptor. Adenosine is an endogenous neuromodulator with mostly inhibitory effects, and adenosine antagonism by caffeine results in effects that are generally stimulatory. Some physiological effects associated with caffeine administration include central nervous system stimulation, acute elevation of blood pressure, increased metabolic rate, and diuresis. A number of in vitro and in vivo studies have demonstrated that caffeine modulates both innate and adaptive immune responses. For instance, studies indicate that caffeine and its major metabolite paraxanthine suppress neutrophil and monocyte chemotaxis, and also suppress production of the pro-inflammatory cytokine tumor necrosis factor (TNF) alpha from human blood. Caffeine has also been reported to suppress human lymphocyte function as indicated by reduced T-cell proliferation and impaired production of Th1 (interleukin [IL]-2 and interferon [IFN]-gamma), Th2 (IL-4, IL-5) and Th3 (IL-10) cytokines. Studies also indicate that caffeine suppresses antibody production. The evidence suggests that at least some of the immunomodulatory actions of caffeine are mediated via inhibition of cyclic adenosine monophosphate (cAMP)-phosphodiesterase (PDE), and consequential increase in intracellular cAMP concentrations. Overall, these studies indicate that caffeine, like other members of the methylxanthine family, is largely anti-inflammatory in nature, and based on the pharmacokinetics of caffeine, many of its immunomodulatory effects occur at concentrations that are relevant to normal human consumption. (PMID: 16540173). Caffeine is rapidly and almost completely absorbed in the stomach and small intestine and distributed to all tissues, including the brain. Caffeine metabolism occurs primarily in the liver, where the activity of the cytochrome P450 isoform CYP1A2 accounts for almost 95\\\% of the primary metabolism of caffeine. CYP1A2-catalyzed 3-demethylation of caffeine results in the formation of 1,7-dimethylxanthine (paraxanthine). Paraxanthine may be demethylated by CYP1A2 to form 1-methylxanthine, which may be oxidized to 1-methyluric acid by xanthine oxidase. Paraxanthine may also be hydroxylated by CYP2A6 to form 1,7-dimethyluric acid, or acetylated by N-acetyltransferase 2 (NAT2) to form 5-acetylamino-6-formylamino-3-methyluracil, an unstable compound that may be deformylated nonenzymatically to form ... Caffeine appears as odorless white powder or white glistening needles, usually melted together. Bitter taste. Solutions in water are neutral to litmus. Odorless. (NTP, 1992) Caffeine is a trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. It has a role as a central nervous system stimulant, an EC 3.1.4.* (phosphoric diester hydrolase) inhibitor, an adenosine receptor antagonist, an EC 2.7.11.1 (non-specific serine/threonine protein kinase) inhibitor, a ryanodine receptor agonist, a fungal metabolite, an adenosine A2A receptor antagonist, a psychotropic drug, a diuretic, a food additive, an adjuvant, a plant metabolite, an environmental contaminant, a xenobiotic, a human blood serum metabolite, a mouse metabolite, a geroprotector and a mutagen. It is a purine alkaloid and a trimethylxanthine. Caffeine is a drug of the methylxanthine class used for a variety of purposes, including certain respiratory conditions of the premature newborn, pain relief, and to combat drowsiness. Caffeine is similar in chemical structure to [Theophylline] and [Theobromine]. It can be sourced from coffee beans, but also occurs naturally in various teas and cacao beans, which are different than coffee beans. Caffeine is also used in a variety of cosmetic products and can be administered topically, orally, by inhalation, or by injection. The caffeine citrate injection, used for apnea of the premature newborn, was initially approved by the FDA in 1999. According to an article from 2017, more than 15 million babies are born prematurely worldwide. This correlates to about 1 in 10 births. Premature birth can lead to apnea and bronchopulmonary dysplasia, a condition that interferes with lung development and may eventually cause asthma or early onset emphysema in those born prematurely. Caffeine is beneficial in preventing and treating apnea and bronchopulmonary dysplasia in newborns, improving the quality of life of premature infants. Caffeine is a Central Nervous System Stimulant and Methylxanthine. The physiologic effect of caffeine is by means of Central Nervous System Stimulation. Caffeine is xanthine alkaloid that occurs naturally in seeds, leaves and fruit of several plants and trees that acts as a natural pesticide. Caffeine is a major component of coffee, tea and chocolate and in humans acts as a central nervous system (CNS) stimulant. Consumption of caffeine, even in high doses, has not been associated with elevations in serum enzyme elevations or instances of clinically apparent liver injury. Caffeine is a natural product found in Mus musculus, Herrania cuatrecasana, and other organisms with data available. Caffeine is a methylxanthine alkaloid found in the seeds, nuts, or leaves of a number of plants native to South America and East Asia that is structurally related to adenosine and acts primarily as an adenosine receptor antagonist with psychotropic and anti-inflammatory activities. Upon ingestion, caffeine binds to adenosine receptors in the central nervous system (CNS), which inhibits adenosine binding. This inhibits the adenosine-mediated downregulation of CNS activity; thus, stimulating the activity of the medullary, vagal, vasomotor, and respiratory centers in the brain. This agent also promotes neurotransmitter release that further stimulates the CNS. The anti-inflammatory effects of caffeine are due the nonselective competitive inhibition of phosphodiesterases (PDEs). Inhibition of PDEs raises the intracellular concentration of cyclic AMP (cAMP), activates protein kinase A, and inhibits leukotriene synthesis, which leads to reduced inflammation and innate immunity. Caffeine is the most widely consumed psychostimulant drug in the world that mostly is consumed in the form of coffee. Whether caffeine and/or coffee consumption contribute to the development of cardiovascular disease (CVD), the single leading cause of death in the US, is uncle... Component of coffee beans (Coffea arabica), many other Coffea subspecies, chocolate (Theobroma cacao), tea (Camellia thea), kolanut (Cola acuminata) and several other Cola subspecies and several other plants. It is used in many cola-type beverages as a flavour enhancer. Caffeine is found in many foods, some of which are black cabbage, canola, jerusalem artichoke, and yellow bell pepper. A trimethylxanthine in which the three methyl groups are located at positions 1, 3, and 7. A purine alkaloid that occurs naturally in tea and coffee. [Raw Data] CBA01_Caffeine_pos_50eV.txt [Raw Data] CBA01_Caffeine_pos_20eV.txt [Raw Data] CBA01_Caffeine_pos_40eV.txt [Raw Data] CBA01_Caffeine_pos_10eV.txt [Raw Data] CBA01_Caffeine_pos_30eV.txt Caffeine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-08-2 (retrieved 2024-06-29) (CAS RN: 58-08-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Imperatorin

InChI=1/C16H14O4/c1-10(2)5-7-19-16-14-12(6-8-18-14)9-11-3-4-13(17)20-15(11)16/h3-6,8-9H,7H2,1-2H

C16H14O4 (270.0892)


Imperatorin is a member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor and a metabolite. Imperatorin is a natural product found in Allium wallichii, Ammi visnaga, and other organisms with data available. Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative.Imperatorin has been shown to exhibit anti-hypertrophic and anti-convulsant functions (A7784, A7785).Imperatorin belongs to the family of Furanocoumarins. These are polycyclic aromatic compounds containing a furan ring fused to a coumarin moeity. See also: Angelica Dahurica Root (part of); Aegle marmelos fruit (part of); Ammi majus seed (part of) ... View More ... Imperatorin is found in anise. Imperatorin is present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip).Imperatorin is a furocoumarin and a phytochemical that has been isolated from Urena lobata L. (Malvaceae). It is biosynthesized from umbelliferone, a coumarin derivative A member of the class of psoralens that is psoralen substituted by a prenyloxy group at position 8. Isolated from Angelica dahurica and Angelica koreana, it acts as a acetylcholinesterase inhibitor. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents > D011564 - Furocoumarins Present in Aegle marmelos (bael fruit) and seeds of Pastinaca sativa (parsnip) INTERNAL_ID 2244; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2244 Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM. Imperatorin is an effective of NO synthesis inhibitor (IC50=9.2 μmol), which also is a BChE inhibitor (IC50=31.4 μmol). Imperatorin is a weak agonist of TRPV1 with EC50 of 12.6±3.2 μM.

   

Niacinamide

pyridine-3-carboxamide

C6H6N2O (122.048)


Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-((2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)-4H-chromen-4-one

C21H20O10 (432.1056)


Isovitexin is a C-glycosyl compound that consists of apigenin substituted by a 1,5-anhydro-D-glucitol moiety at position 6. It has a role as an EC 3.2.1.20 (alpha-glucosidase) inhibitor and a metabolite. It is a C-glycosyl compound and a trihydroxyflavone. It is functionally related to an apigenin. It is a conjugate acid of an isovitexin-7-olate. Isovitexin is a natural product found in Carex fraseriana, Rauhiella, and other organisms with data available. See also: Fenugreek seed (part of); Acai (part of); Crataegus monogyna flowering top (part of). [Raw Data] CBA25_Isovitexin_neg_20eV_1-7_01_1425.txt [Raw Data] CBA25_Isovitexin_neg_10eV_1-7_01_1369.txt [Raw Data] CBA25_Isovitexin_pos_30eV_1-7_01_1399.txt [Raw Data] CBA25_Isovitexin_neg_40eV_1-7_01_1427.txt [Raw Data] CBA25_Isovitexin_neg_30eV_1-7_01_1426.txt [Raw Data] CBA25_Isovitexin_neg_50eV_1-7_01_1428.txt [Raw Data] CBA25_Isovitexin_pos_20eV_1-7_01_1398.txt [Raw Data] CBA25_Isovitexin_pos_10eV_1-7_01_1358.txt [Raw Data] CBA25_Isovitexin_pos_40eV_1-7_01_1400.txt [Raw Data] CBA25_Isovitexin_pos_50eV_1-7_01_1401.txt Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB. Isovitexin is a flavonoid isolated from passion flower, Cannabis and, and the palm, possesses anti-inflammatory and anti-oxidant activities; Isovitexin acts like a JNK1/2 inhibitor and inhibits the activation of NF-κB.

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O5 (270.0528)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Caffeic acid

(2E)-3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C9H8O4 (180.0423)


Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).

   

Linonin

11H,13H-Oxireno(d)pyrano(4,3:3,3a)isobenzofuro(5,4-f)(2)benzopyran-4,6,13(2H,5aH)-trione, 8-(3-furanyl)decahydro-2,2,4a,8a-tetramethyl-, (2aR-(2aalpha,4abeta,4bR,5aalpha,8alpha,8aalpha,10aalpha,10bR*,14aalpha))-

C26H30O8 (470.1941)


Linonin, also known as 7,16-dioxo-7,16-dideoxylimondiol or evodin, is a member of the class of compounds known as limonoids. Limonoids are highly oxygenated, modified terpenoids with a prototypical structure either containing or derived from a precursor with a 4,4,8-trimethyl-17-furanylsteroid skeleton. All naturally occurring citrus limonoids contain a furan ring attached to the D-ring, at C-17, as well as oxygen containing functional groups at C-3, C-4, C-7, C-16 and C-17. Linonin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Linonin can be found in lemon, which makes linonin a potential biomarker for the consumption of this food product. Limonin is a limonoid, an epoxide, a hexacyclic triterpenoid, a member of furans, an organic heterohexacyclic compound and a lactone. It has a role as a metabolite, an inhibitor and a volatile oil component. Limonin is a natural product found in Citrus tankan, Flacourtia jangomas, and other organisms with data available. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Magnoflorine

5,6,6a(S),7-Tetrahydro-1,11-dihydroxy-2,10-dimethoxy-6,6-dimethyl-4H-dibenzo[de,g]quinolinium chloride

C20H24NO4+ (342.1705)


(S)-magnoflorine is an aporphine alkaloid that is (S)-corytuberine in which the nitrogen has been quaternised by an additional methyl group. It has a role as a plant metabolite. It is an aporphine alkaloid and a quaternary ammonium ion. It is functionally related to a (S)-corytuberine. Magnoflorine is a natural product found in Zanthoxylum myriacanthum, Fumaria capreolata, and other organisms with data available. See also: Caulophyllum thalictroides Root (part of).

   

Ferulic acid

(E)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoic acid

C10H10O4 (194.0579)


trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.

   

Poncirin

(2S)-7-[(2S,3R,4S,5S,6R)-4,5-dihydroxy-6-(hydroxymethyl)-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-2-yl]oxy-5-hydroxy-2-(4-methoxyphenyl)chroman-4-one

C28H34O14 (594.1948)


(2S)-poncirin is a flavanone glycoside that is 4-methoxy-5,7-dihydroxyflavanone attached to a neohesperidose (alpha-L-rhamnopyranosyl-(1->2)-beta-D-glucopyranose) residue via a glycosidic linkage. It has been isolated from the fruits of Poncirus trifoliata and exhibits inhibitory activity against liopolysaccharide (LPS)-induced prostaglandin E2 and interleukin-6 (IL-6) production. It has a role as a plant metabolite. It is a monomethoxyflavanone, a flavanone glycoside, a disaccharide derivative, a neohesperidoside and a member of 4-methoxyflavanones. It is functionally related to a 4-methoxy-5,7-dihydroxyflavanone. Poncirin is a natural product found in Citrus medica, Micromeria graeca, and other organisms with data available. Isolated from Citrus subspecies Poncirin is found in many foods, some of which are citrus, grapefruit, lemon, and grapefruit/pummelo hybrid. Acquisition and generation of the data is financially supported in part by CREST/JST. Poncirin is found in citrus. Poncirin is isolated from Citrus specie Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1]. Poncirin is isolated from?Poncirus trifoliata with anti-inflammory activites. Poncirin significantly reduces mechanical hyperalgesia and allodynia in Complete Freund’s Adjuvant (CFA)-induced inflammatory pain models[1].

   

Hesperetin

(2S)-5,7-Dihydroxy-2-(3-hydroxy-4-methoxyphenyl)-2,3-dihydro-4H-1-benzopyran-4-one (Hesperetin)

C16H14O6 (302.079)


Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity. Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-). Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges. Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available. Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt [Raw Data] CB046_Hesperetin_neg_20eV_000014.txt [Raw Data] CB046_Hesperetin_neg_10eV_000014.txt [Raw Data] CB046_Hesperetin_neg_40eV_000014.txt [Raw Data] CB046_Hesperetin_neg_50eV_000014.txt [Raw Data] CB046_Hesperetin_neg_30eV_000014.txt Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.

   

Parietin

1,8-Dihydroxy-3-methoxy-6-methylanthraquinone, Emodin-3-methyl ether

C16H12O5 (284.0685)


Physcion is a dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. It has a role as an apoptosis inducer, an antineoplastic agent, a hepatoprotective agent, an anti-inflammatory agent, an antibacterial agent, an antifungal agent and a metabolite. It is functionally related to a 2-methylanthraquinone. Physcion is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Reynoutria multiflora root (part of); Frangula purshiana Bark (part of). A dihydroxyanthraquinone that is 9,10-anthraquinone bearing hydroxy substituents at positions 1 and 8, a methoxy group at position 3, and a methyl group at position 6. It has been widely isolated and characterised from both terrestrial and marine sources. [Raw Data] CBA82_Physcion_pos_10eV.txt [Raw Data] CBA82_Physcion_pos_30eV.txt [Raw Data] CBA82_Physcion_pos_50eV.txt [Raw Data] CBA82_Physcion_pos_40eV.txt [Raw Data] CBA82_Physcion_pos_20eV.txt

   

Vincristine

methyl (1R,9R,10S,11R,12R,19R)-11-(acetyloxy)-12-ethyl-4-[(13S,15S,17S)-17-ethyl-17-hydroxy-13-(methoxycarbonyl)-1,11-diazatetracyclo[13.3.1.0^{4,12}.0^{5,10}]nonadeca-4(12),5,7,9-tetraen-13-yl]-8-formyl-10-hydroxy-5-methoxy-8,16-diazapentacyclo[10.6.1.0^{1,9}.0^{2,7}.0^{16,19}]nonadeca-2(7),3,5,13-tetraene-10-carboxylate

C46H56N4O10 (824.3996)


Vincristine appears as a white crystalline solid. Melting point 218 °C. Used as an antineoplastic. Vincristine is a vinca alkaloid with formula C46H56N4O10 found in the Madagascar periwinkle, Catharanthus roseus. It is used (commonly as the corresponding sulfate salt)as a chemotherapy drug for the treatment of leukaemia, lymphoma, myeloma, breast cancer and head and neck cancer. It has a role as a tubulin modulator, a microtubule-destabilising agent, a plant metabolite, an antineoplastic agent and a drug. It is a methyl ester, an acetate ester, a tertiary alcohol, a member of formamides, an organic heteropentacyclic compound, an organic heterotetracyclic compound, a tertiary amino compound and a vinca alkaloid. It is a conjugate base of a vincristine(2+). It derives from a hydride of a vincaleukoblastine. Vincristine is a natural product found in Ophioparma ventosa, Cunila, and other organisms with data available. Vincristine is a natural alkaloid isolated from the plant Vinca rosea Linn. Vincristine binds irreversibly to microtubules and spindle proteins in S phase of the cell cycle and interferes with the formation of the mitotic spindle, thereby arresting tumor cells in metaphase. This agent also depolymerizes microtubules and may also interfere with amino acid, cyclic AMP, and glutathione metabolism; calmodulin-dependent Ca++ -transport ATPase activity; cellular respiration; and nucleic acid and lipid biosynthesis. (NCI04) Vincristine is only found in individuals that have used or taken this drug. It is an antitumor alkaloid isolated from Vinca Rosea. (Merck, 11th ed.) The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis. Vincristine is indicated for the treatment of acute leukaemia, malignant lymphoma, Hodgkins disease, acute erythraemia, and acute panmyelosis. Vincristine sulfate is often chosen as part of polychemotherapy because of lack of significant bone marrow suppression (at recommended doses) and of unique clinical toxicity (neuropathy). An antitumor alkaloid isolated from VINCA ROSEA. (Merck, 11th ed.) See also: Vincristine Sulfate (active moiety of). Vincristine is only found in individuals that have used or taken this drug. It is an antitumor alkaloid isolated from Vinca Rosea. (Merck, 11th ed.)The antitumor activity of Vincristine is thought to be due primarily to inhibition of mitosis at metaphase through its interaction with tubulin. Like other vinca alkaloids, Vincristine may also interfere with: 1) amino acid, cyclic AMP, and glutathione metabolism, 2) calmodulin-dependent Ca2+-transport ATPase activity, 3) cellular respiration, and 4) nucleic acid and lipid biosynthesis. A vinca alkaloid with formula C46H56N4O10 found in the Madagascar periwinkle, Catharanthus roseus. It is used (commonly as the corresponding sulfate salt)as a chemotherapy drug for the treatment of leukaemia, lymphoma, myeloma, breast cancer and head and neck cancer. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01C - Plant alkaloids and other natural products > L01CA - Vinca alkaloids and analogues C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C932 - Vinca Alkaloid Compound C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C273 - Antimitotic Agent D050258 - Mitosis Modulators > D050256 - Antimitotic Agents > D050257 - Tubulin Modulators D000970 - Antineoplastic Agents > D050256 - Antimitotic Agents D000970 - Antineoplastic Agents > D014748 - Vinca Alkaloids C1907 - Drug, Natural Product

   

Kurarinone

(2S)-2-(2,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-8-[(2R)-5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-2,3-dihydro-4H-chromen-4-one

C26H30O6 (438.2042)


(2S)-(-)-kurarinone is a trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. It has a role as a metabolite and an antineoplastic agent. It is a trihydroxyflavanone, a monomethoxyflavanone and a member of 4-hydroxyflavanones. It is functionally related to a (2S)-flavanone. 7,2,4-Trihydroxy-8-lavandulyl-5-methoxyflavanone is a natural product found in Albizia julibrissin, Cunila, and other organisms with data available. A trihydroxyflavanone that is (2S)-flavanone substituted by hydroxy groups at positions 7, 2 and 4, a lavandulyl group at position 8 and a methoxy group at position 5. Isolated from the roots of Sophora flavescens, it exhibits cytotoxicity against human myeloid leukemia HL-60 cells. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1]. Kurarinone, a flavanoid derived from shrub Sophora flavescens, inhibits the process of experimental autoimmune encephalomyelitis via blocking Th1 and Th17 cell differentiation[1].

   

Silicristin

(2R,3R)-3,5,7-trihydroxy-2-[(2R,3S)-7-hydroxy-2-(4-hydroxy-3-methoxyphenyl)-3-(hydroxymethyl)-2,3-dihydro-1-benzofuran-5-yl]-2,3-dihydro-4H-chromen-4-one

C25H22O10 (482.1213)


Silychristin is a flavonolignan isolated from Silybum marianum and has been shown to exhibit inhibitory activities against lipoxygenase and prostaglandin synthetase. It has a role as a radical scavenger, a lipoxygenase inhibitor, a prostaglandin antagonist and a metabolite. It is a flavonolignan, a member of 1-benzofurans, a polyphenol, an aromatic ether and a secondary alpha-hydroxy ketone. Silicristin is a natural product found in Cunila, Anastatica hierochuntica, and other organisms with data available. Isolated from fruits of Silybum marianum (milk thistle). Silicristin is found in coffee and coffee products and green vegetables. Silicristin is found in coffee and coffee products. Silicristin is isolated from fruits of Silybum marianum (milk thistle). C26170 - Protective Agent > C2081 - Hepatoprotective Agent Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2]. Silychristin is an abundant flavonolignan present in the fruits of Silybum marianum, with antioxidant properties. Silychristin is a potent inhibitor of the thyroid hormone transporter MCT8, and elicits a strong inhibition of T3 uptake with an IC50 of 110 nM[1][2].

   

3,7-Dimethyl-1,6-octadien-3-ol

Linalool, certified reference material, TraceCERT(R)

C10H18O (154.1358)


3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].

   

3,4-Dihydroxybenzeneacetic acid

3,4-Dihydroxyphenylacetic Acid, Monosodium Salt

C8H8O4 (168.0423)


3,4-Dihydroxyphenylacetic acid (DOPAC) is a phenolic acid. DOPAC is a neuronal metabolite of dopamine (DA). DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily into DOPAC via aldehyde dehydrogenase (ALDH2). The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Known inhibitors of mitochondrial ALDH2, such as 4-hydroxy-2-nonenal (4HNE) inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. 4HNE is one of the resulting products of oxidative stress, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to Parkinsons disease. In early-onset Parkinson disease, there is markedly reduced activities of both monoamine oxidase (MAO) A and B. The amount of DOPAC, which is produced during dopamine oxidation by MAO, is greatly reduced as a result of increased parkin overexpression. Administration of methamphetamine to animals causes loss of DA terminals in the brain and significant decreases in dopamine and dihydroxyphenylacetic acid (DOPAC) in the striatum. Renal dopamine produced in the residual tubular units may be enhanced during a sodium challenge, thus behaving appropriately as a compensatory natriuretic hormone; however, the renal dopaminergic system in patients afflicted with renal parenchymal disorders should address parameters other than free urinary dopamine, namely the urinary excretion of L-DOPA and metabolites. DOPAC is one of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements. DOPAC exhibits a considerable antiproliferative effect in LNCaP prostate cancer and HCT116 colon cancer cells. The antiproliferative activity of DOPAC may be due to its catechol structure. A similar association of the catechol moiety in the B-ring with antiproliferative activity was demonstrated for flavanones (PMID:16956664, 16455660, 8561959, 11369822, 10443478, 16365058). DOPAC can be found in Gram-positive bacteria (PMID:24752840). 3,4-Dihydroxyphenylacetic acid (DOPAC) is a metabolite of the neurotransmitter dopamine. 3,4-Dihydroxyphenylacetic acid is found in many foods, some of which are alaska blueberry, cauliflower, ucuhuba, and fox grape. 3,4-Dihydroxybenzeneacetic acid is the main neuronal metabolite of dopamine.

   

Aromadendrin

4H-1-Benzopyran-4-one, 2,3-dihydro-3,5,7-trihydroxy-2-(4-hydroxyphenyl)-, (2R-trans)-

C15H12O6 (288.0634)


(+)-dihydrokaempferol is a tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. It has a role as a metabolite. It is a tetrahydroxyflavanone, a member of dihydroflavonols, a secondary alpha-hydroxy ketone and a member of 4-hydroxyflavanones. It is functionally related to a kaempferol. It is a conjugate acid of a (+)-dihydrokaempferol 7-oxoanion. Aromadendrin is a natural product found in Smilax corbularia, Ventilago leiocarpa, and other organisms with data available. See also: Acai fruit pulp (part of). Isolated from Citrus subspecies and many other plants. Aromadendrin is found in many foods, some of which are thistle, coriander, adzuki bean, and almond. Aromadendrin is found in citrus. Aromadendrin is isolated from Citrus species and many other plant A tetrahydroxyflavanone having hydroxy groupa at the 3-, 4-, 5- and 7-positions. Dihydrokaempferol is isolated from Bauhinia championii (Benth). Dihydrokaempferol induces apoptosis and inhibits Bcl-2 and Bcl-xL expression. Dihydrokaempferol is a good candidate for new antiarthritic agents[1]. Dihydrokaempferol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=480-20-6 (retrieved 2024-09-18) (CAS RN: 480-20-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Lancerin

1,3,7-trihydroxy-4-[(2S,3R,4R,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]xanthen-9-one

C19H18O10 (406.09)


Lancerin is a C-glycosyl compound that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. It has a role as a plant metabolite. It is a member of xanthones, a C-glycosyl compound and a polyphenol. Lancerin is a natural product found in Maclura cochinchinensis, Polygala tenuifolia, and other organisms with data available. A C-glycosyl compound that is 9H-xanthen-9-one substituted by hydroxy groups at positions 1, 3, and 7 and a 1,5-anhydro-D-glucitol moiety at position 1. Lancerin, isolated from the root bark of Cudraniu cochinchinensis, possesses anti-lipid peroxidation[1]. Lancerin, isolated from the root bark of Cudraniu cochinchinensis, possesses anti-lipid peroxidation[1].

   

beta-Sitosterol

(3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


beta-Sitosterol, a main dietary phytosterol found in plants, may have the potential for prevention and therapy for human cancer. Phytosterols are plant sterols found in foods such as oils, nuts, and vegetables. Phytosterols, in the same way as cholesterol, contain a double bond and are susceptible to oxidation, and are characterized by anti-carcinogenic and anti-atherogenic properties (PMID:13129445, 11432711). beta-Sitosterol is a phytopharmacological extract containing a mixture of phytosterols, with smaller amounts of other sterols, bonded with glucosides. These phytosterols are commonly derived from the South African star grass, Hypoxis rooperi, or from species of Pinus and Picea. The purported active constituent is termed beta-sitosterol. Additionally, the quantity of beta-sitosterol-beta-D-glucoside is often reported. Although the exact mechanism of action of beta-sitosterols is unknown, it may be related to cholesterol metabolism or anti-inflammatory effects (via interference with prostaglandin metabolism). Compared with placebo, beta-sitosterol improved urinary symptom scores and flow measures (PMID:10368239). A plant food-based diet modifies the serum beta-sitosterol concentration in hyperandrogenic postmenopausal women. This finding indicates that beta-sitosterol can be used as a biomarker of exposure in observational studies or as a compliance indicator in dietary intervention studies of cancer prevention (PMID:14652381). beta-Sitosterol induces apoptosis and activates key caspases in MDA-MB-231 human breast cancer cells (PMID:12579296). Sitosterol is a member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. It has a role as a sterol methyltransferase inhibitor, an anticholesteremic drug, an antioxidant, a plant metabolite and a mouse metabolite. It is a 3beta-sterol, a stigmastane sterol, a 3beta-hydroxy-Delta(5)-steroid, a C29-steroid and a member of phytosterols. It derives from a hydride of a stigmastane. Active fraction of Solanum trilobatum; reduces side-effects of radiation-induced toxicity. Beta-Sitosterol is a natural product found in Elodea canadensis, Ophiopogon intermedius, and other organisms with data available. beta-Sitosterol is one of several phytosterols (plant sterols) with chemical structures similar to that of cholesterol. Sitosterols are white, waxy powders with a characteristic odor. They are hydrophobic and soluble in alcohols. beta-Sitosterol is found in many foods, some of which are ginseng, globe artichoke, sesbania flower, and common oregano. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Euscaphic acid

(1R,2R,4aS,6aS,6bR,8aR,10S,11R,12aR,12bR,14bS)-1,10,11-trihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O5 (488.3502)


Euscaphic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. It has a role as a plant metabolite. It is a pentacyclic triterpenoid, a hydroxy monocarboxylic acid and a triol. It derives from a hydride of an ursane. Euscaphic acid is a natural product found in Ternstroemia gymnanthera, Rhaphiolepis deflexa, and other organisms with data available. A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by hydroxy groups at positions 2, 3 and 19 respectively (the 2alpha,3alpha-stereoisomer). It has been isolated from the leaves of Rosa laevigata. Euscaphic acid is found in herbs and spices. Euscaphic acid is a constituent of Coleus amboinicus (Cuban oregano). Constituent of Coleus amboinicus (Cuban oregano). Euscaphic acid is found in loquat and herbs and spices. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2]. Euscaphic acid, a DNA polymerase inhibitor, is a triterpene from the root of the R. alceaefolius Poir. Euscaphic inhibits calf DNA polymerase α (pol α) and rat DNA polymerase β (pol β) with IC50 values of 61 and 108 μM[1]. Euscaphic acid induces apoptosis[2].

   

Deserpidine

methyl (1R,15S,17R,18R,19S,20S)-18-methoxy-17-[(3,4,5-trimethoxyphenyl)carbonyloxy]-3,13-diazapentacyclo[11.8.0.0^{2,10}.0^{4,9}.0^{15,20}]henicosa-2(10),4,6,8-tetraene-19-carboxylate

C32H38N2O8 (578.2628)


Deserpidine is an alkaloid ester, a methyl ester, a benzoate ester, an organic heteropentacyclic compound and a yohimban alkaloid. It derives from a hydride of a yohimban. Deserpidine is an ester alkaloid drug isolated from Rauwolfia canescens (family Apocynaceae) with antipsychotic and antihypertensive properties that has been used for the control of high blood pressure and for the relief of psychotic behavior. Deserpidine is a Catecholamine-depleting Sympatholytic. The physiologic effect of deserpidine is by means of Decreased Sympathetic Activity. Deserpidine is a natural product found in Aspergillus malignus, Cunila, and other organisms with data available. Deserpidine is an ester alkaloid derived from Rauwolfia canescens with antihypertensive activity. Deserpidine is a competitive inhibitor of the angiotensin converting enzyme (ACE). By competing with angiotensin I for ACE, deserpidine blocks the conversion of angiotensin I to angiotensin II, which is a potent vasoconstrictor. Reduced level of serum angiotensin II causes a decrease in blood pressure. Deserpidine also decreases angiotensin II-induced aldosterone secretion by the adrenal cortex. See also: Deserpidine; methyclothiazide (component of); Deserpidine; hydrochlorothiazide (component of). Deserpidine is only found in individuals that have used or taken this drug. It is an ester alkaloid drug isolated from Rauwolfia canescens (family Apocynaceae) with antipsychotic and antihypertensive properties that has been used for the control of high blood pressure and for the relief of psychotic behavior.Deserpidines mechanism of action is through inhibition of the ATP/Mg2+ pump responsible for the sequestering of neurotransmitters into storage vesicles located in the presynaptic neuron. The neurotransmitters that are not sequestered in the storage vesicle are readily metabolized by monoamine oxidase (MAO) causing a reduction in catecholamines. C - Cardiovascular system > C02 - Antihypertensives > C02A - Antiadrenergic agents, centrally acting > C02AA - Rauwolfia alkaloids C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent Deserpidine (Harmonyl) is an alkaloid isolated from the root of Rauwolfia canescens related to Reserpine. Deserpidine is used as an antihypertensive agent and a tranquilizer. Deserpidine is a competitive angiotensin converting enzyme (ACE) inhibitor. Deserpidine also decreases angiotensin II-induced aldosterone secretion by the adrenal cortex[1][2][3]. Deserpidine (Harmonyl) is an alkaloid isolated from the root of Rauwolfia canescens related to Reserpine. Deserpidine is used as an antihypertensive agent and a tranquilizer. Deserpidine is a competitive angiotensin converting enzyme (ACE) inhibitor. Deserpidine also decreases angiotensin II-induced aldosterone secretion by the adrenal cortex[1][2][3].

   

(-)-Sabinene

(1R,5R)-4-methylidene-1-(propan-2-yl)bicyclo[3.1.0]hexane (1R,5R)-thuj-4(10)-ene

C10H16 (136.1252)


Sabinene (CAS: 3387-41-5) belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, sabinene is considered to be an isoprenoid lipid molecule. Sabinene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (-)-Sabinene is found in herbs and spices and is a constituent of Laurus nobilis (bay laurel). Constituent of Laurus nobilis (bay laurel) and some other plants. (-)-4(10)-Thujene is found in sweet bay and herbs and spices. Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. Acquisition and generation of the data is financially supported in part by CREST/JST. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].

   

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.0634)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Polylimonene

1-Methyl-4-(1-methylethenyl)-or 1-methyl-4-isopropenyl-cyclohex-1-ene

C10H16 (136.1252)


Dipentene appears as a colorless liquid with an odor of lemon. Flash point 113 °F. Density about 7.2 lb /gal and insoluble in water. Hence floats on water. Vapors heavier than air. Used as a solvent for rosin, waxes, rubber; as a dispersing agent for oils, resins, paints, lacquers, varnishes, and in floor waxes and furniture polishes. Limonene is a monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. It has a role as a human metabolite. It is a cycloalkene and a p-menthadiene. Limonene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Limonene, (+/-)- is a racemic mixture of limonene, a natural cyclic monoterpene and major component of the oil extracted from citrus rind with chemo-preventive and antitumor activities. The metabolites of DL-limonene, perillic acid, dihydroperillic acid, uroterpenol and limonene 1,2-diol are suggested to inhibit tumor growth through inhibition of p21-dependent signaling, induce apoptosis via the induction of the transforming growth factor beta-signaling pathway, inhibit post-translational modification of signal transduction proteins, result in G1 cell cycle arrest as well as cause differential expression of cell cycle- and apoptosis-related genes. Limonene is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Cannabis sativa subsp. indica top (part of); Larrea tridentata whole (part of). Constituent of many essential oils. (±)-Limonene is found in many foods, some of which are common oregano, nutmeg, herbs and spices, and summer savory. Dipentene is found in carrot. Dipentene is a constituent of many essential oils

   

(-)-beta-Pinene

Bicyclo(3.1.1)heptane, 6,6-dimethyl-2-methylene-, (1S,5S)-

C10H16 (136.1252)


(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

beta-Myrcene

InChI=1/C10H16/c1-5-10(4)8-6-7-9(2)3/h5,7H,1,4,6,8H2,2-3H

C10H16 (136.1252)


7-Methyl-3-methylene-1,6-octadiene, also known as beta-Myrcene or myrcene is an acyclic monoterpene. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. beta-Myrcene is a significant component of the essential oil of several plants, including allspice, bay, cannabis, hops, houttuynia, lemon grass, mango, myrcia, verbena, west indian bay tree, and cardamom. It is also the main component of wild thyme, the leaves of which contain up to 40\\\\% by weight of myrcene. Industrially, it is produced mainly semi-synthetically from myrcia, from which it gets its name. Myrcene has been detected as a volatile component in cannabis plant samples (PMID:26657499 ) and its essential oils (PMID:6991645 ). beta-Myrcene is the most abundant monoterpene in Cannabis and it has analgesic, anti-inflammatory, antibiotic, and antimutagenic activities. beta-Myrcene is a flavouring agent and it is used in the perfumery industry. It has a pleasant odor but is rarely used directly. It is a key intermediate in the production of several fragrances such as menthol, citral, citronellol, citronellal, geraniol, nerol, and linalool. Myrcene, [liquid] appears as a yellow oily liquid with a pleasant odor. Flash point below 200 °F. Insoluble in water and less dense than water. Beta-myrcene is a monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, an anabolic agent, a fragrance, a flavouring agent and a volatile oil component. Myrcene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. 7-Methyl-3-methylene-1,6-octadiene is found in allspice. 7-Methyl-3-methylene-1,6-octadiene is found in many essential oils, e.g. hop oil. 7-Methyl-3-methylene-1,6-octadiene is a flavouring agent. Myrcene is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Caraway Oil (part of); Mandarin oil (part of); Juniper Berry Oil (part of) ... View More ... A monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. Found in many essential oils, e.g. hop oil. Flavouring agent Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].

   

Uvaretin

1- [ 2,4-Dihydroxy-3- [ (2-hydroxyphenyl) methyl ] -6-methoxyphenyl ] -3-phenyl-1-propanone

C23H22O5 (378.1467)


Uvaretin is a member of the class of dihydrochalcones that is 1,3-diphenylpropan-1-one in which the phenyl group that is bonded to the carbonyl group is substituted by hydroxy groups at positions 2 and 4, an o-hydroxybenzyl group at position 3, and a methoxy group at position 6. A cytotoxic natural product found particularly in Uvaria acuminata and Uvaria chamae. It has a role as an antineoplastic agent and a plant metabolite. It is a resorcinol, an aromatic ether, a polyketide and a member of dihydrochalcones. Uvaretin is a natural product found in Desmos chinensis, Uvaria chamae, and other organisms with data available. A member of the class of dihydrochalcones that is 1,3-diphenylpropan-1-one in which the phenyl group that is bonded to the carbonyl group is substituted by hydroxy groups at positions 2 and 4, an o-hydroxybenzyl group at position 3, and a methoxy group at position 6. A cytotoxic natural product found particularly in Uvaria acuminata and Uvaria chamae.

   

Glaucarubinone

Butyric acid, 4-ester with 1,3a.beta.,4,7,7a.alpha.,11,11a,11b.alpha.-octahydro-1.alpha.,2.alpha.,4.beta.,11.beta.-tetrahydroxy-3.alpha.,8,11a.beta.-trimethyl-2H-1,11c.beta.-(epoxymethano)phenanthro[10,1-bc]pyran-5,10(3H,6a.beta.H)-dione

C25H34O10 (494.2152)


Glaucarubinone is a quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties. It has a role as a geroprotector, a plant metabolite, an antineoplastic agent and an antimalarial. It is a carboxylic ester, a quassinoid, an organic heteropentacyclic compound, a tetrol, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. Glaucarubinone is a natural product found in Simarouba amara, Cunila, and other organisms with data available. A quassinoid with formula C25H34O10. It is a natural product isolated from several plant species and exhibits anti-cancer and anti-malarial properties.

   

Sinapaldehyde

2-Propenal, 3-(4-hydroxy-3,5-dimethoxyphenyl)-, (2E)-

C11H12O4 (208.0736)


(E)-sinapaldehyde is a member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. It has a role as an antifungal agent and a plant metabolite. It is a member of cinnamaldehydes, a dimethoxybenzene and a member of phenols. It is functionally related to an (E)-cinnamaldehyde. Sinapaldehyde is a natural product found in Stereospermum colais, Aralia bipinnata, and other organisms with data available. A member of the class of cinnamaldehydes that is cinnamaldehyde substituted by a hydroxy group at position 4 and methoxy groups at positions 3 and 5. D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors Sinapaldehyde, also known as (E)-3-(4-hydroxy-3,5-dimethoxyphenyl)-2-propenal or (E)-sinapoyl aldehyde, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Sinapaldehyde is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Sinapaldehyde can be synthesized from cinnamaldehyde. Sinapaldehyde can also be synthesized into 4-acetoxy-3,5-dimethoxy-trans-cinnamaldehyde. Sinapaldehyde can be found in a number of food items such as angelica, saskatoon berry, rubus (blackberry, raspberry), and lemon verbena, which makes sinapaldehyde a potential biomarker for the consumption of these food products. In Arabidopsis thaliana, this compound is part of the lignin biosynthesis pathway. The enzyme dihydroflavonol 4-reductase uses sinapaldehyde and NADPH to produce sinapyl alcohol and NADP+ . Annotation level-2 Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1]. Sinapaldehyde exhibits moderate antibacterial against Methicillin resistant S. aureus (MRSA) and E. coli with MIC values of 128 and 128 μg/mL[1].

   

Pulegone

(5R)-5-methyl-2-(propan-2-ylidene)cyclohexan-1-one

C10H16O (152.1201)


A p-menthane monoterpenoid that is cyclohexan-1-one substituted by a methyl group at position 5 and a propan-2-ylidene group at position 2. Occurs in oils of Mentha subspecies, Hedeoma pulegioides and many other essential oils. Fragrance and flavour ingredient. (R)-p-Menth-4(8)-en-3-one is found in many foods, some of which are blackcurrant, pepper (c. frutescens), spearmint, and red bell pepper. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].

   

Desglucocheirotoxin

(3S,5S,8R,9S,10S,13R,14S,17R)-5,14-dihydroxy-13-methyl-17-(5-oxo-2H-furan-3-yl)-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthrene-10-carbaldehyde

C29H42O10 (550.2778)


Convallatoxin is a cardenolide glycoside that consists of strophanthidin having a 6-deoxy-alpha-L-mannopyranosyl (L-rhamnosyl) group attached at position 3. It has a role as a vasodilator agent and a metabolite. It is an alpha-L-rhamnoside, a 19-oxo steroid, a 14beta-hydroxy steroid, a 5beta-hydroxy steroid, a steroid lactone and a steroid aldehyde. It is functionally related to a strophanthidin. Convallatoxin is a natural product found in Crossosoma bigelovii, Convallaria keiskei, and other organisms with data available. Convallatoxin is a glycoside extracted from Convallaria majalis. Convallatoxin is also isolated from the trunk bark of Antiaris toxicaria (A15340). Convallatoxin is a constituent of Convallaria majalis. Convallaria majalis has been designated unsafe for inclusion in foods etc. by USA FDA Constituent of Convallaria majalis. Convallaria majalis has been designated unsafe for inclusion in foods etc. by USA FDA. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Convallatoxin is a cardiac glycoside isolated from Adonis amurensis Regel et Radde. Convallatoxin ameliorates colitic inflammation via activation of PPARγ and suppression of NF-κB. Convallatoxin is a P-glycoprotein (P-gp) substrate and recognized Val982 as an important amino acid involved in its transport. Convallatoxin is an enhancer of ligand-induced MOR endocytosis with high potency and efficacy. Anti-inflammatory and anti-proliferative properties[1][2][3]. Convallatoxin is a cardiac glycoside isolated from Adonis amurensis Regel et Radde. Convallatoxin ameliorates colitic inflammation via activation of PPARγ and suppression of NF-κB. Convallatoxin is a P-glycoprotein (P-gp) substrate and recognized Val982 as an important amino acid involved in its transport. Convallatoxin is an enhancer of ligand-induced MOR endocytosis with high potency and efficacy. Anti-inflammatory and anti-proliferative properties[1][2][3].

   

Phytol

2-Hexadecen-1-ol, 3,7,11,15-tetramethyl-, (theta-(theta,theta-(E)))-

C20H40O (296.3079)


Phytol, also known as trans-phytol or 3,7,11,15-tetramethylhexadec-2-en-1-ol, is a member of the class of compounds known as acyclic diterpenoids. Acyclic diterpenoids are diterpenoids (compounds made of four consecutive isoprene units) that do not contain a cycle. Thus, phytol is considered to be an isoprenoid lipid molecule. Phytol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Phytol can be found in a number of food items such as salmonberry, rose hip, malus (crab apple), and black raspberry, which makes phytol a potential biomarker for the consumption of these food products. Phytol can be found primarily in human fibroblasts tissue. Phytol is an acyclic diterpene alcohol that can be used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. In ruminants, the gut fermentation of ingested plant materials liberates phytol, a constituent of chlorophyll, which is then converted to phytanic acid and stored in fats. In shark liver it yields pristane . Phytol is a diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. It has a role as a plant metabolite, a schistosomicide drug and an algal metabolite. It is a diterpenoid and a long-chain primary fatty alcohol. Phytol is a natural product found in Elodea canadensis, Wendlandia formosana, and other organisms with data available. Phytol is an acyclic diterpene alcohol and a constituent of chlorophyll. Phytol is commonly used as a precursor for the manufacture of synthetic forms of vitamin E and vitamin K1. Furthermore, phytol also was shown to modulate transcription in cells via transcription factors PPAR-alpha and retinoid X receptor (RXR). Acyclic diterpene used in making synthetic forms of vitamin E and vitamin K1. Phytol is a natural linear diterpene alcohol which is used in the preparation of vitamins E and K1. It is also a decomposition product of chlorophyll. It is an oily liquid that is nearly insoluble in water, but soluble in most organic solvents. -- Wikipedia. A diterpenoid that is hexadec-2-en-1-ol substituted by methyl groups at positions 3, 7, 11 and 15. C1907 - Drug, Natural Product > C28269 - Phytochemical Acquisition and generation of the data is financially supported in part by CREST/JST. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1]. Phytol ((E)?-?Phytol), a diterpene alcohol from chlorophyll widely used as a food additive and in medicinal fields, possesses promising antischistosomal properties. Phytol has antinociceptive and antioxidant activitiesas well as anti-inflammatory and antiallergic effects. Phytol has antimicrobial activity against Mycobacterium tuberculosis and Staphylococcus aureus[1].

   

Caryophyllene alpha-oxide

[1R-(1R*,4R*,6R*,10S*)]- Caryophylene oxide Caryophyllene epoxide Caryophyllene oxyde Epoxycaryophyllene [1R-(1R*,4R*,6R*,10S*)]-4,12,12-trimethyl-9-methylene-5-oxatricyclo[8.2.0.04,6]dodecane <>-Caryophyllene epoxide <>-Caryophyllene oxide

C15H24O (220.1827)


Caryophyllene oxide is an epoxide. It has a role as a metabolite. Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). Caryophyllene alpha-oxide is a minor produced of epoxidn. of KGV69-V. Minor production of epoxidn. of KGV69-V Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1]. Caryophyllene oxide, isolated from from Hymenaea courbaril, possesses analgesic and anti-inflammatory activity[1].

   

Astilbin

(2S,3S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3-dihydrochromen-4-one

C21H22O11 (450.1162)


Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Isoastilbin is a dihydroflavonol glycoside compound in Rhizoma Smilacis glabrae and Astragalus membranaceus. Isoastilbin inhibits glucosyltransferase (GTase) with an IC50 value of 54.3 μg/mL, and also inhibits tyrosinase activity. Isoastilbin shows neuroprotective, antioxidation, antimicrobial and anti-apoptotic properties and has the potential for Alzheimer’s disease research[1][21][3]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neoisoastilbin possesses antioxidant, anti-hyperuricemic and anti-Inflammatory activities[1]. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.

   

Geranyl acetate

Geranyl acetate, food grade (71\\% geranyl acetate, 29\\% citronellyl acetate)

C12H20O2 (196.1463)


Geranyl acetate is a clear colorless liquid with an odor of lavender. (NTP, 1992) Geranyl acetate is a monoterpenoid that is the acetate ester derivative of geraniol. It has a role as a plant metabolite. It is an acetate ester and a monoterpenoid. It is functionally related to a geraniol. Geranyl acetate is a natural product found in Nepeta nepetella, Xylopia sericea, and other organisms with data available. See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Java citronella oil (part of). Neryl acetate is found in cardamom. Neryl acetate is found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Neryl acetate is a flavouring agent A monoterpenoid that is the acetate ester derivative of geraniol. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2].

   

Neriifolin

3-[(3S,5R,8R,9S,10S,13R,14S,17R)-3-[(2R,3S,4R,5S,6S)-3,5-dihydroxy-4-methoxy-6-methyloxan-2-yl]oxy-14-hydroxy-10,13-dimethyl-1,2,3,4,5,6,7,8,9,11,12,15,16,17-tetradecahydrocyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C30H46O8 (534.3193)


Neriifolin is a cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. It has a role as a cardiotonic drug, a toxin and a neuroprotective agent. It is functionally related to a digitoxigenin. Neriifolin is a natural product found in Cerbera manghas, Cerbera odollam, and other organisms with data available. A cardenolide glycoside that is digitoxigenin in which the hydroxy goup at position 3 has been converted to its (6-deoxy-3-O-methyl-alpha-L-glucopyranoside derivative. Found in the seeds of Cerbera odollamand in Thevetia ahouia and Thevitia neriifolia. D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides [Raw Data] CB071_Neriifolin_pos_40eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_10eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_20eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_50eV_CB000031.txt [Raw Data] CB071_Neriifolin_pos_30eV_CB000031.txt Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2. Neriifolin, a CNS-penetrating cardiac glycoside, is an inhibitor of the Na+, K+-ATPase. Neriifolin can target beclin 1, inhibits the formation of LC3-associated phagosomes and ameliorates experimental autoimmune encephalomyelitis (EAE) development. Neriifolin induces cell cycle arrest and apoptosis in human hepatocellular carcinoma HepG2 cells[1][2.

   

(R)-Menthofuran

(6R)-3,6-Dimethyl-4,5,6,7-tetrahydro-1-benzofuran

C10H14O (150.1045)


Menthofuran is a monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6. It has a role as a nematicide and a plant metabolite. It is a member of 1-benzofurans and a monoterpenoid. Menthofuran is a natural product found in Methanobacterium and Mentha pulegium with data available. Constituent of peppermint oil (Mentha piperita) and other Mentha subspecies as minor but essential organoleptic. It is used in peppermint oil formulations. (R)-Menthofuran is found in mentha (mint), orange mint, and herbs and spices. (R)-Menthofuran is found in herbs and spices. (R)-Menthofuran is a constituent of peppermint oil (Mentha piperita) and other Mentha species as minor but essential organoleptic. (R)-Menthofuran is used in peppermint oil formulations A monoterpenoid that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6.

   

gamma-Terpinene

1-Isopropyl-4-methyl-1,4-cyclohexadiene, p-Mentha-1,4-diene

C10H16 (136.1252)


Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].

   

(+)-alpha-Pinene

(R)-(+)--Pinene;(+)--Pinene; (1R)-(+)--Pinene; (1R)--Pinene; (1R,5R)-(+)--Pinene

C10H16 (136.1252)


alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].

   

Paraxanthine

3,7-Dihydro-1,7-dimethyl-1H-purine-2,6-dione

C7H8N4O2 (180.0647)


Paraxanthine, also known as p-xanthine, belongs to the class of organic compounds known as xanthines. These are purine derivatives with a ketone group conjugated at carbons 2 and 6 of the purine moiety. Paraxanthine exists in all living organisms, ranging from bacteria to humans. Within humans, paraxanthine participates in a number of enzymatic reactions. In particular, paraxanthine and formaldehyde can be biosynthesized from caffeine; which is catalyzed by the enzyme cytochrome P450 1A2. In addition, paraxanthine and acetyl-CoA can be converted into 5-acetylamino-6-formylamino-3-methyluracil through its interaction with the enzyme arylamine N-acetyltransferase 2. In humans, paraxanthine is involved in caffeine metabolism. 1,7-dimethylxanthine (paraxanthine) is the preferential path of caffeine metabolism in humans. Acquisition and generation of the data is financially supported in part by CREST/JST. Paraxanthine, a caffeine metabolite, provides protection against Dopaminergic cell death via stimulation of Ryanodine Receptor Channels.

   

3,7-Dimethyluric acid

3,7-dimethyl-2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione

C7H8N4O3 (196.0596)


3,7-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3,7-Dimethyluric is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID: 11712316, 15833286, 3506820, 15013152) [HMDB] 3,7-Dimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 3,7-Dimethyluric is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis (PMID:11712316, 15833286, 3506820, 15013152).

   

Salicyluric acid

2-[(2-hydroxyphenyl)formamido]acetic acid

C9H9NO4 (195.0532)


Salicyluric acid is an aryl glycine conjugate formed by the body to eliminate excess salicylates, including aspirin. Aspirin is rapidly hydrolysed to salicylic acid which is further metabolized to various compounds, including salicyluric acid (SU) as well as various acyl and phenolic glucuronides, and hydroxylated metabolites. SU is the major metabolite of SA excreted in urine and it is present in the urine of people who have not taken salicylate drugs, although it has no anti-inflammatory effects in humans or in animals. More salicyluric acid (SU) is excreted in the urine of vegetarians than in non-vegetarians, primarily because fruits and vegetables are important sources of dietary salicylates. However, significantly less (10-15X) SU is excreted by vegetarians than individuals taking low-dose aspirin (PMID: 12944546). The induction of the salicyluric acid formation is one of the saturable pathways of salicylate elimination. The formation of the methyl ester of salicyluric acid is observed during the quantitation of salicyluric acid and other salicylate metabolites in urine by high-pressure liquid chromatography. This methyl ester formation causes artificially low values for salicyluric acid and high values for salicylic acid. (PMID: 6101164, 6857178). Salicyluric acid has been found to be a microbial metabolite. Constituent of milk KEIO_ID H028 Salicyluric acid is an endogenous metabolite.

   

Ouabain

3-[(1R,3S,5S,8R,9S,10R,11R,13R,14S,17R)-1,5,11,14-tetrahydroxy-10-(hydroxymethyl)-13-methyl-3-[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy-2,3,4,6,7,8,9,11,12,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-17-yl]-2H-furan-5-one

C29H44O12 (584.2833)


Ouabain is only found in individuals that have used or taken this drug. It is a cardioactive glycoside consisting of rhamnose and ouabagenin, obtained from the seeds of Strophanthus gratus and other plants of the Apocynaceae; used like digitalis. It is commonly used in cell biological studies as an inhibitor of the NA(+)-K(+)-exchanging ATPase. [PubChem]Ouabain inhibits the Na-K-ATPase membrane pump, resulting in an increase in intracellular sodium and calcium concentrations. Increased intracellular concentrations of calcium may promote activation of contractile proteins (e.g., actin, myosin). Ouabain also acts on the electrical activity of the heart, increasing the slope of phase 4 depolarization, shortening the action potential duration, and decreasing the maximal diastolic potential. CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6235; ORIGINAL_PRECURSOR_SCAN_NO 6233 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6272; ORIGINAL_PRECURSOR_SCAN_NO 6270 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6219; ORIGINAL_PRECURSOR_SCAN_NO 6216 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6224; ORIGINAL_PRECURSOR_SCAN_NO 6220 CONFIDENCE standard compound; INTERNAL_ID 472; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 6194; ORIGINAL_PRECURSOR_SCAN_NO 6191 C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins [Raw Data] CB084_Ouabain_pos_50eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_10eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_30eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_20eV_CB000036.txt [Raw Data] CB084_Ouabain_pos_40eV_CB000036.txt D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

1,3,7-trimethylurate

1,3,7-Trimethyl-2,3,6,7,8,9-hexahydro-1H-purine-2,6,8-trione

C8H10N4O3 (210.0753)


1,3,7-Trimethyluric acid is a methyl derivative of uric acid, found occasionally in human urine. 1,3,7-Trimethyluracil is one of the purine components in urinary calculi. Methylated purines originate from the metabolism of methylxanthines (caffeine, theophylline and theobromine). Methyluric acids are indistinguishable from uric acid by simple methods routinely used in clinical laboratories, requiring the use of high-performance liquid chromatography (HPLC). Purine derivatives in urinary calculi could be considered markers of abnormal purine metabolism. The content of a purine derivative in stone depends on its average urinary excretion in the general population, similarity to the chemical structure of uric acid, and content of the latter in stone. This suggests that purines in stones represent a solid solution with uric acid as solvent. It is also plausible that methylxanthines, ubiquitous components of the diet and drugs, are involved in the pathogenesis of urolithiasis. Caffeine is metabolized via successive pathways mainly catalyzed by CYP1A2, xanthine oxidase or N-acetyltransferase-2 to give 14 different metabolites. CYP1A2 activity shows an inter-individual variability among the population. CYP1A2, an isoform of the CYP1A cytochrome P450 super-family, is involved in the metabolism of many drugs and plays a potentially important role in the induction of chemical carcinogenesis. (PMID:11712316, 15833286, 3506820, 15013152).

   

linustatin

2-methyl-2-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-[[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxymethyl]-2-tetrahydropyranyl]oxy]propanenitrile

C16H27NO11 (409.1584)


   

salvinorin A

Salvinorin A(Divinorin A)

C23H28O8 (432.1784)


D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D006213 - Hallucinogens A natural product found in Salvia divinorum.

   

Glycitin

3-(4-hydroxyphenyl)-6-methoxy-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C22H22O10 (446.1213)


Glycitin is an isoflavone glycoside present in human diets containing soy. The transformation of glycitin by intestinal microflora produces glycitein, a compound found to scavenge intracellular reactive oxygen species. Diverse bacteria strains from human origin have specific activity (beta-glucosidase activity) in the metabolism of dietary flavonoids. Soy isoflavones are popular supplements based on their potential protection against cancer and their use as alternative hormone replacement therapy. Is one of the isoflavones present in ready-to-feed soy-based infant formula. (PMID: 17516245, 17157426, 17439230, 12607743). Present in soya foods; potential nutriceutical. Glycitin is found in many foods, some of which are soy milk, tofu, miso, and soy sauce. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.

   

Psoralidin

5,14-dihydroxy-4-(3-methylbut-2-en-1-yl)-8,17-dioxatetracyclo[8.7.0.0^{2,7}.0^{11,16}]heptadeca-1(10),2,4,6,11(16),12,14-heptaen-9-one

C20H16O5 (336.0998)


Psoralidin is a member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. It has a role as a plant metabolite and an estrogen receptor agonist. It is a member of coumestans, a polyphenol and a delta-lactone. It is functionally related to a coumestan. Psoralidin is a natural product found in Dolichos trilobus, Phaseolus lunatus, and other organisms with data available. See also: Cullen corylifolium fruit (part of). A member of the class of coumestans that is coumestan substituted by hydroxy groups at positions 3 and 9 and a prenyl group at position 2 respectively. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists > D020847 - Estrogen Receptor Modulators Constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is found in pulses, lima bean, and fruits. Psoralidin is found in fruits. Psoralidin is a constituent of papadi (Dolichos biflorus) and the butter bean (Phaseolus lunatus). Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2]. Psoralidin is a dual inhibitor of COX-2 and 5-LOX, regulates ionizing radiation (IR)-induced pulmonary inflammation.Anti-cancer, anti-bacterial, and anti-inflammatory properties[1]. Psoralidin significantly downregulates NOTCH1 signaling. Psoralidin also greatly induces ROS generation[2].

   

(S)-3-Octanol

Ethyl pentyl carbinol

C8H18O (130.1358)


Present in Mentha subspecies oils, sage, soybeans, porcini (Boletus edulis), wines and other foodstuffs. Flavouring agent. 3-Octanol is found in many foods, some of which are mushrooms, soy bean, rosemary, and alcoholic beverages. 3-Octanol is found in alcoholic beverages. 3-Octanol is present in Mentha species oils, sage, soybeans, porcini (Boletus edulis), wines and other foodstuffs. 3-Octanol is a flavouring agent

   

Neoglucobrassicin

{[(E)-[2-(1-methoxy-1H-indol-3-yl)-1-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]sulfanyl}ethylidene]amino]oxy}sulfonic acid

C17H22N2O10S2 (478.0716)


Neoglucobrassicin, also known as MIMG, belongs to the class of organic compounds known as alkylglucosinolates. These are organic compounds containing a glucosinolate moiety that carries an alkyl chain. Outside of the human body, neoglucobrassicin has been detected, but not quantified in, several different foods, such as swedes, garden cress, Brussel sprouts, Chinese cabbages, and kohlrabis. This could make neoglucobrassicin a potential biomarker for the consumption of these foods. Neoglucobrassicin is widespread in Brassica species and found in the Cruciferae, Tovariaceae, Capparidaceae, and Resedaceae. Widespread in Brassica subspecies and found in the Cruciferae, Tovariaceae, Capparidaceae and Resedaceae

   

Baicalin

(2S,3S,4S,5R,6R)-6-[(5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl)oxy]-3,4,5-trihydroxyoxane-2-carboxylic acid

C21H18O11 (446.0849)


Baicalin is a flavone, a type of flavonoid. It is found in several species in the genus Scutellaria, including Scutellaria lateriflora (blue skullcap). There are 10 mg/g baicalin in Scutellaria galericulata (common skullcap) leaves. Baicalin is the glucuronide of baicalein. It is a component of Chinese medicinal herb Huang-chin (Scutellaria baicalensis) and one of the chemical ingredients of Sho-Saiko-To, an herbal supplement. Acquisition and generation of the data is financially supported in part by CREST/JST. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].

   

Cyanidin 3-rutinoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-({[(2R,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C27H31O15]+ (595.1663)


Cyanidin 3-rutinoside is found in asparagus. Antirrhinin is an anthocyanin. It is the 3-rutinoside of cyanidin. It can be found in blackcurrant Antirrhinin is an anthocyanin. It is the 3-rutinoside of cyanidin. It can be found in blackcurrant. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA67_Keracyanine_pos_30eV.txt [Raw Data] CBA67_Keracyanine_pos_40eV.txt [Raw Data] CBA67_Keracyanine_pos_50eV.txt [Raw Data] CBA67_Keracyanine_pos_10eV.txt [Raw Data] CBA67_Keracyanine_neg_40eV.txt [Raw Data] CBA67_Keracyanine_neg_20eV.txt [Raw Data] CBA67_Keracyanine_neg_10eV.txt [Raw Data] CBA67_Keracyanine_neg_30eV.txt [Raw Data] CBA67_Keracyanine_neg_50eV.txt [Raw Data] CBA67_Keracyanine_pos_20eV.txt

   

Malvin

Malvidin-3, 5-di-O-glucoside chloride

[C29H35O17]+ (655.1874)


Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CBA99_Malvin_pos_10eV.txt [Raw Data] CBA99_Malvin_pos_30eV.txt [Raw Data] CBA99_Malvin_pos_20eV.txt [Raw Data] CBA99_Malvin_pos_40eV.txt [Raw Data] CBA99_Malvin_pos_50eV.txt

   

Astringin

(2S,3R,4S,5S,6R)-2-[3-[(E)-2-(3,4-dihydroxyphenyl)vinyl]-5-hydroxy-phenoxy]-6-(hydroxymethyl)tetrahydropyran-3,4,5-triol

C20H22O9 (406.1264)


Trans-astringin is a stilbenoid that is piceatannol substituted at position 3 by a beta-D-glucosyl residue. It has a role as a metabolite, an antioxidant and an antineoplastic agent. It is a polyphenol, a stilbenoid, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a piceatannol. Astringin is a natural product found in Fagopyrum megacarpum, Vitis vinifera, and other organisms with data available. Astringin is a metabolite found in or produced by Saccharomyces cerevisiae. A stilbenoid that is piceatannol substituted at position 3 by a beta-D-glucosyl residue. Acquisition and generation of the data is financially supported in part by CREST/JST. Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1]. Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1].

   

Tectochrysin

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-phenyl- (9CI)

C16H12O4 (268.0736)


7-methylchrysin, also known as 5-hydroxy-7-methoxyflavone or techtochrysin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 7-methylchrysin is considered to be a flavonoid lipid molecule. 7-methylchrysin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 7-methylchrysin can be found in pine nut, prunus (cherry, plum), sour cherry, and sweet cherry, which makes 7-methylchrysin a potential biomarker for the consumption of these food products. relative retention time with respect to 9-anthracene Carboxylic Acid is 1.330 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.324 Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

Chrysophanol

1,8-DIHYDROXY-3-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C15H10O4 (254.0579)


Chrysophanic acid appears as golden yellow plates or brown powder. Melting point 196 °C. Slightly soluble in water. Pale yellow aqueous solutions turn red on addition of alkali. Solutions in concentrated sulfuric acid are red. (NTP, 1992) Chrysophanol is a trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. It has a role as an antiviral agent, an anti-inflammatory agent and a plant metabolite. It is functionally related to a chrysazin. Chrysophanol is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. Constituent of Rumex, Rheum subspecies Chrysophanol is found in dock, garden rhubarb, and sorrel. Chrysophanol is found in dock. Chrysophanol is a constituent of Rumex, Rheum species D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

MCULE-3117397262

2-O-beta-L-galactopyranosylvitexin

C27H30O15 (594.1585)


   

Apigenin 7,4'-dimethyl ether

5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

Gardenoside

Methyl (1S,4aS,7S,7aS)-7-hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate

C17H24O11 (404.1319)


A cyclopentapyran that is 7-deoxyloganin with a methyl and hydrogen replaced by hydroxy and hydroxymethyl groups at position 7. Gardenoside is a natural product found in Gardenia jasminoides, Catunaregam obovata, and other organisms with data available. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2].

   

Cyanidin

1-benzopyrylium, 2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-, chloride (1:1)

[C15H11O6]+ (287.0556)


Cyanidin, also known as cyanidin chloride (CAS: 528-58-5), belongs to the class of organic compounds known as 7-hydroxyflavonoids. These are flavonoids that bear one hydroxyl group at the C-7 position of the flavonoid skeleton. Thus, cyanidin is considered to be a flavonoid lipid molecule. Cyanidin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin is a product of cyanidin 3-​glucoside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Widely distributed anthocyanidin, found especies in Vaccinium subspecies (blueberries, bilberries, whortleberries), cherries, raspberries, red onions, red wine and black tea. Cyanidin is found in many foods, some of which are papaya, hyacinth bean, sweet basil, and abalone.

   

Rubrofusarin

InChI=1\C15H12O5\c1-7-3-10(16)14-12(20-7)5-8-4-9(19-2)6-11(17)13(8)15(14)18\h3-6,17-18H,1-2H

C15H12O5 (272.0685)


A member of the class of benzochromenones that is benzo[g]chromen-4-one carrying two additional hydroxy substituents at positions 5 and 6 as well as methyl and methoxy substituents at positions 2 and 8 respectively. An orange polyketide pigment that is a common intermediate in many different fungal biosynthetic pathways. CONFIDENCE Culture of Fusarium graminearum from DAOM

   

Camphene

3,3-Dimethyl-2-methylidenebicyclo[2.2.1]heptane

C10H16 (136.1252)


Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .

   

(R)-1-Octen-3-ol

1-Octen-3-ol, (+-)-isomer

C8H16O (128.1201)


Isolated from a number of essential oils, e.g. lavender, leek, mint and mushrooms. Food odorant responsible for typical mushroom odour. Flavouring ingredient. (R)-1-Octen-3-ol is found in mushrooms, onion-family vegetables, and herbs and spices. (R)-1-Octen-3-ol, also known as 1-vinylhexanol or 3-hydroxy-1-octene, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].

   

DIBOA trihexose

3,5,7-Trihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-4H-1-benzopyran-4-one

C17H14O8 (346.0689)


Syringetin,?a flavonoid derivative, is associated with increased BMP-2 production. Syringetin stimulates osteoblast differentiation at various stages, from maturation to terminally differentiated osteoblasts[1]. Syringetin,?a flavonoid derivative, is associated with increased BMP-2 production. Syringetin stimulates osteoblast differentiation at various stages, from maturation to terminally differentiated osteoblasts[1].

   

all-trans-Hexaprenyl diphosphate

[({[(2E,6E,10E,14E,18E)-3,7,11,15,19,23-hexamethyltetracosa-2,6,10,14,18,22-hexaen-1-yl]oxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C30H52O7P2 (586.3188)


all-trans-Hexaprenyl diphosphate is the final product of the hexaprenyl diphosphate biosynthesis pathway. In this pathway, multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids. There are two different pathways for the biosynthesis of IPP. Bacteria that possess ubiquinone generally use the methylerythritol phosphate pathway (MEP), while the eukaryotic microorganisms use the mevalonate pathway. However, exceptions exist. For example, some eukaryotic microbes, like the green algae and the malarial parasite Plasmodium falciparum, appear to utilize the MEP pathway, and some bacteria utilize the mevalonate pathway (Eisenreich01, Eisenreich04). In Saccharomyces cerevisiae S288C, the initial addition of two isoprenyl units to form (E, E)-farnesyl diphosphate is catalyzed by geranyltransferase / dimethylallyltransferase, encoded by FPP1. An additional unit is added by farnesyltranstransferase (encoded by BTS1), resulting in the formation of all-trans-geranyl-geranyl diphosphate. The last enzyme in this pathway is hexaprenyl diphosphate synthase (encoded by COQ1), which adds additional isoprenoid units to a maximal length unique to the organism. In the case of Saccharomyces cerevisiae S288C, it is 6 units. Polyprenyl diphosphate synthase enzymes, such as hexaprenyl diphosphate synthase, are responsible for determining the final length of the tail. When yeast COQ1 mutants are complemented with homologs from other organisms, ubiquinone biosynthesis is restored, but the tail length of the quinone depends on the source of the enzyme. All-trans-hexaprenyl diphosphate is the final product of hexaprenyl diphosphate biosynthesis pathway.In this pathway multiple units of isopentenyl diphosphate (IPP) undergo a series of polymerizations to form various polyisoprenoids.

   

6-Methylsalicylic acid

2-HYDROXY-6-METHYLBENZOIC ACID

C8H8O3 (152.0473)


A monohydroxybenzoic acid that is salicylic acid in which the hydrogen ortho to the carboxylic acid group is substituted by a methyl group. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates

   

Macarpine

Macarpine

C22H18NO6+ (392.1134)


A benzophenanthridine alkaloid that is sanguinarine bearing two methoxy substituents.

   

Cucurbitacin C

(3E)-6-[5,13-Dihydroxy-1-(hydroxymethyl)-6,6,11,15-tetramethyl-17-oxotetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadec-7-en-14-yl]-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetic acid

C32H48O8 (560.3349)


Cucurbitacin C is found in cucumber. Cucurbitacin C is a constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber) Constituent of Cucurbitaceae, e.g. Cucumis sativus (cucumber). Cucurbitacin C is found in cucumber and fruits.

   

Cucurbitacin F

2,3,16,20,25-Pentahydroxy-9-methyl-19-norlanosta-5,23-diene-11,22-dione (2beta,3alpha,9beta,10alpha,16alpha,23E)-

C30H46O7 (518.3243)


   

Cucurbitacin P

Cucurbitacin IIb

C30H48O7 (520.34)


   

Cucurbitacin Q

Cucurbitacin Q

C32H48O8 (560.3349)


   

Caryoptin

Caryoptin

C26H36O9 (492.2359)


A diterpenoid isolated from Caryopteris divaricata.

   

Daphnetoxin

Orthobenzoic acid, cyclic 7,8,10a-ester with 5,6-epoxy-4,5,6,6a,7,8,9,10,10a,10b-decahydro-3a,4,7,8,10a-pentahydroxy-5-(hydroxymethyl)-8-isopropenyl-2,10-dimethylbenz(e)azulen-3(3ah)-one

C27H30O8 (482.1941)


A daphnane-type orthoester diterpene with potential cholesterol-lowering activity, found exclusively in plants of the family Thymelaeaceae.

   

Ambrosanolide

Tetraneurin E; Ambrosanolide

C17H24O6 (324.1573)


   

beta-Caryophyllene

trans-(1R,9S)-4,11,11-Trimethyl-8-methylenebicyclo[7.2.0]undec-4-ene

C15H24 (204.1878)


beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.

   

Diffutin

[ (S) -2- (3,4-Dimethoxyphenyl) -3,4-dihydro-7-hydroxy-2H-1-benzopyran-5-yl ] beta-D-glucopyranoside

C23H28O10 (464.1682)


A flavan glycoside that is (2S)-flavan substituted by a hydroxy group at position 7, methoxy groups at positions 3 and 4 and a beta-D-glucopyranosyloxy group at position 5 respectively.

   

Germacrene

(1E,5E)-1,5-Dimethyl-8-(1-methylethylidene)-1,5-cyclodecadiene

C15H24 (204.1878)


Germacrene, also known as (e,e)-germacra-1(10),4,7(11)-triene, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Thus, germacrene is considered to be an isoprenoid lipid molecule. Germacrene can be found in turmeric, which makes germacrene a potential biomarker for the consumption of this food product. Germacrenes are a class of volatile organic hydrocarbons, specifically, sesquiterpenes. Germacrenes are typically produced in a number of plant species for their antimicrobial and insecticidal properties, though they also play a role as insect pheromones. Two prominent molecules are germacrene A and germacrene D .

   

Kolaflavanone

3,3,4,5,5,7,7-Heptahydroxy-4-methoxy-3,8-biflavanone

C31H24O12 (588.1268)


A biflavonoid isolated from the seeds of Garcinia kola that has been shown to exhibit hepatoprotective activity.

   

Piperaduncin B

methyl 4-hydroxy-3- [ (2S,3S) -6-hydroxy-2- (2-hydroxypropan-2-yl) -4-methoxy-7- (3-phenylpropanoyl) -2,3-dihydro-1-benzofuran-3-yl ] benzoate

C29H30O8 (506.1941)


   

alpha-Terpineol

2-(4-Methylcyclohex-3-enyl)propan-2-ol (alpha-terpineol)

C10H18O (154.1358)


alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].

   

Swertianolin

Bellidifolin-8-O-glucoside

C20H20O11 (436.1006)


Swertianolin, a xanthone isolated from Gentianella Acuta, inhibits acetylcholinesterase (AChE). Swertianolin also exhibits anti-HBV and anti-bacterial activity[1][2]. Swertianolin, a xanthone isolated from Gentianella Acuta, inhibits acetylcholinesterase (AChE). Swertianolin also exhibits anti-HBV and anti-bacterial activity[1][2].

   

quercetagetin

3,3,4,5,6,7-Hexahydroxyflavone

C15H10O8 (318.0376)


D004791 - Enzyme Inhibitors Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties. Quercetagetin (6-Hydroxyquercetin) is a flavonoid[1]. Quercetagetin is a moderately potent and selective, cell-permeable pim-1 kinase inhibitor (IC50, 0.34 μM)[2]. Anti-inflammatory and anticancer properties.

   

Betavulgarin

7-(2-hydroxyphenyl)-9-methoxy-2H,8H-[1,3]dioxolo[4,5-g]chromen-8-one

C17H12O6 (312.0634)


Betavulgarin, also known as 2-hydroxy-5-methoxy-6,7-methylenedioxyisoflavone, is a member of the class of compounds known as isoflavones. Isoflavones are polycyclic compounds containing a 2-isoflavene skeleton which bears a ketone group at the C4 carbon atom. Thus, betavulgarin is considered to be a flavonoid lipid molecule. Betavulgarin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Betavulgarin can be found in chickpea, common beet, and red beetroot, which makes betavulgarin a potential biomarker for the consumption of these food products.

   

Cajanol

5-hydroxy-3-(4-hydroxy-2-methoxyphenyl)-7-methoxy-3,4-dihydro-2H-1-benzopyran-4-one

C17H16O6 (316.0947)


Isolated from fungus-infected stems of Cajanus cajan (pigeon pea). Cajanol is found in pigeon pea and pulses. Cajanol is found in pigeon pea. Cajanol is isolated from fungus-infected stems of Cajanus cajan (pigeon pea

   

6-Hydroxy-4-methoxy-3-(3-methyl-2-butenyl)-2-(2-phenylethenyl)benzoic acid

6-hydroxy-4-methoxy-3-(3-methylbut-2-en-1-yl)-2-[(E)-2-phenylethenyl]benzoic acid

C21H22O4 (338.1518)


6-Hydroxy-4-methoxy-3-(3-methyl-2-butenyl)-2-(2-phenylethenyl)benzoic acid is found in pigeon pea. 6-Hydroxy-4-methoxy-3-(3-methyl-2-butenyl)-2-(2-phenylethenyl)benzoic acid is a constituent of Cajanus cajan (pigeon pea). Constituent of Cajanus cajan (pigeon pea). 6-Hydroxy-4-methoxy-3-(3-methyl-2-butenyl)-2-(2-phenylethenyl)benzoic acid is found in pigeon pea and pulses.

   

Physcion 8-gentiobioside

1-hydroxy-3-methoxy-6-methyl-8-{[3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-9,10-dihydroanthracene-9,10-dione

C28H32O15 (608.1741)


Physcion 8-gentiobioside is a constituent of seeds of sicklepod (Cassia torosa) Constituent of seeds of sicklepod (Cassia torosa)

   

Lonchocarpenin

4-Hydroxy-5-methoxy-3- (4-methoxyphenyl) -8,8-dimethyl-10- (3-methyl-2-butenyl) -2H,8H-benzo [ 1,2-b:5,4-b ] dipyran-2-one

C27H28O6 (448.1886)


A hydroxycoumarin that is 2H,8H-benzo[1,2-b:5,4-b]dipyran-2-one substituted by a hydroxy group at position 4, a methoxy group at position 5, 4-methoxyphenyl group at position 3 and two methyl groups at position 8 respectively.

   

Burseran

PODOPHYLLOTOXIN, SECODEOXY CYCLIC ETHER

C22H26O6 (386.1729)


A lignan that consists of tetrahydrofuran substituted by a 5-methyl-1,3-benzodioxole group at position 3 and a 3,4,5-trimethoxybenzyl group at position 4 (the 3S,4S stereoisomer).

   

Yatein

2(3H)-Furanone, 4-(1,3-benzodioxol-5-ylmethyl)dihydro-3-[(3,4,5-trimethoxyphenyl)methyl]-, (3R-trans)-

C22H24O7 (400.1522)


Dihydroanhydropodorhizol is a member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively. It has a role as a plant metabolite. It is a lignan, a butan-4-olide, a member of methoxybenzenes and a member of benzodioxoles. Yatein is a natural product found in Austrocedrus chilensis, Podolepis canescens, and other organisms with data available. A member of the class of butan-4-olides carrying 3,4,5-trimethoxybenzyl and (1,3-benzodioxol-5-yl)methyl substituents at positions 3 and 4 respectively.

   

Lilaline

3,5,7,4-Tetrahydroxy-8- (3-methyl-2-oxo-5-pyrrolidinyl) flavone

C20H17NO7 (383.1005)


A tetrahydroxyflavone that is flavone substituted by hydroxy groups at positions 3, 5, 7 and 4 and a 4-methyl-5-oxopyrrolidin-2-yl group at position 8.

   

Magnoshinin

(1S,2R)-5,7,8-trimethoxy-2,3-dimethyl-1-(2,4,5-trimethoxyphenyl)-1,2-dihydronaphthalene

C24H30O6 (414.2042)


A neolignan that consists of 1,2-dihydronaphthalene substituted by a 2,4,5-trimethoxyphenyl group at position 1 (the 1S,2R stereoisomer), methyl groups at positions 2 and 3, and methoxy groups at positions 5, 7 and 8 respectively.

   

Oleandolide

Oleandolide

C20H34O7 (386.2304)


A 14-membererd macrolide containing ten stereocentres carrying one epoxymethano, three hydroxy and five methyl substituents. It is the aglycone of the antibiotic oleandomycin.

   

Isoformononetin

3-(4-Hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C16H12O4 (268.0736)


Isoformononetin is found in pulses. Isoformononetin is isolated from soybean (Glycine max) and other plants. Isolated from soybean (Glycine max) and other plants. Isoformononetin is found in soy bean and pulses. Isoformononetin is an analog of Daidzein (HY-N0019) and has immunoprotective effects. Isoformononetin inhibits the differentiation of Th17 and B-cells lymphopoesis to promote osteogenesis in estrogen-deficient bone loss conditions[1]. Isoformononetin is an analog of Daidzein (HY-N0019) and has immunoprotective effects. Isoformononetin inhibits the differentiation of Th17 and B-cells lymphopoesis to promote osteogenesis in estrogen-deficient bone loss conditions[1].

   

Isowertin 2'-rhamnoside

8-[4,5-dihydroxy-6-(hydroxymethyl)-3-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl]-5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-4H-chromen-4-one

C28H32O14 (592.1792)


Isolated from Avena sativa (coats) and Gnetum africanum. Isoswertin 2-rhamnoside is found in oat, cereals and cereal products, and green vegetables. Isowertin 2-rhamnoside is found in cereals and cereal products. Isowertin 2-rhamnoside is isolated from Avena sativa (coats) and Gnetum africanum.

   

4-Hydroxy-5,6,7-trimethoxyflavanone

2,3-Dihydro-2-(4-hydroxyphenyl)-5,6,7-trimethoxy-4H-1-benzopyran-4-one

C18H18O6 (330.1103)


A methoxyflavanone that is flavanone substituted by methoxy groups at positions 5, 6 and 7 and a hydroxy group at position 4.

   

Germacrene D

(1E,6E,8S)-1-methyl-8-(1-methylethyl)-5-methylidenecyclodeca-1,6-diene

C15H24 (204.1878)


Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.

   

Homoeriodictyol chalcone

4,2,4,6-Tetrahydroxy-3-methoxychalcone

C16H14O6 (302.079)


   

Hesperetin 7-glucoside

5-hydroxy-2-(3-hydroxy-4-methoxyphenyl)-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,4-dihydro-2H-1-benzopyran-4-one

C22H24O11 (464.1319)


Isolated from water mint (Mentha aquatica). Hesperetin 7-glucoside is found in orange mint, herbs and spices, and green vegetables. Hesperetin 7-glucoside is found in green vegetables. Hesperetin 7-glucoside is isolated from water mint (Mentha aquatica Hesperetin 7-O-glucoside is produced by the enzymatic conversion of Hesperidin. Hesperetin 7-O-glucoside is a potent human HMG-CoA reductase inhibitor and also effectively inhibits the growth of Helicobacter pylori. Antihypertensive effect[1][2].

   

Chavicol

laquo gammaraquo -(P-Hydroxyphenyl)-alpha -propylene

C9H10O (134.0732)


Chavicol is found in allspice. Chavicol is found in many essential oils, e.g. anise and Gardenia. Chavicol is used in perfumery and flavours. Found in many essential oils, e.g. anise and Gardenia. It is used in perfumery and flavours.

   

Cerberin

Cerberin; 2-Acetylneriifolin

C32H48O9 (576.3298)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides A cardenolide glycoside that is the 2-acetyl derivative of neriifolin.

   

1-Dihydrocarveol

2-methyl-5-(prop-1-en-2-yl)cyclohexan-1-ol

C10H18O (154.1358)


Dihydrocarveol, also known as 2-methyl-5-(1-methylethenyl)cyclohexanol or 6-methyl-3-isopropenylcyclohexanol, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Dihydrocarveol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Dihydrocarveol is a herbal, menthol, and minty tasting compound and can be found in a number of food items such as spearmint, dill, pot marjoram, and pepper (spice), which makes dihydrocarveol a potential biomarker for the consumption of these food products. Dihydrocarveol, also known as 2-methyl-5-(1-methylethenyl)cyclohexanol or 6-methyl-3-isopropenylcyclohexanol, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Dihydrocarveol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Dihydrocarveol is a herbal, menthol, and minty tasting compound and can be found in a number of food items such as dill, pot marjoram, pepper (spice), and caraway, which makes dihydrocarveol a potential biomarker for the consumption of these food products.

   

Pinene

(1R,5R)-2,6,6-Trimethylbicyclo[3.1.1]hept-2-ene

C10H16 (136.1252)


Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.

   

β-Pinene

(1S,5S)-7,7-dimethyl-4-methylidene-bicyclo[3.1.1]heptane

C10H16 (136.1252)


An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants. Widely distributed in plants, usually associated with a-Pinene JPV84-W but in smaller amounts. Found in lime peel oil, ginger, nutmeg, mace, bitter fennel, rosemary and sage. Flavour ingredient β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].

   

Menthofuran

(+)-Menthofuran

C10H14O (150.1045)


A menthofuran that is 4,5,6,7-tetrahydro-1-benzofuran substituted by methyl groups at positions 3 and 6 (the 6R-enantiomer). (r)-menthofuran, also known as 4,5,6,7-tetrahydro-3,6-dimethylbenzofuran or 3,9-epoxy-P-mentha-3,8-diene, is a member of the class of compounds known as aromatic monoterpenoids. Aromatic monoterpenoids are monoterpenoids containing at least one aromatic ring (r)-menthofuran is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (r)-menthofuran is a coffee, earthy, and musty tasting compound found in herbs and spices, mentha (mint), and orange mint, which makes (r)-menthofuran a potential biomarker for the consumption of these food products (r)-menthofuran can be found primarily in saliva.

   

Velloquercetin

2,3-Dihydro-2- (1-methylethenyl) -7- (3,4-dihydroxyphenyl) -4,6-dihydroxy-5H-furo [ 3,2-g ] [ 1 ] benzopyran-5-one

C20H16O7 (368.0896)


An extended flavonoid that consists of quercetin substituted by a 2-isopropenyldihydrofuran ring across positions 6 and 7.

   

Rosmarinic acid

(S)-rosmarinic acid

C18H16O8 (360.0845)


The (S)-stereoisomer of rosmarinic acid. The 1-carboxy-2-(2,4-dihydroxyphenyl)ethyl ester of trans-caffeic acid. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731 Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.

   

Neochlorogenic_acid

CYCLOHEXANECARBOXYLIC ACID, 3-((3-(3,4-DIHYDROXYPHENYL)-1-OXO-2-PROPENYL)OXY)-1,4,5-TRIHYDROXY-, (1R-(1.ALPHA.,3.ALPHA.(E),4.ALPHA.,5.BETA.))-

C16H18O9 (354.0951)


Trans-5-O-caffeoyl-D-quinic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. It has a role as a plant metabolite. It is a cyclitol carboxylic acid and a cinnamate ester. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a trans-5-O-caffeoyl-D-quinate. Neochlorogenic acid is a natural product found in Eupatorium perfoliatum, Centaurea bracteata, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (has part); Moringa oleifera leaf (part of). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 5-hydroxy group of quinic acid. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation. Neochlorogenic acid is a natural polyphenolic compound found in dried fruits and other plants. Neochlorogenic acid inhibits the production of TNF-α and IL-1β. Neochlorogenic acid suppresses iNOS and COX-2 protein expression. Neochlorogenic acid also inhibits phosphorylated NF-κB p65 and p38 MAPK activation.

   

Spathulenol

1H-Cycloprop(e)azulen-7-ol, decahydro-1,1,7-trimethyl-4-methylene-, (1aR-(1aalpha,4aalpha,7beta,7abeta,7balpha))-

C15H24O (220.1827)


Spathulenol is a tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. It has a role as a volatile oil component, a plant metabolite, an anaesthetic and a vasodilator agent. It is a sesquiterpenoid, a carbotricyclic compound, a tertiary alcohol and an olefinic compound. Spathulenol is a natural product found in Xylopia aromatica, Xylopia emarginata, and other organisms with data available. See also: Chamomile (part of). A tricyclic sesquiterpenoid that is 4-methylidenedecahydro-1H-cyclopropa[e]azulene carrying three methyl substituents at positions 1, 1 and 7 as well as a hydroxy substituent at position 7. Spathulenol is found in alcoholic beverages. Spathulenol is a constituent of Salvia sclarea (clary sage).

   

Pulegone

Cyclohexanone, 5-methyl-2-(1-methylethylidene)-, (theta)-

C10H16O (152.1201)


Pulegone belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. It is formally classified as a cyclic ketone although it is biochemically a monoterpenoid as it is synthesized via isoprene units. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plant cell plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Pulegone is a hydrophobic, neutral compound that is insoluble in water. It exists as a clear, colorless oil. There are two isomers of Pulegone (the R and the S isomer), with the R isomer being more common. It is used industrially as a food additive and a perfuming agent. Pulegone has a fresh, minty or peppermint odor and a minty, fruity or green taste. It is found naturally in the essential oils of a variety of plants such as Nepeta cataria (catnip), Hedeoma pulegioides (pennyroyal), and Mentha species. It is also found in a number of plant foods and spices such as blackberryies, black currants, bell peppers, cornmint, rosemary, black tea, thyme, orange mint, peppermint, and spearmint, which makes it a potential biomarker for the consumption of these food products. Pulegone is also one of more than 140 terpenes that are found in cannabis plants (PMID:6991645 ). Pulegone, also known as (+)-(R)-pulegone or (1r)-(+)-P-menth-4(8)-en-3-one, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, pulegone is considered to be an isoprenoid lipid molecule. Pulegone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pulegone can be found in a number of food items such as globe artichoke, sacred lotus, garden onion, and rubus (blackberry, raspberry), which makes pulegone a potential biomarker for the consumption of these food products. Pulegone can be found primarily in saliva. Pulegone is a naturally occurring organic compound obtained from the essential oils of a variety of plants such as Nepeta cataria (catnip), Mentha piperita, and pennyroyal. It is classified as a monoterpene . (+)-pulegone is the (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone is a natural product found in Hedeoma multiflora, Clinopodium dalmaticum, and other organisms with data available. See also: Agathosma betulina leaf (part of). The (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].

   

Corosolic acid

(1S,2R,4aS,6aR,6aS,6bR,8aR,10R,11R,12aR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O4 (472.3552)


Colosolic acid is a natural product found in Rhododendron brachycarpum, Psidium, and other organisms with data available.

   

Syringetin

4H-1-Benzopyran-4-one, 3,5,7-trihydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-

C17H14O8 (346.0689)


Syringetin is a dimethoxyflavone that is myricetin in which the hydroxy groups at positions 3 and 5 have been replaced by methoxy groups. It has a role as a platelet aggregation inhibitor and a metabolite. It is a tetrahydroxyflavone, a dimethoxyflavone, a 7-hydroxyflavonol, a member of 3-methoxyflavones and a 3,5-dimethoxyflavone. It is functionally related to a myricetin. It is a conjugate acid of a syringetin(1-). Syringetin is a natural product found in Lysimachia congestiflora, Chondropetalum, and other organisms with data available. A dimethoxyflavone that is myricetin in which the hydroxy groups at positions 3 and 5 have been replaced by methoxy groups. Syringetin,?a flavonoid derivative, is associated with increased BMP-2 production. Syringetin stimulates osteoblast differentiation at various stages, from maturation to terminally differentiated osteoblasts[1]. Syringetin,?a flavonoid derivative, is associated with increased BMP-2 production. Syringetin stimulates osteoblast differentiation at various stages, from maturation to terminally differentiated osteoblasts[1].

   

Limonin

19-(furan-3-yl)-9,9,13,20-tetramethyl-4,8,15,18-tetraoxahexacyclo[11.9.0.0²,⁷.0²,¹⁰.0¹⁴,¹⁶.0¹⁴,²⁰]docosane-5,12,17-trione

C26H30O8 (470.1941)


Limonin is found in citrus. Limonin is isolated from oranges and other citrus fruits (Citrus species). Limonin is a limonoid, and a bitter, white, crystalline substance found in orange and lemon seeds. It is also known as limonoate D-ring-lactone and limonoic acid di-delta-lactone. Chemically, it is a member of the class of compounds known as furanolactones Isolated from oranges and other citrus fruits (Citrus subspecies). Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities. Limonin is a triterpenoid compound rich in citrus fruits that has antiviral and antitumor activities.

   

Malvin

7-hydroxy-2-(4-hydroxy-3,5-dimethoxyphenyl)-3,5-bis({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy})-1λ⁴-chromen-1-ylium

C29H35O17 (655.1874)


Malvin is found in alfalfa. Malvin is a naturally occurring chemical of the Anthocyanin family. It is a diglucoside of malvidin mainly found as a pigment in herbs like Malva (Malva sylvestris), Primula and Rhododendron. It can be found in a variety of common foods, including but not limited to the following:[citation needed]. Malvin is a naturally occurring chemical of the Anthocyanin family. It is a diglucoside of malvidin mainly found as a pigment in herbs like Malva (Malva sylvestris), Primula and Rhododendron. It can be found in a variety of common foods, including but not limited to the following:[citation needed]

   

Protobassic acid

8,10,11-trihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O6 (504.3451)


Protobassic acid is found in fruits. Protobassic acid is a constituent of the famine food Madhuca longifolia Constituent of the famine food Madhuca longifolia. Protobassic acid is found in fruits and guava.

   

(1S,2S,4R)-1,8-Epoxy-p-menthan-2-ol glucoside

2-(hydroxymethyl)-6-({1,3,3-trimethyl-2-oxabicyclo[2.2.2]octan-6-yl}oxy)oxane-3,4,5-triol

C16H28O7 (332.1835)


(1S,2S,4R)-1,8-Epoxy-p-menthan-2-ol glucoside is found in citrus. (1S,2S,4R)-1,8-Epoxy-p-menthan-2-ol glucoside is a constituent of Alpinia galanga (greater galangal), Citrus unshiu (satsuma mandarin) and Foeniculum vulgare (fennel). Constituent of Alpinia galanga (greater galangal), Citrus unshiu (satsuma mandarin) and Foeniculum vulgare (fennel). (1S,2S,4R)-1,8-Epoxy-p-menthan-2-ol glucoside is found in citrus and herbs and spices.

   

Germacrene B

(1Z,5Z)-1,5-dimethyl-8-(propan-2-ylidene)cyclodeca-1,5-diene

C15H24 (204.1878)


Constituent of the peel oil of yuzu Citrus junos. Germacrene B is found in many foods, some of which are pepper (spice), lime, citrus, and common oregano. Germacrene B is found in citrus. Germacrene B is a constituent of the peel oil of yuzu Citrus junos.

   

cis-Ocimene

(Z)-3,7-dimethylocta-1,3,6,-triene

C10H16 (136.1252)


Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. cis-beta-Ocimene is found in many foods, some of which are cornmint, sweet orange, sweet basil, and common sage. cis-Ocimene is found in allspice. Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. (Wikipedia

   

D-Linalool 3-glucoside

2-[(3,7-dimethylocta-1,6-dien-3-yl)oxy]-6-(hydroxymethyl)oxane-3,4,5-triol

C16H28O6 (316.1886)


D-Linalool 3-glucoside is found in herbs and spices. D-Linalool 3-glucoside is an aroma precursor of linalool from the flower buds of Arabian jasmine (Jasminum sambac Constituent of wine grape (Vitis vinifera). L-Linalool 3-glucoside is found in many foods, some of which are tea, common grape, fruits, and alcoholic beverages.

   

Glycosides

4-[(1S,2R,3S,5S,7R,10R,11R,14S,15R,17R)-3,7,11,17-tetrahydroxy-2-(hydroxymethyl)-15-methyl-5-{[(2R,3R,4R,5S,6R)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl]-2,5-dihydrofuran-2-one

C29H44O12 (584.2833)


Ouabain, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation. Glycosides is found in allspice, fig, and apricot. Glycosides is found in allspice. Ouabain, a cardiac glycoside similar to digitoxin, is used to treat congestive heart failure and supraventricular arrhythmias due to reentry mechanisms, and to control ventricular rate in the treatment of chronic atrial fibrillation C - Cardiovascular system > C01 - Cardiac therapy > C01A - Cardiac glycosides > C01AC - Strophanthus glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D013328 - Strophanthins D002317 - Cardiovascular Agents D004791 - Enzyme Inhibitors

   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ustiloxin E is found in cereals and cereal products. Ustiloxin E is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Constituent of Carissa carandas (karanda). Carissic acid is found in beverages and fruits.

   

Salvianolic acid B

2-(4-{3-[1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl}-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carbonyloxy)-3-(3,4-dihydroxyphenyl)propanoic acid

C36H30O16 (718.1534)


   

Corosolic acid

10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


Corosolic acid, also known as corosolate, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Corosolic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Corosolic acid can be found in guava, loquat, and olive, which makes corosolic acid a potential biomarker for the consumption of these food products. Corosolic acid is a pentacyclic triterpene acid found in Lagerstroemia speciosa. It is similar in structure to ursolic acid, differing only in the fact that it has a 2-alpha-hydroxy attachment . Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Gardenoside

Methyl 7-hydroxy-7-(hydroxymethyl)-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,4ah,7H,7ah-cyclopenta[c]pyran-4-carboxylic acid

C17H24O11 (404.1319)


   

Isovitexin

5,7-dihydroxy-2-(4-hydroxyphenyl)-6-[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]-4H-chromen-4-one

C21H20O10 (432.1056)


   

Kolaflavanone

8-[5,7-dihydroxy-2-(4-hydroxyphenyl)-4-oxo-3,4-dihydro-2H-1-benzopyran-3-yl]-3,5,7-trihydroxy-2-(3-hydroxy-4-methoxyphenyl)-3,4-dihydro-2H-1-benzopyran-4-one

C31H24O12 (588.1268)


   

Kurarinone

2-(2,4-dihydroxyphenyl)-7-hydroxy-5-methoxy-8-[5-methyl-2-(prop-1-en-2-yl)hex-4-en-1-yl]-3,4-dihydro-2H-1-benzopyran-4-one

C26H30O6 (438.2042)


   

Cadinol

(1R,4S)-1,6-dimethyl-4-(propan-2-yl)-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-ol

C15H26O (222.1984)


Cadinol is also known as alpha-cadinol. Cadinol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cadinol can be found in spearmint, which makes cadinol a potential biomarker for the consumption of this food product. Cadinol is any of several organic compounds with formula C 15H 26O, especially: alpha-cadinol delta-cadinol (torreyol, sesquigoyol, pilgerol, albicaulol) T-cadinol . Cadinol is also known as alpha-cadinol. Cadinol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Cadinol can be found in spearmint, which makes cadinol a potential biomarker for the consumption of this food product. Cadinol is any of several organic compounds with formula C 15H 26O, especially: α-cadinol δ-cadinol (torreyol, sesquigoyol, pilgerol, albicaulol) T-cadinol .

   

Astringin

2-{3-[(Z)-2-(3,4-dihydroxyphenyl)ethenyl]-5-hydroxyphenoxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C20H22O9 (406.1264)


Astringin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Astringin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Astringin can be found in grape wine, which makes astringin a potential biomarker for the consumption of this food product. Astringin is a stilbenoid, the 3-beta-D-glucoside of piceatannol. It can be found in the bark of Picea sitchensis or Picea abies (Norway spruce) . Astringin is a member of the class of compounds known as stilbene glycosides. Stilbene glycosides are compounds structurally characterized by the presence of a carbohydrate moiety glycosidically linked to the stilbene skeleton. Astringin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Astringin can be found in grape wine, which makes astringin a potential biomarker for the consumption of this food product. Astringin is a stilbenoid, the 3-β-D-glucoside of piceatannol. It can be found in the bark of Picea sitchensis or Picea abies (Norway spruce) . Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1]. Astringin (trans-Astringin) is a natural glycoside found in the bark of Picea sitchensis and Picea abies (Norway spruce), in Vitis vinifera cell cultures and in wine. Astringin has potent antioxidant capacity and cancer-chemopreventive activity[1].

   

Linustatin

2-{[4,5-dihydroxy-6-(hydroxymethyl)-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2-methylpropanenitrile

C16H27NO11 (409.1584)


Linustatin is a member of the class of compounds known as cyanogenic glycosides. Cyanogenic glycosides are glycosides in which the aglycone moiety contains a cyanide group. Linustatin is soluble (in water) and a very weakly acidic compound (based on its pKa). Linustatin can be found in a number of food items such as broad bean, plains prickly pear, shea tree, and longan, which makes linustatin a potential biomarker for the consumption of these food products.

   

magnoflorine

3,16-dihydroxy-4,15-dimethoxy-10,10-dimethyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(16),2,4,6,13(17),14-hexaen-10-ium

C20H24NO4 (342.1705)


Magnoflorine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof. Magnoflorine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Magnoflorine can be found in a number of food items such as carob, other cereal product, durian, and japanese chestnut, which makes magnoflorine a potential biomarker for the consumption of these food products. Magnoflorine is a chemical compound isolated from the rhizome of Sinomenium acutum and from Pachygone ovata. It is classified as an aporphine alkaloid .

   

Ursolic acid (2-alpha-hydroxy-)

(1S,2R,4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


   

3,4-dihydroxyphenylacetic acid

3,4-dihydroxyphenylacetic acid

C8H8O4 (168.0423)


3,4-Dihydroxybenzeneacetic acid is the main neuronal metabolite of dopamine.

   

Caffeine

Caffeine

C8H10N4O2 (194.0804)


N - Nervous system > N06 - Psychoanaleptics > N06B - Psychostimulants, agents used for adhd and nootropics > N06BC - Xanthine derivatives D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists D002491 - Central Nervous System Agents > D000697 - Central Nervous System Stimulants COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors C78272 - Agent Affecting Nervous System > C47795 - CNS Stimulant CONFIDENCE standard compound; EAWAG_UCHEM_ID 303 EAWAG_UCHEM_ID 303; CONFIDENCE standard compound D - Dermatologicals Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Salicyluric acid

Glycine,N-(2-hydroxybenzoyl)-

C9H9NO4 (195.0532)


Salicyluric acid is an endogenous metabolite.

   

3,4-Dihydroxybenzeneacetic acid

InChI=1/C8H8O4/c9-6-2-1-5(3-7(6)10)4-8(11)12/h1-3,9-10H,4H2,(H,11,12

C8H8O4 (168.0423)


3,4-Dihydroxyphenylacetic acid (DOPAC) is a phenolic acid. DOPAC is a neuronal metabolite of dopamine (DA). DA undergoes monoamine oxidase-catalyzed oxidative deamination to 3,4-dihydroxyphenylacetaldehyde (DOPAL), which is metabolized primarily into DOPAC via aldehyde dehydrogenase (ALDH2). The biotransformation of DOPAL is critical as previous studies have demonstrated this DA-derived aldehyde to be a reactive electrophile and toxic to dopaminergic cells. Known inhibitors of mitochondrial ALDH2, such as 4-hydroxy-2-nonenal (4HNE) inhibit ALDH2-mediated oxidation of the endogenous neurotoxin DOPAL. 4HNE is one of the resulting products of oxidative stress, thus linking oxidative stress to the uncontrolled production of an endogenous neurotoxin relevant to Parkinsons disease. In early-onset Parkinson disease, there is markedly reduced activities of both monoamine oxidase (MAO) A and B. The amount of DOPAC, which is produced during dopamine oxidation by MAO, is greatly reduced as a result of increased parkin overexpression. Administration of methamphetamine to animals causes loss of DA terminals in the brain and significant decreases in dopamine and dihydroxyphenylacetic acid (DOPAC) in the striatum. Renal dopamine produced in the residual tubular units may be enhanced during a sodium challenge, thus behaving appropriately as a compensatory natriuretic hormone; however, the renal dopaminergic system in patients afflicted with renal parenchymal disorders should address parameters other than free urinary dopamine, namely the urinary excretion of L-DOPA and metabolites. DOPAC is one of the major phenolic acids formed during human microbial fermentation of tea, citrus, and soy flavonoid supplements. DOPAC exhibits a considerable antiproliferative effect in LNCaP prostate cancer and HCT116 colon cancer cells. The antiproliferative activity of DOPAC may be due to its catechol structure. A similar association of the catechol moiety in the B-ring with antiproliferative activity was demonstrated for flavanones (PMID:16956664, 16455660, 8561959, 11369822, 10443478, 16365058). DOPAC can be found in Gram-positive bacteria (PMID:24752840). (3,4-dihydroxyphenyl)acetic acid is a dihydroxyphenylacetic acid having the two hydroxy substituents located at the 3- and 4-positions. It is a metabolite of dopamine. It has a role as a human metabolite. It is a dihydroxyphenylacetic acid and a member of catechols. It is functionally related to a phenylacetic acid. It is a conjugate acid of a (3,4-dihydroxyphenyl)acetate. 3,4-Dihydroxyphenylacetic acid is a natural product found in Liatris elegans, Tragopogon orientalis, and other organisms with data available. A deaminated metabolite of LEVODOPA. 3,4-Dihydroxyphenylacetic acid (DOPAC) is a metabolite of the neurotransmitter dopamine. 3,4-Dihydroxyphenylacetic acid is found in many foods, some of which are alaska blueberry, cauliflower, ucuhuba, and fox grape. 3,4-Dihydroxybenzeneacetic acid is the main neuronal metabolite of dopamine.

   

Techtochrysin

5-Hydroxy-7-methylflavone; 7-O-Methylchrysin; Tectochrysine

C16H12O4 (268.0736)


Tectochrysin is a monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. It has a role as a plant metabolite, an antidiarrhoeal drug and an antineoplastic agent. It is a monohydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Tectochrysin is a natural product found in Hedychium spicatum, Populus laurifolia, and other organisms with data available. A monohydroxyflavone that is flavone substituted by a hydroxy group at position 4 and a methoxy group at position 7 respectively. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB. Tectochrysin (Techtochrysin) is one of the major flavonoids of Alpinia oxyphylla Miquel. Tectochrysin inhibits activity of NF-κB.

   

Apigenin 7,4'-dimethyl ether

4H-1-Benzopyran-4-one, 5-hydroxy-7-methoxy-2-(4-methoxyphenyl)-

C17H14O5 (298.0841)


Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]

   

Swertianolin

1,5-dihydroxy-3-methoxy-8-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyxanthen-9-one

C20H20O11 (436.1006)


Swertianolin is a xanthone that is bellidifolin in which a beta-Dglucopyranosyl residue is attached at position O-8 via a glycosidic linkage. It is isolated particularly from Gentiana campestris and Gentiana germanica. It has a role as an EC 3.1.1.7 (acetylcholinesterase) inhibitor, an antioxidant and a plant metabolite. It is a beta-D-glucoside, a monosaccharide derivative, an aromatic ether and a xanthone glycoside. It is functionally related to a bellidifolin. Swertianolin is a natural product found in Gentianella amarella, Swertia japonica, and other organisms with data available. A xanthone that is bellidifolin in which a beta-Dglucopyranosyl residue is attached at position O-8 via a glycosidic linkage. It is isolated particularly from Gentiana campestris and Gentiana germanica. Swertianolin, a xanthone isolated from Gentianella Acuta, inhibits acetylcholinesterase (AChE). Swertianolin also exhibits anti-HBV and anti-bacterial activity[1][2]. Swertianolin, a xanthone isolated from Gentianella Acuta, inhibits acetylcholinesterase (AChE). Swertianolin also exhibits anti-HBV and anti-bacterial activity[1][2].

   

Baicalin

(2S,3S,4S,5R,6S)-6-((5,6-dihydroxy-4-oxo-2-phenyl-4H-chromen-7-yl)oxy)-3,4,5-trihydroxytetrahydro-2H-pyran-2-carboxylic acid

C21H18O11 (446.0849)


Baicalin is the glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. It has a role as a non-steroidal anti-inflammatory drug, an EC 3.4.21.26 (prolyl oligopeptidase) inhibitor, a prodrug, a plant metabolite, a ferroptosis inhibitor, a neuroprotective agent, an antineoplastic agent, a cardioprotective agent, an antiatherosclerotic agent, an antioxidant, an EC 2.7.7.48 (RNA-directed RNA polymerase) inhibitor, an anticoronaviral agent and an antibacterial agent. It is a glucosiduronic acid, a glycosyloxyflavone, a dihydroxyflavone and a monosaccharide derivative. It is functionally related to a baicalein. It is a conjugate acid of a baicalin(1-). Baicalin is a natural product found in Scutellaria amoena, Thalictrum baicalense, and other organisms with data available. See also: Scutellaria baicalensis Root (part of). The glycosyloxyflavone which is the 7-O-glucuronide of baicalein. It is an active ingredient of Chinese herbal medicine Scutellaria baicalensis. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D018501 - Antirheumatic Agents D004791 - Enzyme Inhibitors Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3]. Baicalin, as a flavonoid glycoside, is an allosteric carnitine palmityl transferase 1 (CPT1) activator. Baicalin reduces the expression of NF-κB[1][2][3].

   

Glycitin

7-(?-D-Glucopyranosyloxy)-3-(4-hydroxyphenyl)-6-methoxy-4H-1-benzopyran-4-one; Glycitein 7-O-glucoside; Glycitein 7-O-?-glucoside; Glycitein-7-?-O-glucoside; Glycitin

C22H22O10 (446.1213)


Glycitin is a glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. It has a role as a plant metabolite. It is a methoxyisoflavone, a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. Glycitin is a natural product found in Sorbus cuspidata, Ziziphus spina-christi, and other organisms with data available. A glycosyloxyisoflavone that is isoflavone substituted by a methoxy group at position 6, a hydroxy group at position 4 and a beta-D-glucopyranosyloxy group at position 7. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic. Glycitin is a natural isoflavone isolated from legumes; promotes the proliferation of bone marrow stromal cells and osteoblasts and suppresses bone turnover.Glycitin is antibacterial, antiviral and estrogenic.

   

Corosolic_acid

(1S,2R,4aS,6aS,6bR,8aR,10R,11R,12aR,12bR,14bS)-10,11-dihydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O4 (472.3552)


Corosolic acid is a triterpenoid. It has a role as a metabolite. Corosolic acid is a natural product found in Ternstroemia gymnanthera, Cunila lythrifolia, and other organisms with data available. See also: Lagerstroemia speciosa leaf (part of). A natural product found particularly in Rhododendron species and Eriobotrya japonica. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Salvianolic acid B

(R)-2-(((2R,3R)-4-((E)-3-((R)-1-Carboxy-2-(3,4-dihydroxyphenyl)ethoxy)-3-oxoprop-1-en-1-yl)-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydrobenzofuran-3-carbonyl)oxy)-3-(3,4-dihydroxyphenyl)propanoic acid

C36H30O16 (718.1534)


   

Corosolic acid

3-Epicorosolic acid

C30H48O4 (472.3552)


Annotation level-1 Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity. Corosolic acid (Colosolic acid) isolated from the fruit of Cratoegus pinnatifida var. psilosa, was reported to have anticancer activity.

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.3603)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

dichamanetin

[ S, (-) ] -2,3-Dihydro-5,7-dihydroxy-6,8-bis [ (2-hydroxyphenyl) methyl ] -2-phenyl-4H-1-benzopyran-4-one

C29H24O6 (468.1573)


A natural product found in Piper sarmentosum.

   

neryl acetate

acetic acid geranyl ester

C12H20O2 (196.1463)


Found in citrus, kumquat and pummelo peel oils, ginger, cardamon, clary sage, myrtle leaf and myrtle berries. Flavouring agent Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Geranyl acetate, an acyclic monoterpene ester derived from geraniol, is widely used in the cosmetics industry due to its pleasant scent[1]. Geranyl acetate can induces cell apoptosis[2]. Neryl acetate is a chemical compound isolated from citrus oils[1]. Neryl acetate is a chemical compound isolated from citrus oils[1].

   

sitosterol

17-(5-ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

C29H50O (414.3861)


A member of the class of phytosterols that is stigmast-5-ene substituted by a beta-hydroxy group at position 3. C1907 - Drug, Natural Product > C28178 - Phytosterol > C68437 - Unsaturated Phytosterol D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Beta-Sitosterol (purity>98\\%) is a plant sterol. Beta-Sitosterol (purity>98\\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1]. Beta-Sitosterol (purity>98\%) is a plant sterol. Beta-Sitosterol (purity>98\%) interfere with multiple cell signaling pathways, including cell cycle, apoptosis, proliferation, survival, invasion, angiogenesis, metastasis and inflammation[1].

   

Acacetin

4H-1-BENZOPYRAN-4-ONE, 5,7-DIHYDROXY-2-(4-METHOXYPHENYL)-

C16H12O5 (284.0685)


5,7-dihydroxy-4-methoxyflavone is a monomethoxyflavone that is the 4-methyl ether derivative of apigenin. It has a role as an anticonvulsant and a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a 5-hydroxy-2-(4-methoxyphenyl)-4-oxo-4H-chromen-7-olate. Acacetin is a natural product found in Verbascum lychnitis, Odontites viscosus, and other organisms with data available. A monomethoxyflavone that is the 4-methyl ether derivative of apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one, also known as 4-methoxy-5,7-dihydroxyflavone or acacetin, is a member of the class of compounds known as 4-o-methylated flavonoids. 4-o-methylated flavonoids are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is considered to be a flavonoid lipid molecule. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be synthesized from apigenin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one is also a parent compound for other transformation products, including but not limited to, acacetin-7-O-beta-D-galactopyranoside, acacetin-8-C-neohesperidoside, and isoginkgetin. 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one can be found in ginkgo nuts, orange mint, and winter savory, which makes 5,7-dihydroxy-2-(4-methoxyphenyl)-4h-chromen-4-one a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.223 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.225 Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2]. Acacetin (5,7-Dihydroxy-4'-methoxyflavone) is an orally active flavonoid derived from Dendranthema morifolium. Acacetin docks in the ATP binding pocket of PI3Kγ. Acacetin causes cell cycle arrest and induces apoptosis and autophagy in cancer cells. Acacetin has potent anti-cancer and anti-inflammatory activity and has the potential for pain-related diseases research[1][2].

   

Eriosemaone C

(S) -2,3,6-Trihydroxy-8-prenyl-5- (2,4-dihydroxyphenyl) -6",6"-dimethylpyrano [ 2",3":7,6 ] flavanone

C31H30O8 (530.1941)


An extended flavonoid that consists of (2S)-flavanone substituted by hydroxy groups at positions 2, 3, and 6, a 2,4-dihyroxyphenyl group at position 5, a prenyl group at position 8 and a gem-dimethylpyran ring fused across positions 6 and 7.

   

physcion

9,10-Anthracenedione, 1,8-dihydroxy-3-methoxy-6-methyl- (9CI)

C16H12O5 (284.0685)


Physcion, also known as emodin monomethyl ether or parienin, is a member of the class of compounds known as anthraquinones. Anthraquinones are organic compounds containing either anthracene-9,10-quinone, 1,4-anthraquinone, or 1,2-anthraquinone. Physcion is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Physcion can be synthesized from 2-methylanthraquinone. Physcion can also be synthesized into torososide B and physcion 8-gentiobioside. Physcion can be found in common sage, garden rhubarb, and sorrel, which makes physcion a potential biomarker for the consumption of these food products. Physcion has also been shown to protect lichens against UV-B light, at high altitudes in Alpine regions. The UV-B light stimulates production of parietin and the parietin protects the lichens from damage. Lichens in arctic regions such as Svarlbard retain this capability though they do not encounter damaging levels of UV-B, a capability that could help protect the lichens in case of Ozone layer thinning .

   

Neoastilbin

(2S,3S)-2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-[[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-2-tetrahydropyranyl]oxy]-4-chromanone

C21H22O11 (450.1162)


Neoastilbin is a flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. It is an alpha-L-rhamnoside, a member of 3-hydroxyflavanones, a tetrahydroxyflavanone, a monosaccharide derivative, a flavanone glycoside and a member of 4-hydroxyflavanones. It is functionally related to a (-)-taxifolin. It is an enantiomer of an astilbin. Neoastilbin is a natural product found in Neolitsea sericea, Dimorphandra mollis, and other organisms with data available. A flavanone glycoside that is (-)-taxifolin substituted by a alpha-L-rhamnosyl moiety at position 3 via a glycosidic linkage. Neosmitilbin is?isolated from?Garcinia?mangostana. Neosmitilbin is?isolated from?Garcinia?mangostana.

   

Apigenin

5,7,4-Trihydroxyflavone

C15H10O5 (270.0528)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Betavulgarin

7-(2-hydroxyphenyl)-9-methoxy-pyrano[2,3-f][1,3]benzodioxol-8-one

C17H12O6 (312.0634)


A hydroxyisoflavone that is isoflavone substituted by a hydroxy group at position 2, a methoxy group at position 5 and a methylenedioxy group across positions 6 and 7 respectively.