Gene Association: P2RX7

UniProt Search: P2RX7 (PROTEIN_CODING)
Function Description: purinergic receptor P2X 7

found 148 associated metabolites with current gene based on the text mining result from the pubmed database.

Ginsenoside A2

(2R,3R,4S,5S,6R)-2-(((3S,5R,6S,8R,9R,10R,12R,13R,14R,17S)-3,12-dihydroxy-4,4,8,10,14-pentamethyl-17-((S)-6-methyl-2-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)hept-5-en-2-yl)hexadecahydro-1H-cyclopenta[a]phenanthren-6-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C42H72O14 (800.4922)


Ginsenoside Rg1 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 6alpha, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 6 and 20 have been converted to the corresponding beta-D-glucopyranosides, and in which a double bond has been introduced at the 24-25 position. It has a role as a neuroprotective agent and a pro-angiogenic agent. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a tetracyclic triterpenoid, a ginsenoside and a 3beta-hydroxy-4,4-dimethylsteroid. It derives from a hydride of a dammarane. Ginsenosides are a class of steroid glycosides, and triterpene saponins, found exclusively in the plant genus Panax (ginseng). Ginsenosides have been the target of research, as they are viewed as the active compounds behind the claims of ginsengs efficacy. Because ginsenosides appear to affect multiple pathways, their effects are complex and difficult to isolate. Rg1 Appears to be most abundant in Panax ginseng (Chinese/Korean Ginseng). It improves spatial learning and increase hippocampal synaptophysin level in mice, plus demonstrates estrogen-like activity. Ginsenoside RG1 is a natural product found in Panax vietnamensis, Panax ginseng, and Panax notoginseng with data available. See also: Asian Ginseng (part of); American Ginseng (part of); Panax notoginseng root (part of). Ginsenoside A2 is found in tea. Ginsenoside A2 is a constituent of Panax ginseng (ginseng) Constituent of Panax ginseng (ginseng). Ginsenoside A2 is found in tea. D002491 - Central Nervous System Agents Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation. Ginsenoside Rg1 is one of the major active components of Panax ginseng. Ginsenoside Rg1 ameliorates the impaired cognitive function, displays promising effects by reducing cerebral Aβ levels. Ginsenoside Rg1 also reduces NF-κB nuclear translocation.

   

(S)-Boldine

4,16-dimethoxy-10-methyl-10-azatetracyclo[7.7.1.0²,⁷.0¹³,¹⁷]heptadeca-1(17),2,4,6,13,15-hexaene-5,15-diol

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). (S)-Boldine is found in sweet bay. (S)-Boldine is an alkaloid from Sassafras and the leaves of Peumus boldus (boldo). (S)-Boldine is a flavouring ingredient. Alkaloid from Sassafras and the leaves of Peumus boldus (boldo). Flavouring ingredient. (S)-Boldine is found in sweet bay. D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

Adenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-(hydroxymethyl)oxolane-3,4-diol

C10H13N5O4 (267.0967)


Adenosine is a ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. It has a role as an anti-arrhythmia drug, a vasodilator agent, an analgesic, a human metabolite and a fundamental metabolite. It is a purines D-ribonucleoside and a member of adenosines. It is functionally related to an adenine. The structure of adenosine was first described in 1931, though the vasodilating effects were not described in literature until the 1940s. Adenosine is indicated as an adjunct to thallium-201 in myocardial perfusion scintigraphy, though it is rarely used in this indication, having largely been replaced by [dipyridamole] and [regadenson]. Adenosine is also indicated in the treatment of supraventricular tachycardia. Adenosine was granted FDA approval on 30 October 1989. Adenosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine is an Adenosine Receptor Agonist. The mechanism of action of adenosine is as an Adenosine Receptor Agonist. Adenosine is a natural product found in Smilax bracteata, Mikania laevigata, and other organisms with data available. Adenosine is a ribonucleoside comprised of adenine bound to ribose, with vasodilatory, antiarrhythmic and analgesic activities. Phosphorylated forms of adenosine play roles in cellular energy transfer, signal transduction and the synthesis of RNA. Adenosine is a nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer - as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate, cAMP. Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously, adenosine causes transient heart block in the AV node. Because of the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Adenosine is a metabolite found in or produced by Saccharomyces cerevisiae. A nucleoside that is composed of adenine and d-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. Adenosine itself is a neurotransmitter. See also: Adenosine; Niacinamide (component of); Adenosine; Glycerin (component of); Adenosine; ginsenosides (component of) ... View More ... Adenosine is a nucleoside that is composed of adenine and D-ribose. Adenosine or adenosine derivatives play many important biological roles in addition to being components of DNA and RNA. For instance, adenosine plays an important role in energy transfer as adenosine triphosphate (ATP) and adenosine diphosphate (ADP). It also plays a role in signal transduction as cyclic adenosine monophosphate (cAMP). Adenosine itself is both a neurotransmitter and potent vasodilator. When administered intravenously adenosine causes transient heart block in the AV node. Due to the effects of adenosine on AV node-dependent supraventricular tachycardia, adenosine is considered a class V antiarrhythmic agent. Overdoses of adenosine intake (as a drug) can lead to several side effects including chest pain, feeling faint, shortness of breath, and tingling of the senses. Serious side effects include a worsening dysrhythmia and low blood pressure. When present in sufficiently high levels, adenosine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of adenosine are associated with adenosine deaminase deficiency. Adenosine is a precursor to deoxyadenosine, which is a precursor to dATP. A buildup of dATP in cells inhibits ribonucleotide reductase and prevents DNA synthesis, so cells are unable to divide. Since developing T cells and B cells are some of the most mitotically active cells, they are unable to divide and propagate to respond to immune challenges. High levels of deoxyadenosine also lead to an increase in S-adenosylhomocysteine, which is toxic to immature lymphocytes. Adenosine is a nucleoside composed of a molecule of adenine attached to a ribose sugar molecule (ribofuranose) moiety via a beta-N9-glycosidic bond. [Wikipedia]. Adenosine is found in many foods, some of which are borage, japanese persimmon, nuts, and barley. COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials A ribonucleoside composed of a molecule of adenine attached to a ribofuranose moiety via a beta-N(9)-glycosidic bond. Adenosine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-61-7 (retrieved 2024-06-29) (CAS RN: 58-61-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

Gynosaponin S

2-{[2-(16-hydroxy-2,6,6,10,11-pentamethyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}tetracyclo[8.7.0.0²,⁷.0¹¹,¹⁵]heptadecan-14-yl)-6-methylhept-5-en-2-yl]oxy}-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxane-3,4,5-triol

C48H82O18 (946.5501)


Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. Gynosaponin S is found in tea. Gynosaponin S is a constituent of Panax species. Constituent of Panax subspecies Gynosaponin S is found in tea. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.

   

Aesculin

7-hydroxy-6-[3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-chromen-2-one hydrate;Esculin Sesquihydrate

C15H16O9 (340.0794)


Esculin is a hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. It has a role as an antioxidant and a metabolite. It is a beta-D-glucoside and a hydroxycoumarin. It is functionally related to an esculetin. Esculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P esculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum). Esculin belongs to the family of Glycosyl Compounds. These are carbohydrate derivatives in which a sugar group is bonded through its anmoeric carbonA to another group via a C-, S-,N-,O-, or Se- glycosidic bond. Esculin is a natural product found in Ficus septica, Gardenia jasminoides, and other organisms with data available. A derivative of COUMARIN with molecular formula C15H16O9. See also: Horse Chestnut (part of); Aesculus hippocastanum bark (part of). Aesculin is found in barley. Vitamin C2 is generally considered a bioflavanoid, related to vitamin P Aesculin is a glucoside that naturally occurs in the horse chestnut (Aesculus hippocastanum), California Buckeye (Aesculus californica) and in daphnin (the dark green resin of Daphne mezereum) Vitamin C2 is generally considered a bioflavanoid, related to vitamin P A hydroxycoumarin that is the 6-O-beta-D-glucoside of esculetin. Acquisition and generation of the data is financially supported in part by CREST/JST. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

Ginsenoside Rg3

(2S,3R,4S,5S,6R)-2-[(2R,3R,4S,5S,6R)-4,5-dihydroxy-2-[[(3S,5R,8R,9R,10R,12R,13R,14R,17S)-12-hydroxy-17-[(2S)-2-hydroxy-6-methylhept-5-en-2-yl]-4,4,8,10,14-pentamethyl-2,3,5,6,7,9,11,12,13,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-yl]oxy]-6-(hydroxymethyl)oxan-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C42H72O13 (784.4973)


(20S)-ginsenoside Rg3 is a ginsenoside found in Panax ginseng and Panax japonicus var. major that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy group at position 3 has been converted to the corresponding beta-D-glucopyranosyl-beta-D-glucopyranoside, and in which a double bond has been introduced at the 24-25 position. It has a role as an apoptosis inducer, an antineoplastic agent, a plant metabolite and an angiogenesis modulating agent. It is a ginsenoside, a tetracyclic triterpenoid and a glycoside. It is functionally related to a (20S)-protopanaxadiol. It derives from a hydride of a dammarane. Ginsenoside Rg3 is a natural product found in Panax ginseng, Panax notoginseng, and other organisms with data available. (20R)-Ginsenoside Rg3 is found in tea. (20R)-Ginsenoside Rg3 is isolated from Panax ginseng (ginseng). D000970 - Antineoplastic Agents 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression. 20(S)-Ginsenoside Rg3 is the main component of Panax ginseng C. A. Meyer. Ginsenoside Rg3 inhibits Na+ and hKv1.4 channel with IC50s of 32.2±4.5 and 32.6±2.2 μM, respectively. 20(S)-Ginsenoside Rg3 also inhibits Aβ levels, NF-κB activity, and COX-2 expression.

   

Citric acid

2-hydroxypropane-1,2,3-tricarboxylic acid

C6H8O7 (192.027)


Citric acid (citrate) is a tricarboxylic acid, an organic acid with three carboxylate groups. Citrate is an intermediate in the TCA cycle (also known as the Tricarboxylic Acid cycle, the Citric Acid cycle or Krebs cycle). The TCA cycle is a central metabolic pathway for all animals, plants, and bacteria. As a result, citrate is found in all living organisms, from bacteria to plants to animals. In the TCA cycle, the enzyme citrate synthase catalyzes the condensation of oxaloacetate with acetyl CoA to form citrate. Citrate then acts as the substrate for the enzyme known as aconitase and is then converted into aconitic acid. The TCA cycle ends with regeneration of oxaloacetate. This series of chemical reactions in the TCA cycle is the source of two-thirds of the food-derived energy in higher organisms. Citrate can be transported out of the mitochondria and into the cytoplasm, then broken down into acetyl-CoA for fatty acid synthesis, and into oxaloacetate. Citrate is a positive modulator of this conversion, and allosterically regulates the enzyme acetyl-CoA carboxylase, which is the regulating enzyme in the conversion of acetyl-CoA into malonyl-CoA (the commitment step in fatty acid synthesis). In short, citrate is transported into the cytoplasm, converted into acetyl CoA, which is then converted into malonyl CoA by acetyl CoA carboxylase, which is allosterically modulated by citrate. In mammals and other vertebrates, Citrate is a vital component of bone, helping to regulate the size of apatite crystals (PMID: 21127269). Citric acid is found in citrus fruits, most concentrated in lemons and limes, where it can comprise as much as 8\\\\\% of the dry weight of the fruit. Citric acid is a natural preservative and is also used to add an acidic (sour) taste to foods and carbonated drinks. Because it is one of the stronger edible acids, the dominant use of citric acid is as a flavoring and preservative in food and beverages, especially soft drinks and candies. Citric acid is an excellent chelating agent, binding metals by making them soluble. It is used to remove and discourage the buildup of limescale from boilers and evaporators. It can be used to treat water, which makes it useful in improving the effectiveness of soaps and laundry detergents. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. Intolerance to citric acid in the diet is known to exist. Little information is available as the condition appears to be rare, but like other types of food intolerance it is often described as a "pseudo-allergic" reaction. Citric acid appears as colorless, odorless crystals with an acid taste. Denser than water. (USCG, 1999) Citric acid is a tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. It has a role as a food acidity regulator, a chelator, an antimicrobial agent and a fundamental metabolite. It is a conjugate acid of a citrate(1-) and a citrate anion. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium-chelating ability. Citric acid is one of the active ingredients in Phexxi, a non-hormonal contraceptive agent that was approved by the FDA on May 2020. It is also used in combination with magnesium oxide to form magnesium citrate, an osmotic laxative. Citric acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Anhydrous citric acid is a Calculi Dissolution Agent and Anti-coagulant. The mechanism of action of anhydrous citric acid is as an Acidifying Activity and Calcium Chelating Activity. The physiologic effect of anhydrous citric acid is by means of Decreased Coagulation Factor Activity. Anhydrous Citric Acid is a tricarboxylic acid found in citrus fruits. Citric acid is used as an excipient in pharmaceutical preparations due to its antioxidant properties. It maintains stability of active ingredients and is used as a preservative. It is also used as an acidulant to control pH and acts as an anticoagulant by chelating calcium in blood. A key intermediate in metabolism. It is an acid compound found in citrus fruits. The salts of citric acid (citrates) can be used as anticoagulants due to their calcium chelating ability. See also: Citric Acid Monohydrate (related). Citrate, also known as anhydrous citric acid or 2-hydroxy-1,2,3-propanetricarboxylic acid, belongs to tricarboxylic acids and derivatives class of compounds. Those are carboxylic acids containing exactly three carboxyl groups. Citrate is soluble (in water) and a weakly acidic compound (based on its pKa). Citrate can be found in a number of food items such as ucuhuba, loquat, bayberry, and longan, which makes citrate a potential biomarker for the consumption of these food products. Citrate can be found primarily in most biofluids, including saliva, sweat, feces, and blood, as well as throughout all human tissues. Citrate exists in all living species, ranging from bacteria to humans. In humans, citrate is involved in several metabolic pathways, some of which include the oncogenic action of succinate, the oncogenic action of fumarate, the oncogenic action of 2-hydroxyglutarate, and congenital lactic acidosis. Citrate is also involved in several metabolic disorders, some of which include 2-ketoglutarate dehydrogenase complex deficiency, pyruvate dehydrogenase deficiency (E2), fumarase deficiency, and glutaminolysis and cancer. Moreover, citrate is found to be associated with lung Cancer, tyrosinemia I, maple syrup urine disease, and propionic acidemia. A citrate is a derivative of citric acid; that is, the salts, esters, and the polyatomic anion found in solution. An example of the former, a salt is trisodium citrate; an ester is triethyl citrate. When part of a salt, the formula of the citrate ion is written as C6H5O73− or C3H5O(COO)33− . A tricarboxylic acid that is propane-1,2,3-tricarboxylic acid bearing a hydroxy substituent at position 2. It is an important metabolite in the pathway of all aerobic organisms. Citric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=77-92-9 (retrieved 2024-07-01) (CAS RN: 77-92-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3]. Citric acid is a natural preservative and food tartness enhancer. Citric acid induces apoptosis and cell cycle arrest at G2/M phase and S phase in HaCaT cells. Citric acid cause oxidative damage of the liver by means of the decrease of antioxidative enzyme activities. Citric acid causes renal toxicity in mice[1][2][3].

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

[C21H22NO4]+ (352.1549)


Annotation level-1 Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of). KEIO_ID P071; [MS2] KO009210 KEIO_ID P071

   

Fucitol

Rel-(2R,3S,4R,5S)-hexane-1,2,3,4,5-pentaol

C6H14O5 (166.0841)


L-fucitol is the L-enantiomer of fucitol. It is found in nutmeg. It has a role as a plant metabolite and an antibacterial agent. It is an enantiomer of a D-fucitol. L-Fucitol is a natural product found in Carum carvi with data available. The L-enantiomer of fucitol. It is found in nutmeg. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1]. L-Fucitol (1-Deoxy-D-galactitol) is a sugar alcohol isolated from Nutmeg[1].

   

denudatine

(1S,5R,8R,10S,11R,13R,14S,15S,16R)-7-Ethyl-5-methyl-12-methylidene-7-azahexacyclo[7.6.2.210,13.01,8.05,16.010,15]nonadecane-11,14-diol

C22H33NO2 (343.2511)


Denudatine is a diterpenoid. It derives from a hydride of an atisane. CID 441729 is a natural product found in Aconitum kusnezoffii and Aconitum carmichaelii with data available.

   

Betulin

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-3a-(hydroxymethyl)-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysen-9-ol

C30H50O2 (442.3811)


Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

Sterculic acid

omega-(2-n-octylcycloprop-1-enyl)octanoic acid

C19H34O2 (294.2559)


Sterculic acid, also known as 2-octyl-1-cyclopropene-1-octanoic acid or 8-(2-octyl-cycloprop-1-enyl)-octansaeure, is a member of the class of compounds known as medium-chain fatty acids. Medium-chain fatty acids are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Thus, sterculic acid is considered to be a fatty acid lipid molecule. Sterculic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Sterculic acid can be found in peanut and roselle, which makes sterculic acid a potential biomarker for the consumption of these food products. Sterculic acid is a long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group. It is a cyclopropenyl fatty acid, a long-chain fatty acid and a monounsaturated fatty acid. It is functionally related to an octadec-9-enoic acid. Sterculic acid is a natural product found in Hibiscus syriacus, Amaranthus cruentus, and other organisms with data available.

   

Adenosine triphosphate

({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H16N5O13P3 (506.9957)


Adenosine triphosphate, also known as atp or atriphos, is a member of the class of compounds known as purine ribonucleoside triphosphates. Purine ribonucleoside triphosphates are purine ribobucleotides with a triphosphate group linked to the ribose moiety. Adenosine triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Adenosine triphosphate can be found in a number of food items such as lichee, alpine sweetvetch, pecan nut, and black mulberry, which makes adenosine triphosphate a potential biomarker for the consumption of these food products. Adenosine triphosphate can be found primarily in blood, cellular cytoplasm, cerebrospinal fluid (CSF), and saliva, as well as throughout most human tissues. Adenosine triphosphate exists in all living species, ranging from bacteria to humans. In humans, adenosine triphosphate is involved in several metabolic pathways, some of which include phosphatidylethanolamine biosynthesis PE(16:0/18:4(6Z,9Z,12Z,15Z)), carteolol action pathway, phosphatidylethanolamine biosynthesis PE(20:3(5Z,8Z,11Z)/15:0), and carfentanil action pathway. Adenosine triphosphate is also involved in several metabolic disorders, some of which include lysosomal acid lipase deficiency (wolman disease), phosphoenolpyruvate carboxykinase deficiency 1 (PEPCK1), propionic acidemia, and the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, adenosine triphosphate is found to be associated with rachialgia, neuroinfection, stroke, and subarachnoid hemorrhage. Adenosine triphosphate is a non-carcinogenic (not listed by IARC) potentially toxic compound. Adenosine triphosphate is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalanc. Adenosine triphosphate (ATP) is a complex organic chemical that participates in many processes. Found in all forms of life, ATP is often referred to as the "molecular unit of currency" of intracellular energy transfer. When consumed in metabolic processes, it converts to either the di- or monophosphates, respectively ADP and AMP. Other processes regenerate ATP such that the human body recycles its own body weight equivalent in ATP each day. It is also a precursor to DNA and RNA . ATP is able to store and transport chemical energy within cells. ATP also plays an important role in the synthesis of nucleic acids. ATP can be produced by various cellular processes, most typically in mitochondria by oxidative phosphorylation under the catalytic influence of ATP synthase. The total quantity of ATP in the human body is about 0.1 mole. The energy used by human cells requires the hydrolysis of 200 to 300 moles of ATP daily. This means that each ATP molecule is recycled 2000 to 3000 times during a single day. ATP cannot be stored, hence its consumption must closely follow its synthesis (DrugBank). Metabolism of organophosphates occurs principally by oxidation, by hydrolysis via esterases and by reaction with glutathione. Demethylation and glucuronidation may also occur. Oxidation of organophosphorus pesticides may result in moderately toxic products. In general, phosphorothioates are not directly toxic but require oxidative metabolism to the proximal toxin. The glutathione transferase reactions produce products that are, in most cases, of low toxicity. Paraoxonase (PON1) is a key enzyme in the metabolism of organophosphates. PON1 can inactivate some organophosphates through hydrolysis. PON1 hydrolyzes the active metabolites in several organophosphates insecticides as well as, nerve agents such as soman, sarin, and VX. The presence of PON1 polymorphisms causes there to be different enzyme levels and catalytic efficiency of this esterase, which in turn suggests that different individuals may be more susceptible to the toxic effect of organophosphate exposure (T3DB). ATP is an adenosine 5-phosphate in which the 5-phosphate is a triphosphate group. It is involved in the transportation of chemical energy during metabolic pathways. It has a role as a nutraceutical, a micronutrient, a fundamental metabolite and a cofactor. It is an adenosine 5-phosphate and a purine ribonucleoside 5-triphosphate. It is a conjugate acid of an ATP(3-). An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Adenosine-5-triphosphate is a natural product found in Chlamydomonas reinhardtii, Arabidopsis thaliana, and other organisms with data available. Adenosine Triphosphate is an adenine nucleotide comprised of three phosphate groups esterified to the sugar moiety, found in all living cells. Adenosine triphosphate is involved in energy production for metabolic processes and RNA synthesis. In addition, this substance acts as a neurotransmitter. In cancer studies, adenosine triphosphate is synthesized to examine its use to decrease weight loss and improve muscle strength. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (A3367, A3368, A3369, A3370, A3371). Adenosine triphosphate is a metabolite found in or produced by Saccharomyces cerevisiae. An adenine nucleotide containing three phosphate groups esterified to the sugar moiety. In addition to its crucial roles in metabolism adenosine triphosphate is a neurotransmitter. Adenosine triphosphate (ATP) is a nucleotide consisting of a purine base (adenine) attached to the first carbon atom of ribose (a pentose sugar). Three phosphate groups are esterified at the fifth carbon atom of the ribose. ATP is incorporated into nucleic acids by polymerases in the processes of DNA replication and transcription. ATP contributes to cellular energy charge and participates in overall energy balance, maintaining cellular homeostasis. ATP can act as an extracellular signaling molecule via interactions with specific purinergic receptors to mediate a wide variety of processes as diverse as neurotransmission, inflammation, apoptosis, and bone remodelling. Extracellular ATP and its metabolite adenosine have also been shown to exert a variety of effects on nearly every cell type in human skin, and ATP seems to play a direct role in triggering skin inflammatory, regenerative, and fibrotic responses to mechanical injury, an indirect role in melanocyte proliferation and apoptosis, and a complex role in Langerhans cell-directed adaptive immunity. During exercise, intracellular homeostasis depends on the matching of adenosine triphosphate (ATP) supply and ATP demand. Metabolites play a useful role in communicating the extent of ATP demand to the metabolic supply pathways. Effects as different as proliferation or differentiation, chemotaxis, release of cytokines or lysosomal constituents, and generation of reactive oxygen or nitrogen species are elicited upon stimulation of blood cells with extracellular ATP. The increased concentration of adenosine triphosphate (ATP) in erythrocytes from patients with chronic renal failure (CRF) has been observed in many studies but the mechanism leading to these abnormalities still is controversial. (PMID: 15490415, 15129319, 14707763, 14696970, 11157473). 5′-ATP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=56-65-5 (retrieved 2024-07-01) (CAS RN: 56-65-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Trehalose

(2R,3S,4S,5R,6R)-2-(hydroxymethyl)-6-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxane-3,4,5-triol

C12H22O11 (342.1162)


Trehalose, also known as mycose, is a 1-alpha (disaccharide) sugar found extensively but not abundantly in nature. It is thought to be implicated in anhydrobiosis - the ability of plants and animals to withstand prolonged periods of desiccation. The sugar is thought to form a gel phase as cells dehydrate, which prevents disruption of internal cell organelles by effectively splinting them in position. Rehydration then allows normal cellular activity to be resumed without the major, generally lethal damage that would normally follow a dehydration/reyhdration cycle. Trehalose is a non-reducing sugar formed from two glucose units joined by a 1-1 alpha bond giving it the name of alpha-D-glucopyranoglucopyranosyl-1,1-alpha-D-glucopyranoside. The bonding makes trehalose very resistant to acid hydrolysis, and therefore stable in solution at high temperatures even under acidic conditions. The bonding also keeps non-reducing sugars in closed-ring form, such that the aldehyde or ketone end-groups do not bind to the lysine or arginine residues of proteins (a process called glycation). The enzyme trehalase, present but not abundant in most people, breaks it into two glucose molecules, which can then be readily absorbed in the gut. Trehalose is an important components of insects circulating fluid. It acts as a storage form of insect circulating fluid and it is important in respiration. Trehalose has also been found to be a metabolite of Burkholderia, Escherichia and Propionibacterium (PMID:12105274; PMID:25479689) (krishikosh.egranth.ac.in/bitstream/1/84382/1/88571\\\\%20P-1257.pdf). Alpha,alpha-trehalose is a trehalose in which both glucose residues have alpha-configuration at the anomeric carbon. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite and a geroprotector. Cabaletta has been used in trials studying the treatment of Oculopharyngeal Muscular Dystrophy. Trehalose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Trehalose is a natural product found in Cora pavonia, Selaginella nothohybrida, and other organisms with data available. Trehalose is a metabolite found in or produced by Saccharomyces cerevisiae. Occurs in fungi. EU and USA approved sweetener Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 149 D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient. D-(+)-Trehalose,which is widespread, can be used as a food ingredient and pharmaceutical excipient.

   

Piceid (cis-)

(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-(Hexadecanoyloxy)-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl hexadecanoic acid

C72H116O4 (1044.8873)


Physalien is a xanthophyll. Physalien is a natural product found in Lycium chinense and Alkekengi officinarum var. franchetii with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

Adenosine diphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]phosphonic acid

C10H15N5O10P2 (427.0294)


Adenosine diphosphate (ADP), also known as adenosine pyrophosphate (APP), is an important organic compound in metabolism and is essential to the flow of energy in living cells. ADP consists of three important structural components: a sugar backbone attached to adenine and two phosphate groups bonded to the 5 carbon atom of ribose. The diphosphate group of ADP is attached to the 5’ carbon of the sugar backbone, while the adenine attaches to the 1’ carbon. ADP belongs to the class of organic compounds known as purine ribonucleoside diphosphates. These are purine ribobucleotides with diphosphate group linked to the ribose moiety. It is an ester of pyrophosphoric acid with the nucleotide adenine. Adenosine diphosphate is a nucleotide. ADP exists in all living species, ranging from bacteria to humans. In humans, ADP is involved in d4-gdi signaling pathway. ADP is the product of ATP dephosphorylation by ATPases. ADP is converted back to ATP by ATP synthases. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. Adenosine diphosphate, abbreviated ADP, is a nucleotide. It is an ester of pyrophosphoric acid with the nucleotide adenine. ADP consists of the pyrophosphate group, the pentose sugar ribose, and the nucleobase adenine. 5′-ADP. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=58-64-0 (retrieved 2024-07-01) (CAS RN: 58-64-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

Cysteinylglycine

2-[(2R)-2-amino-3-sulfanylpropanamido]acetic acid

C5H10N2O3S (178.0412)


Cysteinylglycine is a naturally occurring dipeptide. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized and protein-bound form (aminothiol) and interact via redox and disulphide exchange reactions, in a dynamic system referred to as redox thiol status. (PMID 8642471) Spermatozoa of sub fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy, another member of the thiol group) concentration in the ejaculate and in follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome. (PMID 16556671) Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols. (PMID 15895891) Imipenem (thienamycin formamidine), is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized. (PMID 15843241) [HMDB]. Cysteinylglycine is found in many foods, some of which are chinese cabbage, wax apple, garden tomato (variety), and japanese pumpkin. Cysteinylglycine is a naturally occurring dipeptide composed of cysteine and glycine. It is derived from the breakdown of glutathione (a tripeptide). In plasma, cysteinylglycine is in a reduced, oxidized, and protein-bound form (aminothiol) and interacts via redox and disulphide exchange reactions in a dynamic system referred to as redox thiol status (PMID: 8642471). Spermatozoa of sub-fertile men contain significantly higher thiol concentrations as compared with those of fertile men. The detrimental effect on embryo quality of a high homocysteine (Hcy) concentration in the ejaculate and in the follicular fluid is intriguing and may suggest that Hcy is inversely associated with fertility outcome (PMID: 16556671). Rheumatoid arthritis (RA) is a chronic inflammatory disease which involves the synovial membrane of multiple diarthroidal joints causing damage to cartilage and bones. The damage process seems to be related to an overproduction of oxygen reactive species inducing an oxidative perturbation with an increase in some oxidized forms (disulfides and protein mixed disulfides) and a decrease in free thiols (PMID: 15895891). Imipenem (thienamycin formamidine) is a broad-spectrum beta-lactam antibiotic, always used in combination with cilastatin in order to avoid the premature breakdown of imipenem by renal tubular dipeptidase. As this dipeptidase also hydrolyzes the glutathione metabolite cysteinylglycine, the therapeutic association of imipenem and cilastatin causes plasma levels of cysteinylglycine to increase significantly, while cysteine levels are decreased and homocysteine levels are unaffected. Therefore, antibiotic treatment using imipenem-cilastatin induces important metabolic changes that should not remain unrecognized (PMID: 15843241). L-Cysteinylglycine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=19246-18-5 (retrieved 2024-07-02) (CAS RN: 19246-18-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

L-Glutamine

(2S)-2,5-diamino-5-oxopentanoic acid

C5H10N2O3 (146.0691)


Glutamine (Gln), also known as L-glutamine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Structurally, glutamine is similar to the amino acid glutamic acid. However, instead of having a terminal carboxylic acid, it has an amide. Glutamine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, polar amino acid. In humans glutamine is considered a non-essential amino acid. Enzymatically, glutamine is formed by replacing a side-chain hydroxyl of glutamic acid with an amine functional group. More specifically, glutamine is synthesized by the enzyme glutamine synthetase from glutamate and ammonia. The most relevant glutamine-producing tissue are skeletal muscles, accounting for about 90\\\\\\% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. In human blood, glutamine is the most abundant free amino acid. Dietary sources of glutamine include protein-rich foods such as beef, chicken, fish, dairy products, eggs, beans, beets, cabbage, spinach, carrots, parsley, vegetable juices, wheat, papaya, Brussels sprouts, celery and kale. Glutamine is one of the few amino acids that can directly cross the blood–brain barrier. Glutamine is often used as a supplement in weightlifting, bodybuilding, endurance and other sports, as well as by those who suffer from muscular cramps or pain, particularly elderly people. In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac. The main use of glutamine within the diet of either group is as a means of replenishing the bodys stores of amino acids that have been used during exercise or everyday activities. Studies which have looked into problems with excessive consumption of glutamine thus far have proved inconclusive. However, normal supplementation is healthy mainly because glutamine is supposed to be supplemented after prolonged periods of exercise (for example, a workout or exercise in which amino acids are required for use) and replenishes amino acid stores. This is one of the main reasons glutamine is recommended during fasting or for people who suffer from physical trauma, immune deficiencies, or cancer. There is a significant body of evidence that links glutamine-enriched diets with positive intestinal effects. These include maintenance of gut barrier function, aiding intestinal cell proliferation and differentiation, as well as generally reducing septic morbidity and the symptoms of Irritable Bowel Syndrome (IBS). The reason for such "cleansing" properties is thought to stem from the fact that the intestinal extraction rate of glutamine is higher than that for other amino acids, and is therefore thought to be the most viable option when attempting to alleviate conditions relating to the gastrointestinal tract. These conditions were discovered after comparing plasma concentration within the gut between glutamine-enriched and non glutamine-enriched diets. However, even though glutamine is thought to have "cleansing" properties and effects, it is unknown to what extent glutamine has clinical benefits, due to the varied concentrations of glutamine in varieties of food. It is also known that glutamine has positive effects in reducing healing time after operations. Hospital waiting times after abdominal s... L-glutamine, also known as L-2-aminoglutaramic acid or levoglutamide, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamine is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamine can be found in a number of food items such as acorn, yautia, ohelo berry, and oregon yampah, which makes L-glutamine a potential biomarker for the consumption of these food products. L-glutamine can be found primarily in most biofluids, including blood, sweat, breast milk, and cerebrospinal fluid (CSF), as well as throughout most human tissues. L-glutamine exists in all living species, ranging from bacteria to humans. In humans, L-glutamine is involved in several metabolic pathways, some of which include amino sugar metabolism, the oncogenic action of 2-hydroxyglutarate, mercaptopurine metabolism pathway, and transcription/Translation. L-glutamine is also involved in several metabolic disorders, some of which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, tay-sachs disease, xanthinuria type I, and adenosine deaminase deficiency. Moreover, L-glutamine is found to be associated with carbamoyl Phosphate Synthetase Deficiency, epilepsy, schizophrenia, and alzheimers disease. L-glutamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. L-glutamine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2]. L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].

   

Purine

{7h-imidazo[4,} 5-D]pyrimidine

C5H4N4 (120.0436)


Purine, also known as purine base or 1H-purine, belongs to the class of organic compounds known as purines and purine derivatives. These are aromatic heterocyclic compounds containing a purine moiety, which is formed a pyrimidine-ring ring fused to an imidazole ring. Two of the bases in nucleic acids, adenine and guanine, are purines. Purines from food (or from tissue turnover) are metabolised by several enzymes, including xanthine oxidase, into uric acid. Purine exists in all living species, ranging from bacteria to humans. High levels of uric acid can predispose to gout when the acid crystalises in joints; this phenomenon only happens in humans and some animal species (e.g. dogs) that lack an intrinsic uricase enzyme that can further degrade uric acid. In humans, purine is involved in thioguanine action pathway. Outside of the human body, purine is found, on average, in the highest concentration within cocoa beans. Purine has also been detected, but not quantified in several different foods, such as rapinis, plains prickly pears, blackcurrants, radish, and parsley. This could make purine a potential biomarker for the consumption of these foods. Purine is a heterocyclic aromatic organic compound, consisting of a pyrimidine ring fused to an imidazole ring. A purine is a heterocyclic aromatic organic compound, consisting of a pyrimidine ring fused to an imidazole ring. Purines, including substituted purines and their tautomers, are the most widely distributed kind of nitrogen-containing heterocycle in nature. Purine is found in many foods, some of which are triticale, chickpea, japanese persimmon, and wild carrot. KEIO_ID P049 Purine is an endogenous metabolite. Purine is an endogenous metabolite.

   

Tramadol

(1R,2R)-2-[(dimethylamino)methyl]-1-(3-methoxyphenyl)cyclohexan-1-ol

C16H25NO2 (263.1885)


Tramadol is only found in individuals that have used or taken this drug. It is a narcotic analgesic proposed for moderate to severe pain. It may be habituating (PubChem). Tramadol and its O-desmethyl metabolite (M1) are selective, weak OP3-receptor agonists. Opiate receptors are coupled with G-protein receptors and function as both positive and negative regulators of synaptic transmission via G-proteins that activate effector proteins. As the effector system is adenylate cyclase and cAMP is located at the inner surface of the plasma membrane, opioids decrease intracellular cAMP by inhibiting adenylate cyclase. Subsequently, the release of nociceptive neurotransmitters such as substance P, GABA, dopamine, acetylcholine, and noradrenaline is inhibited. The analgesic properties of tramadol can be attributed to norepinephrine and serotonin reuptake blockade in the CNS, which inhibits pain transmission in the spinal cord. The (+) enantiomer has a higher affinity for the OP3 receptor and preferentially inhibits serotonin uptake and enhances serotonin release. The (-) enantiomer preferentially inhibits norepinephrine reuptake by stimulating alpha(2)-adrenergic receptors. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids CONFIDENCE standard compound; EAWAG_UCHEM_ID 2567 CONFIDENCE standard compound; INTERNAL_ID 4103 CONFIDENCE standard compound; INTERNAL_ID 1117 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Inosine triphosphate

({[({[(2R,3S,4R,5R)-3,4-dihydroxy-5-(6-hydroxy-9H-purin-9-yl)oxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C10H15N4O14P3 (507.9798)


Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID : 170291, 1204209, 17113761, 17924837) [HMDB] Inosine triphosphate (ITP) is an intermediate in the purine metabolism pathway. Relatively high levels of ITP in red cells are found in individuals as result of deficiency of inosine triphosphatase (EC 3.1.3.56, ITPase) ITPase is a cytosolic nucleoside triphosphate pyrophosphohydrolase specific for ITP catalysis to inosine monophosphate (IMP) and deoxy-inosine triphosphate (dITP) to deoxy-inosine monophosphate. ITPase deficiency is not associated with any defined pathology other than the characteristic and abnormal accumulation of ITP in red blood cells. Nevertheless, ITPase deficiency may have pharmacogenomic implications, and the abnormal metabolism of 6-mercaptopurine in ITPase-deficient patients may lead to thiopurine drug toxicity. ITPases function is not clearly understood but possible roles for ITPase could be to prevent the accumulation of rogue nucleotides which would be otherwise incorporated into DNA and RNA, or compete with nucleotides such as GTP in signalling processes. (PMID: 170291, 1204209, 17113761, 17924837).

   

Pyridoxal 5'-phosphate

Phosphoric acid mono-(4-formyl-5-hydroxy-6-methyl-pyridin-3-ylmethyl) ester

C8H10NO6P (247.0246)


Pyridoxal phosphate, also known as PLP, pyridoxal 5-phosphate or P5P, is the active form of vitamin B6. It is a coenzyme in a variety of enzymatic reactions. Pyridoxal 5-phosphate belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2,3,4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal 5-phosphate is a drug which is used for nutritional supplementation and for treating dietary shortage or imbalance. Pyridoxal 5-phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxal 5-phosphate is involved in glycine and serine metabolism. Outside of the human body, pyridoxal 5-phosphate is found, on average, in the highest concentration within cow milk. Pyridoxal 5-phosphate has also been detected, but not quantified in several different foods, such as soursops, italian sweet red peppers, muscadine grapes, european plums, and blackcurrants. Pyridoxal 5-phosphate, with regard to humans, has been found to be associated with several diseases such as epilepsy, early-onset, vitamin B6-dependent, odontohypophosphatasia, pyridoxamine 5-prime-phosphate oxidase deficiency, and hypophosphatasia. Pyridoxal 5-phosphate has also been linked to the inborn metabolic disorder celiac disease. This is the active form of vitamin B6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (pyridoxamine). -- Pubchem; Pyridoxal-phosphate (PLP, pyridoxal-5-phosphate) is a cofactor of many enzymatic reactions. It is the active form of vitamin B6 which comprises three natural organic compounds, pyridoxal, pyridoxamine and pyridoxine. -- Wikipedia [HMDB]. Pyridoxal 5-phosphate is found in many foods, some of which are linden, kai-lan, nance, and rose hip. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P038 Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.

   

Flufenamic acid

N-(alpha,alpha,alpha-Trifluoro-m-tolyl)anthranilic acid

C14H10F3NO2 (281.0664)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor CONFIDENCE standard compound; EAWAG_UCHEM_ID 3021 D000893 - Anti-Inflammatory Agents Flufenamic acid is a non-steroidal anti-inflammatory agent, inhibits cyclooxygenase (COX), activates AMPK, and also modulates ion channels, blocking chloride channels and L-type Ca2+ channels, modulating non-selective cation channels (NSC), activating K+ channels. Flufenamic acid binds to the central pocket of TEAD2 YBD and inhibits both TEAD function and TEAD-YAP-dependent processes, such as cell migration and proliferation.

   

Deoxyguanosine

2-amino-9-[(2R,4S,5R)-4-hydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-1H-purin-6-one

C10H13N5O4 (267.0967)


Deoxyguanosine, also known as dG, belongs to the class of organic compounds known as purine 2-deoxyribonucleosides. Purine 2-deoxyribonucleosides are compounds consisting of a purine linked to a ribose which lacks a hydroxyl group at position 2‚Äô. Deoxyguanosine is a nucleoside consisting of the base guanine and the sugar deoxyribose. Deoxyguanosine is one of the four deoxyribonucleosides that make up DNA. Deoxyguanosine exists in all living species, ranging from bacteria to plants to humans. Deoxyguanosine participates in a number of enzymatic reactions. In particular, deoxyguanosine can be biosynthesized from 2-deoxyguanosine 5-monophosphate through the enzyme known as cytosolic purine 5-nucleotidase. In addition, deoxyguanosine can be converted into 2-deoxyguanosine 5-monophosphate (dGMP); which is mediated by the enzyme deoxyguanosine kinase. Deoxyguanosine is involved in the rare, inherited metabolic disorder called the purine nucleoside phosphorylase deficiency (PNP deficiency). In particular PNP deficiency is characterized by elevated levels of dGTP (deoxyguanosine triphosphate). PNP accounts for approximately 4\\\\% of patients with severe combined immunodeficiency (PMID: 1931007). PNP-deficient patients suffer from recurrent infections, usually beginning in the first year of life. Two thirds of patients have evidence of neurologic disorders with spasticity, developmental delay and mental retardation. Deoxyguanosine can be converted to 8-hydroxy-deoxyguanosine (8-OHdG) due to hydroxyl radical attack at the C8 of guanine. 8-hydroxy-deoxyguanosine is a sensitive marker of the DNA damage This damage, if left unrepaired, has been proposed to contribute to mutagenicity and cancer promotion. Isolated from plants, e.g. Phaseolus vulgaris (kidney bean) COVID info from COVID-19 Disease Map KEIO_ID D057; [MS2] KO008942 KEIO_ID D057 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 2’-Deoxyguanosine (Deoxyguanosine) is a purine nucleoside with a variety of biological activities. 2’-Deoxyguanosine can induce DNA division in mouse thymus cells. 2’-Deoxyguanosine is a potent cell division inhibitor in plant cells[1][2][3]. 2'-Deoxyguanosine (Deoxyguanosine) is deoxyguanosine.

   

Mefloquine

alpha-2-Piperidinyl-2,8-bis(trifluoromethyl)-4-quinolinemethanol

C17H16F6N2O (378.1167)


Mefloquine is only found in individuals that have used or taken this drug. It is a phospholipid-interacting antimalarial drug (antimalarials). It is very effective against plasmodium falciparum with very few side effects. [PubChem]Mefloquine has been found to produce swelling of the Plasmodium falciparum food vacuoles. It may act by forming toxic complexes with free heme that damage membranes and interact with other plasmodial components. P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials COVID info from clinicaltrials, clinicaltrial Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Pilocarpine

(3S-cis)-3-Ethyldihydro-4-[(1-methyl-1H-imidazol-5-yl)methyl]-2(3H)-furanone

C11H16N2O2 (208.1212)


Pilocarpine is only found in individuals that have used or taken this drug. It is a slowly hydrolyzed muscarinic agonist with no nicotinic effects. Pilocarpine is used as a miotic and in the treatment of glaucoma. [PubChem]Pilocarpine is a cholinergic parasympathomimetic agent. It increase secretion by the exocrine glands, and produces contraction of the iris sphincter muscle and ciliary muscle (when given topically to the eyes) by mainly stimulating muscarinic receptors. S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2265 Pilocarpine is a selective M3-type muscarinic acetylcholine receptor (M3 muscarinic receptor) agonist.

   

Clemastine

(+)-(2R)-2-(2-(((R)-p-Chloro-alpha-methyl-alpha-phenylbenzyl)oxy)ethyl)-1-methylpyrrolidine

C21H26ClNO (343.1703)


Clemastine is only found in individuals that have used or taken this drug. It is an ethanolamine-derivative, first generation histamine H1 antagonist used in hay fever, rhinitis, allergic skin conditions, and pruritus. It causes drowsiness. [PubChem]Clemastine is a selective histamine H1 antagonist and binds to the histamine H1 receptor. This blocks the action of endogenous histamine, which subsequently leads to temporary relief of the negative symptoms brought on by histamine. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

Probenecid

4-((Dipropylamino)sulphonyl)benzoic acid

C13H19NO4S (285.1035)


The prototypical uricosuric agent. It inhibits the renal excretion of organic anions and reduces tubular reabsorption of urate. Probenecid has also been used to treat patients with renal impairment, and, because it reduces the renal tubular excretion of other drugs, has been used as an adjunct to antibacterial therapy. [PubChem] CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243; ORIGINAL_PRECURSOR_SCAN_NO 4241 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4209; ORIGINAL_PRECURSOR_SCAN_NO 4206 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4239; ORIGINAL_PRECURSOR_SCAN_NO 4234 ORIGINAL_PRECURSOR_SCAN_NO 4241; CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4243 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4238; ORIGINAL_PRECURSOR_SCAN_NO 4234 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4245; ORIGINAL_PRECURSOR_SCAN_NO 4243 CONFIDENCE standard compound; INTERNAL_ID 208; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4200; ORIGINAL_PRECURSOR_SCAN_NO 4198 M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent D010592 - Pharmaceutic Aids

   

2,4-Toluenediamine

2,4-Diaminotoluene, monohydrochloride

C7H10N2 (122.0844)


2,4-toluenediamine belongs to the family of Toluenes. These are compounds containing a benzene ring which bears a methane group. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

9-Hydroxyphenanthrene

9-Hydroxyphenanthrene

C14H10O (194.0732)


This compound belongs to the family of Phenanthrenes and Derivatives. These are polycyclic compounds containing a phenanthrene moiety, which is a tricyclic aromatic compound with three non-linearly fused benzene. D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors

   

naphthoic acid

1-NAPHTHOIC ACID

C11H8O2 (172.0524)


A naphthoic acid carrying a carboxy group at position 1.

   

Helixin C

(2R)-2-[(2R,3S,6R)-6-[[(2S,4R,5R,6R,7R,9R)-2-[(2R,5S)-5-[(2R,3S,5R)-5-[(2S,3S,5R,6R)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-7-methoxy-2,4,6-trimethyl-1,10-dioxaspiro[4.5]decan-9-yl]methyl]-3-methyloxan-2-yl]propanoic acid

C40H68O11 (724.4761)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores

   

Cannabichromene

2-methyl-2-(4-methylpent-3-en-1-yl)-7-pentyl-2H-chromen-5-ol

C21H30O2 (314.2246)


   

Abacavir

4R-[2-amino-6-(cyclopropylamino)-9H-purin-9-yl]-2-cyclopentene-1S-methanol, monohydrochloride

C14H18N6O (286.1542)


Abacavir is only found in individuals that have used or taken this drug. It is a powerful nucleoside analog reverse transcriptase inhibitor (NRTI) used to treat HIV and AIDS. [Wikipedia]Abacavir is a carbocyclic synthetic nucleoside analogue. Intracellularly, abacavir is converted by cellular enzymes to the active metabolite carbovir triphosphate, an analogue of deoxyguanosine-5-triphosphate (dGTP). Carbovir triphosphate inhibits the activity of HIV-1 reverse transcriptase (RT) both by competing with the natural substrate dGTP and by its incorporation into viral DNA. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

Perazine

10-[3-(4-methylpiperazin-1-yl)propyl]-10H-phenothiazine

C20H25N3S (339.1769)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

Isoquinoline

Isoquinoline conjugate acid

C9H7N (129.0578)


Isoquinoline is a flavouring agent Being an analog of pyridine, isoquinoline is a weak base, with a pKb of 8.6. It protonates to form salts upon treatment with strong acids, such as HCl. It forms adducts with Lewis acids, such as BF3. Isoquinoline is a colorless hygroscopic liquid at room temperature with a penetrating, unpleasant odor. Impure samples can appear brownish, as is typical for nitrogen heterocycles. It crystallizes platelets that have a low solubility in water but dissolve well in ethanol, acetone, diethyl ether, carbon disulfide, and other common organic solvents. It is also soluble in dilute acids as the protonated derivative. Isoquinoline is a heterocyclic aromatic organic compound. It is a structural isomer of quinoline. Isoquinoline and quinoline are benzopyridines, which are composed of a benzene ring fused to a pyridine ring. In a broader sense, the term isoquinoline is used to make reference to isoquinoline derivatives. 1-Benzylisoquinoline is the structural backbone in naturally occurring alkaloids including papaverine and morphine. The isoquinoline ring in these natural compound derives from the aromatic amino acid tyrosine Flavouring agent KEIO_ID I067

   

Mesylate

Methanesulfonic acid solution

CH4SO3 (95.9881)


Mesylate, also known as methanesulfonate or mesylic acid, belongs to the class of organic compounds known as organosulfonic acids. Organosulfonic acids are compounds containing the sulfonic acid group, which has the general structure RS(=O)2OH (R is not a hydrogen atom). Mesylate exists as a solid, soluble (in water), and an extremely strong acidic compound (based on its pKa). Mesylate is also a parent compound for other transformation products, including but not limited to, methanesulfonates, S-methyl methanethiosulfonate, and (Z)-11-methyl-N-(methylsulfonyl)dodec-2-enamide. KEIO_ID M135 KEIO_ID M021

   

3-Methylamino-L-alanine

(S)-2-AMINO-3-(METHYLAMINO)PROPANOIC ACID

C4H10N2O2 (118.0742)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018690 - Excitatory Amino Acid Agonists

   

Octanol

Octyl alcohol normal-primary

C8H18O (130.1358)


1-Octanol, also known as octan-1-ol, is the organic compound with the molecular formula CH3(CH2)7OH. It is a fatty alcohol. Many other isomers are also known generically as octanols. Octanol is mainly produced industrially by the oligomerization of ethylene using triethylaluminium followed by oxidation of the alkylaluminium products. This route is known as the Ziegler alcohol synthesis. Octanol also occurs naturally in the form of esters in some essential oils. Octanol and water are immiscible. The distribution of a compound between water and octanol is used to calculate the partition coefficient (logP) of that molecule. Water/octanol partitioning is a good approximation of the partitioning between the cytosol and lipid membranes of living systems. Octanol is a colorless, slightly viscous liquid used as a defoaming or wetting agent. It is also used as a solvent for protective coatings, waxes, and oils, and as a raw material for plasticizers. It is also one of many compounds derived from tobacco and tobacco smoke and shown to increase the permeability of the membranes of human lung fibroblasts (PMID 7466833). Occurs in the form of esters in some essential oils. Flavouring agent. 1-Octanol is found in many foods, some of which are common wheat, lime, tea, and corn. D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

9,10-DiHOME

(9R,10R,12Z)-9,10-dihydroxyoctadec-12-enoic acid

C18H34O4 (314.2457)


9,10-Dihydroxy-12-octadecenoic acid (CAS: 263399-34-4), also known as 9,10-DHOME, is a derivative of linoleic acid diol and has been reported to be toxic in humans tissue preparations. 9,10-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. 9,10-DHOME is the epoxide hydrolase metabolite of the leukotoxin 9,10-EpOME. 9,10-EpOME act as a protoxin, with the corresponding epoxide hydrolase metabolite 9,10-DHOME, specifically exerting toxicity. Both 9,10-EpOME and 9,10-DHOME are shown to have neutrophil chemotactic activity. 9,10-DHOME suppresses the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4, which inhibit multiple aspects of neutrophil activation (PMID: 12021203, 12127265, 17435320). 9,10-DHOME is found in fruits and can be isolated from the seeds of Cucurbita pepo. 9,10-DHOME is a derivative of linoleic acid diol that have been reported to be toxic in humans tissue preparations. 9,10-DHOME is a naturally occurring proliferator-activated receptor (PPAR) gamma2 ligand, which stimulates adipocytes and inhibits osteoblast differentiation. 9,10-DHOME is the epoxide hydrolase metabolite of the leukotoxin 9,10--EpOME. 9,10-EpOMEs act as a protoxin, with the corresponding epoxide hydrolase 9,10-DiHOME specifically exerting toxicity. Both the 9,10-EpOME and the 9,10-DiHOME are shown to have neutrophil chemotactic activity. 9,10-DiHOME suppress the neutrophil respiratory burst by a mechanism distinct from that of respiratory burst inhibitors such as cyclosporin H or lipoxin A4,which inhibit multiple aspects of neutrophil activation. (PMID: 12021203, 12127265, 17435320) [HMDB]

   

Nadide

beta-Nicotinamide adenine dinucleotide hydrate

[C21H28N7O14P2]+ (664.1169)


[Spectral] NAD+ (exact mass = 663.10912) and 3,4-Dihydroxy-L-phenylalanine (exact mass = 197.06881) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] NAD+ (exact mass = 663.10912) and NADP+ (exact mass = 743.07545) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Homocarnosine

(2S)-2-(4-aminobutanamido)-3-(1H-imidazol-4-yl)propanoic acid

C10H16N4O3 (240.1222)


Homocarnosine is a normal human metabolite, the brain-specific dipeptide of gamma-aminobutyric acid (GABA) and histidine. (PMID 1266573). Increased concentration of CSF homocarnosine has been found in familial spastic paraplegia. (PMID 842287). Homocarnosinosis (an inherited disorder, OMIM 236130) is characterized by an elevated level of the dipeptide homocarnosine (Hca) in the Cerebrospinal fluid (CSF) and the brain and by carnosinuria and serum carnosinase deficiency, and can co-exist with paraplegia, retinitis pigmentosa, and a progressive mental deficiency. (PMID 3736769). In glial tumors of human brain the content of homocarnosine has been found to be lower than in brain tissue (PMID 1032224), while an increase in content of homocarnosine was observed in brain tissue of animals under experimental trauma of cranium. (PMID 1025883). Homocarnosine is a normal human metabolite, the brain-specific dipeptide of gamma-aminobutyric acid (GABA) and histidine. (PMID 1266573) Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H013; [MS3] KO008992 KEIO_ID H013; [MS2] KO008991 KEIO_ID H013

   

Piperazine

Piperazine tartrate (1:1), (R-(r*,r*))-isomer

C4H10N2 (86.0844)


Piperazine is an organic compound that consists of a six-membered ring containing two opposing nitrogen atoms. Piperazine exists as small alkaline deliquescent crystals with a saline taste. Piperazine was introduced to medicine as a solvent for uric acid. When taken into the body the drug is partly oxidized and partly eliminated unchanged. Outside the body, piperazine has a remarkable power to dissolve uric acid and producing a soluble urate, but in clinical experience it has not proved equally successful. Piperazine was first introduced as an anthelmintic in 1953. A large number of piperazine compounds have anthelmintic action. Their mode of action is generally by paralysing parasites, which allows the host body to easily remove or expel the invading organism. P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CB - Piperazine and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent It is used as a food additive . KEIO_ID P046

   

Lithospermic acid

Lithosperminc acid

C27H22O12 (538.1111)


Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].

   

Homocitrulline

(2S)-2-amino-6-(carbamoylamino)hexanoic acid

C7H15N3O3 (189.1113)


Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). Homocitrulline has been identified in the human placenta (PMID: 32033212). Homocitrulline is a metabolite that can be detected in larger amounts in the urine of individuals with urea cycle disorders (OMIM 238970). The accumulation of carbamylphosphate due to depleted supply of ornithine for the urea cycle may be responsible for the enhanced synthesis of homocitrulline and homoarginine in some cases (PMID 2474087). [HMDB] L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

Isokadsuranin

(+)-gamma-Schizandrin

C23H28O6 (400.1886)


D000893 - Anti-Inflammatory Agents D000970 - Antineoplastic Agents Schisandrin B (γ-Schisandrin) is a biphenylcyclooctadiene derivative isolated from Schisandra chinensis and has been shown to have antioxidant effects on the liver and heart of rodents. Schisandrin B (γ-Schisandrin) is a biphenylcyclooctadiene derivative isolated from Schisandra chinensis and has been shown to have antioxidant effects on the liver and heart of rodents.

   

Gardenoside

Methyl (1S,4aS,7S,7aS)-7-hydroxy-7-(hydroxymethyl)-1-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-1,4a,7,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate

C17H24O11 (404.1319)


A cyclopentapyran that is 7-deoxyloganin with a methyl and hydrogen replaced by hydroxy and hydroxymethyl groups at position 7. Gardenoside is a natural product found in Gardenia jasminoides, Catunaregam obovata, and other organisms with data available. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2]. Gardenoside is a natural compound found in Gardenia fruits, with hepatoprotective properties. Gardenoside suppresses the pain of chronic constriction injury by regulating the P2X3 and P2X7 receptors. Gardenoside has an inhibitory effect on free fatty acids (FFA)-induced cellular steatosis[1][2].

   

Roridin A

(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione

C29H40O9 (532.2672)


CONFIDENCE isolated standard D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

Adenosine diphosphate ribose

{[5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({hydroxy[(3,4,5-trihydroxyoxolan-2-yl)methoxy]phosphoryl}oxy)phosphinic acid

C15H23N5O14P2 (559.0717)


Adenosine diphosphate ribose is a molecule formed into poly(ADP-ribose) or PAR chains by the enzyme poly ADP ribose polymerase or PARP. PARP is found in every cell nucleus. Its main role is to detect and signal single-strand DNA breaks (SSB) to the enzymatic machinery involved in the SSB repair. PARP activation is an immediate cellular response to metabolic, chemical, or radiation-induced DNA SSB damage. Once PARP detects a SSB, it binds to the DNA, and, after a structural change, begins the synthesis of a poly (ADP-ribose) chain (PAR) as a signal for the other DNA-repairing enzymes such as DNA ligase III (LigIII), DNA polymerase beta, and scaffolding proteins such as X-ray cross-complementing gene 1 (XRCC1). After repairing, the PAR chains are degraded via PAR glycohydrolase (PARG). ADP-ribose binds to and activates the TRPM2 ion channel. Adenosine diphosphate ribose is an intermediate in NAD metabolism. The enzyme NAD(P)+ nucleosidase [EC:3.2.2.6] catalyzes the production of this metabolite from nicotinamide adenine dinucleotide phosphate. This reaction is irreversible and occurs in the cytosol. Adenosine diphosphate ribose is a molecule formed into chains by the enzyme poly ADP ribose polymerase. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Anthraquinone

9,10-Anthraquinone, radical ion (1-)

C14H8O2 (208.0524)


Anthraquinone is used as a precursor for dye formation. Anthraquinone is used as a precursor for dye formation.

   

Uridine triphosphate

({[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C9H15N2O15P3 (483.9685)


Uridine 5-triphosphate, also known as utp or uridine triphosphoric acid, is a member of the class of compounds known as pyrimidine ribonucleoside triphosphates. Pyrimidine ribonucleoside triphosphates are pyrimidine ribobucleotides with triphosphate group linked to the ribose moiety. Uridine 5-triphosphate is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Uridine 5-triphosphate can be found in a number of food items such as persian lime, nectarine, chinese water chestnut, and soft-necked garlic, which makes uridine 5-triphosphate a potential biomarker for the consumption of these food products. Uridine 5-triphosphate can be found primarily in saliva. Uridine 5-triphosphate exists in all living species, ranging from bacteria to humans. In humans, uridine 5-triphosphate is involved in several metabolic pathways, some of which include josamycin action pathway, clomocycline action pathway, chloramphenicol action pathway, and amikacin action pathway. Uridine 5-triphosphate is also involved in several metabolic disorders, some of which include GLUT-1 deficiency syndrome, glycogenosis, type VI. hers disease, MNGIE (mitochondrial neurogastrointestinal encephalopathy), and galactosemia II (GALK). Uridine-5-triphosphate (UTP) is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1 carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5 position. Its main role is as substrate for the synthesis of RNA during transcription . Uridine triphosphate, also known as 5-UTP or UTP, belongs to the class of organic compounds known as pyrimidine ribonucleoside triphosphates. These are pyrimidine ribobucleotides with triphosphate group linked to the ribose moiety. More specifically, UTP is a pyrimidine nucleoside triphosphate, consisting of the organic base uracil linked to the 1′ carbon of the ribose sugar, and esterified with tri-phosphoric acid at the 5′ position. Uridine triphosphate exists in all living species, ranging from bacteria to plants to humans. The main role of UTP is as substrate for the synthesis of RNA during transcription. UTP is the precursor for the production of CTP via the enzyme known as CTP Synthetase. UTP can be biosynthesized from UDP by the enzyme known as nucleoside diphosphate kinase by using phosphate group from ATP. UTP also has the role of a source of energy or an activator of substrates in a variety of metabolic reactions. For instance UTP can be used to activate Glucose-1-phosphate, leading to the formation of UDP-glucose and inorganic phosphate. The resulting UDP-glucose can be used in the synthesis of glycogen. UTP is also used in the metabolism of galactose, where the activated form of galactose, called UDP-galactose can be converted to UDP-glucose. UDP-glucuronate, another product of UTP reacting with glucuronic acid, is a sugar used in the creation of polysaccharides and is an intermediate in the biosynthesis of ascorbic acid (except in primates and guinea pigs). COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Potassium

Liver regeneration factor 1

K+ (38.9637)


Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675) [HMDB]. Potassium is found in many foods, some of which are half-highbush blueberry, liquor, grouper, and squashberry. Potassium is an essential electrolyte. Potassium balance is crucial for regulating the excitability of nerves and muscles and so critical for regulating contractility of cardiac muscle. Although the most important changes seen in the presence of deranged potassium are cardiac, smooth muscle is also affected with increasing muscle weakness, a feature of both hyperkalaemia and hypokalaemia. Physiologically, it exists as an ion in the body. Potassium (K+) is a positively charged electrolyte, cation, which is present throughout the body in both intracellular and extracellular fluids. The majority of body potassium, >90\\%, are intracellular. It moves freely from intracellular fluid (ICF) to extracellular fluid (ECF) and vice versa when adenosine triphosphate increases the permeability of the cell membrane. It is mainly replaced inside or outside the cells by another cation, sodium (Na+). The movement of potassium into or out of the cells is linked to certain body hormones and also to certain physiological states. Standard laboratory tests measure ECF potassium. Potassium enters the body rapidly during food ingestion. Insulin is produced when a meal is eaten; this causes the temporary movement of potassium from ECF to ICF. Over the ensuing hours, the kidneys excrete the ingested potassium and homeostasis is returned. In the critically ill patient, suffering from hyperkalaemia, this mechanism can be manipulated beneficially by administering high concentration (50\\%) intravenous glucose. Insulin can be added to the glucose, but glucose alone will stimulate insulin production and cause movement of potassium from ECF to ICF. The stimulation of alpha receptors causes increased movement of potassium from ICF to ECF. A noradrenaline infusion can elevate serum potassium levels. An adrenaline infusion, or elevated adrenaline levels, can lower serum potassium levels. Metabolic acidosis causes a rise in extracellular potassium levels. In this situation, excess of hydrogen ions (H+) are exchanged for intracellular potassium ions, probably as a result of the cellular response to a falling blood pH. Metabolic alkalosis causes the opposite effect, with potassium moving into the cells. (PMID: 17883675).

   

ADP-Ribosyl-L-arginine

2-amino-5-[(E)-[amino({5-[({[({[5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl}amino)methylidene]amino]pentanoic acid

C21H35N9O15P2 (715.1728)


ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc) [HMDB] ADP-Ribosyl-L-arginine is the substrate of the protein ADP-ribosylarginine hydrolase (EC-Number 3.2.2.19 ), removing ADP-ribose from arginine residues in ADP ribosylated proteins. Arginine residues in proteins act as acceptors, catalyzing the NAD (+)-dependent activation of the enzyme adenylate cyclase (EC 4.6.1.1). (MetaCyc).

   

Diadenosine tetraphosphate

[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy]({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)phosphinic acid

C20H28N10O19P4 (836.0483)


Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP4A is the only APnA that can induce a considerable increase in [Ca2+] in endothelial cells, indicating that its vasoactive effects are comparable to the known effects of arginine vasopressin, Angiotensin II, and ATP. AP4A is a ubiquitous ApnA is a signal molecule for DNA replication in mammalian cells. AP4A is a primer for oligoadenylate synthesis catalyzed by interferon-inducible 2-5A synthetase. AP4A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 9187362, 16401072, 9694344, 9351706, 1953194). Diadenosine tetraphosphate (AP4A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n=3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

Naphthazarin

InChI=1\C10H6O4\c11-5-1-2-6(12)10-8(14)4-3-7(13)9(5)10\h1-4,11-12

C10H6O4 (190.0266)


A naphthoquinone that is 1,4-naphthoquinone in which the hydrogens at positions 5 and 8 are replaced by hydroxy groups. D000970 - Antineoplastic Agents

   

D-Luciferin

(S)-4,5-Dihydro-2-(6-hydroxy-1,3-benzothiazol-2-yl)thiazole-4-carboxylic acid

C11H8N2O3S2 (279.9976)


   

Diadenosine pentaphosphate

{[(2R,3S,4R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[({[({[(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C20H29N10O22P5 (916.0146)


Diadenosine pentaphosphate (AP5A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP5A in nanomolar concentrations is found to significantly stimulate the proliferation of vascular smooth muscle cells. AP5A is a P2X agonist. The activation of nucleotide ion tropic receptors increases intracellular calcium concentration, resulting in calcium/calmodulin-dependent protein kinase II (CaMKII) activation. AP5A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP5A have been identified in human platelets and shown to be important modulator of cardiovascular function. AP5A is stored in synaptic vesicles and released upon nerve terminal depolarization. At the extracellular level, AP5A can stimulate presynaptic dinucleotide receptors. Responses to AP5A have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been described. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 10094777, 16401072, 16819989, 17721817, 17361116, 14502438) [HMDB] Diadenosine pentaphosphate (AP5A) is a diadenosine polyphosphate. Diadenosine polyphosphates (APnAs, n = 3-6) are a family of endogenous vasoactive purine dinucleotides which have been isolated from thrombocytes. APnAs have been demonstrated to be involved in the control of vascular tone as well as the growth of vascular smooth muscle cells and hence, possibly, in atherogenesis. APnAs isolated substances are Ap3A, Ap4A, Ap5A, and Ap6A. APnAs are naturally occurring substances that facilitate tear secretion; they are released from the corneal epithelium, they stimulate tear production and therefore they may be considered as physiological modulators of tear secretion. The APnAs were discovered in the mid-sixties in the course of studies on aminoacyl-tRNA synthetases (aaRS). APnAs have emerged as intracellular and extracellular signalling molecules implicated in the maintenance and regulation of vital cellular functions and become considered as second messengers. Great variety of physiological and pathological effects in mammalian cells was found to be associated with alterations of APnAs. APnAs are polyphosphated nucleotidic substances which are found in the CNS and are known to be released in a calcium-dependent manner from storage vesicles in brain synaptosomes. AP5A is a specific adenylate kinase inhibitor in the hippocampus, decreasing the rate of decomposition of ADP and the formation of ATP; a pathway that influences the availability of purines in the central nervous system. AP5A in nanomolar concentrations is found to significantly stimulate the proliferation of vascular smooth muscle cells. AP5A is a P2X agonist. The activation of nucleotide ion tropic receptors increases intracellular calcium concentration, resulting in calcium/calmodulin-dependent protein kinase II (CaMKII) activation. AP5A is an avid inhibitor of eosinophil-derived neurotoxin (EDN). EDN is a catalytically proficient member of the pancreatic ribonuclease superfamily secreted along with other eosinophil granule proteins during innate host defense responses and various eosinophil-related inflammatory and allergic diseases. The ribonucleolytic activity of EDN is central to its antiviral and neurotoxic activities and possibly to other facets of its biological activity. AP5A have been identified in human platelets and shown to be important modulator of cardiovascular function. AP5A is stored in synaptic vesicles and released upon nerve terminal depolarization. At the extracellular level, AP5A can stimulate presynaptic dinucleotide receptors. Responses to AP5A have been described in isolated synaptic terminals (synaptosomes) from several brain areas in different animal species, including man. Dinucleotide receptors are ligand-operated ion channels that allow the influx of cations into the terminals. These cations reach a threshold for N- and P/Q-type voltage-dependent calcium channels, which become activated. The activation of the dinucleotide receptor together with the activation of these calcium channels triggers the release of neurotransmitters. The ability of Ap5A to promote glutamate, GABA or acetylcholine release has been described. (PMID: 11212966, 12738682, 11810214, 9607303, 8922753, 10094777, 16401072, 16819989, 17721817, 17361116, 14502438). D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   
   

Isopyridoxal

5-Hydroxy-4-(hydroxymethyl)-6-methyl-3-pyridinecarboxaldehyde

C8H9NO3 (167.0582)


Isopyridoxal is an active vitamer of the B6 complex in humans. (PMID 2208740). Vitamin B(6) is an essential component in human diet. (PMID 12686115). Vitamin B6 status (together with other vitamins from the B complex) is also related to Hyperhomocysteinemia, which has been linked to an increased risk for cardiovascular (CV) disease. (PMID 16407736). Isopyridoxal is an active vitamer of the B6 complex in humans. (PMID 2208740)

   

P1,P4-Bis(5'-uridyl) tetraphosphate

{[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}({[({[({[(2R,3S,4R,5R)-5-(2,4-dioxo-1,2,3,4-tetrahydropyrimidin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy})phosphinic acid

C18H26N4O23P4 (789.9938)


P1,P4-Bis(5-uridyl) tetraphosphate is involved in pyrimidine metabolism. It is a precurser for UTP. UTP is produced from P1,P4-Bis(5-uridyl) tetraphosphate by the action of bis(5-nucleosidyl)-tetraphosphatase [EC:3.6.1.17]. [HMDB] P1,P4-Bis(5-uridyl) tetraphosphate is involved in pyrimidine metabolism. It is a precurser for UTP. UTP is produced from P1,P4-Bis(5-uridyl) tetraphosphate by the action of bis(5-nucleosidyl)-tetraphosphatase [EC:3.6.1.17]. C78283 - Agent Affecting Organs of Special Senses

   

Suramin

8-{4-methyl-3-[3-({[3-({2-methyl-5-[(4,6,8-trisulfonaphthalen-1-yl)carbamoyl]phenyl}carbamoyl)phenyl]carbamoyl}amino)benzamido]benzamido}naphthalene-1,3,5-trisulfonic acid

C51H40N6O23S6 (1296.0469)


A polyanionic compound with an unknown mechanism of action. It is used parenterally in the treatment of African trypanosomiasis and it has been used clinically with diethylcarbamazine to kill the adult Onchocerca. (From AMA Drug Evaluations Annual, 1992, p1643) It has also been shown to have potent antineoplastic properties. Suramin is manufactured by Bayer in Germany as Germanin®. C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000970 - Antineoplastic Agents

   

Rifapentine

(7S,9Z,11S,12R,13S,14R,15R,16R,17S,18S,21Z)-26-[(1E)-[(4-cyclopentylpiperazin-1-yl)imino]methyl]-2,15,17,23,27,29-hexahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6-oxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,23,25(29),26-nonaen-13-yl acetate

C47H64N4O12 (876.4521)


Rifapentine is only found in individuals that have used or taken this drug. It is an antibiotic drug used in the treatment of tuberculosis.Rifapentine has shown higher bacteriostatic and bactericidal activities especially against intracellular bacteria growing in human monocyte-derived macrophages. Rifapentine inhibits DNA-dependent RNA polymerase in susceptible strains of M. tuberculosis. Rifapentine acts via the inhibition of DNA-dependent RNA polymerase, leading to a suppression of RNA synthesis and cell death. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Teniposide

(10R,11R,15R,16S)-16-{[(4aR,6R,7R,8R,8aS)-7,8-dihydroxy-2-(thiophen-2-yl)-hexahydro-2H-pyrano[3,2-d][1,3]dioxin-6-yl]oxy}-10-(4-hydroxy-3,5-dimethoxyphenyl)-4,6,13-trioxatetracyclo[7.7.0.0³,⁷.0¹¹,¹⁵]hexadeca-1,3(7),8-trien-12-one

C32H32O13S (656.1564)


A semisynthetic derivative of podophyllotoxin that exhibits antitumor activity. Teniposide inhibits DNA synthesis by forming a complex with topoisomerase II and DNA. This complex induces breaks in double stranded DNA and prevents repair by topoisomerase II binding. Accumulated breaks in DNA prevent cells from entering into the mitotic phase of the cell cycle, and lead to cell death. Teniposide acts primarily in the G2 and S phases of the cycle. [PubChem] Same as: D02698

   

MK 571

(E)-3-[[[3-[2-(7-chloro-2-quinolinyl)ethenyl]phenyl][[3-(dimethylamino)-3-oxopropyl]thio]methyl]thio]-propanoic acid, sodium salt

C26H27ClN2O3S2 (514.1152)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

DU-6859

SITAFLOXACINISOMER?(RSR)

C19H18ClF2N3O3 (409.1005)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

ABT-773

(1R,2R,4R,6S,7R,8R,10R,13R,14S)-7-[(2S,3R,4S,6R)-4-(dimethylamino)-3-hydroxy-6-methyl-tetrahydropyran-2-yl]oxy-13-ethyl-2,4,6,8,10,14-hexamethyl-6-[(E)-3-(3-quinolyl)allyloxy]-12,15-dioxa-17-azabicyclo[12.3.0]heptadecane-3,9,11,16-tetrone

C42H59N3O10 (765.42)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

6-Cyano-7-nitroquinoxaline-2,3-dione

7-nitro-2,3-dioxo-1,2,3,4-tetrahydroquinoxaline-6-carbonitrile

C9H4N4O4 (232.0233)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].

   

sits

4-Acetamido-4-isothiocyanostilbene-2,2-disulphonic acid

C17H14N2O7S3 (453.9963)


   

4,4-dinitrostilbene-2,2-disulfonic acid

4,4-dinitrostilbene-2,2-disulfonic acid

C14H10N2O10S2 (429.9777)


   

8-Cyclopentyl-1,3-dipropylxanthine

8-cyclopentyl-1,3-dipropyl-2,3,6,9-tetrahydro-1H-purine-2,6-dione

C16H24N4O2 (304.1899)


D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists DPCPX (PD 116948), a xanthine derivative, is a highly potent and selective Adenosine A1 receptor antagonist, with a Ki of 0.46 nM in 3H-CHA binding to A1 receptors in rat whole brain membranes[1][2][3].

   

BzATP

3-O-(4-Benzoyl)benzoyl ATP

C24H24N5O15P3 (715.0482)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D000345 - Affinity Labels D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

ppads

Pyridoxalphosphate-6-azophenyl-2,4-disulfonic acid

C14H14N3O12PS2 (510.9757)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

Gabazine

6-Amino-5-methyl-3-(4-methoxyphenyl)-1-pyridaziniumbutyric acid, bromide

C15H17N3O3 (287.127)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists

   

Bromodichloromethane

Bromodichloromethane, 14C-labeled

CHBrCl2 (161.8639)


Bromodichloromethane, also known as dichlorobromomethane or monobromodichloromethane, is classified as a member of the trihalomethanes. Trihalomethanes are organic compounds in which exactly three of the four hydrogen atoms of methane (CH4) are replaced by halogen atoms. Bromodichloromethane is a colorless, nonflammable liquid. Small amounts are formed naturally by algae in the oceans. Some of it will dissolve in water, but it readily evaporates into air. Only small quantities of bromodichloromethane are produced in the United States. The small quantities that are produced are used in laboratories or to make other chemicals. However, most bromodichloromethane is formed as a by-product when chlorine is added to drinking water to kill bacteria. Bromodichloromethane has been formerly used as a flame retardant, and a solvent for fats and waxes and because of its high density for mineral separation. Now it is only used as a reagent or intermediate in organic chemistry. Bromodichloromethane can also occur in municipally-treated drinking water as a by-product of the chlorine disinfection process. D009676 - Noxae > D002273 - Carcinogens

   

4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine

4-{13-methyl-4,6-dioxa-11,12-diazatricyclo[7.5.0.0³,⁷]tetradeca-1,3(7),8,10,12-pentaen-10-yl}aniline

C17H15N3O2 (293.1164)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents

   

DL-Glutamine

DL-Glutamine

C5H10N2O3 (146.0691)


DL-Glutamine is used for biochemical research and drug synthesis.

   

Zeaxanthin dipalmitate

4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[4-(Hexadecanoyloxy)-2,6,6-trimethylcyclohex-1-en-1-yl]-3,7,12,16-tetramethyloctadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]-3,5,5-trimethylcyclohex-3-en-1-yl hexadecanoic acid

C72H116O4 (1044.8873)


Zeaxanthin dipalmitate is found in green vegetables. Zeaxanthin dipalmitate is a constituent of Physalis species, asparagus (Asparagus officinalis), beans and others Constituent of Physalis subspecies, asparagus (Asparagus officinalis), beans and others. Zeaxanthin dipalmitate is found in sea-buckthornberry and green vegetables. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(+)-Lithospermic acid

4-{3-[1-carboxy-2-(3,4-dihydroxyphenyl)ethoxy]-3-oxoprop-1-en-1-yl}-2-(3,4-dihydroxyphenyl)-7-hydroxy-2,3-dihydro-1-benzofuran-3-carboxylic acid

C27H22O12 (538.1111)


   

4-Acetamido-4'-isothiocyanostilbene-2,2'-disulfonic acid

N-{4-[2-(4-isothiocyanato-2-sulphophenyl)ethenyl]-3-sulphophenyl}ethanimidic acid

C17H14N2O7S3 (453.9963)


   

Abbott-195773

10-{[4-(dimethylamino)-3-hydroxy-6-methyloxan-2-yl]oxy}-4-ethyl-3a,7,9,11,13,15-hexamethyl-11-{[3-(quinolin-3-yl)prop-2-en-1-yl]oxy}-tetradecahydro-1H-oxacyclotetradeca[4,3-d][1,3]oxazole-2,6,8,14-tetrone

C42H59N3O10 (765.42)


   

5,8-Dihydroxy-1,4-naphthoquinone

5,8-dihydroxy-1,4-dihydronaphthalene-1,4-dione

C10H6O4 (190.0266)


D000970 - Antineoplastic Agents

   

Ppads

4-(2-{4-formyl-5-hydroxy-6-methyl-3-[(phosphonooxy)methyl]pyridin-2-yl}diazen-1-yl)benzene-1,3-disulfonic acid

C14H14N3O12PS2 (510.9757)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

Rifapentina

26-{[(4-cyclopentylpiperazin-1-yl)imino]methyl}-2,15,17,27,29-pentahydroxy-11-methoxy-3,7,12,14,16,18,22-heptamethyl-6,23-dioxo-8,30-dioxa-24-azatetracyclo[23.3.1.1^{4,7}.0^{5,28}]triaconta-1(28),2,4,9,19,21,25(29),26-octaen-13-yl acetate

C47H64N4O12 (876.4521)


   

Gedunin

NCGC00179126-03_C28H34O7_(6R,6aS,6bR,7aS,10S,10aS,12bR)-10-(3-Furyl)-4,4,6a,10a,12b-pentamethyl-3,8-dioxo-3,4,4a,5,6,6a,7a,8,10,10a,11,12,12a,12b-tetradecahydronaphtho[2,1-f]oxireno[d]isochromen-6-yl acetate

C28H34O7 (482.2304)


A natural product found in Azadirachta indica. Gedunin is a pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata. It has a role as an antimalarial, an antineoplastic agent, a Hsp90 inhibitor and a plant metabolite. It is a limonoid, an acetate ester, an epoxide, an enone, a member of furans, a pentacyclic triterpenoid, an organic heteropentacyclic compound and a lactone. Gedunin is a natural product found in Azadirachta indica, Cedrela odorata, and other organisms with data available. A pentacyclic triterpenoid natural product found particularly in Azadirachta indica and Cedrela odorata.

   

Dtxcid6021115

Rifapentine (Priftin)

C47H64N4O12 (876.4521)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AB - Antibiotics D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007917 - Leprostatic Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D012294 - Rifamycins C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent

   

Anthraquinone

9,10-anthraquinone;9,10-anthracenedione;anthraquinone;anthracene-9,10-dione;9,10-anthraquinone 9,10-anthracenedione anthraquinone anthracene-9,10-dione

C14H8O2 (208.0524)


Anthraquinone appears as yellow crystals or powder. (NTP, 1992) 9,10-anthraquinone is an anthraquinone that is anthracene in which positions 9 and 10 have been oxidised to carbonyls. Anthraquinone is a natural product found in Annona muricata, Casearia membranacea, and other organisms with data available. Anthraquinone is a polycyclic aromatic hydrocarbon derived from anthracene or phthalic anhydride. Anthraquinone is used in the manufacture of dyes, in the textile and pulp industries, and as a bird repellant. Compounds based on ANTHRACENES which contain two KETONES in any position. Substitutions can be in any position except on the ketone groups. Anthraquinone is used as a precursor for dye formation. Anthraquinone is used as a precursor for dye formation.

   

nigericin

Antibiotic K178

C40H68O11 (724.4761)


A polyether antibiotic which affects ion transport and ATPase activity in mitochondria. It is produced by Streptomyces hygroscopicus. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores CONFIDENCE standard compound; EAWAG_UCHEM_ID 3682

   

Tramadol

(R,R)-tramadol

C16H25NO2 (263.1885)


A racemate consisting of equal amounts of (R,R)- and (S,S)-tramadol. A centrally acting synthetic opioid analgesic, used (as the hydrochloride salt) to treat moderately severe pain. The (R,R)-enantiomer exhibits ten-fold higher analgesic potency than the (S,S)-enantiomer. Subsequently isolated from the root bark of Nauclea latifolia D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D009294 - Narcotics COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent D002491 - Central Nervous System Agents > D000700 - Analgesics N - Nervous system > N02 - Analgesics > N02A - Opioids Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1)

   

Boldine

4H-Dibenzo[de,g]quinoline-2,9-diol, 5,6,6a,7-tetrahydro-1,10-dimethoxy-6-methyl-, (6aS)-

C19H21NO4 (327.1471)


Boldine is an aporphine alkaloid. Boldine is a natural product found in Lindera umbellata, Damburneya salicifolia, and other organisms with data available. See also: Peumus boldus leaf (part of). D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents > D009466 - Neuromuscular Blocking Agents D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents (s)-boldine is a member of the class of compounds known as aporphines. Aporphines are quinoline alkaloids containing the dibenzo[de,g]quinoline ring system or a dehydrogenated derivative thereof (s)-boldine is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (s)-boldine can be found in sweet bay, which makes (s)-boldine a potential biomarker for the consumption of this food product. Origin: Plant; Formula(Parent): C19H21NO4; Bottle Name:Boldine hydrochloride; PRIME Parent Name:Boldine; PRIME in-house No.:V0322; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.487 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.480 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.482 IPB_RECORD: 841; CONFIDENCE confident structure Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1]. Boldine is an aporphine isoquinoline alkaloid extracted from the root of Litsea cubeba and also possesses these properties, including antioxidant, anti-inflammatory and cytoprotective effects. Boldine suppresses osteoclastogenesis, improves bone destruction by down-regulating the OPG/RANKL/RANK signal pathway and may be a potential therapeutic agent for rheumatoid arthritis[1].

   

Adenosine

Adenosine

C10H13N5O4 (267.0967)


COVID info from PDB, Protein Data Bank, COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058913 - Purinergic Agonists D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C - Cardiovascular system > C01 - Cardiac therapy Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C10H13N5O4; Bottle Name:Adenosine; PRIME Parent Name:Adenosine; PRIME in-house No.:0040 R0018, Purines MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; OIRDTQYFTABQOQ_STSL_0143_Adenosine_0500fmol_180430_S2_LC02_MS02_33; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.113 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.109 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.097 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.096 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 2621; CONFIDENCE confident structure Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2]. Adenosine (Adenine riboside), a ubiquitous endogenous autacoid, acts through the enrollment of four G protein-coupled receptors: A1, A2A, A2B, and A3. Adenosine affects almost all aspects of cellular physiology, including neuronal activity, vascular function, platelet aggregation, and blood cell regulation[1][2].

   

R-Phycoerythrin

[[5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-hydroxyphosphoryl] phosphono hydrogen phosphate

C10H16N5O13P3 (506.9957)


This record is a MS2 spectrum. Link to the MS spectrum is added in the following comment field.; [MS] MCH00018; Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00020.jpg The metal-free red phycobilin pigment in a conjugated chromoprotein of red algae. It functions as a light-absorbing substance together with chlorophylls. This record is a MS2 spectrum. Link to the MS spectrum is added in the following comment field.; [MS] MCH00018; Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00019.jpg Profile spectrum of this record is given as a JPEG file.; [Profile] MCH00018.jpg

   

Pilocarpine

Pilocarpine

C11H16N2O2 (208.1212)


S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 Pilocarpine is a selective M3-type muscarinic acetylcholine receptor (M3 muscarinic receptor) agonist.

   

probenecid

Probenecid (Benemid)

C13H19NO4S (285.1035)


M - Musculo-skeletal system > M04 - Antigout preparations > M04A - Antigout preparations > M04AB - Preparations increasing uric acid excretion D018501 - Antirheumatic Agents > D006074 - Gout Suppressants > D014528 - Uricosuric Agents C26170 - Protective Agent > C921 - Uricosuric Agent D010592 - Pharmaceutic Aids

   

Purine

InChI=1\C5H4N4\c1-4-5(8-2-6-1)9-3-7-4\h1-3H,(H,6,7,8,9

C5H4N4 (120.0436)


Purine is an endogenous metabolite. Purine is an endogenous metabolite.

   

pyridoxal phosphate

Pyridoxal-5-phosphate monohydrate

C8H10NO6P (247.0246)


A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.

   

Isopyridoxal

Pyridoxal hydrochrolide

C8H9NO3 (167.0582)


A pyridinecarbaldehyde that is pyridine-5-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 4 respectively.

   

Adenosine diphosphate

Adenosine-5-diphosphate Di(monocyclohexylammonium)salt

C10H15N5O10P2 (427.0294)


COVID info from COVID-19 Disease Map, PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors. Adenosine 5'-diphosphate (Adenosine diphosphate) is a nucleoside diphosphate. Adenosine 5'-diphosphate is the product of ATP dephosphorylation by ATPases. Adenosine 5'-diphosphate induces human platelet aggregation and inhibits stimulated adenylate cyclase by an action at P2T-purinoceptors.

   

Homocarnosine

g-Aminobutyryl histidine

C10H16N4O3 (240.1222)


A histidine derivative that is histidine in which one of the hydrogens attached to the alpha-amino group has been replaced by a 4-aminobutanoyl group.

   

L-Homocitrulline

L-Homocitrulline

C7H15N3O3 (189.1113)


A L-lysine derivative that is L-lysine having a carbamoyl group at the N(6)-position. It is found in individuals with urea cycle disorders. L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI). L-Homocitrulline is metabolized to homoarginine through homoargininosuccinate via the urea cycle pathway and its metabolic abnormality could lead to Lysinuric Protein Intolerance (LPI).

   

Betulin

NCGC00168803-04_C30H50O2_Lup-20(29)-ene-3,28-diol, (3beta)-

C30H50O2 (442.3811)


Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.

   

Inosine triphosphate

Inosine triphosphate

C10H15N4O14P3 (507.9798)


The inosine phosphate that has a triphosphate group at the 5-position. It is an intermediate in the metabolism of purine.

   

Octanol

InChI=1\C8H18O\c1-2-3-4-5-6-7-8-9\h9H,2-8H2,1H

C8H18O (130.1358)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

mefloquine

(+)-Mefloquine

C17H16F6N2O (378.1167)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrials, clinicaltrial Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent

   

Palmatin

Palmatine

[C21H22NO4]+ (352.1549)


Origin: Plant; Formula(Parent): C21H22NO4; Bottle Name:Palmatine chloride; PRIME Parent Name:Palmatine; PRIME in-house No.:V0288; SubCategory_DNP: Isoquinoline alkaloids, Benzylisoquinoline alkaloids

   

flufenamic acid

flufenamic acid

C14H10F3NO2 (281.0664)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AG - Fenamates C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5428; ORIGINAL_PRECURSOR_SCAN_NO 5423 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5418; ORIGINAL_PRECURSOR_SCAN_NO 5416 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5457; ORIGINAL_PRECURSOR_SCAN_NO 5455 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5442; ORIGINAL_PRECURSOR_SCAN_NO 5441 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5524; ORIGINAL_PRECURSOR_SCAN_NO 5519 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5447; ORIGINAL_PRECURSOR_SCAN_NO 5445 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9133; ORIGINAL_PRECURSOR_SCAN_NO 9128 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9153; ORIGINAL_PRECURSOR_SCAN_NO 9148 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9175; ORIGINAL_PRECURSOR_SCAN_NO 9171 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9182; ORIGINAL_PRECURSOR_SCAN_NO 9178 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9162; ORIGINAL_PRECURSOR_SCAN_NO 9160 CONFIDENCE standard compound; INTERNAL_ID 367; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9196; ORIGINAL_PRECURSOR_SCAN_NO 9192 Flufenamic acid is a non-steroidal anti-inflammatory agent, inhibits cyclooxygenase (COX), activates AMPK, and also modulates ion channels, blocking chloride channels and L-type Ca2+ channels, modulating non-selective cation channels (NSC), activating K+ channels. Flufenamic acid binds to the central pocket of TEAD2 YBD and inhibits both TEAD function and TEAD-YAP-dependent processes, such as cell migration and proliferation.

   

Uridine triphosphate

Uridine 5_-triphosphate

C9H15N2O15P3 (483.9685)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Palmatine

dibenzo(a,g)quinolizinium, 5,6-dihydro-2,3,9,10-tetramethoxy-, hydroxide (1:1)

C21H22NO4+ (352.1549)


Palmatine is a berberine alkaloid and an organic heterotetracyclic compound. It has a role as a plant metabolite. Palmatine is a natural product found in Coptis chinensis var. brevisepala, Thalictrum petaloideum, and other organisms with data available. See also: Berberis aristata stem (part of).

   

Kdo2-lipid A

(2R,5R)-2-[(2R,4R,5R)-2-carboxy-6-[(1R)-1,2-dihydroxyethyl]-2-[[(3S,5S,6R)-5-[[(3R)-3-dodecanoyloxytetradecanoyl]amino]-6-[[(3S,5S,6R)-3-hydroxy-5-[[(3R)-3-hydroxytetradecanoyl]amino]-4-[(3R)-3-hydroxytetradecanoyl]oxy-6-phosphonooxyoxan-2-yl]methoxy]-3-phosphonooxy-4-[(3R)-3-tetradecanoyloxytetradecanoyl]oxyoxan-2-yl]methoxy]-5-hydroxyoxan-4-yl]oxy-6-[(1R)-1,2-dihydroxyethyl]-4,5-dihydroxyoxane-2-carboxylic acid

C110H202N2O39P2 (2237.3359)


   

FOH 8:0

(2S)-2-octanol;(S)-(+)-2-octanol;(S)-2-octanol;d-octan-2-ol

C8H18O (130.1358)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

DNDS

4,4-dinitrostilbene-2,2-disulfonic acid

C14H10N2O10S2 (429.9777)


   

Sitafloxacin

7-[(7r)-7-Amino-5-azaspiro[2.4]hept-5-yl]-8-chloro-6-fluoro-1-[(1s,2r)-2-fluorocyclopropyl]-1,4-dihydro-4-oxo-3-quinolinecarboxylic acid

C19H18ClF2N3O3 (409.1005)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Ethidium

Ethidium

C21H20N3+ (314.1657)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C277 - Antiprotozoal Agent D004396 - Coloring Agents > D005456 - Fluorescent Dyes D004791 - Enzyme Inhibitors

   

UNII:76LB1G2X6V

Propanoic acid, 3-(((3-((1E)-2-(7-chloro-2-quinolinyl)ethenyl)phenyl)((3-(dimethylamino)-3-oxopropyl)thio)methyl)thio)-

C26H27ClN2O3S2 (514.1152)


D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D020024 - Leukotriene Antagonists D019141 - Respiratory System Agents > D018927 - Anti-Asthmatic Agents > D001993 - Bronchodilator Agents D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006727 - Hormone Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents

   

2,4-Diaminotoluene

2,4-Diaminotoluene

C7H10N2 (122.0844)


An aminotoluene that is para-toluidine with an additional amino group at position 2. D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens

   

Escosyl

7-hydroxy-6-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-2-chromenone

C15H16O9 (340.0794)


Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2]. Esculin, a fluorescent coumarin glucoside, is an active ingredient of ash bark[1]. Esculin ameliorates cognitive impairment in experimental diabetic nephropathy (DN), and exerts anti?oxidative stress and anti?inflammatory effects, via the MAPK signaling pathway[2].

   

Corbit

InChI=1\C14H8O2\c15-13-9-5-1-2-6-10(9)14(16)12-8-4-3-7-11(12)13\h1-8

C14H8O2 (208.0524)


Anthraquinone is used as a precursor for dye formation. Anthraquinone is used as a precursor for dye formation.

   

738-87-4

1-Cyclopropene-1-octanoic acid, 2-octyl-, homopolymer

C19H34O2 (294.2559)


   

GP-17

(3beta,12beta)-20-{[6-O-(beta-D-glucopyranosyl)-beta-D-glucopyranosyl]oxy}-12-hydroxydammar-24-en-3-yl beta-D-glucopyranoside

C48H82O18 (946.5501)


Gypenoside XVII is a ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. It has a role as a plant metabolite. It is a 12beta-hydroxy steroid, a beta-D-glucoside, a disaccharide derivative, a ginsenoside and a tetracyclic triterpenoid. It derives from a hydride of a dammarane. Gypenoside XVII is a natural product found in Panax vietnamensis, Gynostemma pentaphyllum, and other organisms with data available. A ginsenoside found in Panax species that is dammarane which is substituted by hydroxy groups at the 3beta, 12beta and 20 pro-S positions, in which the hydroxy groups at positions 3 and 20 have been converted to the corresponding beta-D-glucopyranoside and beta-D-glucopyranosyl-(1->6)-beta-D-glucopyranoside respectively, and in which a double bond has been introduced at the 24-25 position. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors. Gypenoside XVII, a novel phytoestrogen belonging to the gypenosides, can activate estrogen receptors.

   

Sterculic_acid

omega-(2-n-octylcycloprop-1-enyl)octanoic acid

C19H34O2 (294.2559)


Sterculic acid is a long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group. It is a cyclopropenyl fatty acid, a long-chain fatty acid and a monounsaturated fatty acid. It is functionally related to an octadec-9-enoic acid. Sterculic acid is a natural product found in Hibiscus syriacus, Amaranthus cruentus, and other organisms with data available. A long-chain, monounsaturated fatty acid composed of 9-octadecenoic acid having a 9,10-cyclopropenyl group.

   

Physalien

[(1R)-4-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-18-[(4R)-4-hexadecanoyloxy-2,6,6-trimethyl-cyclohexen-1-yl]-3,7,12,16-tetramethyl-octadeca-1,3,5,7,9,11,13,15,17-nonaenyl]-3,5,5-trimethyl-cyclohex-3-en-1-yl] hexadecanoate

C72H116O4 (1044.8873)


Physalien is a xanthophyll. Physalien is a natural product found in Lycium chinense and Alkekengi officinarum var. franchetii with data available. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

1-octanol

1-octanol

C8H18O (130.1358)


D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].

   

piperazine

piperazine

C4H10N2 (86.0844)


P - Antiparasitic products, insecticides and repellents > P02 - Anthelmintics > P02C - Antinematodal agents > P02CB - Piperazine and derivatives D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics C254 - Anti-Infective Agent > C276 - Antiparasitic Agent > C250 - Antihelminthic Agent

   

ISOQUINOLINE

ISOQUINOLINE

C9H7N (129.0578)


   

Abacavir

Abacavir

C14H18N6O (286.1542)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AF - Nucleoside and nucleotide reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97452 - Nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D009676 - Noxae > D000963 - Antimetabolites > D015224 - Dideoxynucleosides D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

PERAZINE

PERAZINE

C20H25N3S (339.1769)


N - Nervous system > N05 - Psycholeptics > N05A - Antipsychotics > N05AB - Phenothiazines with piperazine structure D002492 - Central Nervous System Depressants > D014149 - Tranquilizing Agents > D014150 - Antipsychotic Agents D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D014149 - Tranquilizing Agents D018377 - Neurotransmitter Agents > D015259 - Dopamine Agents > D018492 - Dopamine Antagonists D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C66883 - Dopamine Antagonist

   

NICOTINAMIDE-adenine-dinucleotide

NICOTINAMIDE-adenine-dinucleotide

C21H28N7O14P2+ (664.1169)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Potassium cation

Potassium cation

K+ (38.9637)


   

Suramin

Suramin

C51H40N6O23S6 (1296.0469)


C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor > C1971 - Angiogenesis Activator Inhibitor D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000871 - Anthelmintics D000970 - Antineoplastic Agents

   

CANNABICHROMENE

CANNABICHROMENE

C21H30O2 (314.2246)


   

Diquafosol

Diquafosol

C18H26N4O23P4 (789.9938)


C78283 - Agent Affecting Organs of Special Senses

   

Diadenosine tetraphosphate

p(1),p(4)-Bis(5-adenosyl) tetraphosphate

C20H28N10O19P4 (836.0483)


A diadenosyl tetraphosphate compound having the two 5-adenosyl residues attached at the P(1)- and P(4)-positions. D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors

   

4,4-dinitrostilbene-2,2-disulfonic acid

4,4-dinitrostilbene-2,2-disulfonic acid

C14H10N2O10S2 (429.9777)


   

ADP-Ribose

ADP-Ribose

C15H23N5O14P2 (559.0717)


COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Bis(adenosine)-5-pentaphosphate

Bis(adenosine)-5-pentaphosphate

C20H29N10O22P5 (916.0146)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

Gabazine

Gabazine

C15H17N3O3 (287.127)


D018377 - Neurotransmitter Agents > D018682 - GABA Agents > D018756 - GABA Antagonists

   

CID 5281302

CID 5281302

C27H22O12 (538.1111)


Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1]. Lithospermic acid ((+)-Lithospermic acid) is a plant-derived polycyclic phenolic carboxylic acid isolated from Salvia miltiorrhiza, and has the anti-oxidative and hepatoprotective activity on carbon tetrachloride (CCl4)-induced acute liver damage in vitro and in vivo[1].

   

(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione

(1R,3R,8R,12S,13R,17R,18E,20Z,24R,25S,26R)-12-hydroxy-17-[(1R)-1-hydroxyethyl]-5,13,25-trimethylspiro[2,10,16,23-tetraoxatetracyclo[22.2.1.03,8.08,25]heptacosa-4,18,20-triene-26,2-oxirane]-11,22-dione

C29H40O9 (532.2672)


D009676 - Noxae > D011042 - Poisons > D014255 - Trichothecenes D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins

   

Nomega-(ADP-D-ribosyl)-L-arginine

Nomega-(ADP-D-ribosyl)-L-arginine

C21H35N9O15P2 (715.1728)


   

Lariam

mefloquine

C17H16F6N2O (378.1167)


P - Antiparasitic products, insecticides and repellents > P01 - Antiprotozoals > P01B - Antimalarials > P01BC - Methanolquinolines D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Clemastine

Clemastine

C21H26ClNO (343.1703)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AA - Aminoalkyl ethers D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   

DPCPX

8-Cyclopentyl-1,3-dipropylxanthine

C16H24N4O2 (304.1899)


D018377 - Neurotransmitter Agents > D058905 - Purinergic Agents > D058914 - Purinergic Antagonists DPCPX (PD 116948), a xanthine derivative, is a highly potent and selective Adenosine A1 receptor antagonist, with a Ki of 0.46 nM in 3H-CHA binding to A1 receptors in rat whole brain membranes[1][2][3].

   

Methanesulfonate

METHANESULFONIC ACID

CH4SO3 (95.9881)


An alkanesulfonic acid in which the alkyl group directly linked to the sulfo functionality is methyl.

   

BROMODICHLOROMETHANE

BROMODICHLOROMETHANE

CHBrCl2 (161.8639)


D009676 - Noxae > D002273 - Carcinogens

   

9-Phenanthrol

9-Phenanthrol

C14H10O (194.0732)


D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors

   

CNQX

6-Cyano-7-nitroquinoxaline-2,3-dione

C9H4N4O4 (232.0233)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists CNQX (FG9065) is a potent and competitive AMPA/kainate receptor antagonist with IC50s of 0.3 μM and 1.5 μM, respectively. CNQX is a competitive non-NMDA receptor antagonist[1]. CNQX blocks the expression of fear-potentiated startle in rats[5].

   

GYKI 52466

4-(8-Methyl-9H-1,3-dioxolo(4,5-h)(2,3)benzodiazepin-5-yl)benzenamine

C17H15N3O2 (293.1164)


D018377 - Neurotransmitter Agents > D018683 - Excitatory Amino Acid Agents > D018691 - Excitatory Amino Acid Antagonists D018373 - Peripheral Nervous System Agents > D009465 - Neuromuscular Agents D002491 - Central Nervous System Agents > D018696 - Neuroprotective Agents D002491 - Central Nervous System Agents > D000927 - Anticonvulsants D020011 - Protective Agents

   

{[(2R,3S,4R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[({[({[(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

{[(2R,3S,4R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}[({[({[({[(3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)(hydroxy)phosphoryl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C20H29N10O22P5 (916.0146)


D002317 - Cardiovascular Agents > D014662 - Vasoconstrictor Agents

   

9,10-DHOA

(12Z)-9,10-Dihydroxyoctadec-12-enoic acid

C18H34O4 (314.2457)


9,10-DiHOME is a DiHOME obtained by formal dihydroxylation of the 9,10-double bond of octadeca-9,12-dienoic acid (the 12Z-geoisomer). It is a conjugate acid of a 9,10-DiHOME(1-).