L-Glutamine (BioDeep_00000001329)
Secondary id: BioDeep_00000229631, BioDeep_00000398103
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite Chemicals and Drugs BioNovoGene_Lab2019
Metabolite Card
Formula: C5H10N2O3 (146.069139)
Chinese Names: L-谷氨酰胺, 谷氨酰胺, 谷氨酰胺(Gln)
Spectrum Hits:
Top Source Homo sapiens(feces) 0.11%
Last reviewed on 2024-06-28.
Cite this Page
L-Glutamine. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/glutamine (retrieved
2024-11-06) (BioDeep RN: BioDeep_00000001329). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Molecular Structure
SMILES: C(CC(=O)N)C(C(=O)O)N
InChI: InChI=1S/C5H10N2O3/c6-3(5(9)10)1-2-4(7)8/h3H,1-2,6H2,(H2,7,8)(H,9,10)
Description
Glutamine (Gln), also known as L-glutamine is an alpha-amino acid. These are amino acids in which the amino group is attached to the carbon atom immediately adjacent to the carboxylate group (alpha carbon). Amino acids are organic compounds that contain amino (–NH2) and carboxyl (–COOH) functional groups, along with a side chain (R group) specific to each amino acid. Structurally, glutamine is similar to the amino acid glutamic acid. However, instead of having a terminal carboxylic acid, it has an amide. Glutamine is one of 20 proteinogenic amino acids, i.e., the amino acids used in the biosynthesis of proteins. Glutamine is found in all organisms ranging from bacteria to plants to animals. It is classified as an aliphatic, polar amino acid. In humans glutamine is considered a non-essential amino acid. Enzymatically, glutamine is formed by replacing a side-chain hydroxyl of glutamic acid with an amine functional group. More specifically, glutamine is synthesized by the enzyme glutamine synthetase from glutamate and ammonia. The most relevant glutamine-producing tissue are skeletal muscles, accounting for about 90\\\\\\% of all glutamine synthesized. Glutamine is also released, in small amounts, by the lungs and brain. In human blood, glutamine is the most abundant free amino acid. Dietary sources of glutamine include protein-rich foods such as beef, chicken, fish, dairy products, eggs, beans, beets, cabbage, spinach, carrots, parsley, vegetable juices, wheat, papaya, Brussels sprouts, celery and kale. Glutamine is one of the few amino acids that can directly cross the blood–brain barrier. Glutamine is often used as a supplement in weightlifting, bodybuilding, endurance and other sports, as well as by those who suffer from muscular cramps or pain, particularly elderly people. In 2017, the U.S. Food and Drug Administration (FDA) approved L-glutamine oral powder, marketed as Endari, to reduce severe complications of sickle cell disease in people aged five years and older with the disorder. Subjects who were treated with L-glutamine oral powder experienced fewer hospital visits for pain treated with a parenterally administered narcotic or ketorolac. The main use of glutamine within the diet of either group is as a means of replenishing the bodys stores of amino acids that have been used during exercise or everyday activities. Studies which have looked into problems with excessive consumption of glutamine thus far have proved inconclusive. However, normal supplementation is healthy mainly because glutamine is supposed to be supplemented after prolonged periods of exercise (for example, a workout or exercise in which amino acids are required for use) and replenishes amino acid stores. This is one of the main reasons glutamine is recommended during fasting or for people who suffer from physical trauma, immune deficiencies, or cancer. There is a significant body of evidence that links glutamine-enriched diets with positive intestinal effects. These include maintenance of gut barrier function, aiding intestinal cell proliferation and differentiation, as well as generally reducing septic morbidity and the symptoms of Irritable Bowel Syndrome (IBS). The reason for such "cleansing" properties is thought to stem from the fact that the intestinal extraction rate of glutamine is higher than that for other amino acids, and is therefore thought to be the most viable option when attempting to alleviate conditions relating to the gastrointestinal tract. These conditions were discovered after comparing plasma concentration within the gut between glutamine-enriched and non glutamine-enriched diets. However, even though glutamine is thought to have "cleansing" properties and effects, it is unknown to what extent glutamine has clinical benefits, due to the varied concentrations of glutamine in varieties of food. It is also known that glutamine has positive effects in reducing healing time after operations. Hospital waiting times after abdominal s...
L-glutamine, also known as L-2-aminoglutaramic acid or levoglutamide, is a member of the class of compounds known as L-alpha-amino acids. L-alpha-amino acids are alpha amino acids which have the L-configuration of the alpha-carbon atom. L-glutamine is soluble (in water) and a moderately acidic compound (based on its pKa). L-glutamine can be found in a number of food items such as acorn, yautia, ohelo berry, and oregon yampah, which makes L-glutamine a potential biomarker for the consumption of these food products. L-glutamine can be found primarily in most biofluids, including blood, sweat, breast milk, and cerebrospinal fluid (CSF), as well as throughout most human tissues. L-glutamine exists in all living species, ranging from bacteria to humans. In humans, L-glutamine is involved in several metabolic pathways, some of which include amino sugar metabolism, the oncogenic action of 2-hydroxyglutarate, mercaptopurine metabolism pathway, and transcription/Translation. L-glutamine is also involved in several metabolic disorders, some of which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria, tay-sachs disease, xanthinuria type I, and adenosine deaminase deficiency. Moreover, L-glutamine is found to be associated with carbamoyl Phosphate Synthetase Deficiency, epilepsy, schizophrenia, and alzheimers disease. L-glutamine is a non-carcinogenic (not listed by IARC) potentially toxic compound. L-glutamine is a drug which is used for nutritional supplementation, also for treating dietary shortage or imbalance.
L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].
L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].
L-Glutamine (L-Glutamic acid 5-amide) is a non-essential amino acid present abundantly throughout the body and involved in many metabolic processes. L-Glutamine provides a source of carbons for oxidation in some cells[1][2].
Synonyms
46 synonym names
l-glutamine-13c5, 15n2, 99 atom \\% 13c, 9; (2S)-2-Amino-4-carbamoylbutanoic acid; (2S)-2,5-Diamino-5-oxopentanoic acid; (S)-2,5-Diamino-5-oxopentanoic acid; (2S)-2-Amino-4-carbamoylbutanoate; (2S)-2,5-Diamino-5-oxopentanoate; (S)-2,5-Diamino-5-oxopentanoate; L-Glutamic acid gamma-amide; L-2-Aminoglutaramidic acid; L-2-Aminoglutaramic acid; L-Glutamate gamma-amide; L-Glutaminsaeure-5-amid; L-Glutamic acid γ-amide; L-Glutamic acid g-amide; L-Glutamic acid 5-amide; 2-Aminoglutaramic acid; Glutamic acid 5-amide; L-2-Aminoglutaramate; L-Glutamate g-amide; L-Glutamate γ-amide; Glutamic acid amide; Glutamate 5-amide; Glutamate amide; L-(+)-Glutamine; gamma-Glutamine; Levoglutamidum; Levoglutamida; Levoglutamina; Levoglutamide; Levoglutamid; D Glutamine; L Glutamine; D-Glutamine; L-Glutamine; L-Glutamide; L-Glutamin; L-Glutamid; Nutrestore; Stimulina; GLUTAMINE; Glavamin; Cebrogen; Endari; Glumin; L-Gln; Glutamine
Cross Reference
59 cross reference id
- ChEBI: CHEBI:28300
- ChEBI: CHEBI:18050
- KEGG: C00064
- KEGGdrug: D70833
- KEGGdrug: D00015
- PubChem: 5961
- PubChem: 738
- HMDB: HMDB0000641
- Metlin: METLIN18
- DrugBank: DB00130
- ChEMBL: CHEMBL930
- Wikipedia: Glutamine
- MeSH: Glutamine
- MetaCyc: GLN
- KNApSAcK: C00001359
- foodb: FDB030965
- chemspider: 5746
- CAS: 56-85-9
- MoNA: KNA00237
- MoNA: KNA00066
- MoNA: PB000466
- MoNA: PB000465
- MoNA: PR100164
- MoNA: KO002947
- MoNA: PB000468
- MoNA: PS027303
- MoNA: KNA00065
- MoNA: PS027302
- MoNA: KNA00236
- MoNA: KO000843
- MoNA: KNA00067
- MoNA: KNA00630
- MoNA: PS027301
- MoNA: KNA00068
- MoNA: PB000467
- MoNA: KO000845
- MoNA: KO002948
- MoNA: PS027304
- MoNA: KNA00628
- MoNA: KO002945
- MoNA: KNA00238
- MoNA: KO002944
- MoNA: KNA00493
- MoNA: KO000844
- MoNA: KNA00491
- MoNA: KNA00629
- MoNA: KNA00492
- MoNA: PR100163
- MoNA: KO002946
- MoNA: KNA00239
- MoNA: KO000847
- MoNA: KO000846
- PMhub: MS000000340
- PDB-CCD: GLN
- 3DMET: B00017
- NIKKAJI: J9.170G
- medchemexpress: HY-N0390
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-2
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-880
Classification Terms
Related Pathways
Reactome(0)
BioCyc(11)
- purine nucleotide metabolism (phosphotransfer and nucleotide modification)
- purine nucleotides de novo biosynthesis I
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- NAD biosynthesis II (from tryptophan)
- tRNA charging pathway
- peptidoglycan and lipid A precursor biosynthesis
- pyridine nucleotide cycling
- glutamine biosynthesis II
- arginine biosynthesis I
- tetrahydrofolate biosynthesis I
PlantCyc(0)
Biological Process
284 related biological process reactions.
Reactome(0)
BioCyc(33)
- purine nucleotide metabolism (phosphotransfer and nucleotide modification):
AMP + ATP ⟶ ADP + H+
- purine nucleotides de novo biosynthesis I:
adenylo-succinate ⟶ AMP + fumarate
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- guanosine nucleotides de novo biosynthesis:
ATP + ammonia + xanthosine-5-phosphate ⟶ AMP + GMP + H+ + diphosphate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- uridine-5'-phosphate biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- pyrimidine ribonucleotides de novo biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- arginine biosynthesis I:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- pyrimidine ribonucleotides de novo biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- uridine-5'-phosphate biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- pyridine nucleotide cycling (plants):
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- NAD biosynthesis II (from tryptophan):
H+ + O2 + trp ⟶ N-formylkynurenine
- NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde:
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- aspartate superpathway:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- NAD biosynthesis II (from tryptophan):
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde:
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- NAD biosynthesis I (from aspartate):
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- pyridine nucleotide cycling:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- 5-aminoimidazole ribonucleotide biosynthesis I:
5-phospho-β-D-ribosyl-amine + ATP + gly ⟶ 5-phospho-ribosyl-glycineamide + ADP + H+ + phosphate
- 5-aminoimidazole ribonucleotide biosynthesis II:
5-phospho-β-D-ribosyl-amine + ATP + gly ⟶ 5-phospho-ribosyl-glycineamide + ADP + H+ + phosphate
- histidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- tetrahydrofolate biosynthesis I:
6-hydroxymethyl-7,8-dihydropterin + ATP ⟶ 6-hydroxymethyl-dihydropterin diphosphate + AMP + H+
- pyrimidine nucleotide metabolism (phosphotransfer and nucleotide modification):
ATP + H2O + UTP + gln ⟶ ADP + CTP + H+ + glt + phosphate
- pyrimidine ribonucleotides interconversion:
ATP + H2O + UTP + gln ⟶ ADP + CTP + H+ + glt + phosphate
- glutamine biosynthesis II:
ATP + ammonia + glt ⟶ ADP + H+ + gln + phosphate
- pyrimidine ribonucleotides interconversion:
ATP + H2O + UTP + gln ⟶ ADP + CTP + H+ + glt + phosphate
- glutamine biosynthesis II:
H2O + NAD(P)+ + glt ⟶ 2-oxoglutarate + NAD(P)H + ammonia
- UDP-N-acetylglucosamine biosynthesis:
D-fructose-6-phosphate + gln ⟶ D-glucosamine-6-phosphate + glt
- peptidoglycan and lipid A precursor biosynthesis:
ATP + UDP-N-acetylmuramate + ala ⟶ ADP + H+ + UDP-N-acetylmuramyl-L-Ala + phosphate
- UDP-N-acetyl-D-glucosamine biosynthesis II:
D-fructose-6-phosphate + gln ⟶ D-glucosamine 6-phosphate + glt
- UDP-N-acetyl-D-glucosamine biosynthesis I:
D-fructose-6-phosphate + gln ⟶ D-glucosamine 6-phosphate + glt
- tRNA charging pathway:
ATP + arg ⟶ AMP + diphosphate
WikiPathways(4)
- GABA metabolism (aka GHB):
beta-alanine ⟶ malonic semialdehyde
- 22q11.2 copy number variation syndrome:
Dopamine ⟶ 3-Methoxytyramine
- Neuroinflammation and glutamatergic signaling:
L-serine ⟶ D-serine
- Metabolic reprogramming in pancreatic cancer:
lactate ⟶ pyruvate
Plant Reactome(0)
INOH(8)
- Purine nucleotides and Nucleosides metabolism ( Purine nucleotides and Nucleosides metabolism ):
H2O + XTP ⟶ Pyrophosphate + XMP
- Glutamic acid and Glutamine metabolism ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamine + tRNA(Gln) ⟶ AMP + L-Glutaminyl-tRNA(Gln) + Pyrophosphate
- Nicotinate and Nicotinamide metabolism ( Nicotinate and Nicotinamide metabolism ):
ATP + Deamido-NAD+ + H2O + L-Glutamine ⟶ AMP + L-Glutamic acid + NAD+ + Pyrophosphate
- Alanine,Aspartic acid and Asparagine metabolism ( Alanine,Aspartic acid and Asparagine metabolism ):
H2O + N-Acetyl-L-aspartic acid ⟶ Acetic acid + L-Aspartic acid
- Aminosugars metabolism ( Aminosugars metabolism ):
D-Fructose 6-phosphate + NH3 ⟶ D-Glucosamine 6-phosphate + H2O
- L-Glutamine + D-Fructose 6-phosphate = L-Glutamic acid + D-Glucosamine 6-phosphate ( Fructose and Mannose metabolism ):
D-Glucosamine 6-phosphate + L-Glutamic acid ⟶ D-Fructose 6-phosphate + L-Glutamine
- ATP + L-Glutamic acid + NH3 = ADP + L-Glutamine + Orthophosphate ( Glutamic acid and Glutamine metabolism ):
ATP + L-Glutamic acid + NH3 ⟶ ADP + L-Glutamine + Orthophosphate
- L-Glutamine + H2O = L-Glutamic acid + NH3 ( Glutamic acid and Glutamine metabolism ):
H2O + L-Glutamine ⟶ L-Glutamic acid + NH3
PlantCyc(0)
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
Adenosine + Pi ⟶ Adenine + _alpha_-D-Ribose 1-phosphate
PathBank(238)
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- Glutamate Metabolism:
Adenosine triphosphate + L-Glutamine + Water + Xanthylic acid ⟶ Adenosine monophosphate + Guanosine monophosphate + L-Glutamic acid + Pyrophosphate
- 2-Hydroxyglutric Aciduria (D and L Form):
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- 4-Hydroxybutyric Aciduria/Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Homocarnosinosis:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Hyperinsulinism-Hyperammonemia Syndrome:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Succinic Semialdehyde Dehydrogenase Deficiency:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Purine Nucleotides De Novo Biosynthesis:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Purine Nucleotides De Novo Biosynthesis 2:
N(6)-(1,2-dicarboxyethyl)AMP ⟶ Adenosine monophosphate + Fumaric acid
- Tryptophan Metabolism:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Tryptophan Metabolism II:
Indole + L-Serine ⟶ L-Tryptophan + Water
- Tryptophan Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Tryptophan Metabolism:
Phosphoadenosine phosphosulfate + indolylmethyl-desulfoglucosinolate ⟶ Adenosine 3',5'-diphosphate + Glucobrassicin + Hydrogen Ion
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Pyrimidine Metabolism:
Hydrogen Ion + N-carbamoyl-L-aspartate ⟶ 4,5-Dihydroorotic acid + Water
- Pyrimidine Metabolism:
Hydrogen Ion + N-carbamoyl-L-aspartate ⟶ 4,5-Dihydroorotic acid + Water
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Proline Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Pyrimidine Metabolism:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- beta-Ureidopropionase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Dihydropyrimidinase Deficiency:
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- UMP Synthase Deficiency (Orotic Aciduria):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- MNGIE (Mitochondrial Neurogastrointestinal Encephalopathy):
Deoxycytidine + Water ⟶ Ammonia + Deoxyuridine
- Arginine Metabolism:
N-Acetylornithine + Water ⟶ Acetic acid + Ornithine
- Pyrimidine Metabolism:
Hydrogen Ion + N-carbamoyl-L-aspartate ⟶ 4,5-Dihydroorotic acid + Water
- Nicotinate and Nicotinamide Metabolism:
NAD + Water ⟶ Adenosine monophosphate + Nicotinamide ribotide
- NAD Biosynthesis:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Glutamic acid + NAD + Pyrophosphate
- NAD Salvage:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Glutamic acid + NAD + Pyrophosphate
- NAD Metabolism:
N'-Formylkynurenine + Water ⟶ Formic acid + Hydrogen Ion + L-Kynurenine
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- Nicotinate and Nicotinamide Metabolism:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + L-Glutamic acid + NAD + Pyrophosphate
- NAD Biosynthesis:
Adenosine triphosphate + Ammonium + Nicotinic acid adenine dinucleotide ⟶ Adenosine monophosphate + Hydrogen Ion + NAD + Pyrophosphate
- NAD Salvage:
Adenosine triphosphate + L-Glutamine + Nicotinic acid adenine dinucleotide + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Glutamic acid + NAD + Pyrophosphate
- Vitamin B6 Metabolism:
Oxygen + Pyridoxamine 5'-phosphate + Water ⟶ Ammonia + Hydrogen peroxide + Pyridoxal 5'-phosphate
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- Phenylacetate Metabolism:
Adenosine triphosphate + Coenzyme A + Phenylacetic acid ⟶ Adenosine monophosphate + Phenylacetyl-CoA + Pyrophosphate
- D-Glutamine and D-Glutamate Metabolism:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- L-Glutamate Metabolism:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutamine Metabolism:
Adenosine triphosphate + Phosphate + Pyruvic acid ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoenolpyruvic acid + Pyrophosphate
- D-Glutamine and D-Glutamate Metabolism:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- L-Glutamate Metabolism:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
Adenosine triphosphate + Ammonia + L-Aspartic acid ⟶ Adenosine monophosphate + L-Asparagine + Pyrophosphate
- Asparagine Biosynthesis:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Asparagine Metabolism:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Asparagine Metabolism:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Aspartate Metabolism:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Ammonia Recycling:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Canavan Disease:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Hypoacetylaspartia:
N-Acetyl-L-aspartic acid + Water ⟶ Acetic acid + L-Aspartic acid
- Aspartate Metabolism:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Asparagine Biosynthesis:
Adenosine triphosphate + L-Aspartic acid + L-Glutamine + Water ⟶ Adenosine monophosphate + Hydrogen Ion + L-Asparagine + L-Glutamic acid + Pyrophosphate
- Azathioprine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Thioguanine Action Pathway:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mercaptopurine Metabolism Pathway:
Adenosine triphosphate + L-Glutamine + Thioxanthine monophosphate + Water ⟶ 6-Thioguanosine monophosphate + Adenosine monophosphate + Pyrophosphate
- Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Secondary Metabolites: Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Histidine Biosynthesis:
Adenosine triphosphate + D-Ribose 5-phosphate ⟶ Adenosine monophosphate + Hydrogen Ion + Phosphoribosyl pyrophosphate
- Histidine Metabolism:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol phosphate + Oxoglutaric acid
- Histidine Biosynthesis:
L-Glutamine + Phosphoribulosylformimino-AICAR-P ⟶ 5-Aminoimidazole-4-carboxamide + D-Erythro-imidazole-glycerol-phosphate + Hydrogen Ion + L-Glutamic acid
- Secondary Metabolites: Histidine Biosynthesis:
Imidazole acetol-phosphate + L-Glutamic acid ⟶ L-histidinol-phosphate + Oxoglutaric acid
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Purine Metabolism:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Adenosine Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Gout or Kelley-Seegmiller Syndrome:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Molybdenum Cofactor Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- AICA-Ribosiduria:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Xanthinuria Type I:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Xanthinuria Type II:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome-3:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Deoxyadenosine + Phosphate ⟶ Adenine + Deoxyribose 1-phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Nitrogen Metabolism:
Ammonia + Hydrogen + NADPH + Oxoglutaric acid ⟶ L-Glutamic acid + NADP + Water
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Folate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Thiamin Diphosphate Biosynthesis:
L-Glutamine + Phosphoribosyl pyrophosphate + Water ⟶ 5-Phosphoribosylamine + L-Glutamic acid + Pyrophosphate
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- O-Antigen Building Blocks Biosynthesis:
-D-fructofuranose 6-phosphate + L-Glutamine ⟶ D-glucosamine 6-phosphate + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- Glutamate Metabolism:
Ornithine + Oxoglutaric acid ⟶ L-Glutamic -semialdehyde + L-Glutamic acid
- Amino Sugar and Nucleotide Sugar Metabolism:
-D-Glucose + Adenosine triphosphate ⟶ -D-Glucose 6-phosphate + Adenosine diphosphate
- Tetrahydrofolate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- The Oncogenic Action of L-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of D-2-Hydroxyglutarate in Hydroxyglutaric aciduria:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Nitrogen Metabolism:
Adenosine triphosphate + Ammonia + L-Glutamic acid ⟶ Adenosine diphosphate + L-Glutamine + Phosphate
- Glutamic Acid Metabolism:
-Aminobutyric acid + Pyruvic acid ⟶ L-Alanine + Succinic acid semialdehyde
- Folate Biosynthesis:
Adenosine triphosphate + HMDHP ⟶ Adenosine monophosphate + HMDHP pyrophosphate + Hydrogen Ion
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Warburg Effect:
L-Glutamic acid + NAD + Water ⟶ Ammonia + NADH + Oxoglutaric acid
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Urea Cycle:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Purine Metabolism:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Amino Sugar Metabolism:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Warburg Effect:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Chitin Biosynthesis:
Fructose 6-phosphate + L-Glutamine ⟶ Glucosamine 6-phosphate + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- The Oncogenic Action of 2-Hydroxyglutarate:
L-Glutamine + Water ⟶ Ammonia + L-Glutamic acid
- Glutaminolysis and Cancer:
L-Glutamine ⟶ Ammonia + L-Glutamic acid
- Adenosine Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Adenylosuccinate Lyase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- AICA-Ribosiduria:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Argininemia:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Argininosuccinic Aciduria:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Carbamoyl Phosphate Synthetase Deficiency:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Citrullinemia Type I:
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Gout or Kelley-Seegmiller Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthine Dehydrogenase Deficiency (Xanthinuria):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Lesch-Nyhan Syndrome (LNS):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Sialuria or French Type Sialuria:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Salla Disease/Infantile Sialic Acid Storage Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Molybdenum Cofactor Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Purine Nucleoside Phosphorylase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Ornithine Transcarbamylase Deficiency (OTC Deficiency):
Adenosine triphosphate + Citrulline + L-Aspartic acid ⟶ Adenosine monophosphate + Argininosuccinic acid + Pyrophosphate
- Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Xanthinuria Type I:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Xanthinuria Type II:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- G(M2)-Gangliosidosis: Variant B, Tay-Sachs Disease:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Adenine Phosphoribosyltransferase Deficiency (APRT):
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Mitochondrial DNA Depletion Syndrome:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Myoadenylate Deaminase Deficiency:
Adenosine + Phosphate ⟶ Adenine + Ribose 1-phosphate
- Nitrogen Metabolism:
Carbamic acid + Hydrogen Ion ⟶ Ammonia + Carbon dioxide
- Lipopolysaccharide Biosynthesis:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Amino Sugar and Nucleotide Sugar Metabolism I:
N-Acetyl-D-Glucosamine 6-Phosphate + Water ⟶ Acetic acid + Glucosamine 6-phosphate
- Peptidoglycan Biosynthesis I:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-acetylmuramoyl-L-alanine
- Folate Biosynthesis:
7,8-Dihydroneopterin ⟶ 6-hydroxymethyl-7,8-dihydropterin + Glycolaldehyde
- Lipopolysaccharide Biosynthesis II:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Thiamin Diphosphate Biosynthesis:
L-Glutamine + Phosphoribosyl pyrophosphate + Water ⟶ 5-Phosphoribosylamine + L-Glutamic acid + Pyrophosphate
- Lipopolysaccharide Biosynthesis III:
UDP-3-O-[(3R)-3-hydroxymyristoyl]-N-acetyl- -D-glucosamine + Water ⟶ Acetic acid + UDP-3-O-(3-hydroxymyristoyl)- -D-glucosamine
- Peptidoglycan Biosynthesis II:
Adenosine triphosphate + L-Alanine + UDP-N-acetyl- -D-muramate ⟶ Adenosine diphosphate + Hydrogen Ion + Phosphate + UDP-N-Acetylmuramyl-L-Ala
- O-Antigen Building Blocks Biosynthesis:
-D-fructofuranose 6-phosphate + L-Glutamine ⟶ D-glucosamine 6-phosphate + L-Glutamic acid
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Glutamine:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Glutamine:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Glutamine:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- Protein Synthesis: Glutamine:
Adenosine triphosphate + L-Glutamine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
- tRNA Charging 2:
Adenosine triphosphate + Hydrogen Ion + L-Arginine ⟶ Adenosine monophosphate + Pyrophosphate
PharmGKB(0)
3 organism taxonomy source information
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
Literature Reference
- Giuseppe Forlani, Giuseppe Sabbioni, Simone Barera, Dietmar Funck. A complex array of factors regulate the activity of Arabidopsis thaliana δ1 -pyrroline-5-carboxylate synthetase isoenzymes to ensure their specific role in plant cell metabolism.
Plant, cell & environment.
2024 Apr; 47(4):1348-1362. doi:
10.1111/pce.14817
. [PMID: 38223941] - Nguyen Ky Anh, Nguyen Thi Hai Yen, Nguyen Tran Nam Tien, Nguyen Ky Phat, Young Jin Park, Ho-Sook Kim, Dinh Hoa Vu, Jee Youn Oh, Dong Hyun Kim, Nguyen Phuoc Long. Metabolic phenotyping and global functional analysis facilitate metabolic signature discovery for tuberculosis treatment monitoring.
Biochimica et biophysica acta. Molecular basis of disease.
2024 Apr; 1870(4):167064. doi:
10.1016/j.bbadis.2024.167064
. [PMID: 38342417] - Catarina Santos, Rui Carvalho, Ana Mafalda Fonseca, Miguel Castelo Branco, Marco Alves, Ivana Jarak. Standard Doses of Cholecalciferol Reduce Glucose and Increase Glutamine in Obesity-Related Hypertension: Results of a Randomized Trial.
International journal of molecular sciences.
2024 Mar; 25(6):. doi:
10.3390/ijms25063416
. [PMID: 38542390] - Hai-Yang Chen, Chang Li, Chong-Yu Shao, Yu-Jia Wu, Hai-Tong Wan, Yu He. An auxiliary strategy of partial least squares regression in pharmacokinetic/pharmacodynamic studies: A case of application of guhong injection in myocardial ischemia/reperfusion rats.
Journal of food and drug analysis.
2024 Mar; 32(1):79-102. doi:
10.38212/2224-6614.3492
. [PMID: 38526587] - Sida Hao, Lin Shen, Pengju Liu, Qin Yong, Yeqiang Wang, Xiangyi Zheng. Development of a prognostic model for muscle-invasive bladder cancer using glutamine metabolism.
Computers in biology and medicine.
2024 Mar; 171(?):108223. doi:
10.1016/j.compbiomed.2024.108223
. [PMID: 38430744] - Chengcheng Peng, Pengpeng Xiao, Nan Li. Does oncolytic viruses-mediated metabolic reprogramming benefit or harm the immune microenvironment?.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2024 02; 38(3):e23450. doi:
10.1096/fj.202301947rr
. [PMID: 38294796] - Lourdes Sainero-Alcolado, Elisa Garde-Lapido, Marteinn Thor Snaebjörnsson, Sarah Schoch, Irene Stevens, María Victoria Ruiz-Pérez, Christine Dyrager, Vicent Pelechano, Håkan Axelson, Almut Schulze, Marie Arsenian-Henriksson. Targeting MYC induces lipid droplet accumulation by upregulation of HILPDA in clear cell renal cell carcinoma.
Proceedings of the National Academy of Sciences of the United States of America.
2024 Feb; 121(7):e2310479121. doi:
10.1073/pnas.2310479121
. [PMID: 38335255] - Gopal S Kallure, Shubhranshu Shekhar Sahoo, Rutuja S Kale, Vitthal T Barvkar, Ravindar Kontham, Ashok P Giri. Aminoacylase efficiently hydrolyses fatty acid amino acid conjugates of Helicoverpa armigera potentially to increase the pool of glutamine.
Insect biochemistry and molecular biology.
2024 Feb; 165(?):104070. doi:
10.1016/j.ibmb.2024.104070
. [PMID: 38176573] - Yoichiro Kasuga, Ailing Hu, Zenji Kawakami, Masahiro Tabuchi, Takuji Yamaguchi, Hiroyuki Kobayashi, Shigaku Ikeda. Suppressive effect of Yokukansan on glutamate released from canine keratinocytes.
Open veterinary journal.
2024 Feb; 14(2):683-691. doi:
10.5455/ovj.2024.v14.i2.8
. [PMID: 38549576] - Qiangnu Zhang, Teng Wei, Wen Jin, Lesen Yan, Lulin Shi, Siqi Zhu, Yu Bai, Yuandi Zeng, Zexin Yin, Jilin Yang, Wenjian Zhang, Meilong Wu, Yusen Zhang, Gongze Peng, Stephanie Roessler, Liping Liu. Deficiency in SLC25A15, a hypoxia-responsive gene, promotes hepatocellular carcinoma by reprogramming glutamine metabolism.
Journal of hepatology.
2024 Feb; 80(2):293-308. doi:
10.1016/j.jhep.2023.10.024
. [PMID: 38450598] - Hélène Sanfaçon, Tim Skern. AlphaFold modeling of nepovirus 3C-like proteinases provides new insights into their diverse substrate specificities.
Virology.
2024 02; 590(?):109956. doi:
10.1016/j.virol.2023.109956
. [PMID: 38052140] - Lan Yang, Rong Han, Yaoke Duan, Jiayi Li, Tianyun Gou, Jie Zhou, Haijia Zhu, Zhongmin Xu, Jia Guo, Haijun Gong. Exogenous application of silicon and selenium improves the tolerance of tomato plants to calcium nitrate stress.
Plant physiology and biochemistry : PPB.
2024 Feb; 207(?):108416. doi:
10.1016/j.plaphy.2024.108416
. [PMID: 38354528] - Xi Zhang, Hong Zheng, Zhitao Ni, Yuyin Shen, Die Wang, Wenqing Li, Liangcai Zhao, Chen Li, Hongchang Gao. Fibroblast growth factor 21 alleviates diabetes-induced cognitive decline.
Cerebral cortex (New York, N.Y. : 1991).
2024 01; 34(2):. doi:
10.1093/cercor/bhad502
. [PMID: 38220573] - Hongshuo Shi, Xin Yuan, Xiao Yang, Renyan Huang, Weijing Fan, Guobin Liu. A novel diabetic foot ulcer diagnostic model: identification and analysis of genes related to glutamine metabolism and immune infiltration.
BMC genomics.
2024 Jan; 25(1):125. doi:
10.1186/s12864-024-10038-2
. [PMID: 38287255] - Qiwei He, Tiantian Yu, Junxiong Chen, Jianli Liang, Dongni Lin, Kaihao Yan, Zijing Xie, Yuqi Song, Zhenzhou Chen. Enhancement of de novo lipogenesis by the IDH1 and IDH2-dependent reverse TCA cycle maintains the growth and angiogenic capacity of bone marrow-derived endothelial progenitor cells under hypoxia.
Free radical biology & medicine.
2024 Jan; 213(?):327-342. doi:
10.1016/j.freeradbiomed.2024.01.028
. [PMID: 38281628] - Xiaotian Qin, Mengge Guo, Shaohua Qin, Ruidan Chen. [Exploration of cross-cultivar group characteristics of a new cultivar of Prunus mume 'Zhizhang Guhong Chongcui'].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2024 Jan; 40(1):239-251. doi:
10.13345/j.cjb.230287
. [PMID: 38258644] - Zixuan Wu, Na Li, Yuan Gao, Liyuan Cao, Xiaolei Yao, Qinghua Peng. Glutamine metabolism-related genes and immunotherapy in nonspecific orbital inflammation were validated using bioinformatics and machine learning.
BMC genomics.
2024 Jan; 25(1):71. doi:
10.1186/s12864-023-09946-6
. [PMID: 38233749] - Pengliang Han, Chengli Wang, Fudong Li, Meilian Li, Jiajun Nie, Ming Xu, Hao Feng, Liangsheng Xu, Cong Jiang, Qingmei Guan, Lili Huang. Valsa mali PR1-like protein modulates an apple valine-glutamine protein to suppress JA signaling-mediated immunity.
Plant physiology.
2024 Jan; ?(?):. doi:
10.1093/plphys/kiae020
. [PMID: 38235781] - Rachel Rae J House, Elizabeth A Tovar, Luke N Redlon, Curt J Essenburg, Patrick S Dischinger, Abigail E Ellis, Ian Beddows, Ryan D Sheldon, Evan C Lien, Carrie R Graveel, Matthew R Steensma. NF1 deficiency drives metabolic reprogramming in ER+ breast cancer.
Molecular metabolism.
2024 Jan; 80(?):101876. doi:
10.1016/j.molmet.2024.101876
. [PMID: 38216123] - Jie Zhang, Kangwei Sun, Yu Wang, Wenjun Qian, Litao Sun, Jiazhi Shen, Zhaotang Ding, Kai Fan. Integrated metabolomic and transcriptomic analyses reveal the molecular mechanism of amino acid transport between source and sink during tea shoot development.
Plant cell reports.
2024 Jan; 43(1):28. doi:
10.1007/s00299-023-03110-w
. [PMID: 38177567] - Kim-Teng Lee, Hong-Sheng Liao, Ming-Hsiun Hsieh. Glutamine Metabolism, Sensing and Signaling in Plants.
Plant & cell physiology.
2023 Dec; 64(12):1466-1481. doi:
10.1093/pcp/pcad054
. [PMID: 37243703] - Ouyan Rang, Xinru Qin, Yonghong Tang, Lin Cao, Guojuan Li, Xiaocheng Liu, Jing Zhong, Mu Wang. The effect of fructose exposure on amino acid metabolism among Chinese community residents and its possible multi-omics mechanisms.
Scientific reports.
2023 12; 13(1):22704. doi:
10.1038/s41598-023-50069-5
. [PMID: 38123624] - Jinxia Wu, Zhenchang Li, Hongwei Zhu, Yajie Chang, Quanquan Li, Jing Chen, Guiping Shen, Jianghua Feng. Childhood overweight and obesity: age stratification contributes to the differences in metabolic characteristics.
Obesity (Silver Spring, Md.).
2023 Dec; ?(?):. doi:
10.1002/oby.23964
. [PMID: 38112246] - Roland Eghoghosoa Akhigbe, Bayo-Olugbami Adedamola Aminat, Tunmise Maryanne Akhigbe, Moses Agbomhere Hamed. Glutamine Alleviates I/R-Induced Intestinal Injury and Dysmotility Via the Downregulation of Xanthine Oxidase/Uric Acid Signaling and Lactate Generation in Wistar Rats.
The Journal of surgical research.
2023 Dec; 295(?):431-441. doi:
10.1016/j.jss.2023.11.041
. [PMID: 38070257] - Vadim G Lebedev, Alla V Korobova, Galina V Shendel, Konstantin A Shestibratov. Hormonal Status of Transgenic Birch with a Pine Glutamine Synthetase Gene during Rooting In Vitro and Budburst Outdoors.
Biomolecules.
2023 12; 13(12):. doi:
10.3390/biom13121734
. [PMID: 38136605] - Jinghua Jiang, Yiting Hu, Dazhang Fang, JianSheng Luo. Glutamine synthetase and hepatocellular carcinoma.
Clinics and research in hepatology and gastroenterology.
2023 Dec; 47(10):102248. doi:
10.1016/j.clinre.2023.102248
. [PMID: 37979911] - Mingxi Liu, Shuhan Dai, Lijun Yin, Zhijie Huang, Xin Jia. Wheat Gluten Deamidation: Structure, Allergenicity and Its Application in Hypoallergenic Noodles.
Journal of the science of food and agriculture.
2023 Nov; ?(?):. doi:
10.1002/jsfa.13133
. [PMID: 37968892] - Sarah L Speck, Dhaval P Bhatt, Qiang Zhang, Sangeeta Adak, Li Yin, Guifang Dong, Chu Feng, Wei Zhang, M Ben Major, Xiaochao Wei, Clay F Semenkovich. Hepatic palmitoyl-proteomes and acyl-protein thioesterase protein proximity networks link lipid modification and mitochondria.
Cell reports.
2023 Nov; 42(11):113389. doi:
10.1016/j.celrep.2023.113389
. [PMID: 37925639] - Xinbo Zhou, Junjie Zhang, Yutong Sun, Jian Shen, Bo Sun, Qingquan Ma. Glutamine Ameliorates Liver Steatosis via Regulation of Glycolipid Metabolism and Gut Microbiota in High-Fat Diet-Induced Obese Mice.
Journal of agricultural and food chemistry.
2023 Oct; 71(42):15656-15667. doi:
10.1021/acs.jafc.3c05566
. [PMID: 37847053] - Myeong Jin Kim, Hyung Sun Kim, Hyeon Woong Kang, Da Eun Lee, Woosol Chris Hong, Ju Hyun Kim, Minsoo Kim, Jae-Ho Cheong, Hyo Jung Kim, Joon Seong Park. SLC38A5 Modulates Ferroptosis to Overcome Gemcitabine Resistance in Pancreatic Cancer.
Cells.
2023 10; 12(20):. doi:
10.3390/cells12202509
. [PMID: 37887353] - Shun Chen, Shujia Lin, Wei Liu, Qiuping Lin, Yi Yang, Qingzhu Qiu, Yanfang Zong, Tingting Xiao, Cuilan Hou, Lijian Xie. Serum Metabolomic Profile in Hypoxia-Induced Pulmonary Hypertension Mice after C75 Treatment.
Frontiers in bioscience (Landmark edition).
2023 10; 28(10):251. doi:
10.31083/j.fbl2810251
. [PMID: 37919066] - Xuan Liao, Bingyan Wu, Haixia Li, Mengtao Zhang, Muzi Cai, Bozhi Lang, Zhizhen Wu, Fangling Wang, Jianong Sun, Panpan Zhou, Hongli Chen, Duolong Di, Cuiling Ren, Haixia Zhang. Fluorescent/Colorimetric Dual-Mode Discriminating Gln and Val Enantiomers Based on Carbon Dots.
Analytical chemistry.
2023 10; 95(39):14573-14581. doi:
10.1021/acs.analchem.3c01854
. [PMID: 37729469] - Hai Shi, Evan Ernst, Nicolas Heinzel, Sean McCorkle, Hardy Rolletschek, Ljudmilla Borisjuk, Stefan Ortleb, Robert Martienssen, John Shanklin, Jorg Schwender. Mechanisms of metabolic adaptation in the duckweed Lemna gibba: an integrated metabolic, transcriptomic and flux analysis.
BMC plant biology.
2023 Oct; 23(1):458. doi:
10.1186/s12870-023-04480-9
. [PMID: 37789269] - Geetha Venkateswaran, Paul C McDonald, Shawn C Chafe, Wells S Brown, Zachary J Gerbec, Shannon J Awrey, Seth J Parker, Shoukat Dedhar. A Carbonic Anhydrase IX/SLC1A5 Axis Regulates Glutamine Metabolism Dependent Ferroptosis in Hypoxic Tumor Cells.
Molecular cancer therapeutics.
2023 10; 22(10):1228-1242. doi:
10.1158/1535-7163.mct-23-0041
. [PMID: 37348875] - Jue Wang, Xiaozhen Guo, Ziyuan Zou, Minjun Yu, Xueling Li, Hualing Xu, Yiping Chen, Tingying Jiao, Kanglong Wang, Yuandi Ma, Jie Jiang, Xinyu Liang, Jiawen Wang, Cen Xie, Yifei Zhong. Ootheca mantidis mitigates renal fibrosis in mice by the suppression of apoptosis via increasing the gut microbe Akkermansia muciniphila and modulating glutamine metabolism.
Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie.
2023 Oct; 166(?):115434. doi:
10.1016/j.biopha.2023.115434
. [PMID: 37677965] - Sina Mahdavifard, Najafzadeh Nowruz. Glutamine Defended the Kidneys Versus Lead Intoxication Via Elevating Endogenous Antioxidants, Reducing Inflammation and Carbonyl Stress, as well as Improving Insulin Resistance and Dyslipidemia.
Biological trace element research.
2023 Sep; ?(?):. doi:
10.1007/s12011-023-03887-7
. [PMID: 37776396] - Lei Wang, Chaosheng Deng, Zixuan Wu, Kaidong Zhu, Zhenguo Yang. Bioinformatics and machine learning were used to validate glutamine metabolism-related genes and immunotherapy in osteoporosis patients.
Journal of orthopaedic surgery and research.
2023 Sep; 18(1):685. doi:
10.1186/s13018-023-04152-2
. [PMID: 37710308] - Yi Lu, Xin Gao, Shadi A D Mohammed, Tianyu Wang, Jiaqi Fu, Yu Wang, Yang Nan, Fang Lu, Shumin Liu. Efficacy and mechanism study of Baichanting compound, a combination of Acanthopanax senticosus (Rupr. and Maxim.) Harms, Paeonia lactiflora Pall and Uncaria rhynchophylla (Miq.) Miq. ex Havil, on Parkinson's disease based on metagenomics and metabolomics.
Journal of ethnopharmacology.
2023 Sep; ?(?):117182. doi:
10.1016/j.jep.2023.117182
. [PMID: 37714224] - Xiao Meng, Mingyue Lu, Zelin Xia, Huilong Li, Duo Liu, Ke Li, Pengcheng Yin, Geng Wang, Chunjiang Zhou. Wheat VQ Motif-Containing Protein VQ25-A Facilitates Leaf Senescence via the Abscisic Acid Pathway.
International journal of molecular sciences.
2023 Sep; 24(18):. doi:
10.3390/ijms241813839
. [PMID: 37762142] - Jennifer K Frediani, Asim A Lal, Esther Kim, Sharon L Leslie, David W Boorman, Vinita Singh. The role of diet and non-pharmacologic supplements in the treatment of chronic neuropathic pain: A systematic review.
Pain practice : the official journal of World Institute of Pain.
2023 Aug; ?(?):. doi:
10.1111/papr.13291
. [PMID: 37654090] - Pei Liu, Xiao-Ying Tan, Huang-Qin Zhang, Ke-Lei Su, Er-Xin Shang, Qing-Ling Xiao, Sheng Guo, Jin-Ao Duan. Optimal compatibility proportional screening of Trichosanthis Pericarpium - Trichosanthis Radix and its anti - Inflammatory components effect on experimental zebrafish and coughing mice.
Journal of ethnopharmacology.
2023 Aug; ?(?):117096. doi:
10.1016/j.jep.2023.117096
. [PMID: 37634750] - Kai Xiong, Guangsong Li, Yu Zhang, Tiantian Bao, Ping Li, Xiangdong Yang, Jiang Chen. Effects of glutamine on plasma protein and inflammation in postoperative patients with colorectal cancer: a meta-analysis of randomized controlled trials.
International journal of colorectal disease.
2023 Aug; 38(1):212. doi:
10.1007/s00384-023-04504-8
. [PMID: 37566134] - Mariana M L Ferreira, Sinval E G de Souza, Caroline C da Silva, Louise E A Souza, Renata N Bicev, Emerson R da Silva, Clovis R Nakaie. Pyroglutamination-Induced Changes in the Physicochemical Features of a CXCR4 Chemokine Peptide: Kinetic and Structural Analysis.
Biochemistry.
2023 Aug; ?(?):. doi:
10.1021/acs.biochem.3c00124
. [PMID: 37540799] - Lirong Zhai, Xiao Yang, Yuan Cheng, Jianliu Wang. Glutamine and amino acid metabolism as a prognostic signature and therapeutic target in endometrial cancer.
Cancer medicine.
2023 08; 12(15):16337-16358. doi:
10.1002/cam4.6256
. [PMID: 37387559] - Hans Vellama, Kattri-Liis Eskla, Hillar Eichelmann, Andria Hüva, Daniel A Tennant, Alpesh Thakker, Jennie Roberts, Toomas Jagomäe, Rando Porosk, Agu Laisk, Vello Oja, Heikko Rämma, Vallo Volke, Eero Vasar, Hendrik Luuk. VHL-deficiency leads to reductive stress in renal cells.
Free radical biology & medicine.
2023 Jul; 208(?):1-12. doi:
10.1016/j.freeradbiomed.2023.07.029
. [PMID: 37506952] - Yan Wang, Kun Shi, Jiyuan Tu, Chang Ke, Niping Chen, Bo Wang, Yanju Liu, Zhongshi Zhou. Atractylenolide III Ameliorates Bile Duct Ligation-Induced Liver Fibrosis by Inhibiting the PI3K/AKT Pathway and Regulating Glutamine Metabolism.
Molecules (Basel, Switzerland).
2023 Jul; 28(14):. doi:
10.3390/molecules28145504
. [PMID: 37513376] - Syed Kashif Ali, Hafiz A Makeen, Gulrana Khuwaja, Hassan A Alhazmi, Mukul Sharma, Afraim Koty, Islam Mazahirul, Humaira Parveen, Asaduddin Mohammed, Sayeed Mukhtar, Mohammad Firoz Alam. Assessment of the Phytochemical Profile, Antioxidant Capacity, and Hepatoprotective Effect of Andrographis paniculata against CCl4-Induced Liver Dysfunction in Wistar Albino Rats.
Medicina (Kaunas, Lithuania).
2023 Jul; 59(7):. doi:
10.3390/medicina59071260
. [PMID: 37512069] - Xiaofeng Chen, Hua Zhang, Sichong Ren, Yangnan Ding, Naznin Sultana Remex, Md Shenuarin Bhuiyan, Jiahua Qu, Xiaoqiang Tang. Gut microbiota and microbiota-derived metabolites in cardiovascular diseases.
Chinese medical journal.
2023 Jul; ?(?):. doi:
10.1097/cm9.0000000000002206
. [PMID: 37442759] - Youzi Kong, Mengting Wu, Xiaoyu Wan, Min Sun, Yankun Zhang, Zhuanchang Wu, Chunyang Li, Xiaohong Liang, Lifen Gao, Chunhong Ma, Xuetian Yue. Lipophagy-mediated cholesterol synthesis inhibition is required for the survival of hepatocellular carcinoma under glutamine deprivation.
Redox biology.
2023 07; 63(?):102732. doi:
10.1016/j.redox.2023.102732
. [PMID: 37150151] - Sarah A Clark, Angie Vazquez, Kelsey Furiya, Madeleine K Splattstoesser, Abdullah K Bashmail, Haleigh Schwartz, Makaiya Russell, Shun-Je Bhark, Osvaldo K Moreno, Morgan McGovern, Eric R Owsley, Timothy A Nelson, Erica L Sanchez, Tracie Delgado. Rewiring of the Host Cell Metabolome and Lipidome during Lytic Gammaherpesvirus Infection Is Essential for Infectious-Virus Production.
Journal of virology.
2023 06; 97(6):e0050623. doi:
10.1128/jvi.00506-23
. [PMID: 37191529] - Chunni Chen, Linlin Yang, Mengru Li, Li Gao, Xuemei Qin, Guanhua Du, Yuzhi Zhou. Study on the targeted regulation of Scutellaria baicalensis leaf on glutamine-glutamate metabolism and glutathione synthesis in the liver of D-gal ageing rats.
The Journal of pharmacy and pharmacology.
2023 Jun; ?(?):. doi:
10.1093/jpp/rgad050
. [PMID: 37329511] - Zhixin Ma, Wenle Ye, Jinghan Wang, Xin Huang, Jiansong Huang, Xia Li, Chao Hu, Chenying Li, Yile Zhou, Xiangjie Lin, Wenwen Wei, Yu Qian, Yutong Zhou, Shihui Mao, Xiufeng Yin, Bo Zhu, Jie Jin. Glutamate dehydrogenase 1: A novel metabolic target in inhibiting acute myeloid leukaemia progression.
British journal of haematology.
2023 May; ?(?):. doi:
10.1111/bjh.18884
. [PMID: 37231991] - Chaoyu Zhai, Steven M Lonergan, Elisabeth J Huff-Lonergan, Logan G Johnson, Kitty Brown, Jessica E Prenni, Mahesh N Nair. Lipid Peroxidation Products Influence Calpain-1 Functionality In Vitro by Covalent Binding.
Journal of agricultural and food chemistry.
2023 May; 71(20):7836-7846. doi:
10.1021/acs.jafc.3c01225
. [PMID: 37167568] - Zengzhi Si, Lianjun Wang, Zhixin Ji, Yake Qiao, Kai Zhang, Jinling Han. Genome-wide comparative analysis of the valine glutamine motif containing genes in four Ipomoea species.
BMC plant biology.
2023 Apr; 23(1):209. doi:
10.1186/s12870-023-04235-6
. [PMID: 37085761] - Mingxiao Guo, Mengdi Li, Li Chen, Hanyun Wang, Jiajia Wang, Piye Niu, Junxiang Ma. Glutaminase 1 isoform up-regulation associated with lipid metabolism disorder induced by methyl tertiary-butyl ether in male rats.
Ecotoxicology and environmental safety.
2023 Apr; 255(?):114763. doi:
10.1016/j.ecoenv.2023.114763
. [PMID: 37032576] - Camille Ingargiola, Isabelle Jéhanno, Céline Forzani, Anne Marmagne, Justine Broutin, Gilles Clément, Anne-Sophie Leprince, Christian Meyer. The Arabidopsis Target of Rapamycin (TOR) kinase regulates ammonium assimilation and glutamine metabolism.
Plant physiology.
2023 Apr; ?(?):. doi:
10.1093/plphys/kiad216
. [PMID: 37042394] - Manman Chang, Jingyu Ma, Ying Sun, Maoyin Fu, Linlin Liu, Qi Chen, Zhaoliang Zhang, Chuankui Song, Jun Sun, Xiaochun Wan. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants (Camellia sinensis L.).
Journal of agricultural and food chemistry.
2023 Apr; 71(13):5208-5218. doi:
10.1021/acs.jafc.2c08909
. [PMID: 36970979] - Miaomiao Yang, Ziwei Liu, Yuanhui Yu, Min Yang, Li Guo, Xuejie Han, Xiangjie Ma, Ziya Huang, Qiguo Gao. Genome-wide identification of the valine-glutamine motif containing gene family and the role of VQ25-1 in pollen germination in Brassica oleracea.
Genes & genomics.
2023 Apr; ?(?):. doi:
10.1007/s13258-023-01375-9
. [PMID: 37004590] - Abhisha Sawant Dessai, Poonam Kalhotra, Aaron T Novickis, Subhamoy Dasgupta. Regulation of tumor metabolism by post translational modifications on metabolic enzymes.
Cancer gene therapy.
2023 04; 30(4):548-558. doi:
10.1038/s41417-022-00521-x
. [PMID: 35999357] - Maja Papež, Víctor Jiménez Lancho, Peter Eisenhut, Krishna Motheramgari, Nicole Borth. SLAM-seq reveals early transcriptomic response mechanisms upon glutamine deprivation in Chinese hamster ovary cells.
Biotechnology and bioengineering.
2023 04; 120(4):970-986. doi:
10.1002/bit.28320
. [PMID: 36575109] - Qing Ma, Paul E Wischmeyer. Effects of glutamine and n-3 polyunsaturated fatty acid mixed lipid emulsion supplementation of parenteral nutrition on sepsis score and bacterial clearance in early experimental sepsis.
Clinical nutrition ESPEN.
2023 04; 54(?):406-411. doi:
10.1016/j.clnesp.2023.02.012
. [PMID: 36963886] - Samta Gupta, Sarda Devi Thokchom, Rupam Kapoor. Arbuscular mycorrhiza fungus alleviates arsenic mediated disturbances in tricarboxylic acid cycle and nitrogen metabolism in Triticum aestivum L.
Plant physiology and biochemistry : PPB.
2023 Apr; 197(?):107631. doi:
10.1016/j.plaphy.2023.03.008
. [PMID: 36965318] - Qiangsheng Hu, Jie Dai, Zheng Zhang, Huansha Yu, Jing Zhang, Xinsheng Zhu, Yi Qin, Lele Zhang, Peng Zhang. ASS1-mediated reductive carboxylation of cytosolic glutamine confers ferroptosis resistance in cancer cells.
Cancer research.
2023 Mar; ?(?):. doi:
10.1158/0008-5472.can-22-1999
. [PMID: 36892426] - Eleanor H Oates, Maciek R Antoniewicz. 13C-Metabolic flux analysis of 3T3-L1 adipocytes illuminates its core metabolism under hypoxia.
Metabolic engineering.
2023 03; 76(?):158-166. doi:
10.1016/j.ymben.2023.02.002
. [PMID: 36758664] - Shiqi Li, Hui Zeng, Junli Fan, Fubing Wang, Chen Xu, Yirong Li, Jiancheng Tu, Kenneth P Nephew, Xinghua Long. Glutamine metabolism in breast cancer and possible therapeutic targets.
Biochemical pharmacology.
2023 Feb; ?(?):115464. doi:
10.1016/j.bcp.2023.115464
. [PMID: 36849062] - Asitha Premaratne, Charles Ho, Shinjini Basu, Ashfia Fatima Khan, Tasneem Bawa-Khalfe, Chin-Yo Lin. Liver X Receptor Inverse Agonist GAC0001E5 Impedes Glutaminolysis and Disrupts Redox Homeostasis in Breast Cancer Cells.
Biomolecules.
2023 02; 13(2):. doi:
10.3390/biom13020345
. [PMID: 36830714] - John P Burdick, Rohin S Basi, Kaitlyn S Burns, Paul M M Weers. The role of C-terminal ionic residues in self-association of apolipoprotein A-I.
Biochimica et biophysica acta. Biomembranes.
2023 02; 1865(2):184098. doi:
10.1016/j.bbamem.2022.184098
. [PMID: 36481181] - Olubukola Benedicta Ojo, Abigail Oladunni Olajide, Grace Boluwatife Olagunju, Comfort Olowu, Sunday Solomon Josiah, Zainab Abiola Amoo, Mary Tolulope Olaleye, Afolabi Clement Akinmoladun. Polyphenol-rich Spondias mombin leaf extract abates cerebral ischemia/reperfusion-induced disturbed glutamate-ammonia metabolism and multiorgan toxicity in rats.
Biomarkers : biochemical indicators of exposure, response, and susceptibility to chemicals.
2023 Feb; 28(1):65-75. doi:
10.1080/1354750x.2022.2145496
. [PMID: 36341500] - Maria Chiara De Santis, Luca Gozzelino, Jean Piero Margaria, Andrea Costamagna, Edoardo Ratto, Federico Gulluni, Enza Di Gregorio, Erica Mina, Nicla Lorito, Marina Bacci, Rossano Lattanzio, Gianluca Sala, Paola Cappello, Francesco Novelli, Elisa Giovannetti, Caterina Vicentini, Silvia Andreani, Pietro Delfino, Vincenzo Corbo, Aldo Scarpa, Paolo Ettore Porporato, Andrea Morandi, Emilio Hirsch, Miriam Martini. Lysosomal lipid switch sensitises to nutrient deprivation and mTOR targeting in pancreatic cancer.
Gut.
2023 02; 72(2):360-371. doi:
10.1136/gutjnl-2021-325117
. [PMID: 35623884] - Lin Shi, Jun Kan, Lin Zhuo, Siyun Wang, Shaobing Chen, Bei Zhang, Bin Ke. Bioinformatics identification of miR-514b-5p promotes NSCLC progression and induces PI3K/AKT and p38 pathways by targeting small glutamine-rich tetratricopeptide repeat-containing protein beta.
The FEBS journal.
2023 02; 290(4):1134-1150. doi:
10.1111/febs.16639
. [PMID: 36180981] - Lina Cao, Caifeng Xu, Yan Sun, Chao Niu, Xue Leng, Bingqing Hao, Jing Ma, Zhongye Liu, Zhiru Xu, Chuanping Yang, Guanjun Liu. Genome-wide identification of glutamate synthase gene family and expression patterns analysis in response to carbon and nitrogen treatment in Populus.
Gene.
2023 Jan; 851(?):146996. doi:
10.1016/j.gene.2022.146996
. [PMID: 36283603] - Xiaomu Zhang, Philip J Tubergen, Israel D K Agorsor, Pramod Khadka, Connor Tembe, Cynthia Denbow, Eva Collakova, Guillaume Pilot, Cristian H Danna. Elicitor-induced plant immunity relies on amino acids accumulation to delay the onset of bacterial virulence.
Plant physiology.
2023 Jan; ?(?):. doi:
10.1093/plphys/kiad048
. [PMID: 36715647] - Tianfei Lu, Qing Li, Weiwei Lin, Xianzhe Zhao, Fu Li, Jianmei Ji, Yu Zhang, Ning Xu. Gut Microbiota-Derived Glutamine Attenuates Liver Ischemia/Reperfusion Injury via Macrophage Metabolic Reprogramming.
Cellular and molecular gastroenterology and hepatology.
2023 Jan; ?(?):. doi:
10.1016/j.jcmgh.2023.01.004
. [PMID: 36706918] - Tomomi Kurashige, Mika Shimamura, Koichiro Hamada, Michiko Matsuse, Norisato Mitsutake, Yuji Nagayama. Characterization of metabolic reprogramming by metabolomics in the oncocytic thyroid cancer cell line XTC.UC1.
Scientific reports.
2023 01; 13(1):149. doi:
10.1038/s41598-023-27461-2
. [PMID: 36599897] - Pat J Unkefer, Thomas J Knight, Rodolfo A Martinez. The intermediate in a nitrate-responsive ω-amidase pathway in plants may signal ammonium assimilation status.
Plant physiology.
2023 01; 191(1):715-728. doi:
10.1093/plphys/kiac501
. [PMID: 36303326] - Mozhgan Hashemi, Ahmad Moieni, Mohammad Sadegh Sabet. Improving the isolated microspore culture in eggplant (Solanum melongena L.) with amino acid nutrition.
PloS one.
2023; 18(6):e0286809. doi:
10.1371/journal.pone.0286809
. [PMID: 37289731] - Jameel M Al-Khayri, Khairiah M Alwutayd, Fatmah A Safhi, Mesfer M Alqahtani, Rana M Alshegaihi, Diaa Abd El-Moneim, Shri Mohan Jain, Ahmed S Eldomiaty, Rahma Alshamrani, Amani Omar Abuzaid, Abdallah A Hassanin. Assessment of intra- and inter-genetic diversity in tetraploid and hexaploid wheat genotypes based on omega, gamma and alpha-gliadin profiles.
PeerJ.
2023; 11(?):e16330. doi:
10.7717/peerj.16330
. [PMID: 37953773] - Jolanta Bugajska, Joanna Berska, Małgorzata Wójcik, Krystyna Sztefko. Amino acid profile in overweight and obese prepubertal children - can simple biochemical tests help in the early prevention of associated comorbidities?.
Frontiers in endocrinology.
2023; 14(?):1274011. doi:
10.3389/fendo.2023.1274011
. [PMID: 37964971] - Ling Peng, Hong You, Mei-Yu Xu, Zhou-Yu Dong, Min Liu, Wen-Jing Jin, Chao Zhou. A Novel Metabolic Score for Predicting the Acute Exacerbation in Patients with Chronic Obstructive Pulmonary Disease.
International journal of chronic obstructive pulmonary disease.
2023; 18(?):785-795. doi:
10.2147/copd.s405547
. [PMID: 37180750] - Ken-Ichi Kucho, Koya Asukai, Thanh Van Nguyen. NAD+ Synthetase is Required for Free-living and Symbiotic Nitrogen Fixation in the Actinobacterium Frankia casuarinae.
Microbes and environments.
2023; 38(1):. doi:
10.1264/jsme2.me22093
. [PMID: 36858533] - Marta Hetman, Karolina Mielko, Sylwia Placzkowska, Aleksandra Bodetko, Piotr Młynarz, Ewa Barg. Predisposition to atherosclerosis in children and adults with trisomy 21: biochemical and metabolomic studies.
Pediatric endocrinology, diabetes, and metabolism.
2023; 29(3):143-155. doi:
10.5114/pedm.2023.131162
. [PMID: 38031830] - Hamed Ramyar, Mehdi Baradaran-Firouzabadi, Ali Reza Sobhani, Hamid Reza Asghari. Reduction of lead toxicity effects and enhancing the glutathione reservoir in green beans through spraying sulfur and serine and glutamine amino acids.
Environmental science and pollution research international.
2022 Dec; ?(?):. doi:
10.1007/s11356-022-24819-3
. [PMID: 36576620] - Honghu Tu, Xueyi Yin, Jingjing Wen, Wenbiao Wu, Bo Zhai, Jinlong Li, Haowen Jiang. Glutaminase 1 blockade alleviates nonalcoholic steatohepatitis via promoting proline metabolism.
Biochemical and biophysical research communications.
2022 12; 634(?):1-9. doi:
10.1016/j.bbrc.2022.10.007
. [PMID: 36223657] - Nicole P Porto, Raissa S C Bret, Paulo V L Souza, Silvio A Cândido-Sobrinho, David B Medeiros, Alisdair R Fernie, Danilo M Daloso. Thioredoxins regulate the metabolic fluxes throughout the tricarboxylic acid cycle and associated pathways in a light-independent manner.
Plant physiology and biochemistry : PPB.
2022 Dec; 193(?):36-49. doi:
10.1016/j.plaphy.2022.10.022
. [PMID: 36323196] - Jianfei Chen, Rui Wang, Zhongliang Liu, Jun Fan, Shenglu Liu, Shunde Tan, Xinkai Li, Bo Li, Xiaoli Yang. Unbalanced Glutamine Partitioning between CD8T Cells and Cancer Cells Accompanied by Immune Cell Dysfunction in Hepatocellular Carcinoma.
Cells.
2022 Dec; 11(23):. doi:
10.3390/cells11233924
. [PMID: 36497182] - Ifeanyi J Ezeonwumelu, Abduljalil M Mode, Umar F Magaji, Nnamdi A Nzoniwu, Muhamad H Tangaza, Fatima I Tanimu, Shamsudeen U Dandare. Coadministration of L-alanine and L-glutamine ameliorate blood glucose levels, biochemical indices and histological features in alloxan-induced diabetic rats.
Journal of food biochemistry.
2022 12; 46(12):e14420. doi:
10.1111/jfbc.14420
. [PMID: 36125865] - Shao-Liang Yang, Hai-Xia Tan, Zhen-Zhen Lai, Hai-Yan Peng, Hui-Li Yang, Qiang Fu, Hai-Yan Wang, Da-Jin Li, Ming-Qing Li. An active glutamine/α-ketoglutarate/HIF-1α axis prevents pregnancy loss by triggering decidual IGF1+GDF15+NK cell differentiation.
Cellular and molecular life sciences : CMLS.
2022 Nov; 79(12):611. doi:
10.1007/s00018-022-04639-x
. [PMID: 36449080] - Markus M Rinschen, Jennifer L Harder, Madalina E Carter-Timofte, Luis Zanon Rodriguez, Carmen Mirabelli, Fatih Demir, Naziia Kurmasheva, Suresh K Ramakrishnan, Madlen Kunke, Yifan Tan, Anja Billing, Eileen Dahlke, Alexey A Larionov, Wibke Bechtel-Walz, Ute Aukschun, Marlen Grabbe, Rikke Nielsen, Erik I Christensen, Matthias Kretzler, Tobias B Huber, Christiane E Wobus, David Olagnier, Gary Siuzdak, Florian Grahammer, Franziska Theilig. VPS34-dependent control of apical membrane function of proximal tubule cells and nutrient recovery by the kidney.
Science signaling.
2022 11; 15(762):eabo7940. doi:
10.1126/scisignal.abo7940
. [PMID: 36445937] - Weijian Li, Zeyu Wang, Ruirong Lin, Shuai Huang, Huijie Miao, Lu Zou, Ke Liu, Xuya Cui, Ziyi Wang, Yijian Zhang, Chengkai Jiang, Shimei Qiu, Jiyao Ma, Wenguang Wu, Yingbin Liu. Lithocholic acid inhibits gallbladder cancer proliferation through interfering glutaminase-mediated glutamine metabolism.
Biochemical pharmacology.
2022 11; 205(?):115253. doi:
10.1016/j.bcp.2022.115253
. [PMID: 36176239] - Peng Wang, Qin-Qin Li, Jin Hui, Qian-Qian Xiang, Hui Yan, Li-Qiang Chen. Metabolomics reveals the mechanism of polyethylene microplastic toxicity to Daphnia magna.
Chemosphere.
2022 Nov; 307(Pt 2):135887. doi:
10.1016/j.chemosphere.2022.135887
. [PMID: 35931252] - Gorane Santamaría, Natali Naude, Julia Watson, John Irvine, Thomas Lloyd, Ian Bennett, Graham Galloway, Peter Malycha, Carolyn Mountford. Breast Tissue Chemistry Measured In Vivo In Healthy Women Correlate with Breast Density and Breast Cancer Risk.
Journal of magnetic resonance imaging : JMRI.
2022 11; 56(5):1355-1369. doi:
10.1002/jmri.28168
. [PMID: 35319148] - Xiangge Kong, Zian Guo, Yuan Yao, Linchao Xia, Ruixuan Liu, Haifeng Song, Sheng Zhang. Acetic acid alters rhizosphere microbes and metabolic composition to improve willows drought resistance.
The Science of the total environment.
2022 Oct; 844(?):157132. doi:
10.1016/j.scitotenv.2022.157132
. [PMID: 35798115] - Masato Kuramata, Tadashi Abe, Hachidai Tanikawa, Kazuhiko Sugimoto, Satoru Ishikawa. A weak allele of OsNRAMP5 confers moderate cadmium uptake while avoiding manganese deficiency in rice.
Journal of experimental botany.
2022 10; 73(18):6475-6489. doi:
10.1093/jxb/erac302
. [PMID: 35788288] - Na Zhang, Yi Yang, Wei Li, Shenzhi Zhou, Weiwei Li, Ying Peng, Jiang Zheng. Asparagine and Glutamine Residues Participate in Protein Covalent Binding by Epoxide Metabolite of 8-Epidiosbulbin E Acetate In Vitro and In Vivo.
Chemical research in toxicology.
2022 10; 35(10):1821-1830. doi:
10.1021/acs.chemrestox.2c00130
. [PMID: 35839447] - Heng Wang, Jing Bi, Yuan Zhang, Miaomiao Pan, Qinglong Guo, Genhui Xiao, Yumeng Cui, Song Hu, Chi Kin Chan, Ying Yuan, Takushi Kaneko, Guoliang Zhang, Shawn Chen. Human Kinase IGF1R/IR Inhibitor Linsitinib Controls the In Vitro and Intracellular Growth of Mycobacterium tuberculosis.
ACS infectious diseases.
2022 10; 8(10):2019-2027. doi:
10.1021/acsinfecdis.2c00278
. [PMID: 36048501] - Aradhana Mishra, Arpita Bhattacharya, Priyanka Chauhan, Shipra Pandey, Ashish Dwivedi. Phenotype microarray analysis reveals the biotransformation of Fusarium oxysporum f.sp. lycopersici influenced by Bacillus subtilis PBE-8 metabolites.
FEMS microbiology ecology.
2022 10; 98(10):. doi:
10.1093/femsec/fiac102
. [PMID: 36066920] - Yong Cai, Zhiyi Dong, Jiying Wang. Circ_0000808 promotes the development of non-small cell lung cancer by regulating glutamine metabolism via the miR-1827/SLC1A5 axis.
World journal of surgical oncology.
2022 Oct; 20(1):329. doi:
10.1186/s12957-022-02777-x
. [PMID: 36192755] - Yaqian Li, Guangcai Yu, Longke Shi, Liwen Zhao, Zixin Wen, Baotian Kan, Wenjun Wang, Xiangdong Jian. Severe methyl bromide poisoning causing early acute renal failure and anuria: a case report.
The Journal of international medical research.
2022 Oct; 50(10):3000605221122619. doi:
10.1177/03000605221122619
. [PMID: 36250482] - Alejandro Schcolnik-Cabrera, Daniel Juárez-López. Dual contribution of the mTOR pathway and of the metabolism of amino acids in prostate cancer.
Cellular oncology (Dordrecht).
2022 Oct; 45(5):831-859. doi:
10.1007/s13402-022-00706-4
. [PMID: 36036882]