Leukotriene D4 (BioDeep_00000003315)

 

Secondary id: BioDeep_00000629574

human metabolite Endogenous blood metabolite


代谢物信息卡片


(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-2-[(carboxymethyl)carbamoyl]ethyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid

化学式: C25H40N2O6S (496.2607)
中文名称:
谱图信息: 最多检出来源 Homo sapiens(blood) 35.36%

分子结构信息

SMILES: CCCCCC=CCC=CC=CC=CC(C(CCCC(=O)O)O)SCC(C(=O)NCC(=O)O)N
InChI: InChI=1S/C25H40N2O6S/c1-2-3-4-5-6-7-8-9-10-11-12-13-16-22(21(28)15-14-17-23(29)30)34-19-20(26)25(33)27-18-24(31)32/h6-7,9-13,16,20-22,28H,2-5,8,14-15,17-19,26H2,1H3,(H,27,33)(H,29,30)(H,31,32)/b7-6-,10-9-,12-11+,16-13+/t20-,21-,22+/m0/s1

描述信息

Leukotriene D4 (LTD4) is a cysteinyl leukotriene. Cysteinyl leukotrienes (CysLTs) are a family of potent inflammatory mediators that appear to contribute to the pathophysiologic features of allergic rhinitis. LTD4 is a pro-inflammatory mediator known to mediate its effects through specific cell-surface receptors belonging to the G-protein-coupled receptor family, namely the high-affinity CysLT1 (cysteinyl leukotriene 1) receptor. LTD4 is present at high levels in many inflammatory conditions, and areas of chronic inflammation have an increased risk for subsequent cancer development. LTD4 is associated with the pathogenesis of several inflammatory disorders, such as asthma and inflammatory bowel disease. Exposure to LTD4 increases survival and proliferation in intestinal epithelial cells. CysLT1 regulator is up-regulated in colon cancer tissue and LTD4 signalling facilitates the survival of cancer cells. LTD4 could reduce apoptosis in non-transformed epithelial cells. LTD4 causes up-regulation of beta-catenin through the CysLT1 receptor, PI3K (phosphoinositide 3-kinase), and GSK-3β (glycogen synthase kinase 3β). LTD4 induces beta-catenin translocation to the nucleus and activation of TCF/LEF family of transcription factors. LTD4 causes accumulation of free beta-catenin in non-transformed intestinal epithelial cells through the CysLT1 receptor, and this accumulation is dependent upon the activation of PI3K as well as GSK-3β inactivation (PMID: 16042577, 12607939). Leukotrienes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signaling pathways.
Leukotriene D4 (LTD4) is a cysteinyl leukotriene a family of potent inflammatory mediators. LTD4 is a pro-inflammatory mediator known to mediate its effects through specific cell-surface receptors belonging to the G-protein-coupled receptor family, namely the high-affinity CysLT1 (cysteinyl leukotriene 1) receptor. LTD4 is present at high levels in many inflammatory conditions, and areas of chronic inflammation have an increased risk for subsequent cancer development; LTD4 is associated with the pathogenesis of several inflammatory disorders, such as asthma and inflammatory bowel disease. Exposure to LTD4 increases survival and proliferation in intestinal epithelial cells. CysLT1 regulator is up-regulated in colon cancer tissue and LTD4 signalling facilitates the survival of cancer cells. LTD4 could reduce apoptosis in non-transformed epithelial cells. LTD4 causes up-regulation of b-catenin through the CysLT1 receptor, PI3K (phosphoinositide 3-kinase) and GSK-3b (glycogen synthase kinase 3b). LTD4 induces b-catenin translocation to the nucleus and activation of TCF/LEF family of transcription factors. LTD4 causes accumulation of free b-catenin in non-transformed intestinal epithelial cells through the CysLT1 receptor, and this accumulation is dependent upon the activation of PI3K as well as GSK-3b inactivation. (PMID: 16042577, 12607939)

同义名列表

12 个代谢物同义名

(5S,6R,7E,9E,11Z,14Z)-6-{[(2R)-2-amino-2-[(carboxymethyl)carbamoyl]ethyl]sulfanyl}-5-hydroxyicosa-7,9,11,14-tetraenoic acid; (R-(R*,s*-(e,e,Z,Z)))-N-(S-(1-(4-carboxy-1-hydroxybutyl)-2,4,6,9-pentadecatetraenyl)-L-cysteinyl)glycine; 5S-hydroxy-6R-(S-cysteinylglycinyl)-7E,9E,11E,14Z-eicosatetraenoic acid; 5S-Hydroxy-6R-(S-cysteinylglycinyl)-7E,9E,11E,14Z-eicosatetraenoate; Leukotriene D 4; Leukotriene D-4; Leukotrienes D; Leukotriene D4; Leukotriene D; FT-0641731; LTD4; Leukotriene D4



数据库引用编号

20 个数据库交叉引用编号

分类词条

相关代谢途径

Reactome(8)

BioCyc(0)

PlantCyc(0)

代谢反应

200 个相关的代谢反应过程信息。

Reactome(149)

BioCyc(0)

WikiPathways(4)

Plant Reactome(0)

INOH(1)

PlantCyc(0)

COVID-19 Disease Map(0)

PathBank(46)

PharmGKB(0)

2 个相关的物种来源信息

在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:

  • PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
  • NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
  • Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
  • Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。

点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。

亚细胞结构定位 关联基因列表
Cytoplasm 6 ALOX5, CTNNB1, ITPR3, MAPK14, MME, PIK3C3
Peripheral membrane protein 1 ALOX5
Endoplasmic reticulum membrane 1 ITPR3
Cytoplasmic vesicle, autophagosome 1 PIK3C3
Nucleus 4 CTNNB1, FOSB, LMNA, MAPK14
autophagosome 1 PIK3C3
cytosol 7 ALOX5, CTNNB1, FOSB, LMNA, MAPK14, PIK3C3, PRKCQ
dendrite 1 MME
phosphatidylinositol 3-kinase complex, class III 1 PIK3C3
trans-Golgi network 1 MME
centrosome 1 CTNNB1
nucleoplasm 6 ALOX5, CTNNB1, FOSB, ITPR3, LMNA, MAPK14
Cell membrane 5 CTNNB1, CYSLTR2, GPRC5A, MME, TNF
lamellipodium 1 CTNNB1
Multi-pass membrane protein 3 CYSLTR2, GPRC5A, ITPR3
Synapse 2 CTNNB1, MME
cell cortex 1 CTNNB1
cell junction 1 CTNNB1
cell surface 2 MME, TNF
glutamatergic synapse 3 CTNNB1, MAPK14, PIK3C3
lysosomal membrane 1 EGF
neuronal cell body 3 ITPR3, MME, TNF
presynaptic membrane 1 CTNNB1
synaptic vesicle 1 MME
Cytoplasm, cytosol 1 ALOX5
Presynapse 1 MME
endosome 1 PIK3C3
plasma membrane 11 CTNNB1, CYSLTR1, CYSLTR2, EGF, GPRC5A, IGHE, ITPR3, KNG1, MME, PRKCQ, TNF
Membrane 6 CTNNB1, CYSLTR1, EGF, ITPR3, MME, PIK3C3
axon 1 MME
basolateral plasma membrane 1 CTNNB1
brush border 2 ITPR3, MME
extracellular exosome 5 CTNNB1, EGF, GPRC5A, KNG1, MME
endoplasmic reticulum 1 ITPR3
extracellular space 8 ALOX5, CXCL8, EGF, IGHE, IL4, IL5, KNG1, TNF
perinuclear region of cytoplasm 3 ALOX5, CTNNB1, LMNA
Schaffer collateral - CA1 synapse 1 CTNNB1
adherens junction 1 CTNNB1
apicolateral plasma membrane 1 CTNNB1
bicellular tight junction 1 CTNNB1
mitochondrion 1 MAPK14
protein-containing complex 1 CTNNB1
intracellular membrane-bounded organelle 2 FOSB, GPRC5A
Single-pass type I membrane protein 1 IGHE
Secreted 4 CXCL8, IL4, IL5, TRH
extracellular region 10 ALOX5, CXCL8, EGF, IGHE, IL4, IL5, KNG1, MAPK14, TNF, TRH
transcription regulator complex 1 CTNNB1
centriolar satellite 1 PRKCQ
Nucleus membrane 1 ALOX5
nuclear membrane 2 ALOX5, LMNA
external side of plasma membrane 1 TNF
Z disc 1 CTNNB1
beta-catenin destruction complex 1 CTNNB1
cytoplasmic vesicle 1 MME
nucleolus 2 GPRC5A, ITPR3
Wnt signalosome 1 CTNNB1
midbody 1 PIK3C3
Early endosome 1 MME
apical part of cell 2 CTNNB1, ITPR3
cell-cell junction 1 CTNNB1
recycling endosome 1 TNF
Single-pass type II membrane protein 2 MME, TNF
vesicle 1 GPRC5A
postsynaptic membrane 1 CTNNB1
Cytoplasm, perinuclear region 1 ALOX5
Membrane raft 2 MME, TNF
Cytoplasm, cytoskeleton 1 CTNNB1
focal adhesion 2 CTNNB1, MME
GABA-ergic synapse 1 PIK3C3
Cell junction, adherens junction 1 CTNNB1
flotillin complex 1 CTNNB1
Peroxisome 1 PIK3C3
sarcoplasmic reticulum 1 ITPR3
collagen-containing extracellular matrix 1 KNG1
secretory granule 1 TRH
fascia adherens 1 CTNNB1
intermediate filament 1 LMNA
lateral plasma membrane 1 CTNNB1
axoneme 1 PIK3C3
nuclear speck 2 LMNA, MAPK14
nuclear outer membrane 1 ITPR3
Late endosome 1 PIK3C3
receptor complex 2 GPRC5A, ITPR3
chromatin 1 FOSB
IgE immunoglobulin complex 1 IGHE
phagocytic cup 1 TNF
phagocytic vesicle membrane 1 PIK3C3
cell periphery 1 CTNNB1
Cytoplasm, cytoskeleton, cilium basal body 1 CTNNB1
Secreted, extracellular space 1 KNG1
spindle pole 2 CTNNB1, MAPK14
blood microparticle 1 KNG1
postsynaptic density, intracellular component 1 CTNNB1
microvillus membrane 1 CTNNB1
[Isoform 2]: Cell membrane 1 IGHE
site of double-strand break 1 LMNA
nuclear envelope 2 ALOX5, LMNA
Nucleus envelope 2 ALOX5, LMNA
Endomembrane system 1 CTNNB1
phagophore assembly site 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type I 1 PIK3C3
phosphatidylinositol 3-kinase complex, class III, type II 1 PIK3C3
Cytoplasmic vesicle membrane 1 GPRC5A
Nucleus, nucleoplasm 1 LMNA
euchromatin 1 CTNNB1
ficolin-1-rich granule lumen 2 ALOX5, MAPK14
secretory granule lumen 2 ALOX5, MAPK14
secretory granule membrane 2 ITPR3, MME
endoplasmic reticulum lumen 1 KNG1
nuclear matrix 2 ALOX5, LMNA
platelet alpha granule lumen 2 EGF, KNG1
beta-catenin-TCF complex 1 CTNNB1
immunological synapse 1 PRKCQ
presynaptic endosome 1 PIK3C3
aggresome 1 PRKCQ
Nucleus matrix 2 ALOX5, LMNA
nuclear envelope lumen 1 ALOX5
presynaptic active zone cytoplasmic component 1 CTNNB1
nuclear lamina 1 LMNA
clathrin-coated endocytic vesicle membrane 1 EGF
platelet dense tubular network membrane 1 ITPR3
protein-DNA complex 1 CTNNB1
Cytoplasmic vesicle, secretory vesicle membrane 1 ITPR3
catenin complex 1 CTNNB1
[Isoform 3]: Cell membrane 1 IGHE
postsynaptic endosome 1 PIK3C3
[Tumor necrosis factor, soluble form]: Secreted 1 TNF
[Isoform 1]: Secreted 1 IGHE
IgE B cell receptor complex 1 IGHE
immunoglobulin complex, circulating 1 IGHE
transport vesicle membrane 1 ITPR3
Nucleus lamina 1 LMNA
[Isoform C]: Nucleus speckle 1 LMNA
lamin filament 1 LMNA
Autolysosome 1 PIK3C3
neuron projection terminus 1 MME
Nucleus intermembrane space 1 ALOX5
beta-catenin-TCF7L2 complex 1 CTNNB1
cytoplasmic side of endoplasmic reticulum membrane 1 ITPR3
beta-catenin-ICAT complex 1 CTNNB1
Scrib-APC-beta-catenin complex 1 CTNNB1
[C-domain 2]: Secreted 1 TNF
[Tumor necrosis factor, membrane form]: Membrane 1 TNF
[C-domain 1]: Secreted 1 TNF


文献列表

  • Jesper Säfholm, Willem Abma, Lora G Bankova, Joshua A Boyce, Mamdoh Al-Ameri, Ann-Charlotte Orre, Craig E Wheelock, Sven-Erik Dahlén, Mikael Adner. Cysteinyl-maresin 3 inhibits IL-13 induced airway hyperresponsiveness through alternative activation of the CysLT1 receptor. European journal of pharmacology. 2022 Nov; 934(?):175257. doi: 10.1016/j.ejphar.2022.175257. [PMID: 36116518]
  • Ko Fujimori, Saki Uno, Kyohei Kuroda, Chihiro Matsumoto, Toko Maehara. Leukotriene C4 synthase is a novel PPARγ target gene, and leukotriene C4 and D4 activate adipogenesis through cysteinyl LT1 receptors in adipocytes. Biochimica et biophysica acta. Molecular cell research. 2022 03; 1869(3):119203. doi: 10.1016/j.bbamcr.2021.119203. [PMID: 34968576]
  • Hirofumi Fujita, Aoi Ando, Yohei Mizusawa, Mitsuaki Ono, Takako Hattori, Munenori Habuta, Toshitaka Oohashi, Satoshi Kubota, Hideyo Ohuchi. Cysteinyl leukotriene receptor 1 is dispensable for osteoclast differentiation and bone resorption. PloS one. 2022; 17(11):e0277307. doi: 10.1371/journal.pone.0277307. [PMID: 36395281]
  • Niraj Nepal, Subha Arthur, Molly R Butts, Soudamani Singh, Balasubramanian Palaniappan, Uma Sundaram. Molecular Mechanism of Stimulation of Na-K-ATPase by Leukotriene D4 in Intestinal Epithelial Cells. International journal of molecular sciences. 2021 Jul; 22(14):. doi: 10.3390/ijms22147569. [PMID: 34299188]
  • Neeraj Dholia, Gurupreet S Sethi, Amarjit S Naura, Umesh C S Yadav. Cysteinyl leukotriene D4 (LTD4) promotes airway epithelial cell inflammation and remodelling. Inflammation research : official journal of the European Histamine Research Society ... [et al.]. 2021 Jan; 70(1):109-126. doi: 10.1007/s00011-020-01416-z. [PMID: 33136175]
  • Nosayba Al-Azzam, Lina Elsalem. Leukotriene D4 role in allergic asthma pathogenesis from cellular and therapeutic perspectives. Life sciences. 2020 Nov; 260(?):118452. doi: 10.1016/j.lfs.2020.118452. [PMID: 32956660]
  • Michele Biagioli, Adriana Carino, Silvia Marchianò, Rosalinda Roselli, Cristina Di Giorgio, Martina Bordoni, Chiara Fiorucci, Valentina Sepe, Paolo Conflitti, Vittorio Limongelli, Eleonora Distrutti, Monia Baldoni, Angela Zampella, Stefano Fiorucci. Identification of cysteinyl-leukotriene-receptor 1 antagonists as ligands for the bile acid receptor GPBAR1. Biochemical pharmacology. 2020 07; 177(?):113987. doi: 10.1016/j.bcp.2020.113987. [PMID: 32330496]
  • Gwenaëlle Conseil, May Arama-Chayoth, Yossi Tsfadia, Susan P C Cole. Structure-guided probing of the leukotriene C4 binding site in human multidrug resistance protein 1 (MRP1; ABCC1). FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2019 10; 33(10):10692-10704. doi: 10.1096/fj.201900140r. [PMID: 31268744]
  • Eric E Figueroa, Meghan Kramer, Kevin Strange, Jerod S Denton. CysLT1 receptor antagonists pranlukast and zafirlukast inhibit LRRC8-mediated volume regulated anion channels independently of the receptor. American journal of physiology. Cell physiology. 2019 10; 317(4):C857-C866. doi: 10.1152/ajpcell.00281.2019. [PMID: 31390227]
  • Jun Miyata, Koichi Fukunaga, Yusuke Kawashima, Takashi Watanabe, Akina Saitoh, Tomomi Hirosaki, Yasutomo Araki, Toru Kikawada, Tomoko Betsuyaku, Osamu Ohara, Makoto Arita. Dysregulated fatty acid metabolism in nasal polyp-derived eosinophils from patients with chronic rhinosinusitis. Allergy. 2019 06; 74(6):1113-1124. doi: 10.1111/all.13726. [PMID: 30667533]
  • Fanny Lapointe, Sylvie Turcotte, Steeve Véronneau, Marek Rola-Pleszczynski, Jana Stankova. Role of Protein Tyrosine Phosphatase Epsilon (PTPε) in Leukotriene D4-Induced CXCL8 Expression. The Journal of pharmacology and experimental therapeutics. 2019 05; 369(2):270-281. doi: 10.1124/jpet.118.255422. [PMID: 30867226]
  • Nan Chiang, Ian R Riley, Jesmond Dalli, Ana R Rodriguez, Bernd W Spur, Charles N Serhan. New maresin conjugates in tissue regeneration pathway counters leukotriene D4-stimulated vascular responses. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2018 07; 32(7):4043-4052. doi: 10.1096/fj.201701493r. [PMID: 29490167]
  • Maged W Helmy, Mai M Helmy, Mahmoud M El-Mas. Enhanced lipoxygenase/LTD4 signaling accounts for the exaggerated hypertensive and nephrotoxic effects of cyclosporine plus indomethacin in rats. Biomedicine & pharmacotherapy = Biomedecine & pharmacotherapie. 2018 Jun; 102(?):309-316. doi: 10.1016/j.biopha.2018.03.065. [PMID: 29571015]
  • Neeraj Dholia, Umesh C S Yadav. Lipid mediator Leukotriene D4-induces airway epithelial cells proliferation through EGFR/ERK1/2 pathway. Prostaglandins & other lipid mediators. 2018 05; 136(?):55-63. doi: 10.1016/j.prostaglandins.2018.05.003. [PMID: 29751150]
  • Mai M Helmy, Amel A Hashim, Samar M Mouneir. Zileuton alleviates acute cisplatin nephrotoxicity: Inhibition of lipoxygenase pathway favorably modulates the renal oxidative/inflammatory/caspase-3 axis. Prostaglandins & other lipid mediators. 2018 03; 135(?):1-10. doi: 10.1016/j.prostaglandins.2018.01.001. [PMID: 29355720]
  • Qian Zhang, Ying Xiong, Guo-Bing Li, Qin Tang, Min Cao, Jing-Bin Huang, Mao Xing, Chang-Peng Hu, Ya Gong, Qing-Hua Wang, Ning Gao, Rong Zhang. Xinqin exhibits the anti-allergic effect through the JAK2/STAT5 signaling pathway. Journal of ethnopharmacology. 2016 Dec; 193(?):466-473. doi: 10.1016/j.jep.2016.09.045. [PMID: 27666014]
  • Ana Lukic, Jie Ji, Helena Idborg, Bengt Samuelsson, Lena Palmberg, Susanne Gabrielsson, Olof Rådmark. Pulmonary epithelial cancer cells and their exosomes metabolize myeloid cell-derived leukotriene C4 to leukotriene D4. Journal of lipid research. 2016 09; 57(9):1659-69. doi: 10.1194/jlr.m066910. [PMID: 27436590]
  • Kishan Bellamkonda, Naveen Kumar Chandrashekar, Janina Osman, Benson Chellakkan Selvanesan, Sayeh Savari, Anita Sjölander. The eicosanoids leukotriene D4 and prostaglandin E2 promote the tumorigenicity of colon cancer-initiating cells in a xenograft mouse model. BMC cancer. 2016 07; 16(?):425. doi: 10.1186/s12885-016-2466-z. [PMID: 27388564]
  • X Y Zhang, C X Shen, Z Wen, G X Li, H G Wang, F Chen. [The relationship between the key nasal symptoms and the level of histamineand leukotriene D4 in serum and nasal secretions in allergic rhinitis]. Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology, head, and neck surgery. 2016 Jul; 30(13):1025-1028. doi: 10.13201/j.issn.1001-1781.2016.13.005. [PMID: 29798030]
  • Kishan Bellamkonda, Wondossen Sime, Anita Sjölander. The impact of inflammatory lipid mediators on colon cancer-initiating cells. Molecular carcinogenesis. 2015 Nov; 54(11):1315-27. doi: 10.1002/mc.22207. [PMID: 25154976]
  • Hongya Han, Yongtao Xue-Franzén, Xinyan Miao, Edit Nagy, Nailin Li, Dawei Xu, Jan Sjöberg, Magnus Björkholm, Hans-Erik Claesson. Early growth response gene (EGR)-1 regulates leukotriene D4-induced cytokine transcription in Hodgkin lymphoma cells. Prostaglandins & other lipid mediators. 2015 Sep; 121(Pt A):122-30. doi: 10.1016/j.prostaglandins.2015.06.004. [PMID: 26115646]
  • Jia Xiao, Emily C Liong, Hai Huang, Wing On Tse, Kam Shing Lau, Jingfei Pan, Amin A Nanji, Man Lung Fung, Feiyue Xing, George L Tipoe. Cyclooxygenase-1 serves a vital hepato-protective function in chemically induced acute liver injury. Toxicological sciences : an official journal of the Society of Toxicology. 2015 Feb; 143(2):430-40. doi: 10.1093/toxsci/kfu244. [PMID: 25432964]
  • Anna N Bukiya, Jacob McMillan, Jianxi Liu, Bangalore Shivakumar, Abby L Parrill, Alex M Dopico. Activation of calcium- and voltage-gated potassium channels of large conductance by leukotriene B4. The Journal of biological chemistry. 2014 Dec; 289(51):35314-25. doi: 10.1074/jbc.m114.577825. [PMID: 25371198]
  • Tavga Salim, Janna Sand-Dejmek, Anita Sjölander. The inflammatory mediator leukotriene D₄ induces subcellular β-catenin translocation and migration of colon cancer cells. Experimental cell research. 2014 Feb; 321(2):255-66. doi: 10.1016/j.yexcr.2013.10.021. [PMID: 24211746]
  • Valérie Capra, G Enrico Rovati. Rosuvastatin inhibits human airway smooth muscle cells mitogenic response to eicosanoid contractile agents. Pulmonary pharmacology & therapeutics. 2014 Feb; 27(1):10-6. doi: 10.1016/j.pupt.2013.06.005. [PMID: 23806820]
  • Shu-ying Yu, Xia-yan Zhang, Xiao-rong Wang, Dong-min Xu, Lu Chen, Li-hui Zhang, San-hua Fang, Yun-bi Lu, Wei-ping Zhang, Er-qing Wei. Cysteinyl leukotriene receptor 1 mediates LTD4-induced activation of mouse microglial cells in vitro. Acta pharmacologica Sinica. 2014 Jan; 35(1):33-40. doi: 10.1038/aps.2013.130. [PMID: 24141567]
  • Hannah E Cummings, Tao Liu, Chunli Feng, Tanya M Laidlaw, Pamela B Conley, Yoshihide Kanaoka, Joshua A Boyce. Cutting edge: Leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. Journal of immunology (Baltimore, Md. : 1950). 2013 Dec; 191(12):5807-10. doi: 10.4049/jimmunol.1302187. [PMID: 24244016]
  • Leslie C Sharkey, M Judith Radin, Lois Heller, Lynette K Rogers, Anthony Tobias, Ilze Matise, Qi Wang, Fred S Apple, Sylvia A McCune. Differential cardiotoxicity in response to chronic doxorubicin treatment in male spontaneous hypertension-heart failure (SHHF), spontaneously hypertensive (SHR), and Wistar Kyoto (WKY) rats. Toxicology and applied pharmacology. 2013 Nov; 273(1):47-57. doi: 10.1016/j.taap.2013.08.012. [PMID: 23993975]
  • Kamila Syslová, Adéla Böhmová, Elvan Demirbağ, Kateřina Šimková, Marek Kuzma, Daniela Pelclová, Vratislav Sedlák, Petr Čáp, Pavel Martásek, Petr Kačer. Immunomagnetic molecular probe with UHPLC-MS/MS: a promising way for reliable bronchial asthma diagnostics based on quantification of cysteinyl leukotrienes. Journal of pharmaceutical and biomedical analysis. 2013 Jul; 81-82(?):108-17. doi: 10.1016/j.jpba.2013.03.026. [PMID: 23644905]
  • Yoshihide Kanaoka, Akiko Maekawa, K Frank Austen. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. The Journal of biological chemistry. 2013 Apr; 288(16):10967-72. doi: 10.1074/jbc.c113.453704. [PMID: 23504326]
  • Daihong Wan, Xuemei Liu, Guimei Li. The effects of montelukast on eosinophilic gastroenteritis in a mouse model. Immunopharmacology and immunotoxicology. 2013 Apr; 35(2):292-5. doi: 10.3109/08923973.2012.745871. [PMID: 23240855]
  • Xiao Yun Wang, Su Su Tang, Mei Hu, Yan Long, Yong Qi Li, Ming Xing Liao, Hui Ji, Hao Hong. Leukotriene D4 induces amyloid-β generation via CysLT(1)R-mediated NF-κB pathways in primary neurons. Neurochemistry international. 2013 Feb; 62(3):340-7. doi: 10.1016/j.neuint.2013.01.002. [PMID: 23318673]
  • Barbro Dahlén, Federico P Gómez, Alejandro Casas, Peter H Howarth, Sven-Erik Dahlén, Robert Rodriguez-Roisin. Salbutamol but not ipratropium abolishes leukotriene D4-induced gas exchange abnormalities in asthma. European journal of clinical pharmacology. 2012 Oct; 68(10):1375-83. doi: 10.1007/s00228-012-1256-z. [PMID: 22457014]
  • Pontus K A Forsell, Asa Brunnström, Malin Johannesson, Hans-Erik Claesson. Metabolism of anandamide into eoxamides by 15-lipoxygenase-1 and glutathione transferases. Lipids. 2012 Aug; 47(8):781-91. doi: 10.1007/s11745-012-3684-z. [PMID: 22684912]
  • Celine N Parmentier, Elisabeth Fuerst, Joanne McDonald, Holly Bowen, Tak H Lee, James E Pease, Grzegorz Woszczek, David J Cousins. Human T(H)2 cells respond to cysteinyl leukotrienes through selective expression of cysteinyl leukotriene receptor 1. The Journal of allergy and clinical immunology. 2012 Apr; 129(4):1136-42. doi: 10.1016/j.jaci.2012.01.057. [PMID: 22391114]
  • Nobuaki Mizutani, Takeshi Nabe, Masaji Shimazu, Shin Yoshino, Shigekatsu Kohno. Effect of Ganoderma lucidum on pollen-induced biphasic nasal blockage in a guinea pig model of allergic rhinitis. Phytotherapy research : PTR. 2012 Mar; 26(3):325-32. doi: 10.1002/ptr.3557. [PMID: 21698671]
  • Daniela Pelclová, Zdenka Fenclová, Stepánka Vlcková, Jindriška Lebedová, Kamila Syslová, Ondrej Pecha, Jaromír Belácek, Tomáš Navrátil, Marek Kuzma, Petr Kacer. Leukotrienes B4, C4, D4 and E4 in the exhaled breath condensate (EBC), blood and urine in patients with pneumoconiosis. Industrial health. 2012; 50(4):299-306. doi: 10.2486/indhealth.ms1274. [PMID: 22785421]
  • L Y Chen, M Eberlein, S Alsaaty, A Martinez-Anton, J Barb, P J Munson, R L Danner, Y Liu, C Logun, J H Shelhamer, G Woszczek. Cooperative and redundant signaling of leukotriene B4 and leukotriene D4 in human monocytes. Allergy. 2011 Oct; 66(10):1304-11. doi: 10.1111/j.1398-9995.2011.02647.x. [PMID: 21605126]
  • Hong Luo, Ye Yu, Ying Shen, Ligang Zeng, Nengbing Yan, Feng Ke, Xuanxiang Fu, Pengju Wang, Weijia Kong. [Changes of leukotriene D4 in nasal discharge and plasma of patients with persistent allergic rhinitis and the effects of antihistamine]. Lin chuang er bi yan hou tou jing wai ke za zhi = Journal of clinical otorhinolaryngology, head, and neck surgery. 2011 Apr; 25(8):342-6. doi: . [PMID: 21761705]
  • Ariane Brochu-Bourque, Steeve Véronneau, Marek Rola-Pleszczynski, Jana Stankova. Differential signaling defects associated with the M201V polymorphism in the cysteinyl leukotriene type 2 receptor. The Journal of pharmacology and experimental therapeutics. 2011 Feb; 336(2):431-9. doi: 10.1124/jpet.110.172411. [PMID: 20966037]
  • Yan Zhou, Dongmei Guo, Huiyu Li, Shenghua Jie. Circulating LTD4 in patients with hepatocellular carcinoma. Tumour biology : the journal of the International Society for Oncodevelopmental Biology and Medicine. 2011 Feb; 32(1):139-44. doi: 10.1007/s13277-010-0107-8. [PMID: 20820981]
  • L Xu, L Zhang, L Liu, S Fang, Y Lu, E Wei, W Zhang. Involvement of cysteinyl leukotriene receptors in angiogenesis in rat thoracic aortic rings. Die Pharmazie. 2010 Oct; 65(10):750-4. doi: NULL. [PMID: 21105577]
  • Guangyi Zhou, Song Ge, Dezhi Liu, Gelin Xu, Renliang Zhang, Qin Yin, Wusheng Zhu, Jieli Chen, Xinfeng Liu. Atorvastatin reduces plaque vulnerability in an atherosclerotic rabbit model by altering the 5-lipoxygenase pathway. Cardiology. 2010; 115(3):221-8. doi: 10.1159/000296017. [PMID: 20234134]
  • K Frank Austen, Akiko Maekawa, Yoshihide Kanaoka, Joshua A Boyce. The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. The Journal of allergy and clinical immunology. 2009 Sep; 124(3):406-14; quiz 415. doi: 10.1016/j.jaci.2009.05.046. [PMID: 19647860]
  • Hans-Erik Claesson. On the biosynthesis and biological role of eoxins and 15-lipoxygenase-1 in airway inflammation and Hodgkin lymphoma. Prostaglandins & other lipid mediators. 2009 Sep; 89(3-4):120-5. doi: 10.1016/j.prostaglandins.2008.12.003. [PMID: 19130894]
  • Akiko Maekawa, Barbara Balestrieri, K Frank Austen, Yoshihide Kanaoka. GPR17 is a negative regulator of the cysteinyl leukotriene 1 receptor response to leukotriene D4. Proceedings of the National Academy of Sciences of the United States of America. 2009 Jul; 106(28):11685-90. doi: 10.1073/pnas.0905364106. [PMID: 19561298]
  • Ewa Selg, Margareta Andersson, Lena Låstbom, Ake Ryrfeldt, Sven-Erik Dahlén. Two different mechanisms for modulation of bronchoconstriction in guinea-pigs by cyclooxygenase metabolites. Prostaglandins & other lipid mediators. 2009 Apr; 88(3-4):101-10. doi: 10.1016/j.prostaglandins.2008.11.003. [PMID: 19103301]
  • Hong-Shen Yang, Lai Wang, Wei Yang, Ji-Tao Guan, Jun-Yi Ma, Yan Su. [Effects of leukotriene receptor antagonists on vascular endothelial growth factor and its receptors in a sensitized rat model]. Zhonghua jie he he hu xi za zhi = Zhonghua jiehe he huxi zazhi = Chinese journal of tuberculosis and respiratory diseases. 2009 Mar; 32(3):177-81. doi: NULL. [PMID: 19575935]
  • Oliver Jay Broom, Ole Haagen Nielsen. [The role of cysteinyl leukotrienes in chronic inflammation and neoplasia of the intestine]. Ugeskrift for laeger. 2009 Jan; 171(4):243-6. doi: ". [PMID: 19174041]
  • Sang Pyo Lee, Carlos H Serezani, Alexandra I Medeiros, Megan N Ballinger, Marc Peters-Golden. Crosstalk between prostaglandin E2 and leukotriene B4 regulates phagocytosis in alveolar macrophages via combinatorial effects on cyclic AMP. Journal of immunology (Baltimore, Md. : 1950). 2009 Jan; 182(1):530-7. doi: 10.4049/jimmunol.182.1.530. [PMID: 19109185]
  • C Schäper, B Gustavus, B Koch, R Ewert, G Hanf, G Kunkel, O Noga, S Gläser. Effects of fexofenadine on inflammatory mediators in nasal lavage fluid in intermittent allergic rhinitis. Journal of investigational allergology & clinical immunology. 2009; 19(6):459-64. doi: . [PMID: 20128420]
  • Akiko Maekawa, Yoshihide Kanaoka, Wei Xing, K Frank Austen. Functional recognition of a distinct receptor preferential for leukotriene E4 in mice lacking the cysteinyl leukotriene 1 and 2 receptors. Proceedings of the National Academy of Sciences of the United States of America. 2008 Oct; 105(43):16695-700. doi: 10.1073/pnas.0808993105. [PMID: 18931305]
  • Sailaja Paruchuri, Yongfeng Jiang, Chunli Feng, Sanjeev A Francis, Jorge Plutzky, Joshua A Boyce. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells. The Journal of biological chemistry. 2008 Jun; 283(24):16477-87. doi: 10.1074/jbc.m705822200. [PMID: 18411276]
  • Hongfei Ge, Jennifer Weiszmann, Jeff D Reagan, Jamila Gupte, Helene Baribault, Tibor Gyuris, Jin-Long Chen, Hui Tian, Yang Li. Elucidation of signaling and functional activities of an orphan GPCR, GPR81. Journal of lipid research. 2008 Apr; 49(4):797-803. doi: 10.1194/jlr.m700513-jlr200. [PMID: 18174606]
  • Dwight Macdonald, Christine Brideau, Chi Chung Chan, Jean-Pierre Falgueyret, Richard Frenette, Jocelyne Guay, John H Hutchinson, Hélène Perrier, Peptiboon Prasit, Denis Riendeau, Philip Tagari, Michel Thérien, Robert N Young, Yves Girard. Substituted 2,2-bisaryl-bicycloheptanes as novel and potent inhibitors of 5-lipoxygenase activating protein. Bioorganic & medicinal chemistry letters. 2008 Mar; 18(6):2023-7. doi: 10.1016/j.bmcl.2008.01.105. [PMID: 18276139]
  • Astrid M-L Bengtsson, Ramin Massoumi, Anita Sjölander. Leukotriene D(4) induces AP-1 but not NFkappaB signaling in intestinal epithelial cells. Prostaglandins & other lipid mediators. 2008 Mar; 85(3-4):100-6. doi: 10.1016/j.prostaglandins.2007.11.001. [PMID: 18083053]
  • Yoshiyuki Ito, Minoru Hirano, Noriko Umemoto, Liqing Zang, Zhipeng Wang, Takehiko Oka, Yasuhito Shimada, Yuhei Nishimura, Ichiro Kurokawa, Hitoshi Mizutani, Toshio Tanaka. Guinea pig cysteinyl leukotriene receptor 2 (gpCysLT2) mediates cell proliferation and intracellular calcium mobilization by LTC4 and LTD4. BMB reports. 2008 Feb; 41(2):139-45. doi: 10.5483/bmbrep.2008.41.2.139. [PMID: 18315950]
  • Katharina Lötzer, Steffen Jahn, Cornelia Kramer, Markus Hildner, Rolf Nüsing, Colin D Funk, Andreas J R Habenicht. 5-Lipoxygenase/cyclooxygenase-2 cross-talk through cysteinyl leukotriene receptor 2 in endothelial cells. Prostaglandins & other lipid mediators. 2007 Nov; 84(3-4):108-15. doi: 10.1016/j.prostaglandins.2007.04.005. [PMID: 17991613]
  • Yongfeng Jiang, Laura A Borrelli, Yoshihide Kanaoka, Brian J Bacskai, Joshua A Boyce. CysLT2 receptors interact with CysLT1 receptors and down-modulate cysteinyl leukotriene dependent mitogenic responses of mast cells. Blood. 2007 Nov; 110(9):3263-70. doi: 10.1182/blood-2007-07-100453. [PMID: 17693579]
  • Camila M Peres, David M Aronoff, Carlos H Serezani, Nicolas Flamand, Lucia H Faccioli, Marc Peters-Golden. Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. Journal of immunology (Baltimore, Md. : 1950). 2007 Oct; 179(8):5454-61. doi: 10.4049/jimmunol.179.8.5454. [PMID: 17911632]
  • Hideaki Shirasaki, Nobuhiko Seki, Manabu Fujita, Megumi Kikuchi, Etsuko Kanaizumi, Kazumasa Watanabe, Tetsuo Himi. Agonist- and T(H)2 cytokine-induced up-regulation of cysteinyl leukotriene receptor messenger RNA in human monocytes. Annals of allergy, asthma & immunology : official publication of the American College of Allergy, Asthma, & Immunology. 2007 Oct; 99(4):340-7. doi: 10.1016/s1081-1206(10)60550-9. [PMID: 17941281]
  • Valérie Capra, Miles D Thompson, Angelo Sala, David E Cole, Giancarlo Folco, G Enrico Rovati. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. Medicinal research reviews. 2007 Jul; 27(4):469-527. doi: 10.1002/med.20071. [PMID: 16894531]
  • Charles Thompson, Alexandre Cloutier, Ynuk Bossé, Maryse Thivierge, Christian Le Gouill, Pierre Larivée, Patrick P McDonald, Jana Stankova, Marek Rola-Pleszczynski. CysLT1 receptor engagement induces activator protein-1- and NF-kappaB-dependent IL-8 expression. American journal of respiratory cell and molecular biology. 2006 Dec; 35(6):697-704. doi: 10.1165/rcmb.2005-0407oc. [PMID: 16809637]
  • Magnus Bäck. [Leukotrienes: potential therapeutic targets in cardiovascular diseases]. Bulletin de l'Academie nationale de medecine. 2006 Oct; 190(7):1511-8; discussion 1518. doi: . [PMID: 17450683]
  • Yoshiki Tanaka, Nobuaki Mizutani, Masanori Fujii, Takeshi Nabe, Shigekatsu Kohno. Different mechanisms between thromboxane A2- and leukotriene D4-induced nasal blockage in guinea pigs. Prostaglandins & other lipid mediators. 2006 Sep; 80(3-4):144-54. doi: 10.1016/j.prostaglandins.2006.06.003. [PMID: 16939879]
  • Pär Gyllfors, Sven-Erik Dahlén, Maria Kumlin, Kjell Larsson, Barbro Dahlén. Bronchial responsiveness to leukotriene D4 is resistant to inhaled fluticasone propionate. The Journal of allergy and clinical immunology. 2006 Jul; 118(1):78-83. doi: 10.1016/j.jaci.2006.03.040. [PMID: 16815141]
  • Sen Cui, Toshishige Shibamoto, Wei Liu, Hiromichi Takano, Yasutaka Kurata. Effects of platelet-activating factor, thromboxane A2 and leukotriene D4 on isolated perfused rat liver. Prostaglandins & other lipid mediators. 2006 Jul; 80(1-2):35-45. doi: 10.1016/j.prostaglandins.2006.03.004. [PMID: 16846785]
  • Zhi-hui Yang, Jian-jun Zhang, Lin-yuan Wang. [Effect of shuanglong capsule on content of leukotrienes compound of lung tissues in asthmatic rats]. Zhongguo Zhong xi yi jie he za zhi Zhongguo Zhongxiyi jiehe zazhi = Chinese journal of integrated traditional and Western medicine. 2006 Jun; 26 Suppl(?):43-6. doi: ". [PMID: 17569344]
  • Hiroshi Shimoda, Junji Tanaka, Emi Yamada, Toshio Morikawa, Naoki Kasajima, Masayuki Yoshikawa. Anti type I allergic property of Japanese butterbur extract and its mast cell degranulation inhibitory ingredients. Journal of agricultural and food chemistry. 2006 Apr; 54(8):2915-20. doi: 10.1021/jf052994o. [PMID: 16608208]
  • Josée Lamoureux, Jana Stankova, Marek Rola-Pleszczynski. Leukotriene D4 enhances immunoglobulin production in CD40-activated human B lymphocytes. The Journal of allergy and clinical immunology. 2006 Apr; 117(4):924-30. doi: 10.1016/j.jaci.2005.12.1329. [PMID: 16630953]
  • L Hemelaers, M Henket, J Sele, F Bureau, R Louis. Cysteinyl-leukotrienes contribute to sputum eosinophil chemotactic activity in asthmatics. Allergy. 2006 Jan; 61(1):136-9. doi: 10.1111/j.1398-9995.2006.00993.x. [PMID: 16364169]
  • Ertan Mayatepek, Stéphanie Badiou, Hélène Bellet, Wolf D Lehmann. A patient with neurological symptoms and abnormal leukotriene metabolism: a new defect in leukotriene biosynthesis. Annals of neurology. 2005 Dec; 58(6):968-70. doi: 10.1002/ana.20687. [PMID: 16315285]
  • Jun Kato, Tadashi Kohyama, Hitoshi Okazaki, Masashi Desaki, Takahide Nagase, Stephen I Rennard, Hajime Takizawa. Leukotriene D4 potentiates fibronectin-induced migration of human lung fibroblasts. Clinical immunology (Orlando, Fla.). 2005 Nov; 117(2):177-81. doi: 10.1016/j.clim.2005.07.003. [PMID: 16109507]
  • P Gyllfors, M Kumlin, S-E Dahlén, F Gaber, P-O Ehrs, B Dahlén. Relation between bronchial responsiveness to inhaled leukotriene D4 and markers of leukotriene biosynthesis. Thorax. 2005 Nov; 60(11):902-8. doi: 10.1136/thx.2005.041913. [PMID: 16055619]
  • Jacquelina Fernandez, Ricardo Reyes, Hector Ponce, Martha Oropeza, Marie-Rose Vancalsteren, Christopher Jankowski, Maria G Campos. Isoquercitrin from Argemone platyceras inhibits carbachol and leukotriene D4-induced contraction in guinea-pig airways. European journal of pharmacology. 2005 Oct; 522(1-3):108-15. doi: 10.1016/j.ejphar.2005.08.046. [PMID: 16202993]
  • Satoshi Kitamura. [Leukotriene (B4, C4, D4, E4)]. Nihon rinsho. Japanese journal of clinical medicine. 2005 Aug; 63 Suppl 8(?):28-33. doi: NULL. [PMID: 16149443]
  • Josiane S Neves, Lídia M Lima, Carlos A M Fraga, Eliezer J Barreiro, Ana L P Miranda, Bruno L Diaz, Alex Balduino, Rodrigo de Azeredo Siqueira, Patrícia M R e Silva, Marco A Martins. Evaluating the prophylactic potential of the phtalimide derivative LASSBio 552 on allergen-evoked inflammation in rats. European journal of pharmacology. 2005 Mar; 511(2-3):219-27. doi: 10.1016/j.ejphar.2005.02.011. [PMID: 15792791]
  • Snehal Naik, Charlotte K Billington, Rodolfo M Pascual, Deepak A Deshpande, Frank P Stefano, Trudy A Kohout, Delrae M Eckman, Jeffrey L Benovic, Raymond B Penn. Regulation of cysteinyl leukotriene type 1 receptor internalization and signaling. The Journal of biological chemistry. 2005 Mar; 280(10):8722-32. doi: 10.1074/jbc.m413014200. [PMID: 15590629]
  • Yasutomo Nakanishi, Takeshi Nabe, Nobuaki Mizutani, Hiroshi Takenaka, Shigekatsu Kohno. Synergism between cysteinyl leukotrienes and thromboxane A2 to induce allergic late phase nasal blockage in guinea pigs. Prostaglandins & other lipid mediators. 2004 Oct; 74(1-4):125-37. doi: 10.1016/j.prostaglandins.2004.07.006. [PMID: 15560121]
  • Lei Zhao, Michael P W Moos, Rolf Gräbner, Frédérique Pédrono, Jinjin Fan, Brigitte Kaiser, Nicole John, Sandra Schmidt, Rainer Spanbroek, Katharina Lötzer, Li Huang, Jisong Cui, Daniel J Rader, Jilly F Evans, Andreas J R Habenicht, Colin D Funk. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. Nature medicine. 2004 Sep; 10(9):966-73. doi: 10.1038/nm1099. [PMID: 15322539]
  • Ertan Mayatepek, Jürgen G Okun, Thomas Meissner, Birgit Assmann, Judith Hammond, Johannes Zschocke, Wolf-Dieter Lehmann. Synthesis and metabolism of leukotrienes in gamma-glutamyl transpeptidase deficiency. Journal of lipid research. 2004 May; 45(5):900-4. doi: 10.1194/jlr.m300462-jlr200. [PMID: 14754911]
  • Daniel E Sloniewsky, Karen M Ridge, Yochai Adir, Francine P Fries, Arturo Briva, Jacob I Sznajder, Peter H S Sporn. Leukotriene D4 activates alveolar epithelial Na,K-ATPase and increases alveolar fluid clearance. American journal of respiratory and critical care medicine. 2004 Feb; 169(3):407-12. doi: 10.1164/rccm.200304-472oc. [PMID: 14578215]
  • Carol R Norris, Kendra C Decile, Londa J Berghaus, Roy D Berghaus, William F Walby, Edward S Schelegle, Dallas M Hyde, Laurel J Gershwin. Concentrations of cysteinyl leukotrienes in urine and bronchoalveolar lavage fluid of cats with experimentally induced asthma. American journal of veterinary research. 2003 Nov; 64(11):1449-53. doi: 10.2460/ajvr.2003.64.1449. [PMID: 14620784]
  • Valérie Capra, Maria Rosa Accomazzo, Saula Ravasi, Marco Parenti, Marco Macchia, Simonetta Nicosia, G Enrico Rovati. Involvement of prenylated proteins in calcium signaling induced by LTD4 in differentiated U937 cells. Prostaglandins & other lipid mediators. 2003 Jul; 71(3-4):235-51. doi: 10.1016/s1098-8823(03)00045-5. [PMID: 14518564]
  • H Mechiche, E Naline, L Candenas, F M Pinto, P Birembault, C Advenier, P Devillier. Effects of cysteinyl leukotrienes in small human bronchus and antagonist activity of montelukast and its metabolites. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2003 Jul; 33(7):887-94. doi: 10.1046/j.1365-2222.2003.01696.x. [PMID: 12859443]
  • Joanna Murray, Carol Ward, Joseph T O'Flaherty, Ian Dransfield, Christopher Haslett, Edwin R Chilvers, Adriano G Rossi. Role of leukotrienes in the regulation of human granulocyte behaviour: dissociation between agonist-induced activation and retardation of apoptosis. British journal of pharmacology. 2003 May; 139(2):388-98. doi: 10.1038/sj.bjp.0705265. [PMID: 12770944]
  • Nunzio Crimi, Corrado Pagano, Filippo Palermo, Claudio Mastruzzo, Gaetano Prosperini, Maria P Pistorio, Carlo Vancheri. Inhibitory effect of a leukotriene receptor antagonist (montelukast) on neurokinin A-induced bronchoconstriction. The Journal of allergy and clinical immunology. 2003 Apr; 111(4):833-9. doi: 10.1067/mai.2003.161. [PMID: 12704366]
  • Iwona Stelmach, Joanna Jerzynska, Wlodzimierz Stelmach, Pawel Majak, Agnieszka Brzozowska, Pawel Gorski, Piotr Kuna. The effect of inhaled heparin on airway responsiveness to histamine and leukotriene D4. Allergy and asthma proceedings. 2003 Jan; 24(1):59-65. doi: NULL. [PMID: 12635579]
  • Blaithin McMahon, Derick Mitchell, Richard Shattock, Finian Martin, Hugh R Brady, Catherine Godson. Lipoxin, leukotriene, and PDGF receptors cross-talk to regulate mesangial cell proliferation. FASEB journal : official publication of the Federation of American Societies for Experimental Biology. 2002 Nov; 16(13):1817-9. doi: 10.1096/fj.02-0416fje. [PMID: 12223454]
  • Christianne Bandeira-Melo, Lesley J Woods, Mojabeng Phoofolo, Peter F Weller. Intracrine cysteinyl leukotriene receptor-mediated signaling of eosinophil vesicular transport-mediated interleukin-4 secretion. The Journal of experimental medicine. 2002 Sep; 196(6):841-50. doi: 10.1084/jem.20020516. [PMID: 12235216]
  • Ramin Massoumi, Christer Larsson, Anita Sjölander. Leukotriene D(4) induces stress-fibre formation in intestinal epithelial cells via activation of RhoA and PKCdelta. Journal of cell science. 2002 Sep; 115(Pt 17):3509-15. doi: 10.1242/jcs.115.17.3509. [PMID: 12154081]
  • James Sheller, Ryszard Dworski, David Hagaman, John Oates, John Murray. The prostaglandin E agonist, misoprostol, inhibits airway IL-5 production in atopic asthmatics. Prostaglandins & other lipid mediators. 2002 Sep; 70(1-2):185-93. doi: 10.1016/s0090-6980(02)00065-5. [PMID: 12428688]
  • Charles Kumar Thodeti, Ramin Massoumi, Lene Bindslev, Anita Sjölander. Leukotriene D4 induces association of active RhoA with phospholipase C-gamma1 in intestinal epithelial cells. The Biochemical journal. 2002 Jul; 365(Pt 1):157-63. doi: 10.1042/bj20020248. [PMID: 12071848]
  • H Shirasaki, E Kanaizumi, K Watanabe, T Matsui, J Sato, S Narita, M Rautiainen, T Himi. Expression and localization of the cysteinyl leukotriene 1 receptor in human nasal mucosa. Clinical and experimental allergy : journal of the British Society for Allergy and Clinical Immunology. 2002 Jul; 32(7):1007-12. doi: 10.1046/j.1365-2222.2002.01425.x. [PMID: 12100046]
  • Akiko Maekawa, K Frank Austen, Yoshihide Kanaoka. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. The Journal of biological chemistry. 2002 Jun; 277(23):20820-4. doi: 10.1074/jbc.m203163200. [PMID: 11932261]
  • Jean-Pierre Lavoie, Renaud Léguillette, Kirby Pasloske, Luc Charette, Nicole Sawyer, Daniel Guay, Terry Murphy, Gerry J Hickey. Comparison of effects of dexamethasone and the leukotriene D4 receptor antagonist L-708,738 on lung function and airway cytologic findings in horses with recurrent airway obstruction. American journal of veterinary research. 2002 Apr; 63(4):579-85. doi: 10.2460/ajvr.2002.63.579. [PMID: 11939323]
  • Kwang Hoon Lee, Ji Young Kim, Dong-Seung Kang, Yoo Jean Choi, Won-Jae Lee, Jai Youl Ro. Increased expression of endothelial cell adhesion molecules due to mediator release from human foreskin mast cells stimulated by autoantibodies in chronic urticaria sera. The Journal of investigative dermatology. 2002 Apr; 118(4):658-63. doi: 10.1046/j.1523-1747.2002.01733.x. [PMID: 11918713]
  • Iwona Stelmach, Joanna Jerzyńska, Monika Bobrowska, Agnieszka Brzozowska, Paweł Majak, Piotr Kuna. [The effect of inhaled heparin on post-leukotriene bronchoconstriction in children with bronchial asthma]. Polski merkuriusz lekarski : organ Polskiego Towarzystwa Lekarskiego. 2002 Feb; 12(68):95-8. doi: NULL. [PMID: 11995261]
  • Charles Kumar Thodeti, Anita Sjölander. Leukotriene D4-induced calcium signaling in human intestinal epithelial cells. Advances in experimental medicine and biology. 2002; 507(?):187-91. doi: 10.1007/978-1-4615-0193-0_29. [PMID: 12664584]