NCBI Taxonomy: 1883

Streptomyces (ncbi_taxid: 1883)

found 500 associated metabolites at genus taxonomy rank level.

Ancestor: Streptomycetaceae

Child Taxonomies: Streptomyces albus, Streptomyces cacaoi, Streptomyces galbus, Streptomyces arenae, Streptomyces tendae, Streptomyces badius, Streptomyces humidus, Streptomyces atratus, Streptomyces murinus, Streptomyces cyaneus, Streptomyces fradiae, Streptomyces nodosus, Streptomyces rimosus, Streptomyces scabiei, Streptomyces lydicus, Streptomyces noursei, Streptomyces pilosus, Streptomyces vellosus, Streptomyces hirsutus, Streptomyces actuosus, Streptomyces avidinii, Streptomyces bluensis, Streptomyces lividans, Streptomyces reticuli, Streptomyces cinereus, Streptomyces vinaceus, Streptomyces collinus, Streptomyces sedi, Streptomyces humi, Streptomyces rosa, Streptomyces pini, Streptomyces laurentii, Streptomyces olivaceus, Streptomyces galilaeus, Streptomyces netropsis, Streptomyces griseolus, Streptomyces violaceus, Streptomyces ramulosus, Streptomyces peucetius, Streptomyces purpureus, Streptomyces virginiae, Streptomyces nogalater, Streptomyces espinosus, Streptomyces caelestis, Streptomyces platensis, Streptomyces fabae, Streptomyces ortus, Streptomyces niger, Streptomyces sasae, Streptomyces lohii, Streptomyces levis, Streptomyces verne, Streptomyces lycii, Streptomyces lasii, Streptomyces caeni, Streptomyces yanii, Streptomyces ruber, Streptomyces ardus, Streptomyces heimi, Streptomyces nigra, Streptomyces megasporus, Streptomyces venezuelae, Streptomyces mashuensis, Streptomyces exfoliatus, Streptomyces lavendulae, Streptomyces malayensis, Streptomyces nigrescens, Streptomyces sulphureus, Streptomyces cellulosae, Streptomyces subrutilus, Streptomyces mauvecolor, Streptomyces oryzae, Streptomyces vastus, Streptomyces dendra, Streptomyces fuscus, Streptomyces varius, Streptomyces bellus, Streptomyces rubrus, Streptomyces silvae, Streptomyces paulus, Streptomyces horton, Streptomyces parvus, Streptomyces roseus, Streptomyces katrae, Streptomyces tardus, Streptomyces virens, Streptomyces typhae, Streptomyces aridus, Streptomyces pactum, Streptomyces rameus, Streptomyces populi, Streptomyces aureus, Streptomyces tuirus, Streptomyces niveus, Streptomyces tumuli, Streptomyces oceani, Streptomyces libani, Streptomyces bobili, Streptomyces calvus, Streptomyces bullii, Streptomyces palmae, Streptomyces coryli, Streptomyces macrosporus, Streptomyces carbophilus, Streptomyces mobaraensis, Streptomyces ambofaciens, Streptomyces bikiniensis, Streptomyces roseofulvus, Streptomyces corchorusii, Streptomyces avermitilis, Streptomyces glaucescens, Streptomyces verticillus, Streptomyces toyocaensis, Streptomyces griseoruber, Streptomyces kasugaensis, Streptomyces longisporus, Streptomyces chartreusis, Streptomyces morookaense, Streptomyces intermedius, Streptomyces argillaceus, Streptomyces albosporeus, Streptomyces wedmorensis, Streptomyces eurythermus, Streptomyces caespitosus, Streptomyces polaris, Streptomyces akebiae, Streptomyces tritici, Streptomyces orinoci, Streptomyces mimosae, Streptomyces indicus, Streptomyces anandii, Streptomyces cynarae, Streptomyces fractus, Streptomyces apricus, Streptomyces cupreus, Streptomyces urticae, Streptomyces adustus, Streptomyces bicolor, Streptomyces alborus, Streptomyces coralus, Streptomyces cremeus, Streptomyces ryensis, Streptomyces ravidus, Streptomyces coffeae, Streptomyces violens, Streptomyces canalis, Streptomyces pakalii, Streptomyces lanatus, Streptomyces nobilis, Streptomyces caesius, Streptomyces sviceus, Streptomyces klenkii, Streptomyces curacoi, Streptomyces lividus, Streptomyces azureus, Streptomyces sparsus, Streptomyces padanus, Streptomyces paresii, Streptomyces iakyrus, Streptomyces glaucus, Streptomyces labedae, Streptomyces humifer, Streptomyces chlorus, Streptomyces incanus, Streptomyces pratens, Streptomyces pulcher, Streptomyces tamarix, Streptomyces regalis, Streptomyces geranii, Streptomyces arboris, Streptomyces viridis, Streptomyces muensis, Streptomyces hominis, Streptomyces xanthii, Streptomyces rutilus, Streptomyces marinus, Streptomyces apocyni, Streptomyces abietis, Streptomyces citreus, Streptomyces venetus, Streptomyces finlayi, Streptomyces fumanus, Streptomyces aquilus, Streptomyces mayteni, Streptomyces paludis, Streptomyces levoris, Streptomyces radicis, Streptomyces luridus, Streptomyces deserti, Streptomyces auratus, Streptomyces griseoflavus, Streptomyces triostinicus, Streptomyces antibioticus, Streptomyces clavuligerus, Streptomyces coerulescens, Streptomyces griseoluteus, Streptomyces lincolnensis, Streptomyces chromofuscus, Streptomyces purpurascens, Streptomyces ramocissimus, Streptomyces coriofaciens, Streptomyces tubercidicus, Streptomyces albireticuli, Streptomyces goshikiensis, Streptomyces brasiliensis, Streptomyces sclerotialus, Streptomyces nitrosporeus, Streptomyces acidiscabies, Streptomyces bottropensis, Streptomyces ficellus, Streptomyces geldanus, Streptomyces nigellus, Streptomyces canarius, Streptomyces prasinus, Streptomyces graminis, Streptomyces telluris, Streptomyces humicola, Streptomyces bambusae, Streptomyces zelensis, Streptomyces composti, Streptomyces lilaceus, Streptomyces gossypii, Streptomyces roseolus, Streptomyces sacchari, Streptomyces plumbeus, Streptomyces globifer, Streptomyces termitum, Streptomyces umbrosus, Streptomyces spinosus, Streptomyces violarus, Streptomyces vulgaris, Streptomyces ogaensis, Streptomyces dysideae, Streptomyces alfalfae, Streptomyces marianii, Streptomyces ipomoeae, Streptomyces inhibens, Streptomyces harenosi, Streptomyces spiralis, Streptomyces gardneri, Streptomyces spongiae, Streptomyces capoamus, Streptomyces chryseus, Streptomyces cavernae, Streptomyces demainii, Streptomyces cirratus, Streptomyces clavifer, Streptomyces silaceus, Streptomyces brunneus, Streptomyces halobius, Streptomyces musisoli, Streptomyces mangrovi, Streptomyces globosus, Streptomyces salmonis, Streptomyces kathirae, Streptomyces galtieri, Streptomyces lazureus, Streptomyces arcticus, Streptomyces huangiae, Streptomyces uncialis, Streptomyces lichenis, Streptomyces pallidus, Streptomyces hayashii, Streptomyces aegyptia, Streptomyces regensis, Streptomyces spadicis, Streptomyces montanus, Streptomyces candidus, Streptomyces carnosus, environmental samples, Streptomyces fragilis, Streptomyces fodineus, Streptomyces septatus, Streptomyces parvulus, Streptomyces glebosus, Streptomyces asoensis, Streptomyces formicae, Streptomyces lucensis, Streptomyces fagopyri, Streptomyces diacarni, Streptomyces griseocarneus, Streptomyces viridifaciens, Streptomyces griseoviridis, Streptomyces griseosporeus, Streptomyces akiyoshiensis, Streptomyces jumonjinensis, Streptomyces mycarofaciens, Streptomyces kanamyceticus, Streptomyces celluloflavus, Streptomyces neyagawaensis, Streptomyces minoensis, Streptomyces cerasinus, Streptomyces mutabilis, Streptomyces gelaticus, Streptomyces aqsuensis, Streptomyces tumescens, Streptomyces brollosae, Streptomyces cuticulae, Streptomyces castaneus, Streptomyces monticola, Streptomyces carminius, Streptomyces rosealbus, Streptomyces acidicola, Streptomyces boluensis, Streptomyces lannensis, Streptomyces guryensis, Streptomyces ginkgonis, Streptomyces bernensis, Streptomyces sanyensis, Streptomyces pharetrae, Streptomyces baliensis, Streptomyces myxogenes, Streptomyces tosaensis, Streptomyces xishensis, Streptomyces abyssalis, Streptomyces sediminis, Streptomyces gobiensis, Streptomyces catenulae, Streptomyces salilacus, Streptomyces refuineus, Streptomyces paradoxus, Streptomyces senoensis, Streptomyces coriariae, Streptomyces solincola, Streptomyces vulcanius, Streptomyces axinellae, Streptomyces panacagri, Streptomyces litoralis, Streptomyces silvensis, Streptomyces atriruber, Streptomyces ehimensis, Streptomyces rubicolor, Streptomyces siamensis, Streptomyces africanus, Streptomyces maritimus, Streptomyces caniferus, Streptomyces bauhiniae, [Kitasatospora] grisea, Streptomyces silvisoli, Streptomyces pratensis, Streptomyces albicerus, Streptomyces lilacinus, Streptomyces pacificus, Streptomyces mexicanus, Streptomyces lusitanus, Streptomyces mirabilis, Streptomyces tremellae, Streptomyces moderatus, Streptomyces naraensis, Streptomyces zhihengii, Streptomyces herbaceus, Streptomyces kaempferi, Streptomyces daliensis, Streptomyces poonensis, Streptomyces torulosus, Streptomyces marincola, Streptomyces sanglieri, Streptomyces syringium, Streptomyces specialis, Streptomyces smyrnaeus, Streptomyces verdensis, Streptomyces flavalbus, Streptomyces gramineus, Streptomyces gamaensis, Streptomyces coeliatus, Streptomyces speibonae, Streptomyces subflavus, Streptomyces echinatus, Streptomyces yaanensis, Streptomyces decoyicus, Streptomyces flaveolus, Streptomyces bathyalis, Streptomyces janthinus, Streptomyces justiciae, Streptomyces vayuensis, Streptomyces krainskii, Streptomyces capuensis, Streptomyces camponoti, Streptomyces buecherae, Streptomyces asenjonii, Streptomyces thermolineatus, Streptomyces tenjimariensis, Streptomyces thermovulgaris, Streptomyces pimonensis, Streptomyces tasikensis, Streptomyces mordarskii, Streptomyces naganishii, Streptomyces atlanticus, Streptomyces monomycini, Streptomyces rhizoryzae, Streptomyces inaequalis, Streptomyces prunicolor, Streptomyces atrolaccus, Streptomyces plemorphus, Streptomyces recifensis, Streptomyces polymachus, Streptomyces mesophilus, Streptomyces glauceuces, Streptomyces kobenensis, Streptomyces capparidis, Streptomyces sioyaensis, Streptomyces glomeratus, Streptomyces stramineus, Streptomyces tibetensis, Streptomyces setonensis, Streptomyces fuscigenes, Streptomyces bohaiensis, Streptomyces kanasensis, Streptomyces violascens, Streptomyces araujoniae, Streptomyces moroccanus, Streptomyces luteocolor, Streptomyces owasiensis, Streptomyces triticagri, Streptomyces meridianus, Streptomyces piomogenus, Streptomyces xylophagus, Streptomyces albospinus, Streptomyces albaduncus, Streptomyces coerulatus, Streptomyces seoulensis, Streptomyces sahachiroi, Streptomyces mucoflavus, Streptomyces armeniacus, Streptomyces rubradiris, Streptomyces spiramenti, Streptomyces fimbriatus, Streptomyces iconiensis, Streptomyces salinarius, Streptomyces aizunensis, Streptomyces gedanensis, Streptomyces hebeiensis, Streptomyces armentosus, Streptomyces atrovirens, Streptomyces marispadix, Streptomyces piniterrae, Streptomyces panayensis, Streptomyces carpaticus, Streptomyces abikoensis, Streptomyces pentaticus, Streptomyces tropicalis, Streptomyces huiliensis, Streptomyces ardesiacus, Streptomyces inusitatus, Streptomyces thioluteus, Streptomyces blattellae, Streptomyces bungoensis, Streptomyces indiaensis, Streptomyces mutomycini, Streptomyces circulatus, Streptomyces variegatus, Streptomyces sakaiensis, Streptomyces farcinicus, Streptomyces goraiensis, Streptomyces natalensis, Streptomyces zingiberis, Streptomyces hilarionis, Streptomyces anatolicus, Streptomyces niveoruber, Streptomyces omiyaensis, Streptomyces mozunensis, Streptomyces canadensis, Streptomyces rugosporus, Streptomyces boninensis, Streptomyces brevispora, Streptomyces olindensis, Streptomyces phyllanthi, Streptomyces sudanensis, Streptomyces incarnatus, Streptomyces roietensis, Streptomyces litmocolor, Streptomyces lonarensis, Streptomyces avicenniae, Streptomyces werraensis, Streptomyces arginensis, Streptomyces polygonati, Streptomyces alboflavus, Streptomyces robefuscus, Streptomyces haliclonae, Streptomyces garyphalus, Streptomyces citricolor, Streptomyces aurigineus, Streptomyces craterifer, Streptomyces cyanocolor, Streptomyces cyanogenus, Streptomyces lasalocidi, Streptomyces tumenensis, Streptomyces spirodelae, Streptomyces artemisiae, Streptomyces lateritius, Streptomyces nanshensis, Streptomyces lutosisoli, Streptomyces odonnellii, Streptomyces carzinostaticus, Streptomyces olivaceoviridis, Streptomyces thermoviolaceus, Streptomyces griseiniger, Streptomyces misionensis, Streptomyces narbonensis, Streptomyces pluripotens, Streptomyces aidingensis, Streptomyces chromogenus, Streptomyces scopiformis, Streptomyces somaliensis, Streptomyces atrocyaneus, Streptomyces lopnurensis, Streptomyces lunaelactis, Streptomyces flavorectus, Streptomyces gilvifuscus, Streptomyces phytophilus, Streptomyces ureilyticus, Streptomyces autolyticus, Streptomyces microsporus, Streptomyces sannurensis, Streptomyces roseoluteus, Streptomyces roseorubens, Streptomyces rimofaciens, Streptomyces albogriseus, Streptomyces echinoruber, Streptomyces violorubens, Streptomyces sindenensis, Streptomyces caldifontis, Streptomyces sparsogenes, Streptomyces yunnanensis, Streptomyces zagrosensis, Streptomyces toxytricini, Streptomyces euryhalinus, Streptomyces miharaensis, Streptomyces versipellis, Streptomyces beihaiensis, Streptomyces tunisialbus, Streptomyces roseogilvus, Streptomyces albofaciens, Streptomyces albiaxialis, Streptomyces kagawaensis, Streptomyces glycovorans, Streptomyces yangpuensis, Streptomyces hydrogenans, Streptomyces microaureus, Streptomyces carpinensis, Streptomyces wuyuanensis, Streptomyces barkulensis, Streptomyces shiodaensis, Streptomyces liliifuscus, Streptomyces polyrhachis, Streptomyces nojiriensis, Streptomyces fasiculatus, Streptomyces atrofaciens, Streptomyces caniscabiei, Streptomyces kalpinensis, Streptomyces dengpaensis, Streptomyces chilikensis, Streptomyces aureofuscus, Streptomyces sannanensis, Streptomyces aculeolatus, Streptomyces durhamensis, Streptomyces ferrugineus, Streptomyces smaragdinus, Streptomyces gannmycicus, Streptomyces spongiicola, Streptomyces albus group, Streptomyces hoynatensis, Streptomyces gobitricini, Streptomyces manganisoli, Streptomyces eurocidicus, Streptomyces actinocidus, Streptomyces indigocolor, Streptomyces fulvorobeus, Streptomyces graminearus, Streptomyces heliomycini, Streptomyces daqingensis, Streptomyces tailanensis, Streptomyces lienomycini, Streptomyces lomondensis, Streptomyces aldersoniae, Streptomyces harbinensis, Streptomyces spororaveus, Streptomyces endophytica, Streptomyces sayamaensis, Streptomyces samsunensis, Streptomyces pathocidini, Streptomyces davaonensis, Streptomyces triticisoli, Streptomyces lushanensis, Streptomyces malaysiense, Streptomyces longissimus, Streptomyces antioxidans, Streptomyces caeruleatus, Streptomyces nanhaiensis, Streptomyces corynorhini, Streptomyces peruviensis, Streptomyces erringtonii, Streptomyces pulveraceus, Streptomyces sodiiphilus, Streptomyces saraceticus, Streptomyces showdoensis, Streptomyces jeddahensis, Streptomyces spectabilis, Streptomyces takataensis, Streptomyces tetanusemus, Streptomyces boncukensis, Streptomyces olivomycini, Streptomyces cavourensis, Streptomyces viridogenes, Streptomyces innominatus, Streptomyces banglaensis, Streptomyces indoligenes, Streptomyces fukangensis, Streptomyces monashensis, Streptomyces rokugoensis, Streptomyces roseirectus, Streptomyces ochroleucus, Streptomyces tsukubensis, [Kitasatospora] papulosa, Streptomyces fildesensis, Streptomyces xiamenensis, Streptomyces poriferorum, Streptomyces graminisoli, Streptomyces rhizophilus, Streptomyces conglobatus, Streptomyces tritolerans, Streptomyces coacervatus, Streptomyces hainanensis, Streptomyces tunisiensis, Streptomyces subtropicus, Streptomyces danangensis, Streptomyces hawaiiensis, Streptomyces ovatisporus, Streptomyces osmaniensis, Streptomyces kurssanovii, Streptomyces montanisoli, Streptomyces litmocidini, Streptomyces deccanensis, Streptomyces melanogenes, Streptomyces atacamensis, Streptomyces pluricolorescens, Streptomyces macromomyceticus, Streptomyces longisporoflavus, Streptomyces thermocarboxydus, Streptomyces olivochromogenes, Streptomyces roseiscleroticus, Streptomyces sichuanensis, Streptomyces gangtokensis, Streptomyces thermoflavus, Streptomyces qinlingensis, Streptomyces graminilatus, Streptomyces vietnamensis, Streptomyces agglomeratus, Streptomyces karpasiensis, Streptomyces niveiscabiei, Streptomyces roseifaciens, Streptomyces californicus, Streptomyces nanningensis, Streptomyces roseogriseus, Streptomyces luteosporeus, Streptomyces roseoviridis, Streptomyces tumemacerans, Streptomyces gilvosporeus, Streptomyces viridiflavus, Streptomyces acidipaludis, Streptomyces tanashiensis, Streptomyces tsusimaensis, Streptomyces alkaliterrae, Streptomyces neopeptinius, Streptomyces otsuchiensis, Streptomyces varsoviensis, Streptomyces olivogriseus, Streptomyces chiniscabies, Streptomyces shaanxiensis, Streptomyces vendargensis, Streptomyces triangulatus, Streptomyces corallincola, Streptomyces afghaniensis, Streptomyces kagoshimanus, Streptomyces xanthophaeus, Streptomyces himgiriensis, Streptomyces chungwhensis, Streptomyces filipinensis, Streptomyces flavotricini, Streptomyces yerevanensis, Streptomyces fulvoviridis, Streptomyces alanosinicus, Streptomyces kasugaspinus, Streptomyces misawanensis, Streptomyces griseomycini, Streptomyces xinghaiensis, Streptomyces tateyamensis, Streptomyces mangrovicola, Streptomyces graminifolii, Streptomyces halotolerans, Streptomyces panaciterrae, Streptomyces physcomitrii, Streptomyces thermophilus, Streptomyces koganeiensis, Streptomyces ginsengisoli, Streptomyces colombiensis, Streptomyces crystallinus, Streptomyces djakartensis, Streptomyces thermoluteus, Streptomyces gulbargensis, Streptomyces flavofungini, Streptomyces tokunonensis, Streptomyces fungicidicus, Streptomyces andamanensis, Streptomyces similanensis, Streptomyces drozdowiczii, Streptomyces huasconensis, Streptomyces hokutonensis, Streptomyces lasiicapitis, Streptomyces plumbidurans, Streptomyces cerradoensis, Streptomyces majorciensis, Streptomyces kunmingensis, Streptomyces satsumaensis, Streptomyces luteogriseus, Streptomyces macrosporeus, Streptomyces zhihengliuii, Streptomyces glaucosporus, unclassified Streptomyces, Streptomyces wadayamensis, Streptomyces cheonanensis, Streptomyces kronopolitis, Streptomyces mangrovisoli, Streptomyces wistariopsis, Streptomyces phaeofaciens, Streptomyces macrolidinus, Streptomyces thiolactonus, Streptomyces longhuiensis, Streptomyces tacrolimicus, Streptomyces rishiriensis, Streptomyces colonosanans, Streptomyces granaticolor, Streptomyces scabichelini, Streptomyces adelaidensis, Streptomyces scopuliridis, Streptomyces hypolithicus, Streptomyces griseoroseus, Streptomyces endophyticus, Streptomyces achromogenes, Streptomyces manipurensis, Streptomyces hundungensis, Streptomyces flavolimosus, Streptomyces cinereoruber, Streptomyces gandocaensis, Streptomyces changanensis, Streptomyces zaomyceticus, Streptomyces goldeniensis, Streptomyces gossypiisoli, Streptomyces albohelvatus, Streptomyces amakusaensis, Streptomyces cebimarensis, Streptomyces qinglanensis, Streptomyces desertarenae, Streptomyces alkaliphilus, Streptomyces cinnabarinus, Streptomyces rochei group, Streptomyces filamentosus, Streptomyces radiopugnans, Streptomyces maoxianensis, Streptomyces qinzhouensis, Streptomyces griseofuscus, Streptomyces himalayensis, Streptomyces durbertensis, Streptomyces xiangluensis, Streptomyces malachiticus, Streptomyces massasporeus, Streptomyces viridosporus, Streptomyces thermodiastaticus, [Nocardioides] thermolilacinus, Streptomyces viridochromogenes, Streptomyces pristinaespiralis, Streptomyces endocoffeicus, Streptomyces hygrospinosus, Streptomyces noboritoensis, Streptomyces leeuwenhoekii, Streptomyces saprophyticus, Streptomyces xiangtanensis, Streptomyces phaeolivaceus, Streptomyces murayamaensis, Streptomyces shandongensis, Streptomyces luozhongensis, Streptomyces thermogriseus, Streptomyces xinjiangensis, Streptomyces beijiangensis, Streptomyces luteireticuli, Streptomyces viridocyaneus, Streptomyces multispiralis, Streptomyces sennicomposti, Streptomyces zhaozhouensis, Streptomyces caatingaensis, Streptomyces sporovirgulis, Streptomyces griseus group, Streptomyces panaciradicis, Streptomyces roseocinereus, Streptomyces cuspidosporus, Streptomyces chitinivorans, Streptomyces daghestanicus, Streptomyces paromomycinus, Streptomyces propurpuratus, Streptomyces luteolifulvus, Streptomyces antimycoticus, Streptomyces reniochalinae, Streptomyces vilmorinianum, Streptomyces amagasakensis, Streptomyces cyanoglomerus, Streptomyces cyaneogriseus, Streptomyces broussonetiae, Streptomyces cameroonensis, Streptomyces tempisquensis, Streptomyces spinosirectus, Streptomyces tsukiyonensis, Streptomyces altiplanensis, Streptomyces heteromorphus, Streptomyces solaniscabiei, Streptomyces hiroshimensis, Streptomyces cinereospinus, Streptomyces coelicoflavus, Streptomyces thinghirensis, Streptomyces nanchangensis, Streptomyces kitasatoensis, Streptomyces kashimirensis, Streptomyces ashchabadicus, Streptomyces stelliscabiei, Streptomyces griseiscabiei, Streptomyces longwoodensis, Streptomyces ascomycinicus, Streptomyces wellingtoniae, Streptomyces rajshahiensis, Streptomyces jiujiangensis, Streptomyces olivoreticuli, Streptomyces chengmaiensis, Streptomyces ostreogriseus, Streptomyces triticirhizae, Streptomyces paraguayensis, Streptomyces prasinosporus, Streptomyces phytohabitans, Streptomyces laculatispora, Streptomyces globivulgaris, Streptomyces tropicalensis, Streptomyces kitazawaensis, Streptomyces xantholiticus, Streptomyces halophytocola, Streptomyces genisteinicus, Streptomyces burgazadensis, Streptomyces amritsarensis, Streptomyces kaniharaensis, Streptomyces shenzhenensis, Streptomyces glaucogriseus, Streptomyces seymenliensis, Streptomyces hyaluromycini, Streptomyces durmitorensis, Streptomyces pinistramenti, Streptomyces aureoversilis, Streptomyces chumphonensis, Streptomyces yongxingensis, Streptomyces jietaisiensis, Streptomyces cellostaticus, Streptomyces ribosidificus, Streptomyces spinosisporus, Streptomyces dimorphogenes, Streptomyces flavidovirens, Streptomyces argyrophyllae, Streptomyces griseoloalbus, Streptomyces karnatakensis, Streptomyces ossamyceticus, Streptomyces kishiwadensis, Streptomyces benahoarensis, Streptomyces lavendofoliae, Streptomyces marokkonensis, Streptomyces cyslabdanicus, Streptomyces griseodotifer, Streptomyces puniciscabiei, Streptomyces barringtoniae, Streptomyces ziwulingensis, Streptomyces koelreuteriae, Streptomyces xylanilyticus, Streptomyces antifibrinolyticus, Streptomyces ahygroscopicus, Streptomyces prasinopilosus, Streptomyces acidoresistans, Streptomyces novoguineensis, Streptomyces hyderabadensis, Streptomyces olivicoloratus, Streptomyces lilacinofulvus, Streptomyces nigrogriseolus, Streptomyces albiflavescens, Streptomyces roseoviolaceus, Streptomyces chiangmaiensis, Streptomyces thermosacchari, Streptomyces antimicrobicus, Streptomyces purpureofuscus, Streptomyces rugosispiralis, Streptomyces rectiviolaceus, Streptomyces violaceorectus, Streptomyces triticiradicis, Streptomyces turgidiscabies, Streptomyces yokosukanensis, Streptomyces brunneogriseus, Streptomyces coeruleofuscus, Streptomyces lunalinharesii, Streptomyces aspergilloides, Streptomyces lividoclavatus, Streptomyces blastmyceticus, Streptomyces roseolilacinus, Streptomyces niphimycinicus, Streptomyces fulvoviolaceus, Streptomyces roseoaurantius, Streptomyces youssoufiensis, Streptomyces noordhoekensis, Streptomyces laeteviolaceus, Streptomyces coeruleoprunus, Streptomyces fenghuangensis, Streptomyces acidomyceticus, Streptomyces milbemycinicus, Streptomyces viridobrunneus, Streptomyces luteolutescens, Streptomyces liangshanensis, Streptomyces amphibiosporus, Streptomyces novaecaesareae, Streptomyces longshengensis, Streptomyces nymphaeiformis, Streptomyces melanovinaceus, Streptomyces brasiliscabiei, Streptomyces sulfonofaciens, Streptomyces roseicoloratus, Streptomyces zinciresistens, Streptomyces guanamiceticus, Streptomyces pharmamarensis, Streptomyces liliiviolaceus, Streptomyces roseogriseolus, Streptomyces spiramyceticus, Streptomyces capitiformicae, Streptomyces katsurahamanus, Streptomyces antibioticalis, Streptomyces polyasparticus, Streptomyces thermotolerans, Streptomyces rubellomurinus, Streptomyces cylindrosporus, Streptomyces triculaminicus, Streptomyces dangxiongensis, Streptomyces lavendulocolor, Streptomyces swartbergensis, Streptomyces ochraceiscleroticus, Streptomyces diastatochromogenes, Streptomyces sundarbansensis, Streptomyces griseicoloratus, Streptomyces tubbatahanensis, Streptomyces malachitospinus, Streptomyces septentrionalis, Streptomyces polychromogenes, Streptomyces calidiresistens, Streptomyces lavendularectus, Streptomyces rubrolavendulae, Streptomyces aurantiogriseus, Streptomyces kebangsaanensis, Streptomyces chattanoogensis, Streptomyces plumbiresistens, Streptomyces paucisporogenes, Streptomyces capillispiralis, Streptomyces piloviolofuscus, Streptomyces thermolilacinus, Streptomyces lactacystinaeus, Streptomyces roseoviolascens, Streptomyces thermocastaneus, Streptomyces krungchingensis, Streptomyces lydicamycinicus, Streptomyces taklimakanensis, Streptomyces flavovariabilis, Streptomyces europaeiscabiei, Streptomyces reticuliscabiei, Streptomyces longispororuber, Streptomyces violaceorubidus, Streptomyces angustmyceticus, Streptomyces spinoverrucosus, Streptomyces parvisporogenes, Streptomyces pyridomyceticus, Streptomyces lacrimifluminis, Streptomyces lysosuperificus, Streptomyces bangladeshensis, Streptomyces verrucosisporus, Streptomyces viridiviolaceus, Streptomyces bingchenggensis, Streptomyces actinomycinicus, Streptomyces ansochromogenes, Streptomyces abyssomicinicus, Streptomyces coeruleorubidus, Streptomyces durocortorensis, Streptomyces rufochromogenes, Streptomyces lactacystinicus, Streptomyces malachitofuscus, Streptomyces malachitorectus, Streptomyces rhizosphaericola, Streptomyces roseochromogenus, Streptomyces flavomacrosporus, Streptomyces violochromogenes, Streptomyces sporangiiformans, Streptoverticillium reticulum, Streptomyces fructofermentans, Streptomyces spinichromogenes, Streptomyces spinicoumarensis, Streptomyces chrestomyceticus, Streptomyces cahuitamycinicus, Streptomyces flavochromogenes, Streptomyces cinnamocastaneus, Streptomyces sclerogranulatus, Streptomyces geldanamycininus, Streptomyces tirandamycinicus, Streptomyces lacticiproducens, Streptomyces aureochromogenes, Streptomyces cinnabarigriseus, Streptomyces staurosporininus, Streptomyces steffisburgensis, Streptomyces polyantibioticus, Streptomyces hygroatrocyaneus, Streptomyces luteochromogenes, Streptomyces amphotericinicus, Streptomyces griseovariabilis, Streptomyces synnematoformans, Streptomyces fuscichromogenes, Streptomyces songpinggouensis, Streptomyces lavenduligriseus, Streptomyces camponoticapitis, Streptomyces thermocarboxydovorans, Streptomyces purpeochromogenes, Streptomyces thermocoprophilus, Streptomyces aurantiacogriseus, Streptomyces racemochromogenes, Streptomyces diastaticus group, Streptomyces albidochromogenes, Streptomyces adephospholyticus, Streptomyces xanthochromogenes, Streptomyces aurantiacus group, Streptomyces cyaneochromogenes, Streptomyces thermoatroviridis, Streptomyces cinerochromogenes, Streptomyces griseochromogenes, Streptomyces qingfengmyceticus, Streptomyces minutiscleroticus, Streptomyces heilongjiangensis, Streptomyces alboverticillatus, Streptomyces aureomonopodiales, Streptomyces cinnamoneus group, Streptomyces xiaopingdaonensis, Streptomyces griseorubiginosus, Streptomyces althioticus group, Streptomyces rubiginosohelvolus, Streptomyces rectiverticillatus, Streptomyces spiroverticillatus, Streptomyces aureoverticillatus, Streptomyces albidoflavus group, Streptomyces phaeoverticillatus, Streptomyces thermocoerulescens, Streptomyces glomerochromogenes, Streptomyces luteoverticillatus, Streptomyces rubroverticillatus, Streptomyces olivoverticillatus, Streptomyces roseoverticillatus, Streptomyces erythrochromogenes, Streptomyces botrytidirepellens, Streptomyces thermoalkaliphilus, Streptomyces pseudoechinosporeus, Streptomyces violaceochromogenes, Streptomyces fumigatiscleroticus, Streptoverticillium verticillium, Streptomyces coeruleoaurantiacus, Streptomyces olivaceiscleroticus, Streptomyces castaneoglobisporus, Streptomyces albogriseolus group, Streptomyces anthocyanicus group, Streptomyces thermospinosisporus, Streptomyces alkalithermotolerans, Streptomyces violaceusniger group, Streptomyces thermoalcalitolerans, Streptomyces rhizosphaerihabitans, Candidatus Streptomyces philanthi, Streptoverticillium rubrireticuli, Streptomyces pseudogriseolus group, Streptomyces thermocyaneomaculatus, Streptomyces rubrocyanodiastaticus, Streptomyces thermocyaneoviolaceus, Streptoverticillium rubrochlorinum, Streptomyces phaeochromogenes group, Streptomyces griseoincarnatus group, Candidatus Streptomyces massiliensis, Streptomyces purpurogeneiscleroticus, Streptomyces phaeoluteichromatogenes, Streptomyces melanosporofaciens group, Streptomyces albidus (ex Kaewkla and Franco 2022), Streptomyces albidus (ex (Duche 1934) Waksman 1953), 'Streptomyces viridis' (Lombardo-Pellegrino 1903) Waksman 1953

Genistin

5-hydroxy-3-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O10 (432.105642)


Genistein 7-O-beta-D-glucoside is a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a genistein. It is a conjugate acid of a genistein 7-O-beta-D-glucoside(1-). Genistin is a natural product found in Ficus septica, Dalbergia sissoo, and other organisms with data available. Genistin is found in fruits. Genistin is present in soy foods. Potential nutriceutical. It is isolated from Prunus avium (wild cherry) Genistin is one of several known isoflavones. Genistin is found in a number of plants and herbs like soy Present in soy foods. Potential nutriceutical. Isolated from Prunus avium (wild cherry) Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3]. Genistin (Genistine), an isoflavone belonging to the phytoestrogen family, is a potent anti-adipogenic and anti-lipogenic agent. Genistin attenuates cellular growth and promotes apoptotic cell death breast cancer cells through modulation of ERalpha signaling pathway[1][2][3].

   

Vanillic acid

4-hydroxy-3-methoxybenzoic acid

C8H8O4 (168.0422568)


Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].

   

Coumarin

2h-1-benzopyran-2-one;coumarin;2h-chromen-2-one;coumarin ;coumarin (2h-1-benzopyran-2-one) (chromen-2-one);2h-1-benzopyran-2-one coumarin 2h-chromen-2-one coumarin coumarin (2h-1-benzopyran-2-one) (chromen-2-one)

C9H6O2 (146.0367776)


Coumarin appears as colorless crystals, flakes or colorless to white powder with a pleasant fragrant vanilla odor and a bitter aromatic burning taste. (NTP, 1992) Coumarin is a chromenone having the keto group located at the 2-position. It has a role as a fluorescent dye, a plant metabolite and a human metabolite. Coumarin is a natural product found in Eupatorium cannabinum, Eupatorium japonicum, and other organisms with data available. Coumarin is o hydroxycinnamic acid. Pleasant smelling compound found in many plants and released on wilting. Has anticoagulant activity by competing with Vitamin K. Coumarin is a chemical compound/poison found in many plants, notably in high concentration in the tonka bean, woodruff, and bison grass. It has a sweet scent, readily recognised as the scent of newly-mown hay. It has clinical value as the precursor for several anticoagulants, notably warfarin. --Wikipedia. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. The parent compound, coumarin, occurs naturally in many plants, natural spices, and foods such as tonka bean, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% to 6.4\\\\% in fine fragrances to <0.01\\\\% in detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and ... Coumarin belongs to the class of chemicals known as chromenones. Specifically it is a chromenone having the keto group located at the 2-position. A chromenone is a benzene molecule with two adjacent hydrogen atoms replaced by a lactone-like chain forming a second six-membered heterocycle that shares two carbons with the benzene ring. Coumarin is also described as a benzopyrone and is considered as a lactone. Coumarin is a colorless crystalline solid with a bitter taste and sweet odor resembling the scent of vanilla or the scent of newly-mowed or recently cut hay. It is a chemical poison found in many plants where it may serve as a chemical defense against predators. Coumarin occurs naturally in many plants and foods such as the tonka bean, woodruff, bison grass, cassia (bastard cinnamon or Chinese cinnamon), cinnamon, melilot (sweet clover), green tea, peppermint, celery, bilberry, lavender, honey (derived both from sweet clover and lavender), and carrots, as well as in beer, tobacco, wine, and other foodstuffs. Coumarin concentrations in these plants, spices, and foods range from <1 mg/kg in celery, to 7000 mg/kg in cinnamon, and up to 87,000 mg/kg in cassia. An estimate of human exposure to coumarin from the diet has been calculated to be 0.02 mg/kg/day. Coumarin is used as an additive in perfumes and fragranced consumer products at concentrations ranging from <0.5\\\\% To 6.4\\\\% In fine fragrances to <0.01\\\\% In detergents. An estimate for systemic exposure of humans from the use of fragranced cosmetic products is 0.04 mg/kg BW/day, assuming complete dermal penetration. The use of coumarin as a food additive was banned by the FDA in 1954 based on reports of hepatotoxicity in rats. It has clinical value as the precursor for several anticoagulants, notably warfarin. Coumarins, as a class, are comprised of numerous naturally occurring benzo-alpha-pyrone compounds with important and diverse physiological activities. Due to its potential hepatotoxic effects in humans, the European Commission restricted coumarin from naturals as a direct food additive to 2 mg/kg food/day, with exceptions granting higher levels for alcoholic beverages, caramel, chewing gum, and certain traditional foods. In addition to human exposure to coumarin from dietary sources and consumer products, coumarin is also used clinically as an antineoplastic and for the treatment of lymphedema and venous insufficiency. Exposure ranges from 11 mg/day for consumption of natural food ingredients to 7 g/day following clinical administration. Although adverse effects in humans following coumarin exposure are rare, and only associated with clinical doses, recent evidence indicates coumarin causes liver tumors in rats and mice and Clara cell toxicity and lung tumors in mice. The multiple effects as well as the ongoing human exposure to coumarin have resulted in a significant research effort focused on understanding the mechanism of coumarin induced toxicity/carcinogenicity and its human relevance. These investigations have revealed significant species differences in coumarin metabolism and toxicity such that the mechanism of coumarin induced effects in rodents, and the relevance of these findings for the safety assessment of coumarin exposure in humans are now better understood. In October 2004, the European Food Safety Authority (EFSA, 2004) reviewed coumarin to establish a tolerable daily intake (TDI) in foods. EFSA issued an opinion indicating that coumarin is not genotoxic, and that a threshold approach to safety assessment was most appropriate. EFSA recommended a TDI of 0 to 0.1 Mg/kg BW/day. Including dietary contributions, the total human exposure is estimated to be 0.06 Mg/kg/day. As a pharmaceutical, coumarin has been used in diverse applications with a wide variety of dosing regimens. Unlike coumadin and other coumarin derivatives, coumarin has no anti-coagulant activity. However, at low doses (typically 7 to 10 mg/day), coumarin has been used as a venotonic to promote... C78275 - Agent Affecting Blood or Body Fluid > C263 - Anticoagulant Agent A chromenone having the keto group located at the 2-position. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Raw Data] CB013_Coumarin_pos_20eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_30eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_10eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_50eV_CB000008.txt [Raw Data] CB013_Coumarin_pos_40eV_CB000008.txt Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities. Coumarin is the primary bioactive ingredient in Radix Glehniae, named Beishashen in China, which possesses many pharmacological activities, including anticancer, anti-inflammation and antivirus activities.

   

Protocatechuic acid

3,4-dihydroxybenzoic acid

C7H6O4 (154.0266076)


Protocatechuic acid, also known as protocatechuate or 3,4-dihydroxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. The enzyme protocatechuate 3,4-dioxygenase uses 3,4-dihydroxybenzoate and O2 to produce 3-carboxy-cis,cis-muconate. Protocatechuic acid is a drug. In the analogous hardening of the cockroach ootheca, the phenolic substance concerned is protocatechuic acid. Protocatechuic acid is a mild, balsamic, and phenolic tasting compound. Outside of the human body, protocatechuic acid is found, on average, in the highest concentration in a few different foods, such as garden onions, cocoa powders, and star anises and in a lower concentration in lentils, liquors, and red raspberries. Protocatechuic acid has also been detected, but not quantified in several different foods, such as cloud ear fungus, american pokeweeds, common mushrooms, fruits, and feijoa. This could make protocatechuic acid a potential biomarker for the consumption of these foods. It is also found in Allium cepa (17,540 ppm). It is a major metabolite of antioxidant polyphenols found in green tea. Similarly, PCA was reported to increase proliferation and inhibit apoptosis of neural stem cells. In vitro testing documented antioxidant and anti-inflammatory activity of PCA, while liver protection in vivo was measured by chemical markers and histological assessment. 3,4-dihydroxybenzoic acid, also known as protocatechuic acid or 4-carboxy-1,2-dihydroxybenzene, belongs to hydroxybenzoic acid derivatives class of compounds. Those are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 3,4-dihydroxybenzoic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 3,4-dihydroxybenzoic acid can be synthesized from benzoic acid. 3,4-dihydroxybenzoic acid is also a parent compound for other transformation products, including but not limited to, methyl 3,4-dihydroxybenzoate, ethyl 3,4-dihydroxybenzoate, and 1-(3,4-dihydroxybenzoyl)-beta-D-glucopyranose. 3,4-dihydroxybenzoic acid is a mild, balsamic, and phenolic tasting compound and can be found in a number of food items such as white mustard, grape wine, abalone, and asian pear, which makes 3,4-dihydroxybenzoic acid a potential biomarker for the consumption of these food products. 3,4-dihydroxybenzoic acid can be found primarily in blood, feces, and urine, as well as in human fibroblasts and testes tissues. 3,4-dihydroxybenzoic acid exists in all eukaryotes, ranging from yeast to humans. Protocatechuic acid (PCA) is a dihydroxybenzoic acid, a type of phenolic acid. It is a major metabolite of antioxidant polyphenols found in green tea. It has mixed effects on normal and cancer cells in in vitro and in vivo studies . 3,4-dihydroxybenzoic acid is a dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. It has a role as a human xenobiotic metabolite, a plant metabolite, an antineoplastic agent, an EC 1.1.1.25 (shikimate dehydrogenase) inhibitor and an EC 1.14.11.2 (procollagen-proline dioxygenase) inhibitor. It is a member of catechols and a dihydroxybenzoic acid. It is functionally related to a benzoic acid. It is a conjugate acid of a 3,4-dihydroxybenzoate. 3,4-Dihydroxybenzoic acid is a natural product found in Visnea mocanera, Amomum subulatum, and other organisms with data available. Protocatechuic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Vaccinium myrtillus Leaf (part of); Menyanthes trifoliata leaf (part of) ... View More ... A dihydroxybenzoic acid in which the hydroxy groups are located at positions 3 and 4. Protocatechuic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-50-3 (retrieved 2024-06-29) (CAS RN: 99-50-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect. Protocatechuic acid is a phenolic compound which exhibits neuroprotective effect.

   

Cycloheximide

2,6-PIPERIDINEDIONE, 4-(2-(3,5-DIMETHYL-2-OXOCYCLOHEXYL)-2-HYDROXYETHYL)-, (1S-(1.ALPHA.(S*),3.ALPHA.,5.BETA.))-

C15H23NO4 (281.1626998)


Cycloheximide appears as colorless crystals. Used as a fungicide and as a anticancer drug. (EPA, 1998) Cycloheximide is a dicarboximide that is 4-(2-hydroxyethyl)piperidine-2,6-dione in which one of the hydrogens attached to the carbon bearing the hydroxy group is replaced by a 3,5-dimethyl-2-oxocyclohexyl group. It is an antibiotic produced by the bacterium Streptomyces griseus. It has a role as a bacterial metabolite, a protein synthesis inhibitor, a neuroprotective agent, an anticoronaviral agent and a ferroptosis inhibitor. It is a member of piperidones, a piperidine antibiotic, an antibiotic fungicide, a dicarboximide, a secondary alcohol and a cyclic ketone. It is functionally related to a piperidine-2,6-dione. Cycloheximide is a natural product found in Streptomyces, Streptomyces griseus, and Streptomyces pulveraceus with data available. Antibiotic substance isolated from streptomycin-producing strains of Streptomyces griseus. It acts by inhibiting elongation during protein synthesis. A dicarboximide that is 4-(2-hydroxyethyl)piperidine-2,6-dione in which one of the hydrogens attached to the carbon bearing the hydroxy group is replaced by a 3,5-dimethyl-2-oxocyclohexyl group. It is an antibiotic produced by the bacterium Streptomyces griseus. D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent Origin: Microbe; SubCategory_DNP: Alkaloids derived from lysine, Piperidine alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.773 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.776 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.777 [Raw Data] CBA53_Cycloheximid_pos_50eV.txt [Raw Data] CBA53_Cycloheximid_pos_20eV.txt [Raw Data] CBA53_Cycloheximid_pos_10eV.txt [Raw Data] CBA53_Cycloheximid_pos_40eV.txt [Raw Data] CBA53_Cycloheximid_pos_30eV.txt

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Inosine

9-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-6,9-dihydro-3H-purin-6-one

C10H12N4O5 (268.08076619999997)


Inosine, also known as hypoxanthosine or inotin, belongs to the class of organic compounds known as purine nucleosides. Purine nucleosides are compounds comprising a purine base attached to a ribosyl or deoxyribosyl moiety. Inosine is formed when hypoxanthine is attached to a ribose ring a beta-N9-glycosidic bond. Inosine is an intermediate in the degradation of purines and purine nucleosides to uric acid. Inosine is also an intermediate in the purine salvage pathway. Inosine occurs in the anticodon of certain transfer RNA molecules and is essential for proper translation of the genetic code in wobble base pairs. Inosine exists in all living species, ranging from bacteria to plants to humans. Inosine participates in a number of enzymatic reactions. In particular, inosine can be biosynthesized from inosinic acid through its interaction with the enzyme known as cytosolic purine 5-nucleotidase. In addition, inosine can be converted into hypoxanthine and ribose 1-phosphate through its interaction with the enzyme known as purine nucleoside phosphorylase. Altered levels of inosine have also been associated with purine nucleoside phosphorylase deficiency and xanthinuria type I, both of which are inborn errors of metabolism. Animal studies have suggested that inosine has neuroprotective properties. It has been proposed as a potential treatment for spinal cord injury (PMID: 16317421) and for administration after stroke, as inosine appears to induce axonal rewiring (PMID: 12084941). After ingestion, inosine is metabolized into uric acid, which has been found to be a natural antioxidant and peroxynitrite scavenger. As such, inosine may have potential benefits to patients with multiple sclerosis and Parkinson’s disease (PMID: 19425822). Inosine can also be produced by gut bacteria and appears to have a number of beneficial effects. Inosine, has been shown to activate peroxisome proliferator-activated receptor (PPAR)-gamma signaling in human colon epithelial cells. Furthermore, exogenous treatment of inosine has been found to protect against DSS-induced colitis in rodents by improving adenosine 2A receptor (A2AR)/PPAR-gamma-dependent mucosal barrier functions (PMID: 33820558). Microbiome-derived inosine has also been shown to modulate the response to checkpoint inhibitor immunotherapy in cancer models. In particular, decreased gut barrier function induced by immunotherapy increases systemic translocation of bacterially derived inosine and activates antitumor T cells. The effect of inosine is dependent on T cell expression of the adenosine A2A receptor and requires co-stimulation. Inosine appears to have other roles in non-mammalian system. For instance, it has been found to be an important feed stimulant by itself or in combination with certain amino acids in some species of farmed fish. For example, inosine and inosine-5-monophosphate have been reported as specific feeding stimulants for turbot fry, (Scophthalmus maximus) and Japanese amberjack. Inosine is a purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. It has a role as a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite. It is a purines D-ribonucleoside and a member of inosines. It is functionally related to a hypoxanthine and a ribofuranose. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) Inosine is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Inosine is a natural product found in Fritillaria thunbergii, Cichorium endivia, and other organisms with data available. Inosine is a metabolite found in or produced by Saccharomyces cerevisiae. A purine nucleoside that has hypoxanthine linked by the N9 nitrogen to the C1 carbon of ribose. It is an intermediate in the degradation of purines and purine nucleosides to uric acid and in pathways of purine salvage. It also occurs in the anticodon of certain transfer RNA molecules. (Dorland, 28th ed) G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06B - Chemotherapeutics for topical use > D06BB - Antivirals A purine nucleoside in which hypoxanthine is attached to ribofuranose via a beta-N(9)-glycosidic bond. COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials S - Sensory organs > S01 - Ophthalmologicals Present in meat extracts and sugar beet Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS [Spectral] Inosine (exact mass = 268.08077) and L-Methionine (exact mass = 149.05105) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and L-Tyrosine (exact mass = 181.07389) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and S-Adenosyl-L-homocysteine (exact mass = 384.12159) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] Inosine (exact mass = 268.08077) and Guanosine (exact mass = 283.09167) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 110 KEIO_ID I003 Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3]. Inosine is an endogenous purine nucleoside produced by catabolism of adenosine. Inosine has anti-inflammatory, antinociceptive, immunomodulatory and neuroprotective effects. Inosine is an agonist for adenosine A1 (A1R) and A2A (A2AR) receptors[1][2][3].

   

Chlorogenic acid

Chlorogenic acid (constituent of echinacea angustifolia root, echinacea pallida root, echinacea purpurea root and echinacea purpurea aerial parts)

C16H18O9 (354.0950778)


Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.

   

Fisetin

InChI=1/C15H10O6/c16-8-2-3-9-12(6-8)21-15(14(20)13(9)19)7-1-4-10(17)11(18)5-7/h1-6,16-18,20

C15H10O6 (286.047736)


Fisetin is a 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an antioxidant, an anti-inflammatory agent, a metabolite, a plant metabolite and a geroprotector. It is a 3-hydroxyflavonoid, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a fisetin(1-). Fisetin is a natural product found in Acacia carneorum, Acacia buxifolia, and other organisms with data available. Fisetin is an orally bioavailable naturally occurring polyphenol found in many fruits and vegetables, with potential antioxidant, neuroprotective, anti-inflammatory, antineoplastic, senolytic, and longevity promoting activities. Upon administration, fisetin, as an antioxidant, scavenges free radicals, protect cells from oxidative stress, and is able to upregulate glutathione. It inhibits pro-inflammatory mediators, such as tumor necrosis factor alpha (TNF-a), interleukin-6 (IL-6), and nuclear factor kappa B (NF-kB). Fisetin promotes cellular metabolism, reduces senescence, regulates sirtuin function and may promote longevity. Fisetin also exerts anti-cancer activity by inhibiting certain signaling pathways. It also inhibits certain anti-apoptotic proteins and induces apoptosis in susceptible cells. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials A 7-hydroxyflavonol with additional hydroxy groups at positions 3, 3 and 4. C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor C26170 - Protective Agent > C1509 - Neuroprotective Agent C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 3,7,3,4-tetrahydroxyflavone, also known as 5-desoxyquercetin or fisetinidin, is a member of the class of compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, 3,7,3,4-tetrahydroxyflavone is considered to be a flavonoid lipid molecule. 3,7,3,4-tetrahydroxyflavone is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 3,7,3,4-tetrahydroxyflavone is a bitter tasting compound found in soy bean, which makes 3,7,3,4-tetrahydroxyflavone a potential biomarker for the consumption of this food product. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.847 [Raw Data] CB035_Fisetin_pos_20eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_30eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_40eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_10eV_CB000018.txt [Raw Data] CB035_Fisetin_pos_50eV_CB000018.txt [Raw Data] CB035_Fisetin_neg_10eV_000011.txt [Raw Data] CB035_Fisetin_neg_30eV_000011.txt [Raw Data] CB035_Fisetin_neg_40eV_000011.txt [Raw Data] CB035_Fisetin_neg_20eV_000011.txt [Raw Data] CB035_Fisetin_neg_50eV_000011.txt Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects. Fisetin is a natural flavonol found in many fruits and vegetables with various benefits, such as antioxidant, anticancer, neuroprotection effects.

   

Apigenin

5,7-Dihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one; 4,5,7-Trihydroxyflavone; Pelargidenon 1449;

C15H10O5 (270.052821)


Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.

   

Genistein

Genistein, Pharmaceutical Secondary Standard; Certified Reference Material

C15H10O5 (270.052821)


Genistein is a 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. It has a role as an antineoplastic agent, a tyrosine kinase inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, a phytoestrogen, a plant metabolite, a geroprotector and a human urinary metabolite. It is a conjugate acid of a genistein(1-). An isoflavonoid derived from soy products. It inhibits protein-tyrosine kinase and topoisomerase-II (DNA topoisomerases, type II) activity and is used as an antineoplastic and antitumor agent. Experimentally, it has been shown to induce G2 phase arrest in human and murine cell lines. Additionally, genistein has antihelmintic activity. It has been determined to be the active ingredient in Felmingia vestita, which is a plant traditionally used against worms. It has shown to be effective in the treatment of common liver fluke, pork trematode and poultry cestode. Further, genistein is a phytoestrogen which has selective estrogen receptor modulator properties. It has been investigated in clinical trials as an alternative to classical hormone therapy to help prevent cardiovascular disease in postmenopausal women. Natural sources of genistein include tofu, fava beans, soybeans, kudzu, and lupin. Genistein is a natural product found in Pterocarpus indicus, Ficus septica, and other organisms with data available. Genistein is a soy-derived isoflavone and phytoestrogen with antineoplastic activity. Genistein binds to and inhibits protein-tyrosine kinase, thereby disrupting signal transduction and inducing cell differentiation. This agent also inhibits topoisomerase-II, leading to DNA fragmentation and apoptosis, and induces G2/M cell cycle arrest. Genistein exhibits antioxidant, antiangiogenic, and immunosuppressive activities. (NCI04) Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential f... Genistein is one of several known isoflavones. Isoflavones compounds, such as genistein and daidzein, are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Genistein is a natural bioactive compound derived from legumes and has drawn because of its potentially beneficial effects on some human degenerative diseases. It has a weak estrogenic effect and is a well-known non-specific tyrosine kinase inhibitor at pharmacological doses. Epidemiological studies show that genistein intake is inversely associated with the risk of cardiovascular diseases. Data suggests a protective role of genistein in cardiovascular events. However, the mechanisms of the genistein action on vascular protective effects are unclear. Past extensive studies exploring its hypolipidemic effect resulted in contradictory data. Genistein also is a relatively poor antioxidant. However, genistein protects against pro-inflammatory factor-induced vascular endothelial barrier dysfunction and inhibits leukocyte-endothelium interaction, thereby modulating vascular inflammation, a major event in the pathogenesis of atherosclerosis. Genistein exerts a non-genomic action by targeting on important signaling molecules in vascular endothelial cells (ECs). Genistein rapidly activates endothelial nitric oxide synthase and production of nitric oxide in ECs. This genistein effect is novel since it is independent of its known effects, but mediated by the cyclic adenosine monophosphate/protein kinase A (cAMP/PKA) cascade. Genistein directly stimulates the plasma membrane-associated adenylate cyclases, leading to activation of the cAMP signaling pathway. In addition, genistein activates peroxisome proliferator-activated receptors, ligand-activated nuclear receptors important to normal vascular function. Furthermore, genistein reduces reactive oxygen species (ROS) by attenuating the expression of ROS-producing enzymes. These findings reveal the roles for genistein in the regulation of vascular function and provide a basis for further investigating its therapeutic potential for inflammatory-related vascular disease. (PMID:17979711). Genistein is a biomarker for the consumption of soy beans and other soy products. Genistein is a phenolic compound belonging to the isoflavonoid group. Isoflavonoids are found mainly in soybean. Genistein and daidzein (an other isoflavonoid) represent the major phytochemicals found in this plant. Health benefits (e.g. reduced risk for certain cancers and diseases of old age) associated to soya products consumption have been observed in East Asian populations and several epidemiological studies. This association has been linked to the action of isoflavonoids. With a chemical structure similar to the hormone 17-b-estradiol, soy isoflavones are able to interact with the estrogen receptor. They also possess numerous biological activities. (PMID: 15540649). Genistein is a biomarker for the consumption of soy beans and other soy products. A 7-hydroxyisoflavone with additional hydroxy groups at positions 5 and 4. It is a phytoestrogenic isoflavone with antioxidant properties. C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C1821 - Selective Estrogen Receptor Modulator D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C274 - Antineoplastic Agent > C129818 - Antineoplastic Hormonal/Endocrine Agent > C481 - Antiestrogen C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D004791 - Enzyme Inhibitors > D047428 - Protein Kinase Inhibitors D020011 - Protective Agents > D016588 - Anticarcinogenic Agents C274 - Antineoplastic Agent > C1742 - Angiogenesis Inhibitor C147908 - Hormone Therapy Agent > C547 - Hormone Antagonist D000970 - Antineoplastic Agents C1892 - Chemopreventive Agent CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 ORIGINAL_ACQUISITION_NO 5097; CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 765; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) CONFIDENCE standard compound; EAWAG_UCHEM_ID 3265 IPB_RECORD: 441; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 4238 CONFIDENCE standard compound; INTERNAL_ID 8827 CONFIDENCE standard compound; INTERNAL_ID 2419 CONFIDENCE standard compound; INTERNAL_ID 4162 CONFIDENCE standard compound; INTERNAL_ID 176 Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis. Genistein, a soy isoflavone, is a multiple tyrosine kinases (e.g., EGFR) inhibitor which acts as a chemotherapeutic agent against different types of cancer, mainly by altering apoptosis, the cell cycle, and angiogenesis and inhibiting metastasis.

   

Cucurbitacin B

(R,E)-6-((2S,8S,9R,10R,13R,14S,16R,17R)-2,16-dihydroxy-4,4,9,13,14-pentamethyl-3,11-dioxo-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-17-yl)-6-hydroxy-2-methyl-5-oxohept-3-en-2-yl acetate

C32H46O8 (558.3192516)


Together wth other cucurbitacins, is responsible for the bitter taste and toxic props. of spoilt cucumbers. Cucurbitacin B is found in many foods, some of which are muskmelon, bitter gourd, green vegetables, and cucumber. Cucurbitacin B is found in bitter gourd. Together wth other cucurbitacins, is responsible for the bitter taste and toxic properties of spoilt cucumber Cucurbitacin B is a cucurbitacin in which a lanostane skeleton is multi-substituted with hydroxy, methyl and oxo substituents, with unsaturation at positions 5 and 23; a hydroxy function at C-25 is acetylated. It is a cucurbitacin, a secondary alpha-hydroxy ketone and a tertiary alpha-hydroxy ketone. It derives from a hydride of a lanostane. Cucurbitacin B is a natural product found in Begonia plebeja, Trichosanthes miyagii, and other organisms with data available. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. Cucurbitacin B belongs to a class of highly oxidized tetracyclic triterpenoids and is oral active. Cucurbitacin B inhibits tumor cell growth, migration and invasion and cycle arrest, but induces cell apoptosis. Cucurbitacin B has potent anti-inflammatory, antioxidant, antiviral, hypoglycemic, hepatoprotective, neuroprotective activity[1][2][3][4][5]. (+)-Cucurbitacin B. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=6199-67-3 (retrieved 2024-08-12) (CAS RN: 6199-67-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Pinoresinol

PHENOL, 4,4-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS(2-METHOXY-, (1S-(1.ALPHA.,3A.ALPHA.,4.BETA.,6A.ALPHA.))-

C20H22O6 (358.1416312)


Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].

   

Soyasapogenol B

(3S,4S,4aR,6aR,6bS,8aR,9R,12aS,14aR,14bR)-4-(hydroxymethyl)-4,6a,6b,8a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicene-3,9-diol

C30H50O3 (458.37597500000004)


Soyasapogenol b-1, also known as 24-hydroxysophoradiol, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Soyasapogenol b-1 is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Soyasapogenol b-1 can be synthesized from oleanane. Soyasapogenol b-1 is also a parent compound for other transformation products, including but not limited to, soyasapogenol B 3-O-beta-glucuronide, soyasaponin III, and soyasaponin I. Soyasapogenol b-1 can be found in soy bean, which makes soyasapogenol b-1 a potential biomarker for the consumption of this food product. Soyasapogenol B is a pentacyclic triterpenoid that is oleanane containing a double bond between positions 12 and 13 and substituted by hydroxy groups at the 3beta, 22beta and 24-positions. It derives from a hydride of an oleanane. Soyasapogenol B is a natural product found in Astragalus mongholicus, Melilotus messanensis, and other organisms with data available. See also: Trifolium pratense flower (part of); Medicago sativa whole (part of). Soyasapogenol B, also known as 24-hydroxysophoradiol, belongs to the class of organic compounds known as triterpenoids. These are terpene molecules containing six isoprene units. Soyasapogenol B is an extremely weak basic (essentially neutral) compound (based on its pKa). Soyasapogenol B is found in alfalfa. Soyasapogenol B is a constituent of soya bean saponin, Medicago, Astragalus, and Trifolium species. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2]. Soyasapogenol B, an ingredient of soybean, exerts anti-proliferative, anti-metastatic activities. Soyasapogenol B triggers endoplasmic reticulum stress, which mediates apoptosis and autophagy in colorectal cancer[1][2].

   

Maltotetraose

(3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-5-{[(2R,3R,4R,5S,6R)-3,4-dihydroxy-6-(hydroxymethyl)-5-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-(hydroxymethyl)oxane-2,3,4-triol

C24H42O21 (666.2218482000001)


Maltotetraose belongs to the class of organic compounds known as oligosaccharides. These are carbohydrates made up of 3 to 10 monosaccharide units linked to each other through glycosidic bonds. Maltotetraose exists in all living organisms, ranging from bacteria to humans. Outside of the human body, maltotetraose has been detected, but not quantified in several different foods, such as welsh onions, kales, small-leaf lindens, other bread, and romaine lettuces. Maltotetraose is a normal human oligo saccharide present in plasma, but is elevated in cases of Pompe disease (PMID 15886040). Alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-alpha-D-Glcp-(1->4)-D-Glcp is a maltotetraose tetrasaccharide consisting of three alpha-D-glucopyranose residues and a D-glucopyranose residue joined in sequence by (1->4) glycosidic bonds. Amylotetraose is a natural product found in Streptomyces with data available. Constituent of corn syrup. Product of action of a-amylase on starch. Maltooligosaccharide mixtures are important food additives (sweeteners, gelling agents and viscosity modifiers) D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

Myristoleate (14:1n5)

Myristoleic acid, >=99\\% (capillary GC)

C14H26O2 (226.1932696)


Myristoleic acid, also known as 9-tetradecenoate or myristoleate, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Myristoleic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Myristoleic acid exists in all eukaryotes, ranging from yeast to humans. Outside of the human body, myristoleic acid is found in the highest concentration within a few different foods, such as milk (cow), butter, and margarine-like spreads, and in a lower concentration in creams, meat bouillons, and chocolates. Myristoleic acid has also been detected, but not quantified in, several different foods, such as anchovies, loganberries, sunflowers, yellow zucchinis, and dates. This could make myristoleic acid a potential biomarker for the consumption of these foods. Myristoleic acid is a monounsaturated fatty acid that represents approximately 0.3-0.7\\\\% of the total fatty acid composition of adipose tissue triacylglycerol in humans (PMID: 10393134). It has been suggested that its effective cytotoxic (i.e. cell death inducer) activity could be used for the treatment of prostate cancer (PMID: 11304730). Myristoleic acid is a tetradecenoic acid in which the double bond is at the 9-10 position and has Z configuration. Myristoleic acid has been isolated from Serenoa repens and has cytotoxic and apoptosis-inducing effects. It has a role as an apoptosis inducer, a plant metabolite and an EC 3.1.1.1 (carboxylesterase) inhibitor. It is a tetradecenoic acid and a long-chain fatty acid. It is a conjugate acid of a myristoleate. Myristoleic acid is a natural product found in Gladiolus italicus, Erucaria microcarpa, and other organisms with data available. Myristoleic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A tetradecenoic acid in which the double bond is at the 9-10 position and has Z configuration. Myristoleic acid has been isolated from Serenoa repens and has cytotoxic and apoptosis-inducing effects. Occurs in natural fats, e.g. Cottonseed oil KEIO_ID M044 Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1]. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1].

   

Chrysoeriol

3 inverted exclamation mark -Methoxy-4 inverted exclamation mark ,5,7-trihydroxyflavone

C16H12O6 (300.06338519999997)


Chrysoeriol, also known as 3-O-methylluteolin, belongs to the class of organic compounds known as 3-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C3 atom of the flavonoid backbone. Thus, chrysoeriol is considered to be a flavonoid lipid molecule. Chrysoeriol is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Chrysoeriol is a bitter-tasting compound. Outside of the human body, chrysoeriol has been detected, but not quantified in, several different foods, such as wild celeries, ryes, hard wheat, alfalfa, and triticales. This could make chrysoeriol a potential biomarker for the consumption of these foods. 4,5,7-trihydroxy-3-methoxyflavone is the 3-O-methyl derivative of luteolin. It has a role as an antineoplastic agent, an antioxidant and a metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a luteolin. It is a conjugate acid of a 4,5-dihydroxy-3-methoxyflavon-7-olate(1-). Chrysoeriol is a natural product found in Haplophyllum ramosissimum, Myoporum tenuifolium, and other organisms with data available. See also: Acai (part of); Acai fruit pulp (part of). Widespread flavone. Chrysoeriol is found in many foods, some of which are peanut, german camomile, tarragon, and alfalfa. The 3-O-methyl derivative of luteolin. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1]. Chrysoeriol, a natural flavonoid extracted from the tropical plant Coronopus didymus, exhibits potent antioxidant activity. Chrysoeriol shows significant inhibition of lipid peroxidation[1].

   

Squalene

InChI=1/C30H50/c1-25(2)15-11-19-29(7)23-13-21-27(5)17-9-10-18-28(6)22-14-24-30(8)20-12-16-26(3)4/h15-18,23-24H,9-14,19-22H2,1-8H3/b27-17+,28-18+,29-23+,30-24

C30H50 (410.39123)


Squalene is an unsaturated aliphatic hydrocarbon (carotenoid) with six unconjugated double bonds found in human sebum (5\\\\%), fish liver oils, yeast lipids, and many vegetable oils (e.g. palm oil, cottonseed oil, rapeseed oil). Squalene is a volatile component of the scent material from Saguinus oedipus (cotton-top tamarin monkey) and Saguinus fuscicollis (saddle-back tamarin monkey) (Hawleys Condensed Chemical Reference). Squalene is a component of adult human sebum that is principally responsible for fixing fingerprints (ChemNetBase). It is a natural organic compound originally obtained for commercial purposes primarily from shark liver oil, though there are botanical sources as well, including rice bran, wheat germ, and olives. All higher organisms produce squalene, including humans. It is a hydrocarbon and a triterpene. Squalene is a biochemical precursor to the whole family of steroids. Oxidation of one of the terminal double bonds of squalene yields 2,3-squalene oxide which undergoes enzyme-catalyzed cyclization to afford lanosterol, which is then elaborated into cholesterol and other steroids. Squalene is a low-density compound often stored in the bodies of cartilaginous fishes such as sharks, which lack a swim bladder and must therefore reduce their body density with fats and oils. Squalene, which is stored mainly in the sharks liver, is lighter than water with a specific gravity of 0.855 (Wikipedia) Squalene is used as a bactericide. It is also an intermediate in the manufacture of pharmaceuticals, rubber chemicals, and colouring materials (Physical Constants of Chemical Substances). Trans-squalene is a clear, slightly yellow liquid with a faint odor. Density 0.858 g / cm3. Squalene is a triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. It has a role as a human metabolite, a plant metabolite, a Saccharomyces cerevisiae metabolite and a mouse metabolite. Squalene is originally obtained from shark liver oil. It is a natural 30-carbon isoprenoid compound and intermediate metabolite in the synthesis of cholesterol. It is not susceptible to lipid peroxidation and provides skin protection. It is ubiquitously distributed in human tissues where it is transported in serum generally in association with very low density lipoproteins. Squalene is investigated as an adjunctive cancer therapy. Squalene is a natural product found in Ficus septica, Garcinia multiflora, and other organisms with data available. squalene is a metabolite found in or produced by Saccharomyces cerevisiae. A natural 30-carbon triterpene. See also: Olive Oil (part of); Shark Liver Oil (part of). A triterpene consisting of 2,6,10,15,19,23-hexamethyltetracosane having six double bonds at the 2-, 6-, 10-, 14-, 18- and 22-positions with (all-E)-configuration. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2]. Squalene is an intermediate product in the synthesis of cholesterol, and shows several pharmacological properties such as hypolipidemic, hepatoprotective, cardioprotective, antioxidant, and antitoxicant activity. Squalene also has anti-fungal activity and can be used for the research of Trichophyton mentagrophytes research[2].

   

Physostigmine

(3aS,8aR)-1,3a,8-trimethyl-1H,2H,3H,3aH,8H,8aH-pyrrolo[2,3-b]indol-5-yl N-methylcarbamate; 2-hydroxybenzoic acid

C15H21N3O2 (275.1633686)


Physostigmine is a white, odorless, microcrystalline powder. Used as a cholinergic (anticholinesterase) agent and as a veterinary medication. (EPA, 1998) Physostigmine is a carbamate ester and an indole alkaloid. It has a role as a miotic, an EC 3.1.1.8 (cholinesterase) inhibitor and an antidote to curare poisoning. A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. Physostigmine is a natural product found in Streptomyces griseofuscus, Streptomyces, and other organisms with data available. A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. See also: Physostigmine Salicylate (active moiety of). A cholinesterase inhibitor that is rapidly absorbed through membranes. It can be applied topically to the conjunctiva. It also can cross the blood-brain barrier and is used when central nervous system effects are desired, as in the treatment of severe anticholinergic toxicity. [PubChem] S - Sensory organs > S01 - Ophthalmologicals > S01E - Antiglaucoma preparations and miotics > S01EB - Parasympathomimetics V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D008916 - Miotics C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors KEIO_ID E007; [MS2] KO008958 KEIO_ID E007

   

Pelargonic acid

nonanoic acid

C9H18O2 (158.1306728)


Nonanoic acid is a C9 straight-chain saturated fatty acid which occurs naturally as esters of the oil of pelargonium. Has antifungal properties, and is also used as a herbicide as well as in the preparation of plasticisers and lacquers. It has a role as an antifeedant, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a straight-chain saturated fatty acid and a medium-chain fatty acid. It is a conjugate acid of a nonanoate. It derives from a hydride of a nonane. Nonanoic acid is a natural product found in Staphisagria macrosperma, Rhododendron mucronulatum, and other organisms with data available. Nonanoic Acid is a naturally-occurring saturated fatty acid with nine carbon atoms. The ammonium salt form of nonanoic acid is used as an herbicide. It works by stripping the waxy cuticle of the plant, causing cell disruption, cell leakage, and death by desiccation. Nonanoic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Pelargonic acid, or nonanoic acid, is a fatty acid which occurs naturally as esters is the oil of pelargonium. Synthetic esters, such as methyl nonanoate, are used as flavorings. Pelargonic acid is an organic compound composed of a nine-carbon chain terminating in a carboxylic acid. It is an oily liquid with an unpleasant, rancid odor. It is nearly insoluble in water, but well soluble in chloroform and ether. The derivative 4-nonanoylmorpholine is an ingredient in some pepper sprays. A C9 straight-chain saturated fatty acid which occurs naturally as esters of the oil of pelargonium. Has antifungal properties, and is also used as a herbicide as well as in the preparation of plasticisers and lacquers. Nonanoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=112-05-0 (retrieved 2024-07-01) (CAS RN: 112-05-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1]. Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1].

   

Octacosanoic acid

Octacosanoic acid, puriss., synthetic, >=98.5\\% (GC)

C28H56O2 (424.4280076)


Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID:2474624). Octacosanoic acid is a higher aliphatic primary acids purified from sugar-cane (Saccharum officinarum L.) wax that has been shown to inhibit platelet aggregation induced ex vivo by addition of agonists to platelet-rich plasma (PRP) of rats, guinea pigs, and healthy human volunteers. (PMID:5099499). Octacosanoic acid is formed from octacosanol via beta-oxidation. (PMID:15847942). Octacosanoic acid is a straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. It has a role as a plant metabolite. It is a straight-chain saturated fatty acid and an ultra-long-chain fatty acid. It is a conjugate acid of an octacosanoate. Octacosanoic acid is a natural product found in Lysimachia patungensis, Rhizophora apiculata, and other organisms with data available. A straight-chain saturated fatty acid that is octacosane in which one of the terminal methyl groups has been oxidised to the corresponding carboxy group. Octacosanoic acid is a very-long-chain fatty acid found in human brain and visceral organs (PMID: 2474624)

   

4-Vinylphenol sulfate

4-06-00-03775 (Beilstein Handbook Reference)

C8H8O (120.0575118)


4-hydroxystyrene is a member of the class of phenols that is styrene carrying a hydroxy substituent at position 4. It has a role as a human urinary metabolite and a human xenobiotic metabolite. It derives from a hydride of a styrene. 4-Vinylphenol is a natural product found in Streptomyces, Cedronella canariensis, and other organisms with data available. 4-Vinylphenol is a metabolite found in or produced by Saccharomyces cerevisiae. 4-hydroxystyrene occurs frequently in different ciders, wines, foods and berries, e.g. cloudberry. Styrene is a prohapten metabolized in the skin by aryl hydrocarbon hydroxylase (AHH, EC 1.14.14.1) to styrene epoxide acting as the true hapten. Styrene occurs in nature and as a synthetic product.(PMID: 6713846). Flavour component of tea; flavouring ingredient

   

Indole-3-carboxaldehyde

1H-indole-3-carbaldehyde

C9H7NO (145.0527612)


Indole-3-carboxaldehyde (IAld or I3A), also known as 3-formylindole or 3-indolealdehyde, belongs to the class of organic compounds known as indoles. Indoles are compounds containing an indole moiety, which consists of a pyrrole ring fused to benzene to form 2,3-benzopyrrole. In humans, I3A is a biologically active metabolite which acts as a receptor agonist at the aryl hydrocarbon receptor in intestinal immune cells. It stimulates the production of interleukin-22 which facilitates mucosal reactivity (PMID:27102537). I3A is a microbially derived tryptophan metabolite produced by Clostridium and Lactobacillus (PMID:30120222, 27102537). I3A has also been found in the urine of patients with untreated phenylketonuria (PMID:5073866). I3A has been detected, but not quantified, in several different foods, such as beans, Brussels sprouts, cucumbers, cereals and cereal products, and white cabbages. This could make I3A a potential biomarker for the consumption of these foods. Indole-3-carbaldehyde is a heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. It has a role as a plant metabolite, a human xenobiotic metabolite, a bacterial metabolite and a marine metabolite. It is a heteroarenecarbaldehyde, an indole alkaloid and a member of indoles. Indole-3-carboxaldehyde is a natural product found in Euphorbia hirsuta, Derris ovalifolia, and other organisms with data available. A heteroarenecarbaldehyde that is indole in which the hydrogen at position 3 has been replaced by a formyl group. Found in barley and tomato seedlings and cotton Indole-3-carboxaldehyde. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=487-89-8 (retrieved 2024-07-02) (CAS RN: 487-89-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1]. Indole-3-carboxaldehyde (3-Formylindole), a banlangen extract, is the product of the oxidative degradation of indole-3-acetic acid (IAA) by crude enzyme preparations from etiolated pea seedlings. Indole-3-carboxaldehyde (3-Formylindole) is a biochemical used to prepare analogs of the indole phytoalexin cyclobrassinin[1].

   

Bis(2-ethylhexyl) phthalate

1,2-Benzenedicarboxylic acid bis(2-ethylhexyl) ester

C24H38O4 (390.2769948)


CONFIDENCE standard compound; INTERNAL_ID 8185 D010968 - Plasticizers DEHP (Bis(2-ethylhexyl) phthalate) is an endogenous metabolite. DEHP (Bis(2-ethylhexyl) phthalate) is an endogenous metabolite.

   

2-Pyrocatechuic acid

1,2-Dihydroxybenzene-3-carboxylic acid

C7H6O4 (154.0266076)


2-Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma (PMID 16351159), and is normally found with increased levels after consumption of many nutrients and drugs, i.e.: cranberry juice (PMID 14733499), aspirin ingestion. (PMID 3342084) It has been found associated with idiopathic oro-facial pain due to stress (oxidative stress might enhance the production of free radicals); it has been suggested that OH radicals are responsible for the production of many systemic and local tissue injury diseases which may initially manifest as pain syndrome, and 2-Pyrocatechuic acid is a biological marker for the detection and quantification of OH radicals, and patients had significantly increased circulating levels of 2-Pyrocatechuic acid after aspirin ingestion than control subjects. (PMID 7748148). D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Occurs in Gentiana lutea (yellow gentian) Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion. Pyrocatechuic acid is a normal human benzoic acid metabolite found in plasma, and has increased levels after aspirin ingestion.

   

2-Aminobenzoic acid

Anthranilic acid, calcium (2:1) salt

C7H7NO2 (137.0476762)


2-Aminobenzoic acid, also known as anthranilic acid or O-aminobenzoate, belongs to the class of organic compounds known as aminobenzoic acids. These are benzoic acids containing an amine group attached to the benzene moiety. Within humans, 2-aminobenzoic acid participates in a number of enzymatic reactions. In particular, 2-aminobenzoic acid and formic acid can be biosynthesized from formylanthranilic acid through its interaction with the enzyme kynurenine formamidase. In addition, 2-aminobenzoic acid and L-alanine can be biosynthesized from L-kynurenine through its interaction with the enzyme kynureninase. It is a substrate of enzyme 2-Aminobenzoic acid hydroxylase in benzoate degradation via hydroxylation pathway (KEGG). In humans, 2-aminobenzoic acid is involved in tryptophan metabolism. Outside of the human body, 2-Aminobenzoic acid has been detected, but not quantified in several different foods, such as mamey sapotes, prairie turnips, rowals, natal plums, and hyacinth beans. This could make 2-aminobenzoic acid a potential biomarker for the consumption of these foods. 2-Aminobenzoic acid is a is a tryptophan-derived uremic toxin with multidirectional properties that can affect the hemostatic system. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. 2-Aminobenzoic acid is an organic compound. It is a substrate of enzyme anthranilate hydroxylase [EC 1.14.13.35] in benzoate degradation via hydroxylation pathway (KEGG). [HMDB]. Anthranilic acid is found in many foods, some of which are butternut squash, sunflower, ginger, and hyssop. Acquisition and generation of the data is financially supported in part by CREST/JST. D002491 - Central Nervous System Agents > D000927 - Anticonvulsants CONFIDENCE standard compound; INTERNAL_ID 8844 CONFIDENCE standard compound; INTERNAL_ID 8009 CONFIDENCE standard compound; INTERNAL_ID 115 KEIO_ID A010

   

4-cholesten-3-one

(1S,2R,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-6-en-5-one

C27H44O (384.3391974)


Cholestenone belongs to the class of organic compounds known as cholesterols and derivatives. Cholesterols and derivatives are compounds containing a 3-hydroxylated cholestane core. Thus, cholestenone is considered to be a sterol lipid molecule. Cholestenone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Cholestenone is a dehydrocholestanone. It is a product of cholesterol oxidase {EC 1.1.3.6] in the Bile acid biosynthesis pathway (KEGG). [HMDB] Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2]. Cholestenone (4-Cholesten-3-one), the intermediate oxidation product of cholesterol, is metabolized primarily in the liver. Cholestenone is highly mobile in membranes and influences cholesterol flip-flop and efflux. Cholestenone may cause long-term functional defects in cells[1][2].

   

Glycitein

7-Hydroxy-3-(4-hydroxyphenyl)-6-methoxy-4H-1-benzopyran-4-one; 7,4-Dihydroxy-6-methoxyisoflavone; Glycetein; Glycitein; Glycitin aglycon

C16H12O5 (284.0684702)


Glycitein is a methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. It has a role as a plant metabolite, a phytoestrogen and a fungal metabolite. It is a methoxyisoflavone and a 7-hydroxyisoflavone. It is functionally related to an isoflavone. Glycitein is a natural product found in Psidium guajava, Ammopiptanthus mongolicus, and other organisms with data available. Glycitein is a soy isoflavone. It is a minor component in most soy products. Its role of reducing low-density lipoprotein cholesterol is not clear. Glycitein is metabolized by human gut microorganisms and may follow metabolic pathways similar to other soy isoflavones (PMID: 12011578; 16248547). Glycitein is a biomarker for the consumption of soy beans and other soy products. Isoflavone present in soya foods (inc. tofu, miso); potential nutriceutical [DFC]. Glycitein is a biomarker for the consumption of soy beans and other soy products. Glycitein is found in many foods, some of which are miso, soy bean, soy milk, and soy sauce. A methoxyisoflavone that is isoflavone substituted by a methoxy group at position 6 and hydroxy groups at positions 7 and 4. It has been isolated from the mycelia of the fungus Cordyceps sinensis. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens Glycitein is a soy isoflavone used to study apoptosis and antioxidant. Glycitein is a soy isoflavone used to study apoptosis and antioxidant.

   

Pyrrole-2-carboxylic acid

1H-Pyrrole-2-carboxylic acid

C5H5NO2 (111.032027)


Pyrrole-2-carboxylic acid was synthesized over a century ago, but its history as a compound of biological origin is rather recent. It was first identified as a degradation product of sialic acids, then as a derivative of the oxidation of the D-hydroxyproline isomers by mammalian D-amino acid oxidase. The latter relationship results from the lability of the direct oxidation product, A-pyrroline-4-hydroxy-2-carboxylic acid, which loses water spontaneously to form the pyrrole. A similar reaction is catalyzed by the more specific allohydroxy-D-proline oxidase of Pseudomonas. In whole animal observations, pyrrole-2-carboxylate (PCA) was identified in rat or human urine after administration of the D-isomers of hydroxyproline, a finding ascribable to the action of D-amino acid oxidase. (PMID:4430715). Urinary excretion of N-(pyrrole-2-carboxyl) glycine has been reported in a 5-year-old affected with type II hyperprolinemia; The child has mild developmental delay, recurrent seizures of the grand mal type and EEG alterations. The urinary excretion of the conjugate is stressed, since it appears that only one previous report in the literature described this compound in the urine of two patients affected by this disturbance (PMID 2383933). Pyrrole-2-carboxylic acid was synthesized over a century ago, but its history as a compound of biological origin is rather recent. It was first identified as a degradation product of sialic acids, then as a derivative of the oxidation of the D-hydroxyproline isomers by mammalian D-amino acid oxidase. The latter relationship results from the lability of the direct oxidation product, A-pyrroline-4-hydroxy-2-carboxylic acid, which loses water spontaneously to form the pyrrole. A similar reaction is catalyzed by the more specific allohydroxy-D-proline oxidase of Pseudomonas. In whole animal observations, pyrrole-2-carboxylate (PCA) was identified in rat or human urine after administration of the D-isomers of hydroxyproline, a finding ascribable to the action of D-amino acid oxidase. (PMID: 4430715) KEIO_ID P112 Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov. Pyrrole-2-carboxylic acid is a natural alkaloid from the marine bacterium Pelomonas puraquae sp. Nov.

   

Riboflavin (Vitamin B2)

7,8-dimethyl-10-[(2S,3S,4R)-2,3,4,5-tetrahydroxypentyl]-2H,3H,4H,10H-benzo[g]pteridine-2,4-dione

C17H20N4O6 (376.138278)


Riboflavin or vitamin B2 is an easily absorbed, water-soluble micronutrient with a key role in maintaining human health. Like the other B vitamins, it supports energy production by aiding in the metabolizing of fats, carbohydrates, and proteins. Vitamin B2 is also required for red blood cell formation and respiration, antibody production, and for regulating human growth and reproduction. It is essential for healthy skin, nails, hair growth and general good health, including regulating thyroid activity. Riboflavin is found in milk, eggs, malted barley, liver, kidney, heart, and leafy vegetables. Riboflavin is yellow or orange-yellow in color and in addition to being used as a food coloring it is also used to fortify some foods. It can be found in baby foods, breakfast cereals, sauces, processed cheese, fruit drinks and vitamin-enriched milk products. The richest natural source is yeast. It occurs in the free form only in the retina of the eye, in whey, and in urine; its principal forms in tissues and cells are as flavin mononucleotide and flavin adenine dinucleotide. Riboflavin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=83-88-5 (retrieved 2024-07-01) (CAS RN: 83-88-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient. Riboflavin (vitamin B2) is an extremely easily absorbed micronutrient.

   

Daidzein

Daidzein, Pharmaceutical Secondary Standard; Certified Reference Material

C15H10O4 (254.057906)


Daidzein is a member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. It has a role as an antineoplastic agent, a phytoestrogen, a plant metabolite, an EC 3.2.1.20 (alpha-glucosidase) inhibitor and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is a conjugate acid of a daidzein(1-). Daidzein is a natural product found in Pericopsis elata, Thermopsis lanceolata, and other organisms with data available. Daidzein is an isoflavone extract from soy, which is an inactive analog of the tyrosine kinase inhibitor genistein. It has antioxidant and phytoestrogenic properties. (NCI) Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (A3191, A3189). See also: Trifolium pratense flower (part of). Daidzein is one of several known isoflavones. Isoflavones compounds are found in a number of plants, but soybeans and soy products like tofu and textured vegetable protein are the primary food source. Up until recently, daidzein was considered to be one of the most important and most studied isoflavones, however more recently attention has shifted to isoflavone metabolites. Equol represents the main active product of daidzein metabolism, produced via specific microflora in the gut. The clinical effectiveness of soy isoflavones may be a function of the ability to biotransform soy isoflavones to the more potent estrogenic metabolite, equol, which may enhance the actions of soy isoflavones, owing to its greater affinity for estrogen receptors, unique antiandrogenic properties, and superior antioxidant activity. However, not all individuals consuming daidzein produce equol. Only approximately one-third to one-half of the population is able to metabolize daidzein to equol. This high variability in equol production is presumably attributable to interindividual differences in the composition of the intestinal microflora, which may play an important role in the mechanisms of action of isoflavones. But, the specific bacterial species in the colon involved in the production of equol are yet to be discovered. (PMID:18045128, 17579894). Daidzein is a biomarker for the consumption of soy beans and other soy products. Widespread isoflavone in the Leguminosae, especies Phaseolus subspecies (broad beans, lima beans); also found in soy and soy products (tofu, miso), chick peas (Cicer arietinum) and peanuts (Arachis hypogaea). Nutriceutical with anticancer and bone protective props. A member of the class of 7-hydroxyisoflavones that is 7-hydroxyisoflavone substituted by an additional hydroxy group at position 4. D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor > C1967 - Tyrosine Kinase Inhibitor CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4894; ORIGINAL_PRECURSOR_SCAN_NO 4890 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3575; ORIGINAL_PRECURSOR_SCAN_NO 3572 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4858; ORIGINAL_PRECURSOR_SCAN_NO 4855 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7978; ORIGINAL_PRECURSOR_SCAN_NO 7973 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4898; ORIGINAL_PRECURSOR_SCAN_NO 4894 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4884; ORIGINAL_PRECURSOR_SCAN_NO 4881 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7989; ORIGINAL_PRECURSOR_SCAN_NO 7985 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7952; ORIGINAL_PRECURSOR_SCAN_NO 7950 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4852; ORIGINAL_PRECURSOR_SCAN_NO 4847 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7907; ORIGINAL_PRECURSOR_SCAN_NO 7904 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7956; ORIGINAL_PRECURSOR_SCAN_NO 7952 CONFIDENCE standard compound; INTERNAL_ID 937; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7917; ORIGINAL_PRECURSOR_SCAN_NO 7913 CONFIDENCE Reference Standard (Level 1); NaToxAq - Natural Toxins and Drinking Water Quality - From Source to Tap (https://natoxaq.ku.dk) Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2315 IPB_RECORD: 1801; CONFIDENCE confident structure IPB_RECORD: 421; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 8828 CONFIDENCE standard compound; INTERNAL_ID 2874 CONFIDENCE standard compound; INTERNAL_ID 4239 CONFIDENCE standard compound; INTERNAL_ID 4163 CONFIDENCE standard compound; INTERNAL_ID 181 Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator. Daidzein is a soy isoflavone, which acts as a PPAR activator.

   

Dactinomycin

N1,N9-bis[(6S,9R,10S,13R,18aS)-2,5,9-trimethyl-1,4,7,11,14-pentaoxo-6,13-bis(propan-2-yl)-hexadecahydro-1H-pyrrolo[2,1-i]1-oxa-4,7,10,13-tetraazacyclohexadecan-10-yl]-2-amino-4,6-dimethyl-3-oxo-3H-phenoxazine-1,9-dicarboxamide

C62H86N12O16 (1254.6284436)


A compound composed of a two cyclic peptides attached to a phenoxazine that is derived from streptomyces parvullus. It binds to DNA and inhibits RNA synthesis (transcription), with chain elongation more sensitive than initiation, termination, or release. As a result of impaired mRNA production, protein synthesis also declines after dactinomycin therapy. (From AMA Drug Evaluations Annual, 1993, p2015) L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DA - Actinomycines C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D000970 - Antineoplastic Agents

   

Palmitoleic acid

cis-Delta(9)-Hexadecenoic acid

C16H30O2 (254.224568)


Cis-9-palmitoleic acid, also known as palmitoleate or (Z)-9-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, cis-9-palmitoleic acid is considered to be a fatty acid lipid molecule. Cis-9-palmitoleic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Cis-9-palmitoleic acid can be found in a number of food items such as mixed nuts, carrot, hedge mustard, and chanterelle, which makes cis-9-palmitoleic acid a potential biomarker for the consumption of these food products. Cis-9-palmitoleic acid can be found primarily in most biofluids, including urine, blood, saliva, and feces, as well as in human adipose tissue, prostate and skeletal muscle tissues. Cis-9-palmitoleic acid exists in all living species, ranging from bacteria to humans. Moreover, cis-9-palmitoleic acid is found to be associated with isovaleric acidemia. Palmitoleic acid, or (9Z)-hexadec-9-enoic acid, is an omega-7 monounsaturated fatty acid (16:1n-7) with the formula CH3(CH2)5CH=CH(CH2)7COOH that is a common constituent of the glycerides of human adipose tissue. Present in all tissues, it is generally found in higher concentrations in the liver. Macadamia oil (Macadamia integrifolia) and sea buckthorn oil (Hippophae rhamnoides) are botanical sources of palmitoleic acid, containing 22 and 40\\\\\% respectively. Palmitoleic acid is found to be associated with isovaleric acidemia, which is an inborn error of metabolism. Palmitoleic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=373-49-9 (retrieved 2024-07-15) (CAS RN: 373-49-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

Aldohexose 6-phosphate

Aldohexose 6-phosphate

C6H13O9P (260.0297178)


   

D-Glucuronate

(2S,3S,4S,5R,6S)-3,4,5,6-tetrahydroxyoxane-2-carboxylic acid

C6H10O7 (194.042651)


Glucuronic acid (CAS: 6556-12-3) is a carboxylic acid that has the structure of a glucose molecule that has had its sixth carbon atom (of six total) oxidized. The salts of glucuronic acid are known as glucuronates. Glucuronic acid is highly soluble in water. In humans, glucuronic acid is often linked to toxic or poisonous substances to allow for subsequent elimination, and to hormones to allow for easier transport. These linkages involve O-glycosidic bonds. The process is known as glucuronidation, and the resulting substances are known as glucuronides (or glucuronosides). Glucuronidation uses UDP-glucuronic acid (glucuronic acid linked via a glycosidic bond to uridine diphosphate) as an intermediate. UDP-glucuronic acid is formed in the liver of all animals. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1]. D-Glucuronic acid is an important intermediate isolated from many gums. D-Glucuronic acid and its derivative glucuronolactone are as a liver antidote in the prophylaxis of human health. D-Glucuronic acid has an anti-inflammatory effect for the skin[1].

   

Novobiocin

(3R,4S,5R,6R)-5-hydroxy-6-({4-hydroxy-3-[4-hydroxy-3-(3-methylbut-2-en-1-yl)benzamido]-8-methyl-2-oxo-2H-chromen-7-yl}oxy)-3-methoxy-2,2-dimethyloxan-4-yl carbamate

C31H36N2O11 (612.2318986)


Novobiocin is only found in individuals that have used or taken this drug. It is an antibiotic compound derived from Streptomyces niveus. It has a chemical structure similar to coumarin. Novobiocin binds to DNA gyrase, and blocks adenosine triphosphatase (ATPase) activity. (From Reynolds, Martindale The Extra Pharmacopoeia, 30th ed, p189) [PubChem]Novobiocin is an aminocoumarin. Aminocoumarins are very potent inhibitors of bacterial DNA gyrase and work by inhibiting the GyrB subunit of the enzyme involved in energy tranduction. Novobiocin as well as the other aminocoumarin antibiotics act as competitive inhibitors of the ATPase reaction catalysed by GyrB. D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic CONFIDENCE standard compound; INTERNAL_ID 1168 CONFIDENCE standard compound; INTERNAL_ID 1167 Novobiocin (Albamycin) is a potent and orally active antibiotic. Novobiocin also is a DNA gyrase inhibitor and a heat shock protein 90 (Hsp90) antagonist. Novobiocin has the potential for the research of highly beta-lactam-resistant pneumococcal infections. Novobiocin shows anti-orthopoxvirus activity[1][2][3][4][6].

   

Benzophenone

Benzophenone (diphenyl-ketone)

C13H10O (182.073161)


Benzophenone is the organic compound with the formula (C6H5)2CO, generally abbreviated Ph2CO. It is a widely used building block in organic chemistry, being the parent diarylketone. Benzophenone is found in fruits. Benzophenone is present in grapes and it is also used as a flavouring agent. Benzophenone is a common photosensitizer in photochemistry. It crosses from the S1 state into the triplet state with nearly 100\\\\% yield. The resulting diradical will abstract a hydrogen atom from a suitable hydrogen donor to form a ketyl radical. D011838 - Radiation-Sensitizing Agents > D017319 - Photosensitizing Agents CONFIDENCE standard compound; INTERNAL_ID 15 D003879 - Dermatologic Agents Benzophenone is an endogenous metabolite. Benzophenone is an endogenous metabolite.

   

Fumonisin B2

2-[2-({19-amino-6-[(3,4-dicarboxybutanoyl)oxy]-16,18-dihydroxy-5,9-dimethylicosan-7-yl}oxy)-2-oxoethyl]butanedioic acid

C34H59NO14 (705.3935354)


Fumonisin B2 is from Fusarium moniliforme Fumonisin B2 is a fumonisin mycotoxin produced by the fungi Fusarium verticillioides and Fusarium moniliforme. It is a structural analog of fumonisin B1. Fumonisin B2 is more cytotoxic than fumonisin B1. Fumonisin B2 inhibits sphingosine acyltransferase D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins D009676 - Noxae > D011042 - Poisons > D037341 - Fumonisins D009676 - Noxae > D002273 - Carcinogens From Fusarium moniliforme

   

Tetracycline

(4S,4aS,5aS,6S,12aS)-4-(dimethylamino)-3,6,10,12,12a-pentahydroxy-6-methyl-1,11-dioxo-1,4,4a,5,5a,6,11,12a-octahydrotetracene-2-carboxamide

C22H24N2O8 (444.15325839999997)


Tetracycline is a broad spectrum polyketide antibiotic produced by the Streptomyces genus of Actinobacteria. It exerts a bacteriostatic effect on bacteria by binding reversible to the bacterial 30S ribosomal subunit and blocking incoming aminoacyl tRNA from binding to the ribosome acceptor site. It also binds to some extent to the bacterial 50S ribosomal subunit and may alter the cytoplasmic membrane causing intracellular components to leak from bacterial cells. A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D06 - Antibiotics and chemotherapeutics for dermatological use > D06A - Antibiotics for topical use > D06AA - Tetracycline and derivatives J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01A - Tetracyclines > J01AA - Tetracyclines S - Sensory organs > S03 - Ophthalmological and otological preparations > S03A - Antiinfectives > S03AA - Antiinfectives S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors C784 - Protein Synthesis Inhibitor > C1595 - Tetracycline Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3235

   

Indinavir

(1(1S,2R),5(S))-2,3,5-Trideoxy-N-(2,3-dihydro-2-hydroxy-1H-inden-1-yl)-5-(2-(((1,1-dimethylethyl)amino)carbonyl)-4-(3-pyridinylmethyl)-1-piperazinyl)-2-(phenylmethyl)-D-erythro-pentonamide

C36H47N5O4 (613.3627862)


Indinavir is only found in individuals that have used or taken this drug. It is a potent and specific HIV protease inhibitor that appears to have good oral bioavailability. [PubChem]Indinavir inhibits the HIV viral protease enzyme which prevents cleavage of the gag-pol polyprotein, resulting in noninfectious, immature viral particles. CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3668; ORIGINAL_PRECURSOR_SCAN_NO 3666 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7953; ORIGINAL_PRECURSOR_SCAN_NO 7951 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7922; ORIGINAL_PRECURSOR_SCAN_NO 7919 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3684; ORIGINAL_PRECURSOR_SCAN_NO 3682 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7948; ORIGINAL_PRECURSOR_SCAN_NO 7944 INTERNAL_ID 178; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3703; ORIGINAL_PRECURSOR_SCAN_NO 3700 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7958; ORIGINAL_PRECURSOR_SCAN_NO 7956 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7938; ORIGINAL_PRECURSOR_SCAN_NO 7936 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3664; ORIGINAL_PRECURSOR_SCAN_NO 3662 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7884; ORIGINAL_PRECURSOR_SCAN_NO 7882 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3703; ORIGINAL_PRECURSOR_SCAN_NO 3700 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3663; ORIGINAL_PRECURSOR_SCAN_NO 3661 CONFIDENCE standard compound; INTERNAL_ID 178; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3661; ORIGINAL_PRECURSOR_SCAN_NO 3659 J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AE - Protease inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D000084762 - Viral Protease Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents C471 - Enzyme Inhibitor > C783 - Protease Inhibitor > C97366 - HIV Protease Inhibitor C254 - Anti-Infective Agent > C281 - Antiviral Agent > C1660 - Anti-HIV Agent D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Kanamycin

(2R,3S,4S,5R,6R)-2-(aminomethyl)-6-{[(1R,2R,3S,4R,6S)-4,6-diamino-3-{[(2S,3R,4S,5S,6R)-4-amino-3,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2-hydroxycyclohexyl]oxy}oxane-3,4,5-triol

C18H36N4O11 (484.23804659999996)


Kanamycin is only found in individuals that have used or taken this drug. It is an antibiotic complex produced by Streptomyces kanamyceticus from Japanese soil. Comprises 3 components: kanamycin A, the major component, and kanamycins B and C, the minor components. [PubChem]Aminoglycosides like kanamycin "irreversibly" bind to specific 30S-subunit proteins and 16S rRNA. Specifically Kanamycin binds to four nucleotides of 16S rRNA and a single amino acid of protein S12. This interferes with decoding site in the vicinity of nucleotide 1400 in 16S rRNA of 30S subunit. This region interacts with the wobble base in the anticodon of tRNA. This leads to interference with the initiation complex, misreading of mRNA so incorrect amino acids are inserted into the polypeptide leading to nonfunctional or toxic peptides and the breakup of polysomes into nonfunctional monosomes. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01G - Aminoglycoside antibacterials S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic

   

N-PHENYL-1-NAPHTHYLAMINE

N-phenylnaphthalen-1-amine

C16H13N (219.1047938)


CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10077; ORIGINAL_PRECURSOR_SCAN_NO 10074 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10054; ORIGINAL_PRECURSOR_SCAN_NO 10051 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10017; ORIGINAL_PRECURSOR_SCAN_NO 10013 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10109; ORIGINAL_PRECURSOR_SCAN_NO 10106 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10083; ORIGINAL_PRECURSOR_SCAN_NO 10080 CONFIDENCE standard compound; INTERNAL_ID 1239; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10041; ORIGINAL_PRECURSOR_SCAN_NO 10037 D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D004396 - Coloring Agents > D005456 - Fluorescent Dyes CONFIDENCE standard compound; INTERNAL_ID 4139 CONFIDENCE standard compound; INTERNAL_ID 2426 CONFIDENCE standard compound; INTERNAL_ID 8127 D009676 - Noxae > D002273 - Carcinogens

   

Undecanoic acid

1-Decanecarboxylic acid

C11H22O2 (186.1619712)


Undecanoic acid, also known as N-undecylic acid or N-undecanoate, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecanoic acid is a potentially toxic compound. Undecylic acid (systematically named undecanoic acid) is a flavouring ingredient. It is a naturally-occurring carboxylic acid with chemical formula CH3(CH2)9COOH (Wikipedia). Undecanoic acid is found in many foods, some of which are coconut, fruits, fats and oils, and rice. C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

Benzamide

Trimethobenzamide hydrochloride

C7H7NO (121.0527612)


Benzamide is an intermediate in the Benzoate degradation via CoA ligation. Benzamides are a class of chemical compounds derived from Benzamid, the carbonic acid amide of benzoic acid. In psychiatry some substituted benzamides are therapeutically used as neuroleptics and/or antipsychotics (wikipedia). Benzamide is an intermediate in the Benzoate degradation via CoA ligation. CONFIDENCE standard compound; INTERNAL_ID 8080 KEIO_ID B009 Benzamide (Benzenecarboxamide) is a potent poly(ADP-ribose) polymerase (PARP) inhibitor. Benzamide has protective activity against both glutamate- and methamphetamine (METH)-induced neurotoxicity in vitro. Benzamide can attenuate the METH-induced dopamine depletions and exhibits neuroprotective activity in mice, also has no acute effect on striatal dopamine metabolism and does not reduce body temperature[1].

   

Dodecanoic acid

dodecanoic acid

C12H24O2 (200.1776204)


Dodecanoic acid, also known as dodecanoate or lauric acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Dodecanoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Dodecanoic acid is the main fatty acid in coconut oil and in palm kernel oil, and is believed to have antimicrobial properties. It is a white, powdery solid with a faint odour of bay oil. Dodecanoic acid, although slightly irritating to mucous membranes, has a very low toxicity and so is used in many soaps and shampoos. Defoamer, lubricant. It is used in fruit coatings. Occurs as glyceride in coconut oil and palm kernel oil. Simple esters are flavour ingredients Lauric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=143-07-7 (retrieved 2024-07-01) (CAS RN: 143-07-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively. Lauric acid is a middle chain-free fatty acid with strong bactericidal properties. The EC50s for P. acnes, S.aureus, S. epidermidis, are 2, 6, 4 μg/mL, respectively.

   

Benzenebutanoic acid

4-Phenylbutyric acid, calcium salt

C10H12O2 (164.0837252)


Benzenebutanoic acid (also known as 4-phenylbutyrate, or 4-PBA) is the oral form of butyrate, which is known to be a transcriptional regulator. Sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia. Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER (endoplasmic reticulum) environment (PMID 12458151). 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking (PMID 16798551). 4-phenylbutyrate (4-PBA) is known to be a transcriptional regulator, and sodium-4-PBA has been shown to induce fetal hemoglobin, and it has been used in clinical trials for sickle cell anemia and β-thalassemia Because gene expression profiles became more differentiated, it is in phase I trials in several different malignant disorders. The potential for therapeutic benefit in cystic fibrosis (CF) resides in an additional mechanism, involving protein folding and the ER environment. 4-PBA is a drug that was developed to treat elevated blood ammonia in urea cycle disorders, a histone deacetylase inhibitor that promotes mutation ΔF508 cystic fibrosis transmembrane conductance regulator (CFTR) trafficking. (PMID 12458151) [HMDB] C471 - Enzyme Inhibitor > C1946 - Histone Deacetylase Inhibitor C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent D000970 - Antineoplastic Agents

   

Helixin C

(2R)-2-[(2R,3S,6R)-6-[[(2S,4R,5R,6R,7R,9R)-2-[(2R,5S)-5-[(2R,3S,5R)-5-[(2S,3S,5R,6R)-6-hydroxy-6-(hydroxymethyl)-3,5-dimethyloxan-2-yl]-3-methyloxolan-2-yl]-5-methyloxolan-2-yl]-7-methoxy-2,4,6-trimethyl-1,10-dioxaspiro[4.5]decan-9-yl]methyl]-3-methyloxan-2-yl]propanoic acid

C40H68O11 (724.4761378000001)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D049990 - Membrane Transport Modulators D007476 - Ionophores

   

Phenylacetone

Phenylmethyl methyl ketone

C9H10O (134.073161)


   

Tangeritin

5,6,7,8-Tetramethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one, 9CI

C20H20O7 (372.120897)


Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.

   

Roseoflavin

8-Dimethylaminoriboflavin

C18H23N5O6 (405.1648258)


A benzopteridine that is riboflavin in which the methyl group at position 8 is substituted by a dimethylamino group.

   

Daidzin

3-(4-hydroxyphenyl)-7-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O9 (416.110727)


Daidzein 7-O-beta-D-glucoside is a glycosyloxyisoflavone that is daidzein attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It is used in the treatment of alcohol dependency (antidipsotropic). It has a role as a plant metabolite. It is a hydroxyisoflavone, a monosaccharide derivative and a 7-hydroxyisoflavones 7-O-beta-D-glucoside. It is functionally related to a daidzein. Daidzin is a natural product found in Thermopsis lanceolata, Thermopsis macrophylla, and other organisms with data available. See also: Astragalus propinquus root (part of). Daidzin is found in miso. Daidzin is isolated from soya bean (Glycine max) and soya bean meal, kudzu root (Pueraria lobata), alfalfa (Medicago sativa) and other Leguminosae.Daidzin is a cancer preventive and an alcohol dependency treatment (antidipsotropic) in animal models. Daidzin is a natural organic compound in the class of phytochemicals known as isoflavones. Daidzin can be found in Japanese plant Kudzu (Pueraria lobata, Fabaceae) and from soybean leaves A glycosyloxyisoflavone that is daidzein attached to a beta-D-glucopyranosyl residue at position 7 via a glycosidic linkage. It is used in the treatment of alcohol dependency (antidipsotropic). Isolated from soya bean (Glycine max) and soya bean meal, kudzu root (Pueraria lobata), alfalfa (Medicago sativa) and other Leguminosae D002491 - Central Nervous System Agents > D000427 - Alcohol Deterrents D004791 - Enzyme Inhibitors Acquisition and generation of the data is financially supported in part by CREST/JST. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities. Daidzin is a potent and selective inhibitor of mitochondrial ALDH-2. Daidzin reduces ethanol consumption[1]. Daidzin is an isoflavone with antioxidant, anticancer, and antiatherosclerotic activities.

   

Daunorubicin

(8S,10S)-8-acetyl-10-{[(2R,4S,5S,6S)-4-amino-5-hydroxy-6-methyloxan-2-yl]oxy}-6,8,11-trihydroxy-1-methoxy-5,7,8,9,10,12-hexahydrotetracene-5,12-dione

C27H29NO10 (527.1791374000001)


Daunorubicin is only found in individuals that have used or taken this drug. It is a very toxic anthracycline aminoglycoside antineoplastic isolated from Streptomyces peucetius and others, used in treatment of leukemia and other neoplasms. [PubChem]Daunorubicin has antimitotic and cytotoxic activity through a number of proposed mechanisms of action: Daunorubicin forms complexes with DNA by intercalation between base pairs, and it inhibits topoisomerase II activity by stabilizing the DNA-topoisomerase II complex, preventing the religation portion of the ligation-religation reaction that topoisomerase II catalyzes. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances > L01DB - Anthracyclines and related substances C274 - Antineoplastic Agent > C2189 - Signal Transduction Inhibitor > C129824 - Antineoplastic Protein Inhibitor D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C471 - Enzyme Inhibitor > C129825 - Antineoplastic Enzyme Inhibitor > C1748 - Topoisomerase Inhibitor C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D004791 - Enzyme Inhibitors KEIO_ID D106

   

Spectinomycin

(1R,3S,5R,8R,10R,11S,12S,13R,14S)-8,12,14-trihydroxy-5-methyl-11,13-bis(methylamino)-2,4,9-trioxatricyclo[8.4.0.0³,⁸]tetradecan-7-one

C14H24N2O7 (332.1583434)


Spectinomycin is only found in individuals that have used or taken this drug. It is an antibiotic produced by Streptomyces spectabilis. It is active against gram-negative bacteria and used for the treatment of gonorrhea. Spectinomycin is an inhibitor of protein synthesis in the bacterial cell; the site of action is the 30S ribosomal subunit. It is bactericidal in its action. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID S044; [MS2] KO009242 KEIO_ID S044

   

Myriocin

(2S,3R,4R,6E)-2-Amino-3,4-dihydroxy-2-(hydroxymethyl)-14-oxo-6-eicosenoic acid;ISP-I;Thermozymocidin

C21H39NO6 (401.2777234)


An amino acid-based antibiotic derived from certain thermophilic fungi; acts as a potent inhibitor of serine palmitoyltransferase, the first step in sphingosine biosynthesis. Myriocin also possesses immunosuppressant activity. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000935 - Antifungal Agents [Raw Data] CBA29_Myriocin_pos_20eV_1-3_01_1557.txt [Raw Data] CBA29_Myriocin_neg_40eV_1-3_01_1590.txt [Raw Data] CBA29_Myriocin_pos_10eV_1-3_01_1546.txt [Raw Data] CBA29_Myriocin_neg_30eV_1-3_01_1589.txt [Raw Data] CBA29_Myriocin_pos_40eV_1-3_01_1559.txt [Raw Data] CBA29_Myriocin_pos_30eV_1-3_01_1558.txt [Raw Data] CBA29_Myriocin_pos_50eV_1-3_01_1560.txt [Raw Data] CBA29_Myriocin_neg_10eV_1-3_01_1578.txt [Raw Data] CBA29_Myriocin_neg_20eV_1-3_01_1588.txt Myriocin (Thermozymocidin), a fungal metabolite could be isolated from Myriococcum albomyces, Isaria sinclairi and Mycelia sterilia, is a potent inhibitor of serine-palmitoyl-transferase (SPT) and a key enzyme in de novo synthesis of sphingolipids. Myriocin suppresses replication of both the subgenomic HCV-1b replicon and the JFH-1 strain of genotype 2a infectious HCV, with an IC50 of 3.5 μg/mL for inhibiting HCV infection[1][2][3].

   

(+)-Sesamin

1,3-BENZODIOXOLE, 5,5-(TETRAHYDRO-1H,3H-FURO(3,4-C)FURAN-1,4-DIYL)BIS-, (1S-(1.ALPHA.,3A .ALPHA.,4.ALPHA.,6A .ALPHA.))-

C20H18O6 (354.1103328)


(+)-Sesamin, also known as fagarol or sezamin, belongs to the class of organic compounds known as furanoid lignans. These are lignans with a structure that contains either a tetrahydrofuran ring, a furan ring, or a furofuan ring system, that arises from the joining of the two phenylpropanoid units. (+)-Sesamin is an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-Sesamin is found, on average, in the highest concentration within sesames. (+)-Sesamin has also been detected, but not quantified in, several different foods, such as fats and oils, flaxseeds, ginkgo nuts, and ucuhuba. This could make (+)-sesamin a potential biomarker for the consumption of these foods. (+)-sesamin is a lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. It has a role as an antineoplastic agent, a neuroprotective agent and a plant metabolite. It is a lignan, a member of benzodioxoles and a furofuran. Sesamin is a natural product found in Pandanus boninensis, Podolepis rugata, and other organisms with data available. See also: Sesame Oil (part of). A lignan that consists of tetrahydro-1H,3H-furo[3,4-c]furan substituted by 1,3-benzodioxole groups at positions 1 and 4 (the 1S,3aR,4S,6aR stereoisomer). Isolated from Cinnamomum camphora, it exhibits cytotoxic activity. Constituent of sesame oil. (+)-Sesamin is found in many foods, some of which are ginkgo nuts, sesame, flaxseed, and fats and oils. D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

3-[(1-Carboxyvinyl)oxy]benzoic acid

3-[(1-Carboxyvinyl)oxy]benzoic acid

C10H8O5 (208.0371718)


   
   

Maltol

3-Hydroxy-2-methyl-4-pyrone; 3-Hydroxy-2-methyl-pyran-4-one; Maltol; Deferiprone Impurity B

C6H6O3 (126.0316926)


Maltol, also known as E636 or fema 2656, belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Some synthetic derivatives of maltol, developed at the University of Urbino, showed limited in vitro antiproliferative activity towards cancer cells lines, perhaps inducing apoptosis in these cells. Maltol is a sweet, baked, and bread tasting compound. Maltol has been detected, but not quantified, in several different foods, such as milk and milk products, nuts, soy beans, pepper (c. annuum), and coffee and coffee products. Maltols sweetness adds to the odor of freshly baked bread, and is used as a flavor enhancer (INS Number 636) in breads and cakes. Related to this property, maltol has been reported to greatly increase aluminum uptake in the body and to increase the oral bioavailability of gallium and iron. Maltol is a naturally occurring organic compound that is used primarily as a flavor enhancer. It is a white crystalline powder that is soluble in hot water, chloroform, and other polar solvents. Maltol is registered as a flavor component in the EU. Maltol, like related 3-hydroxy-4-pyrones such as kojic acid, binds to hard metal centers such as Fe3+, Ga3+, Al3+, and VO2+. It is known in the European E number food additive series as E636. Because it has the odor of cotton candy and caramel, maltol is used to impart a sweet aroma to fragrances. Maltol is a white crystalline powder with a fragrant caramel-butterscotch odor. pH (5\\\\% aqueous solution) 5.3. (NTP, 1992) 3-hydroxy-2-methyl-4-pyrone is a member of 4-pyranones. It has a role as a metabolite. Maltol is a natural product found in Cercidiphyllum japonicum, Coffea arabica, and other organisms with data available. 3-Hydroxy-2-methyl-4-pyrone is a metabolite found in or produced by Saccharomyces cerevisiae. Found in chicory, roasted malt, breads, milk, heated butter, uncured smoked pork, cocoa, coffee, roasted barley, roasted peanuts, roasted filbert, soybean etc. Flavour enhancer and flavouring agent C1907 - Drug, Natural Product > C28269 - Phytochemical Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1]. Maltol, a type of aromatic compound, exists in high concentrations in red ginseng. Maltol is a potent antioxidative agent and typically is used to enhance flavor and preserve food[1].

   

Catechol

InChI=1\C6H6O2\c7-5-3-1-2-4-6(5)8\h1-4,7-8

C6H6O2 (110.0367776)


A benzenediol comprising of a benzene core carrying two hydroxy substituents ortho to each other. Acquisition and generation of the data is financially supported in part by CREST/JST.

   

N-Phenyl-2-naphthylamine

N-beta -Naphthyl-N-phenylamine

C16H13N (219.1047938)


CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10025; ORIGINAL_PRECURSOR_SCAN_NO 10023 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10038; ORIGINAL_PRECURSOR_SCAN_NO 10033 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 10043; ORIGINAL_PRECURSOR_SCAN_NO 10042 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9976; ORIGINAL_PRECURSOR_SCAN_NO 9974 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9984; ORIGINAL_PRECURSOR_SCAN_NO 9980 CONFIDENCE standard compound; INTERNAL_ID 1105; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9994; ORIGINAL_PRECURSOR_SCAN_NO 9992 N-Phenyl-2-naphthylamine is found in root vegetables. N-Phenyl-2-naphthylamine is a constituent of Daucus carota (carrot). Constituent of Daucus carota (carrot). N-Phenyl-2-naphthylamine is found in root vegetables. CONFIDENCE standard compound; INTERNAL_ID 8366 CONFIDENCE standard compound; INTERNAL_ID 28

   

Benzyl acetate

Benzyl acetate + glycine combination

C9H10O2 (150.06807600000002)


Benzyl acetate, also known as benzyl ethanoate or fema 2135, belongs to the class of organic compounds known as benzyloxycarbonyls. These are organic compounds containing a carbonyl group substituted with a benzyloxyl group. Benzyl acetate is a sweet, apple, and apricot tasting compound. Benzyl acetate is found, on average, in the highest concentration within sweet basils. Benzyl acetate has also been detected, but not quantified, in several different foods, such as figs, fruits, pomes, tea, and alcoholic beverages. On high concnetrations benzyl acetate is a potentially toxic compound. If the compound has entered the eyes, they should be washed with large quantities of isotonic saline or water. Occurs in jasmine, apple, cherry, guava fruit and peel, wine grape, white wine, tea, plum, cooked rice, Bourbon vanilla, naranjila fruit (Solanum quitoense), Chinese cabbage and quince. Flavouring agent Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1]. Benzyl acetate is a constituent of jasmin and of the essential oils of ylang-ylang and neroli. Natural sources of Benzyl acetate include varieties of flowers like jasmine (Jasminum), and fruits like pear, apple[1].

   

2-(Methylamino)benzoic acid

N-Methylanthranilic acid, 8ci

C8H9NO2 (151.0633254)


2-(Methylamino)benzoic acid is found in citrus. 2-(Methylamino)benzoic acid is isolated from grapefruit peel oi KEIO_ID M127 2-(Methylamino)benzoic acid is the main metabolite of methyl-N-methylanthranilates (MMA) (HY-76705) and is the compound in which the ester group is converted. MMA can be isolated from citrus fruits and has potential analgesic activity. 2-(Methylamino)benzoic acid was used to detect the metabolic levels of MMA in rat liver[1].

   

2-Phenylethyl acetate

Acetic acid beta -phenylethyl ester

C10H12O2 (164.0837252)


2-Phenylethyl acetate, also known as 2-phenethyl acetic acid or benzylcarbinyl acetate, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethyl acetate is a sweet, floral, and fruity tasting compound. 2-Phenylethyl acetate is found, on average, in the highest concentration within ceylon cinnamons and cloves. 2-Phenylethyl acetate has also been detected, but not quantified, in several different foods, such as butternuts, eggplants, turmerics, radish (var.), and pili nuts. This could make 2-phenylethyl acetate a potential biomarker for the consumption of these foods. The acetate ester of 2-phenylethanol. Flavouring ingredient. 2-Phenylethyl acetate is found in many foods, some of which are acerola, prickly pear, summer grape, and sweet orange.

   

Carbazole

Dibenzo(b,D)pyrrole

C12H9N (167.07349539999998)


CONFIDENCE standard compound; INTERNAL_ID 1 D009676 - Noxae > D002273 - Carcinogens KEIO_ID C040

   

Dihydrostreptomycin

1,1-[4-({5-deoxy-2-O-[2-deoxy-2-(methylamino)hexopyranosyl]-3-C-(hydroxymethyl)pentofuranosyl}oxy)-2,5,6-trihydroxycyclohexane-1,3-diyl]diguanidine

C21H41N7O12 (583.2813066000001)


S - Sensory organs > S01 - Ophthalmologicals > S01A - Antiinfectives > S01AA - Antibiotics C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic Origin: Microbe, Glycosides, Aminoglycosides KEIO_ID D108; [MS2] KO008925 KEIO_ID D108

   

Paromomycin

(2S,3S,4R,5R,6R)-5-amino-2-(aminomethyl)-6-{[(2R,3S,4R,5S)-5-{[(1R,2R,3S,5R,6S)-3,5-diamino-2-{[(2S,3R,4R,5S,6R)-3-amino-4,5-dihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-6-hydroxycyclohexyl]oxy}-4-hydroxy-2-(hydroxymethyl)oxolan-3-yl]oxy}oxane-3,4-diol

C23H45N5O14 (615.296287)


Paromomycin is only found in individuals that have used or taken this drug. It is an oligosaccharide antibiotic produced by various streptomyces. [PubChem]Paromomycin inhibits protein synthesis by binding to 16S ribosomal RNA. Bacterial proteins are synthesized by ribosomal RNA complexes which are composed of 2 subunits, a large subunit (50s) and small (30s) subunit, which forms a 70s ribosomal subunit. tRNA binds to the top of this ribosomal structure. Paramomycin binds to the A site, which causes defective polypeptide chains to be produced. Continuous production of defective proteins eventually leads to bacterial death. A - Alimentary tract and metabolism > A07 - Antidiarrheals, intestinal antiinflammatory/antiinfective agents > A07A - Intestinal antiinfectives > A07AA - Antibiotics D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents C784 - Protein Synthesis Inhibitor > C2363 - Aminoglycoside Antibiotic D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic KEIO_ID P126

   

Lumichrome

7,8-dimethyl-1H,2H,3H,4H-benzo[g]pteridine-2,4-dione

C12H10N4O2 (242.080372)


Lumichrome, also known as light folinic acid or 7,8-dimethyl-10-ribitylisoalloxazine, is a derivative of riboflavin (vitamin B2). The chemical structure of lumichrome consists of a heterocyclic isoalloxazine ring, which is a fused pyridine and pyrazine ring system. The isoalloxazine ring contains a methyl group at the 7 and 8 positions and is substituted at the 10 position with a ribityl group, which is a 5-carbon chain derived from ribose with a methyl group at the 2’ position. Photocatalytic Activity: Lumichrome exhibits photocatalytic activity and can act as a photosensitizer. It can absorb light energy and transfer it to other molecules, potentially triggering photochemical reactions. Fluorescence: Lumichrome is known for its fluorescence properties. This characteristic makes it useful in various applications, including fluorescence microscopy and as a labeling agent in biological assays. Antioxidant Properties: Lumichrome has been found to have antioxidant properties. It can scavenge free radicals, which may help in protecting cells from oxidative stress. Metabolic Intermediate: In the body, lumichrome can be formed from riboflavin through photochemical or enzymatic degradation. It may play a role in the metabolism of flavins and could be involved in the recycling of flavin cofactors. Potential Biomarker: Due to its presence in biological tissues and its fluorescence properties, lumichrome has been proposed as a potential biomarker for certain diseases and conditions. Plant Pigment: In plants, lumichrome can be involved in light capture and energy transfer processes, although it is not a chlorophyll pigment. It may contribute to the overall light-harvesting capabilities of plant tissues. While lumichrome has several interesting chemical and biological properties, it is not considered an essential nutrient like its parent compound, riboflavin. Its exact role in biological systems is still an area of ongoing research. Lumichrome, a photodegradation product of Riboflavin, is an endogenous compound in humans. Lumichrome inhibits human lung cancer cell growth and induces apoptosis via a p53-dependent mechanism[1][2].

   

Undecylenic acid

Zinc undecylenate (undecylenic acid)

C11H20O2 (184.14632200000003)


Undecylenic acid, also known as 10-undecylenate or omega-undecenoic acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. Undecylenic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Undecylenic acid is found in black elderberry. Undecylenic acid is a flavouring ingredient and is a sweet and woody-tasting compound. Undecylenic acid was identified as one of forty plasma metabolites that could be used to predict gut microbiome Shannon diversity (PMID:31477923). Shannon diversity is a metric that summarizes both species abundance and evenness, and it has been suggested as a marker for microbiome health. Undecylenic acid is used in the production of the bioplastic Nylon-11, in the treatment of fungal infections in the skin, and as a precursor in the manufacture of a wide assortment of pharmaceuticals, cosmetics, perfumes, and personal hygiene products. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use Flavouring ingredient. Undecylenic acid is found in black elderberry. C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Anisomycin

Flagecidin;Wuningmeisu C

C14H19NO4 (265.1314014)


An antibiotic isolated from various Streptomyces species. It interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system. D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents C254 - Anti-Infective Agent > C258 - Antibiotic relative retention time with respect to 9-anthracene Carboxylic Acid is 0.392 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.387 Anisomycin is a potent protein synthesis inhibitor which interferes with protein and DNA synthesis by inhibiting peptidyl transferase or the 80S ribosome system[1]. Anisomycin is a JNK activator, which increases phospho-JNK[2][3]. Anisomycin is a bacterial antibiotic[4].

   

Chrysophanol

1,8-DIHYDROXY-3-METHYL-9,10-DIHYDROANTHRACENE-9,10-DIONE

C15H10O4 (254.057906)


Chrysophanic acid appears as golden yellow plates or brown powder. Melting point 196 °C. Slightly soluble in water. Pale yellow aqueous solutions turn red on addition of alkali. Solutions in concentrated sulfuric acid are red. (NTP, 1992) Chrysophanol is a trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. It has a role as an antiviral agent, an anti-inflammatory agent and a plant metabolite. It is functionally related to a chrysazin. Chrysophanol is a natural product found in Rumex dentatus, Ageratina altissima, and other organisms with data available. See also: Frangula purshiana Bark (part of). A trihydroxyanthraquinone that is chrysazin with a methyl substituent at C-3. It has been isolated from Aloe vera and exhibits antiviral and anti-inflammatory activity. Constituent of Rumex, Rheum subspecies Chrysophanol is found in dock, garden rhubarb, and sorrel. Chrysophanol is found in dock. Chrysophanol is a constituent of Rumex, Rheum species D009676 - Noxae > D009153 - Mutagens Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K. Chrysophanol (Chrysophanic acid) is a natural anthraquinone, which inhibits EGF-induced phosphorylation of EGFR and suppresses activation of AKT and mTOR/p70S6K.

   

Prunetin

5-Hydroxy-3-(4-hydroxyphenyl)-7-methoxy-4H-1-benzopyran-4-one, 9CI

C16H12O5 (284.0684702)


Prunetin is a hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. It has a role as a metabolite, an EC 1.3.1.22 [3-oxo-5alpha-steroid 4-dehydrogenase (NADP(+))] inhibitor, an anti-inflammatory agent and an EC 1.2.1.3 [aldehyde dehydrogenase (NAD(+))] inhibitor. It is a hydroxyisoflavone and a member of 7-methoxyisoflavones. It is functionally related to a genistein. It is a conjugate acid of a prunetin-5-olate. Prunetin is a natural product found in Iris milesii, Prunus leveilleana, and other organisms with data available. Occurs in several Prunus subspecies and Glycyrrhiza glabra (licorice). Prunetin is found in tea, herbs and spices, and sour cherry. Prunetin is found in herbs and spices. Prunetin occurs in several Prunus species and Glycyrrhiza glabra (licorice). A hydroxyisoflavone that is genistein in which the hydroxy group at position 7 is replaced by a methoxy group. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2]. Prunetin, an O-methylated isoflavone, possesses anti-inflammatory activity. Prunetin is a potent human aldehyde dehydrogenases inhibitor[1][2].

   

N-Phenethylacetamide

N-(2-Phenylethyl)-acetamide

C10H13NO (163.0997088)


   

Rabelomycin

3,6,8-Trihydroxy-3-methyl-2,4-dihydrobenzo[a]anthracene-1,7,12-trione

C19H14O6 (338.0790344)


   

3,4-Dehydro-6-hydroxymellein

3,4-Dehydro-6-hydroxymellein

C10H8O4 (192.0422568)


   

Toyomycin

chromomycin a3

C57H82O26 (1182.5094072000002)


C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D002865 - Chromomycins D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes Same as: D02062

   

Maculosin

Cyclo(L-Pro-L-Tyr)

C14H16N2O3 (260.1160866)


A homodetic cyclic peptide that is a dipeptide composed of L-proline and L-tyrosine joined by peptide linkages. Maculosin is a host-specific phytotoxin for spotted knapweed from Alternaria alternata. Maculosin is a quorum-sensing molecule involved in cell-cell communication by Pseudomonas aeruginosa. Maculosin also acts as a signaling molecule regulating virulence gene expression in Lactobacillus reuteri. Maculosin shows antioxidant, anti-cancer and non-toxicity properties. Maculosin shows cytotoxic activity against the human liver cancer cell lines, with an IC50 of 48.90 μg/mL[1][2][3]. Maculosin is a host-specific phytotoxin for spotted knapweed from Alternaria alternata. Maculosin is a quorum-sensing molecule involved in cell-cell communication by Pseudomonas aeruginosa. Maculosin also acts as a signaling molecule regulating virulence gene expression in Lactobacillus reuteri. Maculosin shows antioxidant, anti-cancer and non-toxicity properties. Maculosin shows cytotoxic activity against the human liver cancer cell lines, with an IC50 of 48.90 μg/mL[1][2][3].

   

Actinonin

(2R)-N'-hydroxy-N-[(2S)-1-[(2S)-2-(hydroxymethyl)pyrrolidin-1-yl]-3-methyl-1-oxobutan-2-yl]-2-pentylbutanediamide

C19H35N3O5 (385.25765800000005)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Actinonin ((-)-Actinonin) is a naturally occurring antibacterial agent produced by Actinomyces. Actinonin inhibits aminopeptidase M, aminopeptidase N and leucine aminopeptidase. Actinonin is a potent reversible peptide deformylase (PDF) inhibitor with a Ki of 0.28 nM. Actinonin also inhibits MMP-1, MMP-3, MMP-8, MMP-9, and hmeprin α with Ki values of 300 nM, 1,700 nM, 190 nM, 330 nM, and 20 nM, respectively. Actinonin is an apoptosis inducer. Actinonin has antiproliferative and antitumor activities[1][2][3][4][5].

   

Mitomycin

[(4S,6S,7R,8S)-11-amino-7-methoxy-12-methyl-10,13-dioxo-2,5-diazatetracyclo[7.4.0.0²,⁷.0⁴,⁶]trideca-1(9),11-dien-8-yl]methyl carbamate

C15H18N4O5 (334.1277138)


Mitomycin is only found in individuals that have used or taken this drug. It is an antineoplastic antibiotic produced by Streptomyces caespitosus. It is one of the bi- or tri-functional alkylating agents causing cross-linking of DNA and inhibition of DNA synthesis. [PubChem]Mitomycin is activated in vivo to a bifunctional and trifunctional alkylating agent. Binding to DNA leads to cross-linking and inhibition of DNA synthesis and function. Mitomycin is cell cycle phase-nonspecific. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D003432 - Cross-Linking Reagents C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D008937 - Mitomycins D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D009676 - Noxae > D000477 - Alkylating Agents

   

1-Methylguanidine

1-Methylguanidine hydrochloride

C2H7N3 (73.0639942)


Methylguanidine (MG) is a guanidine in which one of the amino hydrogens of guanidine itself is substituted by a methyl group. Methylguanidine is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine has a role as a metabolite, an EC 1.14.13.39 (nitric oxide synthase) inhibitor and as a uremic toxin. It has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). It accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine (MG) is a guanidine compound deriving from protein catabolism. It is also a product of putrefaction. Methylguanidine is a suspected uraemic toxin that accumulates in renal failure, however it also exhibits anti-inflammatory effects. Methylguanidine is synthesized from creatinine concomitant with the synthesis of hydrogen peroxide from endogenous substrates in peroxisomes. Recent evidence suggests that methylguanidine significantly inhibits iNOS activity and TNF- release. This means that methylguandine can attenuate the degree of inflammation and tissue damage associated with endotoxic shock. Methylguanidine is found in loquat and apple. Methylguanidine. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=471-29-4 (retrieved 2024-07-16) (CAS RN: 471-29-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Hemipyocyanine

1-Hydroxyphenanzine

C12H8N2O (196.06365979999998)


CONFIDENCE standard compound; INTERNAL_ID 186

   

FA 15:0

Dodecanoic acid, 3,7,11-trimethyl-

C15H30O2 (242.224568)


A branched-chain saturated fatty acid comprising tetradecanoic acid carrying a 12-methyl substituent. CONFIDENCE standard compound; INTERNAL_ID 246 CONFIDENCE standard compound; INTERNAL_ID 247 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2]. 13-Methyltetradecanoic acid (13-MTD), a saturated branched-chain fatty acid with potent anticancer effects. 13-Methyltetradecanoic acid induces apoptosis in many types of human cancer cells[1][2].

   

Anthraquinone

9,10-Anthraquinone, radical ion (1-)

C14H8O2 (208.0524268)


Anthraquinone is used as a precursor for dye formation. Anthraquinone is used as a precursor for dye formation.

   

Geosmin

[4S-(4alpha,4aalpha,8abeta)]-Octahydro-4,8a-dimethyl-4a(2H)-naphthalenol

C12H22O (182.1670562)


Geosmin is found in corn. Implicated in off-flavour of shellfish, freshwater fish, drinking water and some vegetables.Geosmin, which literally translates to "earth smell", is an organic compound with a distinct earthy flavour and aroma, and is responsible for the earthy taste of beets and a contributor to the strong scent that occurs in the air when rain falls after a dry spell of weather (petrichor) or when soil is disturbed. The human nose is extremely sensitive to geosmin and is able to detect it at concentrations as low as 5 parts per trillion. Implicated in off-flavour of shellfish, freshwater fish, drinking water and some vegetables

   

beta-Cadinene

(1S,4AR,8as)-4,7-dimethyl-1-(propan-2-yl)-1,2,4a,5,8,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


beta-Cadinene is found in common oregano. beta-Cadinene is a constituent of Pinus caribaea. Mixed cadinene isomers, with b-cadinene usually predominating, occur in several essential oils, especially ylang-ylang, citronella and cade oil from Juniper species Cadinene isomers are used as a flavouring agent and/or flavour modifier.

   

Pepstatin

Pepstatinum

C34H63N5O9 (685.4625548)


D000890 - Anti-Infective Agents > D000977 - Antiparasitic Agents > D000981 - Antiprotozoal Agents D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D010436 - Pepstatins C471 - Enzyme Inhibitor > C783 - Protease Inhibitor Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2]. Pepstatin (Pepstatin A) is a specific, orally active aspartic protease inhibitor produced by actinomycetes, with IC50s of 4.5 nM, 6.2 nM, 150 nM, 290 nM, 520 nM and 260 nM for hemoglobin-pepsin, hemoglobin-proctase, casein-pepsin, casein-proctase, casein-acid protease and hemoglobin-acid protease, respectively. Pepstatin also inhibits HIV protease[1][2].

   

AMASTATIN

CHEMBL27693

C21H38N4O8 (474.26895079999997)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors

   

Coformycin

Coformycin

C11H16N4O5 (284.1120646)


An N-glycosyl in which (8R)-3,6,7,8-tetrahydroimidazo[4,5-d][1,3]diazepin-8-ol is attached to ribofuranose via a beta-N(3)-glycosidic bond. compound The parent of the class of coformycins. D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D005573 - Formycins D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D004791 - Enzyme Inhibitors

   

gamma-Butyrolactone

4-Hydroxy-butanoic acid g-lactone

C4H6O2 (86.0367776)


Gamma-butyrolactone (GBL), also known as 1,4-butanolide or 1,4-lactone, belongs to the class of organic compounds known as gamma butyrolactones. Gamma butyrolactones are compounds containing a gamma butyrolactone moiety, which consists of an aliphatic five-member ring with four carbon atoms, one oxygen atom, and bears a ketone group on the carbon adjacent to the oxygen atom. GBL can also be classified as a tetrahydrofuran substituted by an oxo group at position 2. Gamma-butyrolactone is soluble in ethanol and moderately miscible in water. Gamma-butyrolactone is a sweet, caramel, and creamy tasting compound. Gamma-butyrolactone exists in all living species, ranging from bacteria to plants to humans. It can be endogenously produced from gamma-aminobutyrate and is the precursor of gamma-hydroxybutyrate. Outside of the human body, gamma-butyrolactone has been detected, but not quantified in, several different foods, such as pepper (c. annuum), yellow bell peppers, orange bell peppers, soy beans, evergreen blackberries and a variety of wines (at a concentration of 5 ug/mL) (PMID: 15939164). This could make gamma-butyrolactone a potential biomarker for the consumption of these foods. Gamma-butyrolactone is rapidly converted into gamma-hydroxybutyrate by paraoxonase (lactonase) enzymes, found in the blood. Because it can serve as a prodrug for gamma-hydroxybutyrate (GHB), Gamma-butyrolactone is commonly used as a recreational CNS depressant with effects similar to those of barbiturates. Industrially gamma-butyrolactone is used as a common solvent for polymers and alcohols, a chemical intermediate, a raw material for pharmaceuticals, and as a paint stripper, superglue remover, and a stain remover. Present in morello cherry, melon, pineapple, blackberry, quince, strawberry jam, wine, soybeans, black tea, Bourbon vanilla, wheat bread, crispbread and other breads. Flavour ingredient [DFC]. gamma-Butyrolactone is found in many foods, some of which are yellow bell pepper, pepper (c. annuum), red bell pepper, and pulses. D012997 - Solvents

   

Pentalenene

(2R,5S,8S)-2,6,10,10-tetramethyltricyclo[6.3.0.01,5]undec-6-ene

C15H24 (204.18779039999998)


   

Histidinal

(AlphaS)-alpha-amino-1H-imidazole-5-propanal

C6H9N3O (139.0745584)


Histidinal (CAS: 23784-33-0), also known as histidinaldehyde, belongs to the class of organic compounds known as aralkylamines. These are alkylamines in which the alkyl group is substituted at one carbon atom by an aromatic hydrocarbyl group. Histidinal is a very strong basic compound (based on its pKa). Histidinal is involved in the histidine biosynthesis pathway. Histidinal is produced by the reaction between histidinol and NAD+, with NADH as a byproduct. The reaction is catalyzed by histidinol dehydrogenase. Histidinal reacts with NAD+ and H2O to produce L-histidine and NADH. Histidinol dehydrogenase catalyzes this reaction. Histidinal is involved in the histidine biosynthesis I pathway.

   

staurosporine

2,3,10,11,12,13-hexahydro-10R-methoxy-9S-methyl-11R-methylamino-9S,13R-epoxy-1H,9H-diindolo[1,2,3-gh;3,2,1-lm]pyrrolo[3,4-j][1,7]benzodiazonin-1-one

C28H26N4O3 (466.2004806)


C471 - Enzyme Inhibitor > C1404 - Protein Kinase Inhibitor D004791 - Enzyme Inhibitors Staurosporine is a potent, ATP-competitive and non-selective inhibitor of protein kinases with IC50s of 6 nM, 15 nM, 2 nM, and 3 nM for PKC, PKA, c-Fgr, and Phosphorylase kinase respectively. Staurosporine also inhibits TAOK2 with an IC50 of 3 μM. Staurosporine is an apoptosis inducer[1][2][3][4][5].

   

streptonigrin

5-amino-6-(7-amino-6-methoxy-5,8-dioxo-5,8-dihydroquinolin-2-yl)-4-(2-hydroxy-3,4-dimethoxyphenyl)-3-methylpyridine-2-carboxylic acid

C25H22N4O8 (506.1437572)


Nigrin b, also known as rufocromomycin or nigrin, is a member of the class of compounds known as bipyridines and oligopyridines. Bipyridines and oligopyridines are organic compounds containing two pyridine rings linked to each other. Nigrin b is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Nigrin b can be found in black elderberry, which makes nigrin b a potential biomarker for the consumption of this food product. rRNA N-glycosylase (EC 3.2.2.22, ribosomal ribonucleate N-glycosidase, nigrin b, RNA N-glycosidase, rRNA N-glycosidase, ricin, momorcochin-S, Mirabilis antiviral protein, gelonin, saporins) is an enzyme with systematic name rRNA N-glycohydrolase. This enzyme catalyses the following chemical reaction Hydrolysis of the N-glycosylic bond at A-4324 in 28S rRNA from eukaryotic ribosomes . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents

   

Tos-phe-CH2CL

Benzenesulfonamide,N-[3-chloro-2-oxo-1-(phenylmethyl)propyl]-4-methyl-

C17H18ClNO3S (351.0695868)


D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D009676 - Noxae > D000477 - Alkylating Agents > D000590 - Amino Acid Chloromethyl Ketones D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors

   

Thromboxane A2

(5Z,9α,11α,13E,15S)-9,11-Epoxy-15-hydroxythromboxa-5,13- dien-1-oic acid

C20H32O5 (352.2249622)


A thromboxane which is produced by activated platelets and has prothrombotic properties: it stimulates activation of new platelets as well as increases platelet aggregation.

   

6-Hydroxymellein

Isocoumarin, 3,4-dihydro-6,8-dihydroxy-3-methyl-

C10H10O4 (194.057906)


   

6-Methoxymellein

6-Methoxy-8-hydroxy-3-methyl-3,4-dihydroisocoumarin, (R)-(-)-isomer

C11H12O4 (208.0735552)


Isolated from Aspergillus caespitosus, Aspergillus variecolor and Sporormia bipartis. Reaches fungitoxic levels in stored infected carrot. Shows broad antimicrobial action. 6-Methoxymellein is found in wild carrot, root vegetables, and carrot. 6-Methoxymellein is found in carrot. 6-Methoxymellein is isolated from Aspergillus caespitosus, Aspergillus variecolor and Sporormia bipartis. Reaches fungitoxic levels in stored infected carrot. Shows broad antimicrobial action.

   

Piperitol

3-Methyl-6-(1-methylethyl)-2-cyclohexen-1-ol, 9ci

C10H18O (154.1357578)


Flavouring material with a pungent taste. p-Menth-1-en-3-ol is found in dill, cumin, and spearmint. Piperitol is found in cumin. Piperitol is a flavouring material with a pungent tast

   

UDP-4-dehydro-6-deoxy-D-glucose

{[(2R,3S,4R,5R)-3,4-dihydroxy-5-(4-hydroxy-2-oxo-1,2-dihydropyrimidin-1-yl)oxolan-2-yl]methoxy}[({[(2R,3R,4R,6R)-3,4-dihydroxy-6-methyl-5-oxooxan-2-yl]oxy}(hydroxy)phosphoryl)oxy]phosphinic acid

C15H22N2O16P2 (548.0444552)


UDP-4-dehydro-6-deoxy-D-glucose, also known as UDP-4-keto-6-deoxy-D-glucose, belongs to the class of organic compounds known as pyrimidine nucleotide sugars. These are pyrimidine nucleotides bound to a saccharide derivative through the terminal phosphate group. UDP-4-dehydro-6-deoxy-D-glucose is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, UDP-4-dehydro-6-deoxy-D-glucose has been detected, but not quantified in, several different foods, such as Oregon yampahs, oriental wheat, Chinese mustards, blackcurrants, and pomegranates. This could make UDP-4-dehydro-6-deoxy-D-glucose a potential biomarker for the consumption of these foods. UDP-4-dehydro-6-deoxy-D-glucose is synthesized from UDP-glucose via the enzyme UDP-glucose 4,6-dehydratase. UDP-4-dehydro-6-deoxy-D-glucose is synthesized from UDP-glucose through the enzyme UDP-glucose 4,6-dehydratase. [HMDB]. UDP-4-dehydro-6-deoxy-D-glucose is found in many foods, some of which are alaska wild rhubarb, soy bean, ginkgo nuts, and common beet.

   

HQNO

2-Heptyl-4-hydroxyquinoline N-oxide

C16H21NO2 (259.1572206)


HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2]. HQNO, secreted by P. aeruginosa, is a potent electron transport chain inhibitor with a Kd of 64 nM for complex III[1]. HQNO is a potent inhibitor of mitochondrial NDH-2 in many species[2].

   

Olivoretin D

(4S,7S,10S,13R)-13-Ethenyl-1,3,4,5,7,8,10,11,12,13-decahydro-4-(hydroxymethyl)-8,10,13-trimethyl-7,10-diisopropyl-6H-benzo[g][1,4]diazonino[7,6,5-cd]indol-6-one

C28H41N3O2 (451.3198606)


D009676 - Noxae > D011042 - Poisons > D008235 - Lyngbya Toxins D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D007509 - Irritants

   

Allosamidin

Allosamidine

C25H42N4O14 (622.2697392)


D010575 - Pesticides > D007306 - Insecticides D004791 - Enzyme Inhibitors D016573 - Agrochemicals

   

Tautomycin

Tautomycin from Streptomyces spiroverticillatus

C41H66O13 (766.4503186000001)


D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D004791 - Enzyme Inhibitors

   

Coproporphyrin III

3-[9,15,19-tris(2-carboxyethyl)-5,10,14,20-tetramethyl-21,22,23,24-tetraazapentacyclo[16.2.1.1^{3,6}.1^{8,11}.1^{13,16}]tetracosa-1(20),2,4,6(24),7,9,11,13(22),14,16,18-undecaen-4-yl]propanoic acid

C36H38N4O8 (654.2689508000001)


Coproporphyrin III is a porphyrin metabolite arising from heme synthesis. Porphyrins are pigments found in both animal and plant life. Coproporphyrin III is a tetrapyrrole dead-end product from the spontaneous oxidation of the methylene bridges of coproporphynogen, arising from heme synthesis and secreted in feces and urine. Increased levels of coproporphyrins can indicate congenital erythropoietic porphyria or sideroblastic anaemia, which are inherited disorders. Porphyria is a pathological state characterised by abnormalities of porphyrin metabolism and results in the excretion of large quantities of porphyrins in the urine and in extreme sensitivity to light. A large number of factors are capable of increasing porphyrin excretion, owing to different and multiple causes and etiologies: 1) the main site of the chronic hepatic porphyria disease process concentrates on the liver, 2) a functional and morphologic liver injury is almost regularly associated with this chronic porphyria, 3) the toxic form due to occupational and environmental exposure takes mainly a subclinical course. Hepatic factors includes disturbance in coproporphyrinogen metabolism, which results from inhibition of coproporphyrinogen oxidase as well as from the rapid loss from, and diminished utilization of coproporphyrinogen in the hepatocytes, which may also explain why coproporphyrin, its autoxidation product, predominates physiologically in the urine; decreased biliary excretion of coproporphyrin leading to a compensatory urinary excretion, so that the coproporphyrin ring isomer ratio (1:III) becomes a sensitive index for impaired liver function and intrahepatic cholestasis; and disturbed activity of hepatic uroporphyrinogen decarboxylase. In itself, secondary coproporphyrinuria is not associated with porphyria symptoms of a hepatologic-gastroenterologic, neurologic, or dermatologic order, even though coproporphyrinuria can occur with such symptoms. (PMID: 3327428). Excreted in small amounts in urine and faeces, found in blood, yeast, microorganisms etc. By-product of Haem formation in vivo, due to oxidation of the porphyrinogen (CCD) Coproporphyrin III (Zincphyrin) is a naturally occurring porphyrin derivative that is mainly found in urine[1][2].

   

Carbapenem-3-carboxylic acid

7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid

C7H7NO3 (153.0425912)


A carbapenemcarboxylic acid that is the 3-carboxy derivative of 2,3-didehydro-1-carbapenam. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Granaticin

(1R,7S,11S,13S,19S,20R,23R)-5,15,19,23-tetrahydroxy-13,20-dimethyl-8,12,21-trioxahexacyclo[17.2.2.02,18.04,16.06,14.07,11]tricosa-2(18),4,6(14),15-tetraene-3,9,17-trione

C22H20O10 (444.105642)


   

gitonin

NSC697274

C50H82O23 (1050.5246622)


D020011 - Protective Agents > D002316 - Cardiotonic Agents > D004071 - Digitalis Glycosides D020011 - Protective Agents > D002316 - Cardiotonic Agents > D002301 - Cardiac Glycosides

   

cyclamin

CHEMBL1984356

C58H94O27 (1222.5982174)


   

Murrayanine

1-Methoxy-9H-carbazole-3-carboxaldehyde, 9ci

C14H11NO2 (225.0789746)


Murrayanine is found in herbs and spices. Murrayanine is an alkaloid from the stem bark of Murraya koenigii (curryleaf tree). Alkaloid from the stem bark of Murraya koenigii (curryleaf tree). Murrayanine is found in herbs and spices.

   

Perlolyrine

5-(9H-pyrido[3,4-b]indol-1-yl)-2-Furanmethanol, 9ci

C16H12N2O2 (264.0898732)


Alkaloid from Korean ginseng and Japanese soy sauce. Perlolyrine is found in saffron, soy bean, and herbs and spices. Perlolyrine is found in herbs and spices. Perlolyrine is an alkaloid from Korean ginseng and Japanese soy sauc

   

Nigrifactin

C(=CC=CC=CC)=C1NCCCC1

C12H17N (175.1360922)


   

Gliotoxin

10H-3,10a-Epidithiopyrazino(1,2-a)indole-1,4-dione, 2,3,5a,6-hydroxy-3- (hydroxymethyl)-2-methyl-, (3R-(3-alpha,5a-beta,6-beta,10a-alpha))-

C13H14N2O4S2 (326.0394964)


Gliotoxin is a pyrazinoindole with a disulfide bridge spanning a dioxo-substituted pyrazine ring; mycotoxin produced by several species of fungi. It has a role as a mycotoxin, an immunosuppressive agent, an EC 2.5.1.58 (protein farnesyltransferase) inhibitor, a proteasome inhibitor and an antifungal agent. It is an organic disulfide, a pyrazinoindole, an organic heterotetracyclic compound and a dipeptide. Gliotoxin is a natural product found in Streptomyces, Aspergillus cejpii, and other organisms with data available. Gliotoxin is a sulfur-containing antibiotic produced by several species of fungi, some of which are pathogens of humans such as Aspergillus, and also by species of Trichoderma, and Penicillium. Gliotoxin possesses immunosuppressive properties as it may suppress and cause apoptosis in certain types of cells of the immune system, including neutrophils, eosinophils, granulocytes, macrophages, and thymocytes. (L1941) A fungal toxin produced by various species of Trichoderma, Gladiocladium fimbriatum, Aspergillus fumigatus, and Penicillium. It is used as an immunosuppressive agent. A pyrazinoindole with a disulfide bridge spanning a dioxo-substituted pyrazine ring; mycotoxin produced by several species of fungi. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D009676 - Noxae > D011042 - Poisons > D009183 - Mycotoxins C308 - Immunotherapeutic Agent > C574 - Immunosuppressant

   
   

Thiolactomycin

(5R)-4-hydroxy-3,5-dimethyl-5-[(1E)-2-methylbuta-1,3-dienyl]thiophen-2-one

C11H14O2S (210.0714464)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   

Calcimycin

4-CHLORO-2-NITROBENZYLALCOHOL

C29H37N3O6 (523.2682222000001)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D007476 - Ionophores > D061207 - Calcium Ionophores D049990 - Membrane Transport Modulators C254 - Anti-Infective Agent > C258 - Antibiotic Calcimycin (A-23187) is an antibiotic and a unique divalent cation ionophore (like calcium and magnesium). Calcimycin induces Ca2+-dependent cell death by increasing intracellular calcium concentration. Calcimycin inhibits the growth of Gram-positive bacteria and some fungi. Calcimycin also inhibits the activity of ATPase and uncouples oxidative phosphorylation (OXPHOS) of mammalian cells. Calcimycin induces apoptosis[1][2][3][4].

   

1-Deoxy-D-xylulose 5-phosphate

[(2R,3S)-2,3-dihydroxy-4-oxopentyl] dihydrogen phosphate

C5H11O7P (214.0242386)


1-Deoxy-D-xylulose 5-phosphate is a substrate for 2,4-dienoyl-CoA reductase (mitochondrial). [HMDB]. 1-Deoxy-D-xylulose 5-phosphate is found in many foods, some of which are jackfruit, dandelion, italian sweet red pepper, and summer grape. 1-Deoxy-D-xylulose 5-phosphate is a substrate for 2,4-dienoyl-CoA reductase (mitochondrial). It has been found to be a metabolite of Escherichia and Streptomyces (PMID: 10648511; PMID: 9371765).

   

C-1027

C-1027 Chromophore; C-1027

C43H42ClN3O13 (843.2406032)


An enediyne antibiotic that has formula C43H42ClN3O13. It is a natural product found in Streptomyces globisporus and exhibits antimicrobial and antineoplastic properties. A natural product found in Streptomyces globisporus and Streptomyces globisporus. D000970 - Antineoplastic Agents

   

1,3,5-Trichloro-2-methoxybenzene

Benzene, 1,3,5-trichloro-2-methoxy- (9ci)

C7H5Cl3O (209.94059700000003)


1,3,5-Trichloro-2-methoxybenzene is found in alcoholic beverages. Off-odour component found in foods etc. Responsible for cork taint in wine

   

Tetrodotoxin

(1R,5R,6R,7R,9S,11R,12R,13S,14S)-14-(hydroxymethyl)-3-imino-8,10-dioxa-2,4-diazatetracyclo[7.3.1.1(7,11).0(1,6)]tetradecane-5,9,12,13,14-pentol

C11H17N3O8 (319.1015602)


A quinazoline alkaloid that is a marine toxin isolated from fish such as puffer fish. It has been shown to exhibit potential neutotoxicity due to its ability to block voltage-gated sodium channels. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D009676 - Noxae > D011042 - Poisons > D008387 - Marine Toxins D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker Tetrodotoxin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=4368-28-9 (retrieved 2024-09-06) (CAS RN: 4368-28-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Epithienamycin E

Epithienamycin E

C13H16N2O8S2 (392.03480559999997)


A member of the class of carbapenems that is (5R,6R)-3-{[(E)-2-aminoethenyl]sulfanyl}-6-[(1S)-1-hydroxyethyl]-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid in which the free hydroxy and amino groups are carrying sulfo and acetyl substituents respectively. D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D013845 - Thienamycins D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D047090 - beta-Lactams D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   
   

Neomethymycin

Neomethymycin

C25H43NO7 (469.30393680000003)


A twelve-membered macrolide antibiotic that is biosynthesised by Streptomyces venezuelae.

   

Methymycin

Methymycin

C25H43NO7 (469.30393680000003)


A twelve-membered macrolide antibiotic that is biosynthesised by Streptomyces venezuelae.

   

undecylprodigiosin

(2Z,5Z)-3-methoxy-5-pyrrol-2-ylidene-2-[(5-undecyl-1H-pyrrol-2-yl)methylidene]pyrrole

C25H35N3O (393.277998)


A member of the class of tripyrroles that is 1H-pyrrole substituted by (4-methoxy-1H,5H-[2,2-bipyrrol]-5-ylidene)methyl and undecyl groups at positions 2 and 5, respectively. It is a pigment produced by Stveptomyces coelicolor. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents

   
   

heliomycin

Resistomycin

C22H16O6 (376.0946836)


C254 - Anti-Infective Agent > C258 - Antibiotic

   

FA 20:5

(7Z,10Z,13Z,16Z)-eicosa-7,10,13,16,19-pentaenoic acid

C20H30O2 (302.224568)


   

asukamycin

(2E,4E,6E)-7-cyclohexyl-N-[(1S,5S,6R)-5-hydroxy-5-{(1E,3E,5E)-7-[(2-hydroxy-5-oxocyclopent-1-en-1-yl)amino]-7-oxohepta-1,3,5-trien-1-yl}-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-3-yl]hepta-2,4,6-trienamide

C31H34N2O7 (546.2365894)


A polyketide that is a member of the manumycin family of antibiotics and exhibits strong antibacterial, antifungal, and antineoplastic activities. Isolated from from the actinomycete bacterium Streptomyces nodosus subsp. asukaensis.

   

Ascomycin

(3S,4R,5S,8R,9E,12S,14S,15R,16S,18R ,19R,26aS)-8-Ethyl-5,6,8,11,12,13,14,15,16,17,18,1 9,24,25,26,26a-hexadecahydro-5,19-dihydroxy-3-[(1E )-2-[(1R,3R,4R)-4-hydroxy-3-methoxycyclohexyl]-1-methylethenyl]-14,16-dimethoxy-4,10,12,18-tetrameth yl-15,19-epoxy-3H-pyrido[2,1-c][1,4]oxaazacyclotricosine-1,7,20,21(4H,23H)tetrone

C43H69NO12 (791.4819514)


Ascomycin is a macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. It has a role as an immunosuppressive agent, an antifungal agent and a bacterial metabolite. It is a macrolide, an ether, a lactol and a secondary alcohol. Ascomycin is a natural product found in Streptomyces clavuligerus, Streptomyces hygroscopicus, and Streptomyces ascomycinicus with data available. A macrolide that is produced by the fermentation of Streptomyces hygroscopicus and exhibits strong immunosuppressant properties. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Ascomycin (Immunomycin; FR-900520; FK520) is an ethyl analog of Tacrolimus (FK506) with strong immunosuppressant properties. Ascomycin is also a macrocyclic polyketide antibiotic with multiple biological activities such as anti-malarial, anti-fungal and anti-spasmodic. Ascomycin prevents graft rejection and has potential for varying skin ailments research[1][2].

   

FA 18:1

7-(2-octylcyclopropyl)heptanoic acid

C18H34O2 (282.2558664)


trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level. trans-Vaccenic acid is a precursor for the synthesis of saturated fatty acid in the rumen and of conjugated linoleic acid (CLA) at the tissue level.

   

Manumycin A

(2E,4E,6R)-N-[(1S,5S,6R)-5-hydroxy-5-[(1E,3E,5E)-7-[(2-hydroxy-5-oxo-cyclopenten-1-yl)amino]-7-oxo-hepta-1,3,5-trienyl]-2-oxo-7-oxabicyclo[4.1.0]hept-3-en-3-yl]-2,4,6-trimethyl-deca-2,4-dienamide

C31H38N2O7 (550.2678877999999)


A polyketide with formula C31H38N2O7 initially isolated from Streptomyces parvulus as a result of a random screening program for farnesyl transferase (FTase) inhibitors. It is a natural product that exhibits anticancer and antibiotic properties. Manumycin A is a polyketide with formula C31H38N2O7 initially isolated from Streptomyces parvulus as a result of a random screening program for farnesyl transferase (FTase) inhibitors. It is a natural product that exhibits anticancer and antibiotic properties. It has a role as an EC 1.8.1.9 (thioredoxin reductase) inhibitor, an EC 2.5.1.58 (protein farnesyltransferase) inhibitor, an antineoplastic agent, an apoptosis inducer, an antimicrobial agent, a bacterial metabolite, an antiatherosclerotic agent and a marine metabolite. It is a polyketide, an enamide, an epoxide, an organic heterobicyclic compound, a secondary carboxamide and a tertiary alcohol. Manumycin A is a natural product found in Streptomyces, Streptomyces griseoaurantiacus, and Streptomyces parvulus D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors

   

Saphenic acid

6-[(1R)-1-hydroxyethyl]phenazine-1-carboxylic acid

C15H12N2O3 (268.0847882)


   

6-Acetophenazine-1-carboxylic acid

6-Acetylphenazine-1-carboxylic acid

C15H10N2O3 (266.069139)


   

Plicamycin

(2S,3S)-3-[(1S,3S,4R)-3,4-dihydroxy-1-methoxy-2-oxopentyl]-2-{[(2S,4R,5R,6R)-4-{[(2S,4R,5S,6R)-4-{[(2S,4S,5R,6R)-4,5-dihydroxy-4,6-dimethyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-6-{[(2S,4R,5R,6R)-4-{[(2S,4R,5S,6R)-4,5-dihydroxy-6-methyloxan-2-yl]oxy}-5-hydroxy-6-methyloxan-2-yl]oxy}-8,9-dihydroxy-7-methyl-1,2,3,4-tetrahydroanthracen-1-one

C52H76O24 (1084.4726296)


Plicamycin is only found in individuals that have used or taken this drug. It is an antineoplastic antibiotic produced by Streptomyces plicatus. It has been used in the treatment of testicular cancer, Pagets disease of bone, and, rarely, the management of hypercalcemia. The manufacturer discontinued plicamycin in 2000. Plicamycin is presumed to inhibit cellular and enzymic RNA synthesis by forming a complex with DNA. Plicamycin may also lower calcium serum levels by inhibiting the effect of parathyroid hormone upon osteoclasts or by blocking the hypercalcemic action of pharmacologic doses of vitamin D. L - Antineoplastic and immunomodulating agents > L01 - Antineoplastic agents > L01D - Cytotoxic antibiotics and related substances C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents C78281 - Agent Affecting Musculoskeletal System > C67439 - Bone Resorption Inhibitor D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors D004791 - Enzyme Inhibitors > D011500 - Protein Synthesis Inhibitors D004396 - Coloring Agents > D005456 - Fluorescent Dyes D000077264 - Calcium-Regulating Hormones and Agents D000970 - Antineoplastic Agents Same as: D00468

   

PD116740

(5R,6R)-1,5,6-trihydroxy-3-(hydroxymethyl)-8-methoxy-5,6-dihydrobenzo[a]anthracene-7,12-dione

C20H16O7 (368.0895986)


   

Aklanonic acid

[4,5-Dihydroxy-9,10-dioxo-3-(3-oxopentanoyl)-9,10-dihydroanthracen-2-yl]acetic acid

C21H16O8 (396.0845136)


   

aklavinone

(+-)-Aklavinone

C22H20O8 (412.115812)


   

Rhodomycinone

ε-Rhodomycinone

C22H20O9 (428.110727)


A carboxylic ester that is the methyl ester of (1R,2R,4S)-2-ethyl-2,4,5,7,12-pentahydroxy-6,11-dioxo-1,2,3,4,6,11-hexahydrotetracene-1-carboxylic acid.

   

Rhodomycin D

Rhodomycin D

C28H31NO11 (557.1897016)


An anthracycline that is aklavinone having a 3-amino-2,3,6-trideoxy-alpha-L-lyxo-hexopyranosyl residue attached at position 4 via a glycosidic linkage.

   
   

Demethyldecarbamoylnovobiocin

Desmethyldescarbamoylnovobiocin

C29H33NO10 (555.2104358)


A hydroxycoumarin that is novobiocin lacking the 3-O-carbamoyl and 4-O-methyl groups from the hexose ring.

   

Transfluthrin

Cyclopropanecarboxylicacid, 3-(2,2-dichloroethenyl)-2,2-dimethyl-, (2,3,5,6-tetrafluorophenyl)methylester, (1R,3S)-

C15H12Cl2F4O2 (370.015044)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Same as: D01932

   

FA 11:1

((1S,2R)-2-Hexylcycloprop-1-yl)acetic acid

C11H20O2 (184.14632200000003)


An undecenoic acid having its double bond in the 10-position. It is derived from castor oil and is used for the treatment of skin problems. D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use C254 - Anti-Infective Agent > C514 - Antifungal Agent Same as: D02159 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal. 10-Undecenoic acid is used as a starting agent in the synthesis of Pheromone (11Z)-hexadecenal.

   

Leinamycin

Leinamycin

C22H26N2O6S3 (510.09529360000005)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Vicenistatin

Vicenistatin

C30H48N2O4 (500.3613888)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D007769 - Lactams

   

Complestatin

Chloropeptin II

C61H45Cl6N7O15 (1325.110468)


A heterodetic cyclic peptide consisting of N-acylated trytophan, 3,5-dichloro-4-hydroxyphenylglycine, 4-hydroxyphenylglycine, 3,5-dichloro-4-hydroxyphenylglycyl, tyrosine and 4-hydroxyphenylglycine residues joined in sequence and in which the side-chain of the central 4-hydroxyphenylglycine residue is attached to the side-chain of the tryptophan via a C3-C6 bond and to the side-chain of the tyrosine via an ether bond from C5. It is isolated from the culture broth of Streptomyces and has anti-HIV-1 activity.

   
   
   

concanamycin a

[6-[2-[4-[(4E,6E,14E,16Z)-11-ethyl-10,12-dihydroxy-3,17-dimethoxy-7,9,13,15-tetramethyl-18-oxo-1-oxacyclooctadeca-4,6,14,16-tetraen-2-yl]-3-hydroxypentan-2-yl]-2-hydroxy-5-methyl-6-[(E)-prop-1-enyl]oxan-4-yl]oxy-4-hydroxy-2-methyloxan-3-yl] carbamate

C46H75NO14 (865.518729)


A concanamycin in which the lactone ring contains 4 double bonds and is substituted by 4 methyl groups, 2 hydroxy groups, 2 methoxy groups and an ethyl group. D000890 - Anti-Infective Agents > D000998 - Antiviral Agents D004791 - Enzyme Inhibitors

   
   

UK 63598

N,N-[(1S,1R,2S,2S,8R,11S,14R,17S,21R,24S,27R)-2,2,3,11,13,16,24,26-octamethyl-27-(methylsulfanyl)-2,5,9,12,15,18,22,25-octaoxo-6,19-dioxa-28-thia-3,10,13,16,23,26-hexaazadispiro[cyclopropane-1,4-bicyclo[12.12.3]nonacosane-17,1-cyclopropane]-8,21-diyl]bis(3-hydroxyquinoline-2-carboxamide)

C53H62N10O14S2 (1126.3888192)


A cyclodepsipeptide antibiotic that is isolated from Streptomyces sp. SNA15896 and also exhibits antitumour activity.

   

X-206

X-206 [DESMETHYLALBORIXIN], >98\\%

C47H82O14 (870.5704272)


   

Nonadecanoic acid

9-(2-CARBOXYPHENYL)-3,6-BIS(DIMETHYLAMINO)XANTHYLIUMPERCHLORATE

C19H38O2 (298.28716479999997)


Nonadecanoic acid, also known as n-nonadecanoic acid or nonadecylic acid or C19:0, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms, with nonadecanoic acid (its ester is called nonadecanoate) having 19 carbon atoms. Nonadecanoic acid is a very hydrophobic molecule, practically insoluble (in water). It is a solid with a melting point of 69.4°C. It can be found in bacteria, plants, and animals (including animal milk) (Nature 176:882; PMID: 14168161). It is secreted by termites (Rhinotermes marginalis) as part of its defence mechanism (Comp. Biochem. Physiol. B 71:731). Nonadecanoic acid is a C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. It has a role as a fungal metabolite. It is a straight-chain saturated fatty acid and a long-chain fatty acid. It is a conjugate acid of a nonadecanoate. Nonadecanoic acid is a natural product found in Staphisagria macrosperma, Malva sylvestris, and other organisms with data available. An odd-numbered long chain fatty acid, likely derived from bacterial or plant sources. Nonadecanoic acid has been found in ox fats and vegetable oils. It is also used by certain insects as a phermone. [HMDB]. A C19 straight-chain fatty acid of plant or bacterial origin. An intermediate in the biodegradation of n-icosane, it has been shown to inhibit cancer growth. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1]. Nonadecanoic acid is a 19-carbon long saturated fatty acid. Nonadecanoic acid is the major constituent of the substance secreted by Rhinotermes marginalis to defence[1].

   
   
   
   

Soyasapogenol E

10-hydroxy-9-(hydroxymethyl)-2,2,4a,6a,6b,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicen-4-one

C30H48O3 (456.36032579999994)


Constituent of soya bean (Glycine max). Soyasapogenol E is found in many foods, some of which are sapodilla, strawberry guava, purple mangosteen, and napa cabbage. Soyasapogenol E is found in pulses. Soyasapogenol E is a constituent of soya bean (Glycine max)

   

Hygromycin A

C2-epi-Hygromycin A

C23H29NO12 (511.16896740000004)


A natural product found in Streptomyces species.

   

4-Hydroxy-2-butenoic acid gamma-lactone

2-Butenoic acid, 4-hydroxy-, laquo gammaraquo -lactone

C4H4O2 (84.0211284)


4-Hydroxy-2-butenoic acid gamma-lactone is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D019440 - Anti-Obesity Agents > D001067 - Appetite Depressants 2(5H)-Furanone is an endogenous metabolite.

   

Valienone

SCHEMBL14409034

C7H10O5 (174.052821)


A member of the class of cyclohexenones that is cyclohex-2-en-1-one substituted by hydroxy groups at positions 4, 5 and 6, and by a hydroxymethyl group at position 3 (the 4R,5S,6R-diastereomer).

   
   

R1128A

1,3,6-Trihydroxy-8-n-propylanthraquinone

C17H14O5 (298.0841194)


   

R1128B

1,3,6-Trihydroxy-8-n-butylanthraquinone

C18H16O5 (312.0997686)


   

R1128C

1,3,6-Trihydroxy-8-(3-methylbutyl)anthraquinone

C19H18O5 (326.1154178)


   

Gurjunene-alpha

(1aR,4R,4aR,7bS)-1,1,4,7-tetramethyl-1H,1aH,2H,3H,4H,4aH,5H,6H,7bH-cyclopropa[e]azulene

C15H24 (204.18779039999998)


Alpha-Gurjunene or (-)-Alpha-Gurjunene, belongs to the class of organic compounds known as 5,10-cycloaromadendrane sesquiterpenoids. These are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton. It is formally classified as a polycyclic hydrocarbon although it is biochemically a sesquiterpenoid as it synthesized via isoprene units. Sesquiterpenes are terpenes that contain 15 carbon atoms and are comprised of three isoprene units. The biosynthesis of sesquiterpenes is known to occur mainly through the mevalonic acid pathway (MVA), in the cytosol. However, recent studies have found evidence of pathway crosstalk with the methyl-erythritol-phosphate (MEP) pathway in the cytosol. Farnesyl diphosphate (FPP) is a key intermediate in the biosynthesis of cyclic sesquiterpenes. FPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Alpha-Gurjunene is a neutral, hydrophobic molecule that is insoluble in water. It exists as a colorless clear Liquid and has a woody, balsamic odor. It is used as a perfuming agent. Alpha-gurjunene is found in many plants, essential oils and foods including allspice, bay leaf, carrot seeds, eucalyptus, guava, parsley, black papper, sage and tea tree oil.

   

Racemomycin A

Streptothricin F

C19H34N8O8 (502.2499484)


   

16-Methylheptadecanoic acid

16-methyl-heptadecanoic acid

C18H36O2 (284.2715156)


16-Methylheptadecanoic acid is found in animal foods. 16-Methylheptadecanoic acid is found in meats, liver and fat Found in meats, liver and fats Isostearic acid is a unique fatty acid. Isostearic acid is useful in pharmaceutical, personal care, and cosmetic products[1]. Isostearic acid is a unique fatty acid. Isostearic acid is useful in pharmaceutical, personal care, and cosmetic products[1].

   

Pentalenolactone F

Pentalenolactone F

C15H18O5 (278.1154178)


A tetracyclic sesquiterpene lactone obtained by formal epoxidation of the 4-methylene group of pentalenolactone E.

   

Pentalenolactone E

Pentalenolactone E

C15H18O4 (262.1205028)


A sesquiterpene lactone obtained by formal dehydrogenation of the 4-methyl position of pentalenolactone D.

   

Pentalenolactone D

Pentalenolactone D

C15H20O4 (264.13615200000004)


A sesquiterpene lactone obtained by regioselective Bayer-Villiger oxidation of 1-deoxy-11-oxopentalenic acid.

   

Pentalenolactone

Pentalenolactone

C15H16O5 (276.0997686)


A sesquiterpene lactone that is isolated from several Streptomyces species and exhibits antibiotic activity.

   

2-heptylquinolin-4(1H)-one

2-heptylquinolin-4(1H)-one

C16H21NO (243.1623056)


   

3-Hydroxyoctanoic acid

3-Hydroxyoctanoic acid, (S)-isomer

C8H16O3 (160.1099386)


3-Hydroxyoctanoic acid (CAS: 14292-27-4) is an organic 3-hydroxy dicarboxylic acid, a metabolite of medium-chain fatty acid oxidation found in human urine. It is believed that urinary 3-hydroxy dicarboxylic acids are derived from the omega-oxidation of 3-hydroxy fatty acids and the subsequent beta-oxidation of longer-chain 3-hydroxy dicarboxylic acids. (PMID:1870421). 3-Hydroxyoctanoic acid has been identified in the human placenta (PMID: 32033212). 3-Hydroxycaprylic acid is an organic (3-hydroxy dicarboxylic) acid, a metabolite of medium-chain fatty acid oxidation found in human urine. It is believed that urinary 3-hydroxy dicarboxylic acids are derived from the w-oxidation of 3-hydroxy fatty acids and the subsequent b-oxidation of longer-chain 3-hydroxy dicarboxylic acids. (PMID 1870421 ) [HMDB]

   

terpentecin

[(2S)-2-{(1R)-1-hydroxy-2-[(1S,2S,3R,4aS,8aS)-3-hydroxy-1,2,4a,5-tetramethyl-4-oxo-1,2,3,4,4a,7,8,8a-octahydronaphthalen-1-yl]ethyl}oxiran-2-yl](oxo)acetaldehyde

C20H28O6 (364.1885788)


   

Mitomycin A

SCHEMBL183170

C16H19N3O6 (349.1273794)


A member of the family of mitomycins that exhibits antibiotic and antitumour properties as well as a high level of toxicity. C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C2842 - DNA Binding Agent D000970 - Antineoplastic Agents > D000903 - Antibiotics, Antineoplastic > D008937 - Mitomycins

   

Aurachin C

Aurachin C

C25H33NO2 (379.25111580000004)


A C-type aurachin that is quinolin-4-one which is substituted by a hydroxy group at positions 1, a methyl group at position 2, and a triprenyl group at position 3.

   

Tsukubadiene

Tsukubadiene; (1S,3aS,5Z,7aS,10aR,11Z)-1,5,8,8,10a-Pentamethyl-2,3,3a,4,7,7a,8,9,10,10a-decahydro-1H-dicyclopenta[a,d][9]annulene

C20H32 (272.2503872)


   

Hexacosanoic acid

Hexacosanoate (N-C26:0)

C26H52O2 (396.3967092)


Hexacosanoic acid, also known as N-hexacosanoate or c26:0, is a member of the class of compounds known as very long-chain fatty acids. Very long-chain fatty acids are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Thus, hexacosanoic acid is considered to be a fatty acid lipid molecule. Hexacosanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Hexacosanoic acid can be found in a number of food items such as dandelion, potato, cottonseed, and sugar apple, which makes hexacosanoic acid a potential biomarker for the consumption of these food products. Hexacosanoic acid can be found primarily in blood, as well as in human adrenal gland and fibroblasts tissues. Hexacosanoic acid exists in all eukaryotes, ranging from yeast to humans. In humans, hexacosanoic acid is involved in a couple of metabolic pathways, which include adrenoleukodystrophy, x-linked and beta oxidation of very long chain fatty acids. Hexacosanoic acid is also involved in carnitine-acylcarnitine translocase deficiency, which is a metabolic disorder. Moreover, hexacosanoic acid is found to be associated with adrenomyeloneuropathy, peroxisomal biogenesis defect, and adrenoleukodystrophy, neonatal. Hexacosanoic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cerotic acid is also a type of very long chain fatty acid that is often associated with the disease adrenoleukodystrophy, which involves the excessive saturation of unmetabolized fatty acid chains, including cerotic acid, in the peroxisome. [In the chem box it is shown folded only because of lack of space. In fact, it is a straight-chain, saturated fatty acid.] . Treatment options for adrenoleukodystrophy (ALD) are limited. Dietary treatment is with Lorenzos oil. For the childhood cerebral form, stem cell transplant and gene therapy are options if the disease is detected early in the clinical course. Adrenal insufficiency in ALD patients can be successfully treated (T3DB). Hexacosanoic acid, or cerotic acid, is a 26-carbon long-chain saturated fatty acid with the chemical formula CH3(CH2)24COOH. It is most commonly found in beeswax and carnauba wax, and is a white crystalline solid. Cerotic acid is also a type of very long chain fatty acid that is often associated with the disease adrenoleukodystrophy, which involves the excessive saturation of unmetabolized fatty acid chains, including cerotic acid, in the peroxisome. Hexacosanoic acid, also known as C26:0 or N-hexacosanoate, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Hexacosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hexacosanoic acid is a potentially toxic compound.

   

Xanthoxylol

4-[3-(1,3-benzodioxol-5-yl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-6-yl]-2-methoxyphenol

C20H20O6 (356.125982)


Xanthoxylol is a lignan. Xanthoxylol is a natural product found in Zanthoxylum bungeanum, Zanthoxylum piperitum, and other organisms with data available. (-)-Piperitol is found in herbs and spices. (-)-Piperitol is obtained from Zanthoxylum piperitum (Japanese pepper tree

   

Pyrocatechol

Pyrocatechol suppliers in China

C6H6O2 (110.0367776)


Pyrocatechol, often known as catechol or benzene-1,2-diol, is a benzenediol, with formula C6H4(OH)2. It was first prepared in 1839 by H. Reinsch by distilling catechin (the juice of Mimosa catechu). This colourless compound occurs naturally, but about 20000 tons are manufactured each year, mainly as precursors to pesticides, flavors, and fragrances. Its sulfonic acid is often present in the urine of many mammals. Small amounts of catechol occur naturally in fruits and vegetables, along with the enzyme polyphenol oxidase. Upon mixing the enzyme with the substrate and exposure to oxygen (as when a potato or apple is cut), the colorless catechol oxidizes to reddish-brown benzoquinone derivatives. The enzyme is inactivated by adding an acid, such as lemon juice, or by refrigeration. Excluding oxygen also prevents the browning reaction. Catechol melts at 28 °C and boils at 250 °C. It is employed in medicine as an expectorant. The dimethyl ether or veratrol is also used in medicine. Many other pyrocatechin derivatives have been suggested for therapeutic application. Pyrocatechol has also been found to be a microbial metabolite in Escherichia, Mycobacterium and Pseudomonas (PMID:19300498; PMID:25281236). Constituent of variety foodstuffs especies coffee, cocoa, bread crust, roasted malt and beer; Isolated from various plant sources and by hydrolysis of tannins (CCD). 1,2-Benzenediol is found in many foods, some of which are chervil, black raspberry, swede, and wasabi. CONFIDENCE standard compound; INTERNAL_ID 120

   

(+)-3-Thujone

[1S-(1alpha,4beta,5alpha)]-4-Methyl-1-(1-methylethyl)bicyclo[3.1.0]hexan-3-one

C10H16O (152.12010859999998)


Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (+)-3-Thujone is found in many foods, some of which are peppermint, common sage, winter savory, and ginger. (+)-3-Thujone is found in common sage. Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia

   

(E)-4,8-Dimethyl-1,3,7-nonatriene

(E)-4,8-Dimethyl-1,3,7-nonatriene

C11H18 (150.1408428)


   

7-Epi-ent-eudesmane-5,11-diol

7-Epi-ent-eudesmane-5,11-diol

C15H28O2 (240.20891880000002)


A carbobicyclic compound that is decahydronaphthalene substituted at positions 2, 4a, 8 and 8a by 2-hydroxypropan-2-yl, methyl, methyl and hydroxy groups, respectively. The (3R,4aS,5S,8aS) stereoisomer.

   
   
   

Hexadecenoic acid

2-hexadecenoic acid

C16H30O2 (254.224568)


A C16 straight-chain monounsaturated fatty acid having one C=C double bond.

   

2-Hydroxyhexanoic acid

Hexanoic acid,2-hydroxy-

C6H12O3 (132.0786402)


A hydroxy fatty acid that is caproic (hexanoic) acid substituted by a hydroxy group at position 2. 2-Hydroxyhexanoic acid is an endogenous metabolite.

   
   

Isovanillic

InChI=1/C8H8O4/c1-12-7-3-2-5(8(10)11)4-6(7)9/h2-4,9H,1H3,(H,10,11

C8H8O4 (168.0422568)


3-hydroxy-4-methoxybenzoic acid is a methoxybenzoic acid that is 4-methoxybenzoic acid bearing a hydroxy substituent at position 3. It has a role as an antibacterial agent and a plant metabolite. It is a methoxybenzoic acid and a monohydroxybenzoic acid. It is a conjugate acid of a 3-hydroxy-4-methoxybenzoate. 3-Hydroxy-4-methoxybenzoic acid is a natural product found in Euphorbia decipiens, Annona purpurea, and other organisms with data available. A methoxybenzoic acid that is 4-methoxybenzoic acid bearing a hydroxy substituent at position 3. Isovanillic acid (3-Hydroxy-4-methoxybenzoic acid) is a phenolic acid isolated from isolated from Scrophularia ningpoensis, with Anti-inflammatory activity[1]. Isovanillic acid (3-Hydroxy-4-methoxybenzoic acid) is a phenolic acid isolated from isolated from Scrophularia ningpoensis, with Anti-inflammatory activity[1].

   

4-quinazolinol

InChI=1/C8H6N2O/c11-8-6-3-1-2-4-7(6)9-5-10-8/h1-5H,(H,9,10,11)

C8H6N2O (146.0480106)


1H-quinazolin-4-one is a member of quinazolines. 4-Hydroxyquinazoline is a natural product found in Hydrangea febrifuga, Streptomyces, and other organisms with data available. COVID info from PDB, Protein Data Bank Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS 4(3H)-Quinazolinone is a building block in chemical synthesis. Biologically active nitrogen heterocyclic compounds. Possesses a wide spectrum of biological properties like antibacterial, antifungal, anticonvulsant, anti-inflammatory, anti-HIV, anticancerous and analgesic activities[1][2]. 4(3H)-Quinazolinone is a building block in chemical synthesis. Biologically active nitrogen heterocyclic compounds. Possesses a wide spectrum of biological properties like antibacterial, antifungal, anticonvulsant, anti-inflammatory, anti-HIV, anticancerous and analgesic activities[1][2].

   

Methylpyrazine

2-Methylpyrazine, Pharmaceutical Secondary Standard; Certified Reference Material

C5H6N2 (94.05309559999999)


Methylpyrazine is a member of the class of pyrazines that is pyrazine in which one of the hydrogens is replaced by a methyl group. It is a flavouring agent found in coffee, peanuts and red peppers. It has a role as a flavouring agent, a plant metabolite and a Maillard reaction product. 2-Methylpyrazine is a natural product found in Coffea, Coffea arabica, and other organisms with data available. Methylpyrazine is found in alcoholic beverages. Methylpyrazine is a flavouring agent. Methylpyrazine is present in many foods, e.g. bakery products, dairy products, meats, baked or French fried potato, roasted barley, cocoa, coffee, tea, roasted filbert, roasted pecan, peanut, soy products, rum and whisky. Methylpyrazine is a flavouring agent. It is found in many foods, e.g. bakery products, dairy products, meats, baked or French fried potato, roasted barley, cocoa, coffee, tea, roasted filbert, roasted pecan, peanut, soy products, rum and whisky. 2-Methylpyrazine is a kind of?alkylpyrazine that can be identified in roasted red pepper seed oils[1]. 2-Methylpyrazine is a kind of?alkylpyrazine that can be identified in roasted red pepper seed oils[1].

   

2-Hydroxycaproic acid

DL-2-Hydroxyhexanoic acidhydroxyhexanoic acid

C6H12O3 (132.0786402)


2-hydroxycaproic acid, also known as 2-hydroxyhexanoic acid is a hydroxy fatty acid that is caproic (hexanoic) acid substituted by a hydroxy group at position 2. It has a role as an animal metabolite. It derives from a hexanoic acid. It is a conjugate acid of a 2-hydroxyhexanoate. 2-hydroxycaproic acid is a branched-chain alpha-keto acid that have been reported in normal human blood (PMID:7130306) and in normal amniotic fluid (PMID:7076774). It has been found that 2-hydroxycaproic acid is the most significant metabolite found in the CSF of patients infected with Nocardia. Nocardia sp. is an uncommon cause of meningitis, and Nocardia meningitis has a clinical picture similar to that of tuberculous meningitis (PMID:3818936; PMID:20615997). 2-Hydroxycaproic acid is a branched-chain alpha-keto acid that have been reported in normal human blood (PMID: 7130306) and in normal amniotic fluid. (PMID: 7076774) 2-Hydroxyhexanoic acid is an endogenous metabolite.

   

MG(16:0/0:0/0:0)

Palmitoyl glycerol, hexadecanoic-1-(14)C-labeled CPD, (R)-isomer

C19H38O4 (330.2769948)


MG(16:0/0:0/0:0) is a monoacylglyceride. A monoglyceride, more correctly known as a monoacylglycerol, is a glyceride consisting of one fatty acid chain covalently bonded to a glycerol molecule through an ester linkage. Monoacylglycerol can be broadly divided into two groups: 1-monoacylglycerols (or 3-monoacylglycerols) and 2-monoacylglycerols, depending on the position of the ester bond on the glycerol moiety. Normally the 1/3-isomers are not distinguished from each other and are termed alpha-monoacylglycerols, while the 2-isomers are beta-monoacylglycerols. Monoacylglycerols are formed biochemically via release of a fatty acid from diacylglycerol by diacylglycerol lipase or hormone sensitive lipase. Monoacylglycerols are broken down by monoacylglycerol lipase. They tend to be minor components only of most plant and animal tissues, and indeed would not be expected to accumulate because their strong detergent properties would have a disruptive effect on membranes. 2-Monoacylglycerols are a major end product of the intestinal digestion of dietary fats in animals via the enzyme pancreatic lipase. They are taken up directly by the intestinal cells and converted to triacylglycerols via the monoacylglycerol pathway before being transported in lymph to the liver. Mono- and diglycerides are commonly added to commercial food products in small quantities. They act as emulsifiers, helping to mix ingredients such as oil and water that would not otherwise blend well. MG(16:0/0:0/0:0), in particular, consists of one chain of palmitic acid at the C-1 position. MG(16:0/0:0/0:0) is a minor component of olive oil and other vegetable oil. MG(16:0/0:0/0:0) belongs to the family of monoradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at one fatty acyl group is attached. Their general formula is [R1]OCC(CO[R2])O[R3]. MG(16:0/0:0/0:0) is made up of one hexadecanoyl(R1). 1-Monopalmitin, a bitter melon extract, inhibits the P-glycoprotein (P-gp) activity in intestinal Caco-2 cells[1]. 1-Monopalmitin, a bitter melon extract, inhibits the P-glycoprotein (P-gp) activity in intestinal Caco-2 cells[1].

   

Isovanillic acid

3-Hydroxy-4-methoxybenzoic acid

C8H8O4 (168.0422568)


Isovanillic acid is a metabolite of isovanillin. Isovanillin is a phenolic aldehyde, an organic compound and isomer of vanillin. It is a selective inhibitor of aldehyde oxidase. It is not a substrate of that enzyme, and is metabolized by aldehyde dehydrogenase into isovanillic acid. (Wikipedia) Isovanillic acid (3-Hydroxy-4-methoxybenzoic acid) is a phenolic acid isolated from isolated from Scrophularia ningpoensis, with Anti-inflammatory activity[1]. Isovanillic acid (3-Hydroxy-4-methoxybenzoic acid) is a phenolic acid isolated from isolated from Scrophularia ningpoensis, with Anti-inflammatory activity[1].

   

2-Aminobenzamide

2-Carbamoylaniline, anthranilimidic acid

C7H8N2O (136.06365979999998)


D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents > D049408 - Luminescent Agents Acetaldehyde scavenger for polyethylene beverage bottles. Acetaldehyde scavenger for polyethylene beverage bottles D004396 - Coloring Agents > D005456 - Fluorescent Dyes

   

Trans-Hexa-dec-2-enoic acid

trans-Delta(2)-Hexadecenoic acid

C16H30O2 (254.224568)


Trans-hexa-dec-2-enoic acid, also known as hexadecenoic acid, (E)-isomer or (2e)-hexadecenoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, trans-hexa-dec-2-enoic acid is considered to be a fatty acid lipid molecule. Trans-hexa-dec-2-enoic acid is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Trans-hexa-dec-2-enoic acid can be found in caraway, which makes trans-hexa-dec-2-enoic acid a potential biomarker for the consumption of this food product. Trans-hexa-dec-2-enoic acid exists in all eukaryotes, ranging from yeast to humans. In humans, trans-hexa-dec-2-enoic acid is involved in the fatty acid biosynthesis. In humans fatty acids are predominantly formed in the liver and adipose tissue, and mammary glands during lactation. Trans-hexa-dec-2-enoic acid is an intermediate in fatty acid biosynthesis. Specifically, trans-hexa-dec-2-enoic acid converted from (R)-3-Hydroxy-hexadecanoic acid via two enzymes; fatty-acid Synthase and 3- Hydroxypalmitoyl- [acyl-carrier-protein] dehydratase (EC: 2.3.1.85 and EC: 4.2.1.61).

   

trans-Dec-2-enoic acid

2-Decenoic acid, (e)-isomer

C10H18O2 (170.1306728)


trans-Dec-2-enoic acid, also known as 10:1, N-8 trans or (2E)-decenoic acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. trans-Dec-2-enoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Occurs in pear, capsicum, mutton, pork and black tea. Flavourant for beverages, baked goods, etc.

   

Ethyl 4-ethoxybenzoate

Ethyl 4-ethoxybenzoic acid

C11H14O3 (194.0942894)


Ethyl 4-ethoxybenzoate belongs to the family of Benzoic Acid Esters. These are ester derivatives of benzoic acid. D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers D049990 - Membrane Transport Modulators

   

2-Aminoacetophenone

2-Aminoacetophenone hydrochloride

C8H9NO (135.0684104)


2-Aminoacetophenone is found in cereals and cereal products. 2-Aminoacetophenone is a component of tortilla aroma and of other corn flour product Component of tortilla aroma and of other corn flour products. 2-Aminoacetophenone is found in cereals and cereal products.

   

Heptadecanoic acid

Margaric acid, nickel (2+) salt

C17H34O2 (270.2558664)


Heptadecanoic acid, or margaric acid, is a saturated fatty acid. It occurs as a trace component of the fat and milkfat of ruminants, but it does not occur in any natural animal or vegetable fat at concentrations over half a percent. Salts and esters of heptadecanoic acid are called heptadecanoates (Wikipedia). Heptadecanoic acid is found in many foods, some of which are dandelion, potato, ginger, and green bean. Heptadecanoic acid is a constituent of Erythrina crista-galli trunkwood and bark. Common constituent of lipids, e.g. present in Physalia physalis (Portuguese-man-of-war). Heptadecanoic acid is a fatty acid of exogenous (primarily ruminant) origin. Many "odd" length long chain amino acids are derived from the consumption of dairy fats (milk and meat). Heptadecanoic acid constitutes 0.61\\\\% of milk fat and 0.83\\\\% of ruminant meat fat. The content of heptadecanoic acid in the subcutaneous adipose tissue of humans appears to be a good biological marker of long-term milk fat intake in free-living individuals in populations with high consumption of dairy products. (PMID 9701185). Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

Tricosanoic acid

Tricosanoic acid, aluminum salt

C23H46O2 (354.34976159999997)


Tricosanoic acid, also known as N-tricosanoate or 22FA, belongs to the class of organic compounds known as very long-chain fatty acids. These are fatty acids with an aliphatic tail that contains at least 22 carbon atoms. Tricosanoic acid is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Tricosanoic acid is a potentially toxic compound. Constituent of Citrus bergamia (bergamot orange) oil Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant. Tricosanoic acid is a long-chain fatty acid and shown to be a hair growth stimulant.

   

Thromboxane A2

7-[3-(3-Hydroxy-1-octenyl)-2,6-dioxabicyclo[3.1.1]hept-4-yl]-[1S-[1alpha,3alpha(1E,3R*),4beta(Z),5alpha]]-5-heptenoic acid

C20H32O5 (352.2249622)


Thromboxane A2 is an unstable intermediate between the prostaglandin endoperoxides and thromboxane B2. The compound has a bicyclic oxaneoxetane structure. It is a potent inducer of platelet aggregation and causes vasoconstriction. It is the principal component of rabbit aorta contracting substance (RCS).Thromboxanes are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways.

   

1-Epi-alpha-gurjunene

1H-Cycloprop[e]azulene, 1a,2,3,4,4a,5,6,7b-octahydro-1,1,4,7-tetramethyl-, [1aR-(1a.alpha.,4.alpha.,4a.beta.,7b.alpha.)]-

C15H24 (204.18779039999998)


1-Epi-alpha-gurjunene is a constituent of Tolu balsam (Myroxylon balsamum var. balsamum). 1-Epi-alpha-gurjunene is a food flavouring. Constituent of Tolu balsam (Myroxylon balsamum variety balsamum). Food flavouring

   

8-Hydroxydaidzein

7,8-Dihydroxy-3-(4-hydroxyphenyl)-4H-1-benzopyran-4-one, 9ci

C15H10O5 (270.052821)


8-Hydroxydaidzein is found in pulses. 8-Hydroxydaidzein is isolated from Streptomyces sp. OH-1049 cultured on soybean meal. Isolated from Streptomyces species OH-1049 cultured on soybean meal. 8-Hydroxydaidzein is found in soy bean and pulses.

   

2-[Methyl(3-phenylpropanoyl)amino]benzoic acid

2-(Methyl-(3-phenylpropanoyl)amino)benzoic acid

C17H17NO3 (283.1208372)


2-[Methyl(3-phenylpropanoyl)amino]benzoic acid is produced by the marine Streptomyces sp. B7747.

   

Benzyl salicylate

Benzoic acid, 2-hydroxy-, phenylmethyl ester

C14H12O3 (228.0786402)


Benzyl salicylate is found in cloves. Benzyl salicylate is isolated from essential oils e.g. Dianthus caryophyllus, Populus, Primula species Fixative in perfumes and flavourings Benzyl salicylate is a salicylic acid benzyl ester, a chemical compound most frequently used in cosmetics. It appears as an almost colourless liquid and is rather faint or odorless in nature Isolated from essential oils e.g. Dianthus caryophyllus, Populus, Primula subspecies Fixative in perfumes and flavourings D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber. Benzyl salicylate?is a salicylic acid benzyl ester. It can be used as a fragrance additive or UV light absorber.

   

2-Acetylpyrrole

1-(1H-Pyrrol-2-yl)ethanone (acetylpyrrole)

C6H7NO (109.0527612)


2-acetylpyrrole, also known as 1-(1h-pyrrol-2-yl)1-ethanone or 2-pyrrolyl methyl ketone, is a member of the class of compounds known as aryl alkyl ketones. Aryl alkyl ketones are ketones have the generic structure RC(=O)R, where R = aryl group and R=alkyl group. 2-acetylpyrrole is soluble (in water) and a very weakly acidic compound (based on its pKa). 2-acetylpyrrole is a bread, coumarin, and licorice tasting compound and can be found in a number of food items such as green vegetables, tea, nuts, and white mustard, which makes 2-acetylpyrrole a potential biomarker for the consumption of these food products. 2-Acetylpyrrole, also known as fema 3202 or pyrrole, 2-acetyl, belongs to the class of organic compounds known as aryl alkyl ketones. These are ketones have the generic structure RC(=O)R, where R = aryl group and R=alkyl group. 2-Acetylpyrrole is a bread, nut, and walnut tasting compound. 2-Acetylpyrrole has been detected, but not quantified, in tea. This could make 2-acetylpyrrole a potential biomarker for the consumption of these foods. A pyrrole carrying an acetyl substituent at the 2-position. 2-Acetylpyrrole is a product of model browning systems, and has been isolated as a major flavour component of many foods[1]. 2-Acetylpyrrole has been used in the synthesis of 2-acetyl-1-pyrroline[2]. 2-Acetylpyrrole is a product of model browning systems, and has been isolated as a major flavour component of many foods[1]. 2-Acetylpyrrole has been used in the synthesis of 2-acetyl-1-pyrroline[2].

   

(S)-14-Methylhexadecanoic acid

14-Methylhexadecanoic acid, (+-)-isomer

C17H34O2 (270.2558664)


(S)-14-Methylhexadecanoic acid is found in fats and oils. (S)-14-Methylhexadecanoic acid occurs in several animal fat Occurs in several animal fats. (S)-14-Methylhexadecanoic acid is found in fats and oils.

   

(E)-4,8-Dimethyl-1,3,7-nonatriene

(e)-4,8-Dimethylnona-1, 3, 7-triene

C11H18 (150.1408428)


(E)-4,8-Dimethyl-1,3,7-nonatriene is found in cardamom. (E)-4,8-Dimethyl-1,3,7-nonatriene is a constituent of essential oil of Elettaria cardamomum (cardamom) Constituent of essential oil of Elettaria cardamomum (cardamom). (E)-4,8-Dimethyl-1,3,7-nonatriene is found in cardamom, herbs and spices, and rose hip.

   

Nonadecane

Unknown branched fragment OF phospholipid

C19H40 (268.31298400000003)


Nonadecane, also known as CH3-[CH2]17-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Nonadecane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, nonadecane is considered to be a hydrocarbon lipid molecule. Nonadecane is an alkane and bland tasting compound. nonadecane has been detected, but not quantified, in several different foods, such as pomes, watermelons, yellow bell peppers, allspices, and papaya. This could make nonadecane a potential biomarker for the consumption of these foods. Nonadecane has been linked to the inborn metabolic disorders including celiac disease. Isolated from apple wax. Nonadecane is found in many foods, some of which are pepper (c. annuum), red bell pepper, papaya, and dill.

   

2'-Aminoacetophenone

2-Aminoacetophenone hydrochloride

C8H9NO (135.0684104)


2-Aminoacetophenone, also known as O-acetylaniline or 1-acetyl-2-aminobenzene, belongs to the class of organic compounds known as alkyl-phenylketones. These are aromatic compounds containing a ketone substituted by one alkyl group, and a phenyl group. 2-Aminoacetophenone exists as a solid, slightly soluble (in water), and an extremely weak acidic (essentially neutral) compound (based on its pKa). Within the cell, 2-aminoacetophenone is primarily located in the cytoplasm. 2-Aminoacetophenone is a sweet, foxy, and grape tasting compound that can be found in fruits and milk and milk products. This makes 2-aminoacetophenone a potential biomarker for the consumption of these food products. 2'-Aminoacetophenone is an aromatic compound containing a ketone substituted by one alkyl group, and a phenyl group. 2'-Aminoacetophenone can be used as a breath biomarker for the detection of Ps. Aeruginosa infections in the cystic fibrosis lung[1].

   

MG(i-18:0/0:0/0:0)

[(2R)-2,3-dihydroxypropyl] 16-methylheptadecanoate

C21H42O4 (358.30829320000004)


MG(i-18:0/0:0/0:0) belongs to the family of monoradyglycerols, which are glycerolipids lipids containing a common glycerol backbone to which at one fatty acyl group is attached. Their general formula is [R1]OCC(CO[R2])O[R3]. MG(i-18:0/0:0/0:0) is made up of one 16-methylheptadecanoyl(R1).

   

12-Methyltridecanoic acid

12-Methyltridecancarbonsaeure

C14H28O2 (228.20891880000002)


12-Methyltridecanoic acid is found in fishes. 12-Methyltridecanoic acid occurs in Baltic salmon and sperm whal Occurs in Baltic salmon and sperm whale. 12-Methyltridecanoic acid is found in fishes.

   

Methyl (methylthio)methyl disulfide

(Methyldisulphanyl)(methylsulphanyl)methane

C3H8S3 (139.97881280000001)


Methyl (methylthio)methyl disulfide is found in brassicas. Methyl (methylthio)methyl disulfide is found in essential oil of hops and in Camembert cheeses, cooked cabbage, broccoli and cauliflowe Found in essential oil of hops and in Camembert cheeses, cooked cabbage, broccoli and cauliflower

   

Ethyl 2-methylpropanoate

Propanoic acid, 2-methyl-, ethyl ester

C6H12O2 (116.08372519999999)


Ethyl 2-methylpropanoate is found in alcoholic beverages. Ethyl 2-methylpropanoate is present in many fruits, e.g. apple, banana, orange, wine grape, strawberry, nectarine. Ethyl 2-methylpropanoate is a flavouring agent Present in many fruits, e.g. apple, banana, orange, wine grape, strawberry, nectarine. Flavouring agent. Ethyl 2-methylpropanoate is found in many foods, some of which are pomes, citrus, fruits, and spearmint.

   

Hydroxymethyl indol-3-yl ketone

2-Hydroxy-1-(1H-indol-3-yl)ethanone, 9ci

C10H9NO2 (175.0633254)


Hydroxymethyl indol-3-yl ketone is found in mushrooms. Hydroxymethyl indol-3-yl ketone is an alkaloid from liquid cultures of the fungus Lactarius deliciosus. Alkaloid from liquid cultures of the fungus Lactarius deliciosus. Hydroxymethyl indol-3-yl ketone is found in mushrooms.

   

Pyrocoll

1,7-diazatricyclo[7.3.0.0³,⁷]dodeca-3,5,9,11-tetraene-2,8-dione

C10H6N2O2 (186.04292560000002)


Pyrocoll is obtained from gelatine. obtained from gelatine.

   

cis-4-Decenoic acid

(Z)-Isomer OF 4-decenoic acid

C10H18O2 (170.1306728)


cis-4-Decenoic acid, also known as obtusilic acid, belongs to the class of organic compounds known as medium-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 4 and 12 carbon atoms. cis-4-Decenoic acid is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. 4-Decenoic acid (and other intermediates of unsaturated fatty acid oxidation) has been found in increased amounts in liver, skeletal muscle, and heart obtained post mortem from patients with medium-chain acyl-CoA dehydrogenase deficiency (MCADD), multiple acyl-CoA dehydrogenase deficiency (MADD), and very-long-chain acyl-CoA dehydrogenase deficiency (VLCADD) (PMID: 11486898). Occurs in hops and beer. Comly. available flavour ingredient. 4-Decenoic acid is found in alcoholic beverages.

   

Dextrin

(3R,4S,5S,6R)-2-{[(2R,3S,4R,5R)-4,5-dihydroxy-2-(hydroxymethyl)-6-{[(2R,3S,4R,5R,6S)-4,5,6-trihydroxy-2-(hydroxymethyl)oxan-3-yl]oxy}oxan-3-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C18H32O16 (504.1690272)


Dextrin, derived from dextrose (glucose), is a low-molecular-weight polysaccharide produced from the hydrolysis of starch or glycogen using enzymes such as amylases or via malting/mashing. Dextrin or dextrins are mixtures of polymers of D-glucose units linked by α-(1→4) or α-(1→6) glycosidic bonds. Dextrin is used in adhesives and sizing agents for the textile and paper industry. It is also used in many glue products due to its adhesive properties. Three forms of dextrins are now available; white dextrins, yellow (or canary) dextrins, and British gums (PMID: 19215668). Yellow dextrins are used s water-soluble glues and as printing thickeners or binders in paint. White dextrins are used as crispness enhancers in food batters, coatings and glazes. White dextrin is also used as a thickening and binding agent in pharmaceuticals and paper coatings. Dextrin is considered a prebiotic as it promotes healthy intestinal flora (PMID: 22429361). Dextrin has been reported to help maintain healthy cholesterol levels by reducing triglycerides (PMID: 16457989). Moreover, it eliminates wastes from the body through increased bowel movement frequency (PMID: 23326148). Dextrin can be used in combination with other dietary fibers to reduce the glycemic load of a meal, thereby helping to maintain healthy blood sugar levels (PMID: 19126874, 25024710). Binder, colloid stabiliser and other uses in food, oral dietary supplement

   

Anidulafungin

N-[(3S,6S,9S,11R,15S,18S,20R,21R,24S,25S,26S)-6-[(1S,2S)-1,2-dihydroxy-2-(4-hydroxyphenyl)ethyl]-11,20,21,25-tetrahydroxy-3,15-bis[(1R)-1-hydroxyethyl]-26-methyl-2,5,8,14,17,23-hexaoxo-1,4,7,13,16,22-hexaazatricyclo[22.3.0.0⁹,¹³]heptacosan-18-yl]-4-{4-[4-(pentyloxy)phenyl]phenyl}benzamide

C58H73N7O17 (1139.5062688)


Anidulafungin or Eraxis is an anti-fungal drug manufactured by Pfizer that gained approval by the Food and Drug Administration (FDA) in February 21, 2006; it was previously known as LY303366. There is preliminary evidence that it has a similar safety profile to caspofungin. [Wikipedia] J - Antiinfectives for systemic use > J02 - Antimycotics for systemic use > J02A - Antimycotics for systemic use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents > D054714 - Echinocandins C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

S-Methyl benzenecarbothioate

Benzenecarbothioic acid, S-methyl ester

C8H8OS (152.0295838)


S-Methyl benzenecarbothioate is a flavouring agent for food Flavouring agent for foods

   

(+/-)-trans- and cis-4,8-Dimethyl-3,7-nonadien-2-ol

(+/-)-trans- and cis-4,8-Dimethyl-3,7-nonadien-2-ol

C11H20O (168.151407)


(+/-)-trans- and cis-4,8-Dimethyl-3,7-nonadien-2-ol is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") It is used as a food additive .

   

Methyl (±)-2-methylpentanoate

Pentanoic acid, 2-methyl-, methyl ester

C7H14O2 (130.09937440000002)


Methyl (±)-2-methylpentanoate is a flavouring ingredien Flavouring ingredient

   

Butyl phenylacetate

Acetic acid, phenyl-, butyl ester

C12H16O2 (192.1150236)


Butyl phenylacetate is found in fruits. Butyl phenylacetate is a flavouring agent. Butyl phenylacetate is present in mountain papaya (Carica pubescens). Butyl phenylacetate is a flavouring agent. It is found in mountain papaya (Carica pubescens), and other fruits.

   

(±)-cis-Linalyl oxide

5-ethenyltetrahydro-a,a,5-Trimethyl-(2R,5S)-rel-2-furanmethanol

C10H18O2 (170.1306728)


This is the cis form of furanoid linalool oxide, also called Linalool oxide B or Linalool oxide I; there are 2 possible stereo-isomers. cis-Linalool 3,6-oxide is found in many foods, some of which are tea, sweet basil, common oregano, and coriander. (±)-cis-Linalyl oxide is found in black elderberry. This is the cis form of furanoid linalool oxide, also called Linalool oxide B or Linalool oxide I; there are 2 possible stereo-isomers.

   

Dihydrogeranylacetone

3,4,5,6-Tetrahydropseudoionone

C13H24O (196.18270539999997)


Dihydrogeranylacetone is used in perfumery and food flavouring. It is used in perfumery and food flavouring

   

Dioctyl hexanedioate

1,6-dioctyl hexanedioate

C22H42O4 (370.30829320000004)


Dioctyl hexanedioate is a food additive [Goodscents]. Food additive [Goodscents]

   

9Z-Heptadecenoic acid

cis-n-9-Heptadecenoic acid

C17H32O2 (268.2402172)


9Z-Heptadecenoic acid, also known as margaroleic acid, belongs to the class of organic compounds known as long-chain fatty acids. These are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. 9Z-Heptadecenoic acid is considered to be practically insoluble (in water) and relatively neutral.

   

ascomycin

17-ethyl-1,14-dihydroxy-12-[1-(4-hydroxy-3-methoxycyclohexyl)prop-1-en-2-yl]-23,25-dimethoxy-13,19,21,27-tetramethyl-11,28-dioxa-4-azatricyclo[22.3.1.0⁴,⁹]octacos-18-ene-2,3,10,16-tetrone

C43H69NO12 (791.4819514)


   

(5R,6R)-3-(2-Acetamidoethylsulfanyl)-6-ethyl-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid

6-Ethyl-3-({2-[(1-hydroxyethylidene)amino]ethyl}sulphanyl)-7-oxo-1-azabicyclo[3.2.0]hept-2-ene-2-carboxylic acid

C13H18N2O4S (298.0987228)


   

Maltotetraose

Maltotetraose

C24H42O21 (666.2218482000001)


D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids. Maltotetraose can be used as a substrate for the enzyme-coupled determination of amylase activity in biological fluids.

   

FA 9:0

pelargonic acid

C9H18O2 (158.1306728)


D000890 - Anti-Infective Agents > D000935 - Antifungal Agents Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1]. Nonanoic acid is a naturally-occurring saturated fatty acid with nine carbon atoms. Nonanoic acid significantly reduces bacterial translocation, enhances antibacterial activity, and remarkably increases the secretion of porcine β-defensins 1 (pBD-1) and pBD-2[1].

   

C17:0

HEPTADECANOIC ACID

C17H34O2 (270.2558664)


Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1]. Heptadecanoic acid is an odd chain saturated fatty acid (OCS-FA). Heptadecanoic acid is associated with several diseases, including the incidence of coronary heart disease, prediabetes and type 2 diabetes as well as multiple sclerosis[1].

   

FA 14:1

Myristoleic acid (14:1(n-5))

C14H26O2 (226.1932696)


Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1]. Myristoleic acid, a cytotoxic component in the extract from Serenoa repens, induces apoptosis and necrosis in human prostatic LNCaP cells[1].

   

FA(16:1)

cis-9-hexadecenoic acid

C16H30O2 (254.224568)


Palmitoleic acid (FA 16:1), also known as hexadecenoic acid, is a monounsaturated omega-7 fatty acid with a 16-carbon chain and a double bond at the 9th position. In biological terms, palmitoleic acid serves several important functions: 1. **Energy Source:** Like other fatty acids, palmitoleic acid is a significant source of energy. It can be oxidized through beta-oxidation to produce ATP, the energy currency of the cell. 2. **Cell Membrane Structure:** Palmitoleic acid is a component of phospholipids, which are major constituents of cell membranes. The presence of monounsaturated fatty acids like palmitoleic acid helps maintain the fluidity and flexibility of cell membranes, which is crucial for various cellular processes. 3. **Lipid Signaling:** Palmitoleic acid and its derivatives can act as signaling molecules. For example, it is converted into the lipid mediator called palmitoleoyl-lysophosphatidylcholine (LPC), which plays a role in inflammation and blood clotting. 4. **Insulin Sensitivity:** Palmitoleic acid has been shown to improve insulin sensitivity, which is important for glucose metabolism and can help in the prevention and treatment of type 2 diabetes. 5. **Inflammation Modulation:** Some studies suggest that palmitoleic acid may have anti-inflammatory effects, which could be beneficial in reducing the risk of chronic diseases associated with inflammation. 6. **Skin Health:** Palmitoleic acid is naturally present in the skin and is considered a component of the skin's surface lipids, contributing to the skin's barrier function and helping to prevent water loss. 7. **Biosynthesis of Other Lipids:** Palmitoleic acid serves as a precursor for the synthesis of other complex lipids, including prostaglandins and other eicosanoids, which are involved in a wide range of physiological processes such as inflammation and blood pressure regulation. 8. **Cardiovascular Health:** The consumption of monounsaturated fatty acids like palmitoleic acid is often associated with a lower risk of cardiovascular diseases, although the direct role of palmitoleic acid in this context is still under investigation. It's important to note that while palmitoleic acid has these potential biological functions, the overall impact on health can depend on the balance of fatty acids in the diet and the context of the individual's overall metabolic health. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats. Palmitoleic acid, a composition of fatty acid, is implicated in the prevention of death from cerebrovascular disorders in SHRSP rats.

   

C11:0

Hendecanoic acid

C11H22O2 (186.1619712)


C254 - Anti-Infective Agent > C514 - Antifungal Agent Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1]. Undecanoic acid (Undecanoate) is a monocarboxylic acid with antimycotic property, which inhibits the production of exocellular keratinase, lipase and the biosynthesis of several phospholipids in T. rubrum[1].

   

sesamin

1,3-Benzodioxole, 5,5-(tetrahydro-1H,3H-furo(3,4-c)furan-1,4-diyl)bis-, (1S-(1.alpha.,3a.alpha.,4.alpha.,6a.alpha.))-

C20H18O6 (354.1103328)


D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents > D000924 - Anticholesteremic Agents D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D020011 - Protective Agents > D000975 - Antioxidants D009676 - Noxae > D000963 - Antimetabolites relative retention time with respect to 9-anthracene Carboxylic Acid is 1.233 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.236 Asarinin is a natural product found in Piper mullesua, Machilus thunbergii, and other organisms with data available. (-)-Asarinin is a natural product found in Zanthoxylum austrosinense, Horsfieldia irya, and other organisms with data available. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. (-)-Asarinin is a extract lignan from Asarum sieboldii Miq., mainly produced in roots of this herb[1]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2]. Sesamin, abundant lignan found in sesame oil, is a potent and selective delta 5 desaturase inhibitor in polyunsaturated fatty acid biosynthesis. Sesamin exerts effective neuroprotection against cerbral ischemia[1][2].

   

Tangeritin

5,6,7,8-Tetramethoxy-2-(4-methoxyphenyl)-4H-1-benzopyran-4-one, 9CI

C20H20O7 (372.120897)


Tangeretin is a pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. It has a role as an antineoplastic agent and a plant metabolite. Tangeretin is a natural product found in Citrus tankan, Citrus keraji, and other organisms with data available. See also: Tangerine peel (part of); Citrus aurantium fruit rind (part of). Isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutical. Tangeritin is found in many foods, some of which are apple, broccoli, sweet bay, and tea. Tangeritin is found in apple. Tangeritin is isolated from tangerine peel and Fortunella japonica (round kumquat). Potential nutriceutica A pentamethoxyflavone flavone with methoxy groups at positions 4, 5, 6 , 7 and 8. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor. Tangeretin (Tangeritin), a flavonoid from citrus fruit peels, has been proven to play an important role in anti-inflammatory responses and neuroprotective effects in several disease models, and is a Notch-1 inhibitor.

   

N-Acetyltyramine

N-Acetyltyramine

C10H13NO2 (179.09462380000002)


A member of the class of tyramines that is tyramine in which one of the hydrogens of the amino group is replaced by an acetyl group.

   
   

Anhydromaggiemycin

Anhydromaggiemycin

C22H16O8 (408.0845136)


   

Deacetylravidomycin M

Deacetylravidomycin M

C28H31NO8 (509.2049566)


   

Rubiginone D2

(2S,3S,4R)-2,4-Dihydroxy-8-methoxy-3-methyl-3,4-dihydro-2H-benzo[a]anthracene-1,7,12-trione

C20H16O6 (352.0946836)


   

Dihydromalvalic acid

Dihydromalvalic acid

C18H34O2 (282.2558664)