NCBI Taxonomy: 2315329

Streptomyces sporangiiformans (ncbi_taxid: 2315329)

found 74 associated metabolites at species taxonomy rank level.

Ancestor: Streptomyces

Child Taxonomies: none taxonomy data.

Galactose

(3R,4S,5R,6R)-6-(Hydroxymethyl)tetrahydro-2H-pyran-2,3,4,5-tetraol

C6H12O6 (180.0633852)


D-galactopyranose is a galactopyranose having D-configuration. It has a role as an Escherichia coli metabolite and a mouse metabolite. It is a D-galactose and a galactopyranose. D-Galactose is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). D-Galactose is a natural product found in Vigna subterranea, Lilium tenuifolium, and other organisms with data available. An aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. Deficiency of galactosyl-1-phosphate uridyltransferase (GALACTOSE-1-PHOSPHATE URIDYL-TRANSFERASE DEFICIENCY DISEASE) causes an error in galactose metabolism called GALACTOSEMIA, resulting in elevations of galactose in the blood. V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CE - Tests for liver functional capacity Acquisition and generation of the data is financially supported by the Max-Planck-Society

   

Glycoprotein-phospho-D-mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0633852)


Glycoprotein-phospho-D-mannose, also known as (2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal or Mannose homopolymer, is classified as a member of the Hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moeity. Glycoprotein-phospho-D-mannose is considered to be soluble (in water) and acidic

   

Menaquinone-9

2-methyl-3-((2E,6E,10E,14E,18E,22E,26E,30E)-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaenyl)naphthalene-1,4-dione

C56H80O2 (784.615798)


A menaquinone whose side-chain contains 9 isoprene units in an all-trans-configuration.

   

D-Mannose

D-(+)-Mannose,from wood

C6H12O6 (180.0633852)


D-Mannose in its six-membered ring form. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

D-Ribose

D-ribo-2,3,4,5-tetrahydroxyvaleraldehyde

C5H10O5 (150.052821)


CONFIDENCE standard compound; INTERNAL_ID 227 D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1].

   

D-Altrose

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents D-Allose is an endogenous metabolite. D-Allose is an endogenous metabolite.

   

PE(18:0/18:0)

(2-aminoethoxy)[(2R)-2,3-bis(octadecanoyloxy)propoxy]phosphinic acid

C41H82NO8P (747.5777742)


PE(18:0/18:0) is a phosphatidylethanolamine (PE or GPEtn). It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached at the C-1 and C-2 positions. Fatty acids containing 16, 18 and 20 carbons are the most common. PE(18:0/18:0), in particular, consists of two chains of stearic acid at the C-1 and C-2 positions. The stearic acid moieties are derived from animal fats, coco butter and sesame oil. Phospholipids, are ubiquitous in nature and are key components of the lipid bilayer of cells, as well as being involved in metabolism and signaling.While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS. PE(18:0/18:0) is a phosphatidylethanolamine. It is a glycerophospholipid in which a phosphorylethanolamine moiety occupies a glycerol substitution site. As is the case with diacylglycerols, glycerophosphoethanolamines can have many different combinations of fatty acids of varying lengths and saturation attached to the C-1 and C-2 positions. PE(18:0/18:0), in particular, consists of two octadecanoyl chains at positions C-1 and C-2. While most phospholipids have a saturated fatty acid on C-1 and an unsaturated fatty acid on C-2 of the glycerol backbone, the fatty acid distribution at the C-1 and C-2 positions of glycerol within phospholipids is continually in flux, owing to phospholipid degradation and the continuous phospholipid remodeling that occurs while these molecules are in membranes. PEs are neutral zwitterions at physiological pH. They mostly have palmitic or stearic acid on carbon 1 and a long chain unsaturated fatty acid (e.g. 18:2, 20:4 and 22:6) on carbon 2. PE synthesis can occur via two pathways. The first requires that ethanolamine be activated by phosphorylation and then coupled to CDP. The ethanolamine is then transferred from CDP-ethanolamine to phosphatidic acid to yield PE. The second involves the decarboxylation of PS.

   

(2R,3R,4R)-2,3,4,5-Tetrahydroxypentanal

(2R,3R,4R)-2,3,4,5-Tetrahydroxypentanal

C5H10O5 (150.052821)


A pentose is a monosaccharide with five carbon atoms. Pentoses are organized into two groups. Aldopentoses have an aldehyde functional group at position 1. Ketopentoses have a ketone functional group in position 2 or 3. Pentoses is found in flaxseed and cocoa bean.

   

mannose

(2S,3S,4R,5R)-2,3,4,5,6-Pentahydroxyhexanal

C6H12O6 (180.0633852)


Acquisition and generation of the data is financially supported by the Max-Planck-Society D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins. D-Mannose is a carbohydrate, which plays an important role in human metabolism, especially in the glycosylation of specific proteins.

   

Ribose

L-Ribose

C5H10O5 (150.052821)


D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1]. D-Ribose(mixture of isomers) is an energy enhancer, and acts as a sugar moiety of ATP, and widely used as a metabolic therapy supplement for chronic fatigue syndrome or cardiac energy metabolism. D-Ribose(mixture of isomers) is active in protein glycation, induces NF-κB inflammation in a RAGE-dependent manner[1].

   

CHEBI:17118

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


   

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

(2R,3S,4S,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


   

D-ribopyranose

D-ribopyranose

C5H10O5 (150.052821)


A D-ribose and the D-enantiomer of ribopyranose.

   

aldehydo-D-galactose

aldehydo-D-galactose

C6H12O6 (180.0633852)


   

(2r)-2,3-bis(formyloxy)propoxy(3-{[(2r)-2,3-bis(formyloxy)propoxy(hydroxy)phosphoryl]oxy}-2-hydroxypropoxy)phosphinic acid

(2r)-2,3-bis(formyloxy)propoxy(3-{[(2r)-2,3-bis(formyloxy)propoxy(hydroxy)phosphoryl]oxy}-2-hydroxypropoxy)phosphinic acid

C13H22O17P2 (512.0332222000001)


   

2,3-bis(hexadecanoyloxy)propoxy(4-{[2,3-bis(hexadecanoyloxy)propoxy(hydroxy)phosphoryl]oxy}-2-hydroxybutoxy)phosphinic acid

2,3-bis(hexadecanoyloxy)propoxy(4-{[2,3-bis(hexadecanoyloxy)propoxy(hydroxy)phosphoryl]oxy}-2-hydroxybutoxy)phosphinic acid

C74H144O17P2 (1366.9878234)


   

(2r)-2-[(5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy([(2r,3r,5s,6r)-2,3,4,5,6-pentahydroxycyclohexyl]oxy)phosphinic acid

(2r)-2-[(5z,8z,11z,14z)-icosa-5,8,11,14-tetraenoyloxy]-3-(octadecanoyloxy)propoxy([(2r,3r,5s,6r)-2,3,4,5,6-pentahydroxycyclohexyl]oxy)phosphinic acid

C47H83O13P (886.5570998)


   

2-aminoethoxy((2r)-2,3-bis(acetyloxy)propoxy)phosphinic acid

2-aminoethoxy((2r)-2,3-bis(acetyloxy)propoxy)phosphinic acid

C9H18NO8P (299.0769998)


   

2-methyl-3-[(2e,6e,10e,14e,18e,22e,26e,30e)-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-yl]naphthalene-1,4-dione

2-methyl-3-[(2e,6e,10e,14e,18e,22e,26e,30e)-3,7,11,15,19,23,27,31,35-nonamethylhexatriaconta-2,6,10,14,18,22,26,30,34-nonaen-1-yl]naphthalene-1,4-dione

C56H80O2 (784.615798)