NCBI Taxonomy: 141454
Streptomyces wadayamensis (ncbi_taxid: 141454)
found 84 associated metabolites at species taxonomy rank level.
Ancestor: Streptomyces
Child Taxonomies: none taxonomy data.
Chymosin preparation, escherichia coli k-12
C30H27N3O15 (669.1442112000001)
Chymosin preparation, escherichia coli k-12 is used as a food additive [EAFUS] ("EAFUS: Everything Added to Food in the United States. [http://www.eafus.com/]") D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
2-Oxoarginine
2-Oxoarginine is a guanidino compound metabolite of arginine catabolism. 2-Oxoarginine levels are increased in patients with argininemia (OMIM:207800). Argininemia, characterized by arginase deficiency (EC 3.5.3.1, catalyzes the last step of the urea cycle) is an autosomal recessive inborn error of metabolism caused by a defect in the final step in the urea cycle, the hydrolysis of arginine to urea and ornithine. Accumulation of arginine metabolites (such as guanidino compounds) especially 2-oxoarginine, may produce the central nervous system damage in argininemia. (PMID: 3433275 , 1588833 , 1690873 , 819629). 2-Oxoarginine has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). 2-Oxoarginine is a guanidino compound metabolite of arginine catabolism. 2-Oxoarginine levels are increased in patients with argininemia (OMIM:207800). Argininemia, characterized by arginase deficiency (EC 3.5.3.1, catalyzes the last step of the urea cycle) is an autosomal recessive inborn error of metabolism caused by a defect in the final step in the urea cycle, the hydrolysis of arginine to urea and ornithine. Accumulation of arginine metabolites (such as guanidino compounds) especially 2-oxoarginine, may produce the central nervous system damage in argininemia. (PMID: 3433275, 1588833, 1690873, 819629) [HMDB]
Aerobactin
Aerobactin is a virulence factor for enteric bacteria found occasionally in humans, and is produced by bacteria such as Enterobacter cloacae. E. cloacae is part of the normal intestinal floras of many individuals and not a primary human pathogen but has been considered to be an important cause of nosocomial infections. Aerobactin secretion in vivo could be an important step in the stages of the infection cycle during which intestine-populating opportunistic bacteria effectively colonize the gut, penetrate the mucous layer covering the intestinal villi, translocate out of intestinal lumen through the epithelial cells, and finally spread to organs within which they may survive. (PMID: 9453621, 8752377) [HMDB] Aerobactin is a virulence factor for enteric bacteria found occasionally in humans, and is produced by bacteria such as Enterobacter cloacae. E. cloacae is part of the normal intestinal floras of many individuals and not a primary human pathogen but has been considered to be an important cause of nosocomial infections. Aerobactin secretion in vivo could be an important step in the stages of the infection cycle during which intestine-populating opportunistic bacteria effectively colonize the gut, penetrate the mucous layer covering the intestinal villi, translocate out of intestinal lumen through the epithelial cells, and finally spread to organs within which they may survive. (PMID: 9453621, 8752377). D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
Deferoxamine
Deferoxamine is only found in individuals that have used or taken this drug. It is a natural product isolated from Streptomyces pilosus. It forms iron complexes and is used as a chelating agent, particularly in the mesylate form. [PubChem]Deferoxamine works in treating iron toxicity by binding trivalent (ferric) iron (for which it has a strong affinity), forming ferrioxamine, a stable complex which is eliminated via the kidneys. 100 mg of deferoxamine is capable of binding approximately 8.5 mg of trivalent (ferric) iron. Deferoxamine works in treating aluminum toxicity by binding to tissue-bound aluminum to form aluminoxamine, a stable, water-soluble complex. The formation of aluminoxamine increases blood concentrations of aluminum, resulting in an increased concentration gradient between the blood and dialysate, boosting the removal of aluminum during dialysis. 100 mg of deferoxamine is capable of binding approximately 4.1 mg of aluminum. V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
deferoxamine
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AC - Iron chelating agents D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Deferoxamine (Deferoxamine B) is an iron chelator (binds to Fe(III) and many other metal cations), is widely used to reduce iron accumulation and deposition in tissues. Deferoxamine upregulates HIF-1α levels with good antioxidant activity. Deferoxamine also shows anti-proliferative activity, can induce apoptosis and autophagy in cancer cells. Deferoxamine can be used in studies of diabetes, neurodegenerative diseases as well as anti-cancer and anti-COVID-19[1][2][3][4][5].
Enterobactin
C30H27N3O15 (669.1442112000001)
A macrotriolide produced by certain members of Enterobacteriaceae, e.g. Escherichia coli and Salmonella. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
Aerobactin
D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents
n-[(2r,3s,6s,7r,8r)-2,6-dimethyl-8-(3-methylbutyl)-7-[(2-methylpropanoyl)oxy]-4,9-dioxo-1,5-dioxonan-3-yl]-2-hydroxy-3-[(hydroxymethylidene)amino]benzenecarboximidic acid
n-[(3s,4r,7r,8r,9s)-7-hexyl-4,9-dimethyl-8-[(3-methylbutanoyl)oxy]-2,6-dioxo-1,5-dioxonan-3-yl]-2-hydroxy-3-[(hydroxymethylidene)amino]benzenecarboximidic acid
n-[7-(butanoyloxy)-8-butyl-2,6-dimethyl-4,9-dioxo-1,5-dioxonan-3-yl]-2-hydroxy-3-[(hydroxymethylidene)amino]benzenecarboximidic acid
C25H34N2O9 (506.22641940000005)
(2s)-2-{[3-carboxy-3-({[(1s)-1-carboxy-5-(n-hydroxyacetamido)pentyl]-c-hydroxycarbonimidoyl}methyl)-1,3-dihydroxypropylidene]amino}-6-(n-hydroxyacetamido)hexanoic acid
1,5,12,16,23,27-hexahydroxy-1,6,12,17,23,28-hexaazacyclotritriaconta-5,16,27-triene-2,13,24-trione
C27H48N6O9 (600.3482597999999)
n-[7,11-bis({[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino})-2,6,10-trioxo-1,5,9-trioxacyclododecan-3-yl]-2,3-dihydroxybenzenecarboximidic acid
C30H27N3O15 (669.1442112000001)
3-[(5-aminopentyl)(hydroxy)carbamoyl]-n-[5-(n-hydroxy-3-{[5-(n-hydroxyacetamido)pentyl]-c-hydroxycarbonimidoyl}propanamido)pentyl]propanimidic acid
n-[(3s,7s,11s)-7,11-bis({[(2,3-dihydroxyphenyl)(hydroxy)methylidene]amino})-2,6,10-trioxo-1,5,9-trioxacyclododecan-3-yl]-2,3-dihydroxybenzenecarboximidic acid
C30H27N3O15 (669.1442112000001)