Reaction Process: Reactome:R-MMU-196854

Metabolism of vitamins and cofactors related metabolites

find 115 related metabolites which is associated with chemical reaction(pathway) Metabolism of vitamins and cofactors

H2O + Oxygen + PXL ⟶ H2O2 + PDXate

Niacinamide

pyridine-3-carboxamide

C6H6N2O (122.0480106)


Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Nicotinic acid

pyridine-3-carboxylic acid

C6H5NO2 (123.032027)


Nicotinic acid is an odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3\\\\\% solution) 3-3.5. (NTP, 1992) Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate. Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Nicotinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Niacin is a Nicotinic Acid. Niacin, also known as nicotinic acid and vitamin B3, is a water soluble, essential B vitamin that, when given in high doses, is effective in lowering low density lipoprotein (LDL) cholesterol and raising high density lipoprotein (HDL) cholesterol, which makes this agent of unique value in the therapy of dyslipidemia. Niacin can cause mild-to-moderate serum aminotransferase elevations and high doses and certain formulations of niacin have been linked to clinically apparent, acute liver injury which can be severe as well as fatal. Niacin is a water-soluble vitamin belonging to the vitamin B family, which occurs in many animal and plant tissues, with antihyperlipidemic activity. Niacin is converted to its active form niacinamide, which is a component of the coenzymes nicotinamide adenine dinucleotide (NAD) and its phosphate form, NADP. These coenzymes play an important role in tissue respiration and in glycogen, lipid, amino acid, protein, and purine metabolism. Although the exact mechanism of action by which niacin lowers cholesterol is not fully understood, it may act by inhibiting the synthesis of very low density lipoproteins (VLDL), inhibiting the release of free fatty acids from adipose tissue, increasing lipoprotein lipase activity, and reducing the hepatic synthesis of VLDL-C and LDL-C. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan (see below), but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. Nicotinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-67-6 (retrieved 2024-06-29) (CAS RN: 59-67-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

4-Hydroxybenzoic acid

4-hydroxybenzoic acid

C7H6O3 (138.03169259999999)


4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in A√ßa√≠ oil, obtained from the fruit of the a√ßa√≠ palm (Euterpe oleracea), at relatively high concetrations (892¬±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843). Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid DVN38-Z and 2,4-Hexadienoic acid GMZ10-P. The taste is more detectable than for those preservatives. Effectiveness increases with chain length of the alcohol, but for some microorganisms this reduces cell permeability and thus counteracts the increased efficiency. 4-Hydroxybenzoic acid is found in many foods, some of which are chicory, corn, rye, and black huckleberry. 4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate. 4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ... A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. 4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL. 4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.

   

Palmitic acid

hexadecanoic acid

C16H32O2 (256.2402172)


Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

beta-Carotene

1,3,3-trimethyl-2-[(1E,3E,5E,7E,9E,11E,13E,15E,17E)-3,7,12,16-tetramethyl-18-(2,6,6-trimethylcyclohex-1-en-1-yl)octadeca-1,3,5,7,9,11,13,15,17-nonaen-1-yl]cyclohex-1-ene

C40H56 (536.4381776)


Beta-carotene is a cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. It has a role as a biological pigment, a provitamin A, a plant metabolite, a human metabolite, a mouse metabolite, a cofactor, a ferroptosis inhibitor and an antioxidant. It is a cyclic carotene and a carotenoid beta-end derivative. Beta-carotene, with the molecular formula C40H56, belongs to the group of carotenoids consisting of isoprene units. The presence of long chains of conjugated double bonds donates beta-carotene with specific colors. It is the most abundant form of carotenoid and it is a precursor of the vitamin A. Beta-carotene is composed of two retinyl groups. It is an antioxidant that can be found in yellow, orange and green leafy vegetables and fruits. Under the FDA, beta-carotene is considered as a generally recognized as safe substance (GRAS). Beta-Carotene is a natural product found in Epicoccum nigrum, Lonicera japonica, and other organisms with data available. Beta-Carotene is a naturally-occurring retinol (vitamin A) precursor obtained from certain fruits and vegetables with potential antineoplastic and chemopreventive activities. As an anti-oxidant, beta carotene inhibits free-radical damage to DNA. This agent also induces cell differentiation and apoptosis of some tumor cell types, particularly in early stages of tumorigenesis, and enhances immune system activity by stimulating the release of natural killer cells, lymphocytes, and monocytes. (NCI04) beta-Carotene is a metabolite found in or produced by Saccharomyces cerevisiae. A carotenoid that is a precursor of VITAMIN A. Beta carotene is administered to reduce the severity of photosensitivity reactions in patients with erythropoietic protoporphyria (PORPHYRIA, ERYTHROPOIETIC). See also: Lycopene (part of); Broccoli (part of); Lycium barbarum fruit (part of). Beta-Carotene belongs to the class of organic compounds known as carotenes. These are a type of polyunsaturated hydrocarbon molecules containing eight consecutive isoprene units. Carotenes are characterized by the presence of two end-groups (mostly cyclohexene rings, but also cyclopentene rings or acyclic groups) linked by a long branched alkyl chain. Beta-carotene is therefore considered to be an isoprenoid lipid molecule. Beta-carotene is a strongly coloured red-orange pigment abundant in fungi, plants, and fruits. It is synthesized biochemically from eight isoprene units and therefore has 40 carbons. Among the carotenes, beta-carotene is distinguished by having beta-rings at both ends of the molecule. Beta-Carotene is biosynthesized from geranylgeranyl pyrophosphate. It is the most common form of carotene in plants. In nature, Beta-carotene is a precursor (inactive form) to vitamin A. Vitamin A is produed via the action of beta-carotene 15,15-monooxygenase on carotenes. In mammals, carotenoid absorption is restricted to the duodenum of the small intestine and dependent on a class B scavenger receptor (SR-B1) membrane protein, which is also responsible for the absorption of vitamin E. One molecule of beta-carotene can be cleaved by the intestinal enzyme Beta-Beta-carotene 15,15-monooxygenase into two molecules of vitamin A. Beta-Carotene contributes to the orange color of many different fruits and vegetables. Vietnamese gac and crude palm oil are particularly rich sources, as are yellow and orange fruits, such as cantaloupe, mangoes, pumpkin, and papayas, and orange root vegetables such as carrots and sweet potatoes. Excess beta-carotene is predominantly stored in the fat tissues of the body. The most common side effect of excessive beta-carotene consumption is carotenodermia, a physically harmless condition that presents as a conspicuous orange skin tint arising from deposition of the carotenoid in the outermost layer of the epidermis. Yellow food colour, dietary supplement, nutrient, Vitamin A precursor. Nutriceutical with antioxidation props. beta-Carotene is found in many foods, some of which are summer savory, gram bean, sunburst squash (pattypan squash), and other bread product. A cyclic carotene obtained by dimerisation of all-trans-retinol. A strongly-coloured red-orange pigment abundant in plants and fruit and the most active and important provitamin A carotenoid. D - Dermatologicals > D02 - Emollients and protectives > D02B - Protectives against uv-radiation > D02BB - Protectives against uv-radiation for systemic use A - Alimentary tract and metabolism > A11 - Vitamins > A11C - Vitamin a and d, incl. combinations of the two > A11CA - Vitamin a, plain D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D018977 - Micronutrients > D014815 - Vitamins > D000072664 - Provitamins

   

Folic acid

FOLVITE(Thomson.Micromedex. Drug Information for the Health Care Professional. 24th ed. Volume 1. Plus Updates. Content Reviewed by the United States Pharmacopeial Convention, Inc. Greenwood Village, CO. 2004., p. 1422)

C19H19N7O6 (441.1396754)


Folic acid appears as odorless orange-yellow needles or platelets. Darkens and chars from approximately 482 °F. Folic acid is an N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. It has a role as a human metabolite, a nutrient and a mouse metabolite. It is a member of folic acids and a N-acyl-amino acid. It is functionally related to a pteroic acid. It is a conjugate acid of a folate(2-). Folic acid, also known as folate or Vitamin B9, is a member of the B vitamin family and an essential cofactor for enzymes involved in DNA and RNA synthesis. More specifically, folic acid is required by the body for the synthesis of purines, pyrimidines, and methionine before incorporation into DNA or protein. Folic acid is particularly important during phases of rapid cell division, such as infancy, pregnancy, and erythropoiesis, and plays a protective factor in the development of cancer. As humans are unable to synthesize folic acid endogenously, diet and supplementation is necessary to prevent deficiencies. For example, folic acid is present in green vegetables, beans, avocado, and some fruits. In order to function within the body, folic acid must first be reduced by the enzyme dihydrofolate reductase (DHFR) into the cofactors dihydrofolate (DHF) and tetrahydrofolate (THF). This important pathway, which is required for de novo synthesis of nucleic acids and amino acids, is disrupted by anti-metabolite therapies such as [DB00563] as they function as DHFR inhibitors to prevent DNA synthesis in rapidly dividing cells, and therefore prevent the formation of DHF and THF. When used in high doses such as for cancer therapy, or in low doses such as for Rheumatoid Arthritis or psoriasis, [DB00563] impedes the bodys ability to create folic acid. This results in a deficiency of coenzymes and a resultant buildup of toxic substances that are responsible for numerous adverse side effects. As a result, supplementation with 1-5mg of folic acid is recommended to prevent deficiency and a number of side effects associated with MTX therapy including mouth ulcers and gastrointestinal irritation. [DB00650] (also known as folinic acid) supplementation is typically used for high-dose MTX regimens for the treatment of cancer. Levoleucovorin and leucovorin are analogs of tetrahydrofolate (THF) and are able to bypass DHFR reduction to act as a cellular replacement for the co-factor THF. There are also several antiepileptic drugs (AEDs) that are associated with reduced serum and red blood cell folate, including [DB00564] (CBZ), [DB00252] (PHT), or barbiturates. Folic acid is therefore often provided as supplementation to individuals using these medications, particularly to women of child-bearing age. Inadequate folate levels can result in a number of health concerns including cardiovascular disease, megaloblastic anemias, cognitive deficiencies, and neural tube defects (NTDs). Folic acid is typically supplemented during pregnancy to prevent the development of NTDs and in individuals with alcoholism to prevent the development of neurological disorders, for example. Folic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). CID 6037 is a natural product found in Beta vulgaris, Angelica sinensis, and other organisms with data available. Folic Acid is a collective term for pteroylglutamic acids and their oligoglutamic acid conjugates. As a natural water-soluble substance, folic acid is involved in carbon transfer reactions of amino acid metabolism, in addition to purine and pyrimidine synthesis, and is essential for hematopoiesis and red blood cell production. (NCI05) A member of the vitamin B family that stimulates the hematopoietic system. It is present in the liver and kidney and is found in mushrooms, spinach, yeast, green leaves, and grasses (POACEAE). Folic acid is used in the treat... Folic acid or folate, is a vitamin that belongs to the class of compounds known as pterins. Chemically, folate consists of three distinct chemical moieties linked together. A pterin (2-amino-4-hydroxy-pteridine) linked by a methylene bridge to a p-aminobenzoyl group that in turn is linked through an amide linkage to glutamic acid. It is a member of the vitamin B family and is primarily known as vitamin B9. Folate is required for the body to make DNA and RNA and metabolize amino acids necessary for cell division for the hematopoietic system. As humans cannot make folate, it is required in the diet, making it an essential nutrient (i.e. a vitamin). Folate occurs naturally in many foods including mushrooms, spinach, yeast, green leaves, and grasses (poaceae). Folic acid, being biochemically inactive, is converted to tetrahydrofolic acid and methyltetrahydrofolate by the enzyme known as dihydrofolate reductase. Tetrahydrofolate and methyltetrahydrofolate are transported across cells by receptor-mediated endocytosis where they are needed to maintain normal erythropoiesis, synthesize purine and thymidylate nucleic acids, interconvert amino acids and generate formic acid. Folic acid is used in the treatment and prevention of folate deficiencies and megaloblastic anemia. Folic acid is also used as a supplement by women during pregnancy to reduce the risk of neural tube defects (NTDs) in babies. Low levels in early pregnancy are believed to be the cause of more than half of babies born with NTDs (PMID: 28097362). Folic acid is also a microbial metabolite produced by Bifidobacterium and Lactobacillus (PMID: 22254078). An N-acyl-amino acid that is a form of the water-soluble vitamin B9. Its biologically active forms (tetrahydrofolate and others) are essential for nucleotide biosynthesis and homocysteine remethylation. B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BB - Folic acid and derivatives COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D006397 - Hematinics D018977 - Micronutrients > D014815 - Vitamins V - Various > V04 - Diagnostic agents Dietary supplement Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Formula(Parent): C19H19N7O6; Bottle Name:Folic acid ,approx; PRIME Parent Name:Folic acid; PRIME in-house No.:V0080; SubCategory_DNP: Pteridines and analogues, Pteridine alkaloids Acquisition and generation of the data is financially supported in part by CREST/JST. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.543 CONFIDENCE standard compound; INTERNAL_ID 134 Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4]. Folic acid (Vitamin B9) is a orally active essential nutrient from the B complex group of vitamins. Folic acid shows antidepressant-like effect. Folic acid sodium reduces the risk of neonatal neural tube defects. Folic acid can be used to the research of megaloblastic and macrocytic anemias due to folic deficiency[1][2][3][4].

   

Biotin

Biotin, powder, BioReagent, suitable for cell culture, suitable for insect cell culture, suitable for plant cell culture, >=99\\%

C10H16N2O3S (244.0881586)


Biotin (also known as vitamin B7 or vitamin H) is one of the B vitamins.[1][2][3] It is involved in a wide range of metabolic processes, both in humans and in other organisms, primarily related to the utilization of fats, carbohydrates, and amino acids.[4] The name biotin, borrowed from the German Biotin, derives from the Ancient Greek word βίοτος (bíotos; 'life') and the suffix "-in" (a suffix used in chemistry usually to indicate 'forming').[5] Biotin appears as a white, needle-like crystalline solid.[6] Biotin is an organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. It has a role as a prosthetic group, a coenzyme, a nutraceutical, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a cofactor and a fundamental metabolite. It is a member of biotins and a vitamin B7. It is a conjugate acid of a biotinate. A water-soluble, enzyme co-factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Biotin is a natural product found in Lysinibacillus sphaericus, Aspergillus nidulans, and other organisms with data available. Biotin is hexahydro-2-oxo-1H-thieno(3,4-d)imidazole-4-pentanoic acid. Growth factor present in minute amounts in every living cell. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. The biotin content of cancerous tissue is higher than that of normal tissue. Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as vitamin H or B7 or coenzyme R. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Our biotin requirement is fulfilled in part through diet, through endogenous reutilization of biotin and perhaps through capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC) and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a Lys residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signaling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signaling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in ... Biotin is an enzyme co-factor present in minute amounts in every living cell. Biotin is also known as coenzyme R and vitamin H or B7. It occurs mainly bound to proteins or polypeptides and is abundant in liver, kidney, pancreas, yeast, and milk. Biotin has been recognized as an essential nutrient. Humans fulfill their biotin requirement through their diet through endogenous reutilization of biotin and perhaps through the capture of biotin generated in the intestinal flora. The utilization of biotin for covalent attachment to carboxylases and its reutilization through the release of carboxylase biotin after proteolytic degradation constitutes the biotin cycle. Biotin deficiency is associated with neurological manifestations, skin rash, hair loss, and metabolic disturbances that are thought to relate to the various carboxylase deficiencies (metabolic ketoacidosis with lactic acidosis). It has also been suggested that biotin deficiency is associated with protein malnutrition, and that marginal biotin deficiency in pregnant women may be teratogenic. Biotin acts as a carboxyl carrier in carboxylation reactions. There are four biotin-dependent carboxylases in mammals: those of propionyl-CoA (PCC), 3-methylcrotonyl-CoA (MCC), pyruvate (PC), and acetyl-CoA carboxylases (isoforms ACC-1 and ACC-2). All but ACC-2 are mitochondrial enzymes. The biotin moiety is covalently bound to the epsilon amino group of a lysine residue in each of these carboxylases in a domain 60-80 amino acids long. The domain is structurally similar among carboxylases from bacteria to mammals. Evidence is emerging that biotin participates in processes other than classical carboxylation reactions. Specifically, novel roles for biotin in cell signalling, gene expression, and chromatin structure have been identified in recent years. Human cells accumulate biotin by using both the sodium-dependent multivitamin transporter and monocarboxylate transporter 1. These transporters and other biotin-binding proteins partition biotin to compartments involved in biotin signalling: cytoplasm, mitochondria, and nuclei. The activity of cell signals such as biotinyl-AMP, Sp1 and Sp3, nuclear factor (NF)-kappaB, and receptor tyrosine kinases depends on biotin supply. Consistent with a role for biotin and its catabolites in modulating these cell signals, greater than 2000 biotin-dependent genes have been identified in various human tissues. Many biotin-dependent gene products play roles in signal transduction and localize to the cell nucleus, consistent with a role for biotin in cell signalling. Posttranscriptional events related to ribosomal activity and protein folding may further contribute to the effects of biotin on gene expression. Finally, research has shown that biotinidase and holocarboxylase synthetase mediate covalent binding of biotin to histones (DNA-binding proteins), affecting chromatin structure; at least seven biotinylation sites have been identified in human histones. Biotinylation of histones appears to play a role in cell proliferation, gene silencing, and the cellular response to DNA repair. Roles for biotin in cell signalling and chromatin structure are consistent with the notion that biotin has a unique significance in cell biology (PMID: 15992684, 16011464). Present in many foods; particularly rich sources include yeast, eggs, liver, certain fish (e.g. mackerel, salmon, sardines), soybeans, cauliflower and cow peas. Dietary supplement. Isolated from various higher plant sources, e.g. sweet corn seedlings and radish leaves An organic heterobicyclic compound that consists of 2-oxohexahydro-1H-thieno[3,4-d]imidazole having a valeric acid substituent attached to the tetrahydrothiophene ring. The parent of the class of biotins. [Raw Data] CB004_Biotin_pos_50eV_CB000006.txt [Raw Data] CB004_Biotin_pos_30eV_CB000006.txt [Raw Data] CB004_Biotin_pos_40eV_CB000006.txt [Raw Data] CB004_Biotin_pos_20eV_CB000006.txt [Raw Data] CB004_Biotin_pos_10eV_CB000006.txt [Raw Data] CB004_Biotin_neg_10eV_000006.txt [Raw Data] CB004_Biotin_neg_20eV_000006.txt Biosynthesis Biotin, synthesized in plants, is essential to plant growth and development.[22] Bacteria also synthesize biotin,[23] and it is thought that bacteria resident in the large intestine may synthesize biotin that is absorbed and utilized by the host organism.[18] Biosynthesis starts from two precursors, alanine and pimeloyl-CoA. These form 7-keto-8-aminopelargonic acid (KAPA). KAPA is transported from plant peroxisomes to mitochondria where it is converted to 7,8-diaminopelargonic acid (DAPA) with the help of the enzyme, BioA. The enzyme dethiobiotin synthetase catalyzes the formation of the ureido ring via a DAPA carbamate activated with ATP, creating dethiobiotin with the help of the enzyme, BioD, which is then converted into biotin which is catalyzed by BioB.[24] The last step is catalyzed by biotin synthase, a radical SAM enzyme. The sulfur is donated by an unusual [2Fe-2S] ferredoxin.[25] Depending on the species of bacteria, Biotin can be synthesized via multiple pathways.[24] Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin, vitamin B7 and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3]. Biotin (Vitamin B7) is a water-soluble B vitamin and serves as a coenzyme for five carboxylases in humans, involved in the synthesis of fatty acids, isoleucine, and valine, and in gluconeogenesis. Biotin is necessary for cell growth, the production of fatty acids, and the metabolism of fats and amino acids[1][2][3].

   

alpha-Tocopherol

2H-1-Benzopyran-6-ol, 3,4-dihydro-2,5,7,8-tetramethyl-2-(4,8,12-trimethyltridecyl)-, (2R*(4R*,8R*))-(+-)-

C29H50O2 (430.38106)


Alpha-tocopherol is a pale yellow, viscous liquid. (NTP, 1992) (R,R,R)-alpha-tocopherol is an alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. It has a role as an antioxidant, a nutraceutical, an antiatherogenic agent, an EC 2.7.11.13 (protein kinase C) inhibitor, an anticoagulant, an immunomodulator, an antiviral agent, a micronutrient, an algal metabolite and a plant metabolite. It is an enantiomer of a (S,S,S)-alpha-tocopherol. In 1922, vitamin E was demonstrated to be an essential nutrient. Vitamin E is a term used to describe 8 different fat soluble tocopherols and tocotrienols, alpha-tocopherol being the most biologically active. Vitamin E acts as an antioxidant, protecting cell membranes from oxidative damage. The antioxidant effects are currently being researched for use in the treatment of diseases causing bone loss, cardiovascular diseases, diabetes mellitus and associated comorbidities, eye diseases, inflammatory diseases (including skin conditions), lipid disorders, neurological diseases, and radiation damage. Though this research is so far inconclusive, vitamin E remains a popular supplement and is generally considered safe by the FDA. Vitamin E is a natural product found in Monteverdia ilicifolia, Calea jamaicensis, and other organisms with data available. Alpha-Tocopherol is the orally bioavailable alpha form of the naturally-occurring fat-soluble vitamin E, with potent antioxidant and cytoprotective activities. Upon administration, alpha-tocopherol neutralizes free radicals, thereby protecting tissues and organs from oxidative damage. Alpha-tocopherol gets incorporated into biological membranes, prevents protein oxidation and inhibits lipid peroxidation, thereby maintaining cell membrane integrity and protecting the cell against damage. In addition, alpha-tocopherol inhibits the activity of protein kinase C (PKC) and PKC-mediated pathways. Alpha-tocopherol also modulates the expression of various genes, plays a key role in neurological function, inhibits platelet aggregation and enhances vasodilation. Compared with other forms of tocopherol, alpha-tocopherol is the most biologically active form and is the form that is preferentially absorbed and retained in the body. A generic descriptor for all tocopherols and tocotrienols that exhibit alpha-tocopherol activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of isoprenoids. See also: Alpha-Tocopherol Acetate (is active moiety of); Tocopherol (related); Vitamin E (related) ... View More ... alpha-Tocopherol is traditionally recognized as the most active form of vitamin E in humans and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha-Tocopherol. Natural vitamin E exists in eight different forms or isomers: four tocopherols and four tocotrienols. In foods, the most abundant sources of vitamin E are vegetable oils such as palm oil, sunflower, corn, soybean, and olive oil. Nuts, sunflower seeds, and wheat germ are also good sources. Constituent of many vegetable oils such as soya and sunflower oils. Dietary supplement and nutrient. Nutriceutical with anticancer and antioxidant props. Added to fats and oils to prevent rancidity. The naturally-occurring tocopherol is a single stereoisomer; synthetic forms are a mixture of all eight possible isomers An alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. α-Tocopherol (alpha-tocopherol) is a type of vitamin E. Its E number is "E307". Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Compared to the others, α-tocopherol is preferentially absorbed and accumulated in humans. Vitamin E is found in a variety of tissues, being lipid-soluble, and taken up by the body in a wide variety of ways. The most prevalent form, α-tocopherol, is involved in molecular, cellular, biochemical processes closely related to overall lipoprotein and lipid homeostasis. Ongoing research is believed to be "critical for manipulation of vitamin E homeostasis in a variety of oxidative stress-related disease conditions in humans."[2] One of these disease conditions is the α-tocopherol role in the use by malaria parasites to protect themselves from the highly oxidative environment in erythrocytes.[3] DL-α-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=16826-11-2 (retrieved 2024-06-29) (CAS RN: 10191-41-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].

   

Pyridoxate

3-hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxylic acid

C8H9NO4 (183.0531554)


4-Pyridoxic acid is a member of the class of compounds known as methylpyridines. More specifically it is a 2-methylpyridine derivative substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) and is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced even further in persons with a riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via the enzyme known as 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four-electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide (NAD) as a cofactor. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) which is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced in persons with riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide as a cofactor. [HMDB] Vitamin B6 is one of the B vitamins, and thus an essential nutrient.[1][2][3][4] The term refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.[1][2][3] Plants synthesize pyridoxine as a means of protection from the UV-B radiation found in sunlight[5] and for the role it plays in the synthesis of chlorophyll.[6] Animals cannot synthesize any of the various forms of the vitamin, and hence must obtain it via diet, either of plants, or of other animals. There is some absorption of the vitamin produced by intestinal bacteria, but this is not sufficient to meet dietary needs. For adult humans, recommendations from various countries' food regulatory agencies are in the range of 1.0 to 2.0 milligrams (mg) per day. These same agencies also recognize ill effects from intakes that are too high, and so set safe upper limits, ranging from as low as 25 mg/day to as high as 100 mg/day depending on the country. Beef, pork, fowl and fish are generally good sources; dairy, eggs, mollusks and crustaceans also contain vitamin B6, but at lower levels. There is enough in a wide variety of plant foods so that a vegetarian or vegan diet does not put consumers at risk for deficiency.[7] Dietary deficiency is rare. Classic clinical symptoms include rash and inflammation around the mouth and eyes, plus neurological effects that include drowsiness and peripheral neuropathy affecting sensory and motor nerves in the hands and feet. In addition to dietary shortfall, deficiency can be the result of anti-vitamin drugs. There are also rare genetic defects that can trigger vitamin B6 deficiency-dependent epileptic seizures in infants. These are responsive to pyridoxal 5'-phosphate therapy.[8] 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

Tetrahydrobiopterin

(-)-(6R)-2-Amino-6-((1R,2S)-1,2-dihydroxypropyl)-5,6,7,8-tetrahydro-4(3H)-pteridinone

C9H15N5O3 (241.11748400000002)


Tetrahydrobiopterin (CAS: 17528-72-2), also known as BH4, is an essential cofactor in the synthesis of neurotransmitters and nitric oxide (PMID: 16946131). In fact, it is used by all three human nitric-oxide synthases (NOS) eNOS, nNOS, and iNOS as well as the enzyme glyceryl-ether monooxygenase. It is also essential in the conversion of phenylalanine into tyrosine by the enzyme phenylalanine-4-hydroxylase; the conversion of tyrosine into L-dopa by the enzyme tyrosine hydroxylase; and the conversion of tryptophan into 5-hydroxytryptophan via tryptophan hydroxylase. Specifically, tetrahydrobiopterin is a cofactor for tryptophan 5-hydroxylase 1, tyrosine 3-monooxygenase, and phenylalanine hydroxylase, all of which are essential for the formation of the neurotransmitters dopamine, noradrenaline, and adrenaline. Tetrahydrobiopterin has been proposed to be involved in the promotion of neurotransmitter release in the brain and the regulation of human melanogenesis. A defect in BH4 production and/or a defect in the enzyme dihydropteridine reductase (DHPR) causes phenylketonuria type IV, as well as dopa-responsive dystonias. BH4 is also implicated in Parkinsons disease, Alzheimers disease, and depression. Tetrahydrobiopterin is present in probably every cell or tissue of higher animals. On the other hand, most bacteria, fungi and plants do not synthesize tetrahydrobiopterin (Wikipedia). A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AX - Various alimentary tract and metabolism products C26170 - Protective Agent > C275 - Antioxidant Tetrahydrobiopterin ((Rac)-Sapropterin) is a cofactor of the aromatic amino acid hydroxylases enzymes and also acts as an essential cofactor for all nitric oxide synthase (NOS) isoforms.

   

Biocytin

(3AS-(3aalpha,4beta,6aalpha))-N(6)-(5-(hexahydro-2-oxo-1H-thieno(3,4-D)imidazol-4-yl)-1-oxopentyl)-L-lysine

C16H28N4O4S (372.18311680000005)


Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID: 8930409, 1384763, 2479450) [HMDB] Biocytin is a naturally occurring low molecular weight analog of biotin, and a primary source of this essential metabolite for mammals. Biotinidase acts as a hydrolase by cleaving biocytin and biotinyl-peptides, thereby liberating biotin for reutilization. Mammals cannot synthesize biotin and, therefore, derive the vitamin from dietary sources or from the endogenous turnover of the carboxylases. Free biotin can readily enter the biotin pool, whereas holocarboxylases or other biotin-containing proteins must first be degraded proteolytically to biocytin (biotinyl-e-lysine) or biotinyl-peptides. Biocytin is also an especially versatile marker for neuroanatomical investigations, shown that may have multiple applications, especially for labeling neurons. (PMID:8930409, 1384763, 2479450).

   

Pyridoxal

3-Hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxaldehyde

C8H9NO3 (167.0582404)


Pyridoxal is a pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. Pyridoxal, also known as pyridoxaldehyde, belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2, 3, 4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal is one form of vitamin B6. Pyridoxal exists in all living species, ranging from bacteria to humans. In humans, pyridoxal is involved in glycine and serine metabolism. Pyridoxal has been detected, but not quantified in several different foods, such as sourdoughs, lichee, arctic blackberries, watercress, and cottonseeds. Some medically relevant bacteria, such as those in the genera Granulicatella and Abiotrophia, require pyridoxal for growth. This nutritional requirement can lead to the culture phenomenon of satellite growth. In in vitro culture, these pyridoxal-dependent bacteria may only grow in areas surrounding colonies of bacteria from other genera ("satellitism") that are capable of producing pyridoxal. Pridoxal has a role as a cofactor, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.

   

Pyridoxamine

4-(AMINOMETHYL)-5-(hydroxymethyl)-2-methylpyridin-3-ol

C8H12N2O2 (168.0898732)


Pyridoxamine is one form of vitamin B6. Chemically it is based on a pyridine ring structure, with hydroxyl, methyl, aminomethyl, and hydroxymethyl substituents. It differs from pyridoxine by the substituent at the 4-position. The hydroxyl at position 3 and aminomethyl group at position 4 of its ring endow pyridoxamine with a variety of chemical properties, including the scavenging of free radical species and carbonyl species formed in sugar and lipid degradation and chelation of metal ions that catalyze Amadori reactions. Pyridoxamine, also known as PM, belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Within humans, pyridoxamine participates in a number of enzymatic reactions. In particular, pyridoxamine can be converted into pyridoxal; which is mediated by the enzyme pyridoxine-5-phosphate oxidase. In addition, pyridoxamine can be converted into pyridoxamine 5-phosphate; which is catalyzed by the enzyme pyridoxal kinase. Pyridoxamine also inhibits the formation of advanced lipoxidation endproducts during lipid peroxidation reactions by reaction with dicarbonyl intermediates. In humans, pyridoxamine is involved in vitamin B6 metabolism. Outside of the human body, pyridoxamine has been detected, but not quantified in several different foods, such as nutmegs, sparkleberries, fennels, turmerics, and swiss chards. Pyridoxamine inhibits the Maillard reaction and can block the formation of advanced glycation endproducts, which are associated with medical complications of diabetes. Pyridoxamine is hypothesized to trap intermediates in the formation of Amadori products released from glycated proteins, possibly preventing the breakdown of glycated proteins by disrupting the catalysis of this process through disruptive interactions with the metal ions crucial to the redox reaction. One research study found that pyridoxamine specifically reacts with the carbonyl group in Amadori products, but inhibition of post-Amadori reactions (that can lead to advanced glycation endproducts) is due in much greater part to the metal chelation effects of pyridoxamine. The 4-aminomethyl form of vitamin B6. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate. -- Pubchem; Pyridoxamine is one of the compounds that can be called vitamin B6, along with Pyridoxal and Pyridoxine. -- Wikipedia [HMDB]. Pyridoxamine is found in many foods, some of which are cucumber, fox grape, millet, and teff. Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P116 Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

Pyridoxamine 5'-phosphate

{[4-(aminomethyl)-5-hydroxy-6-methylpyridin-3-yl]methoxy}phosphonic acid

C8H13N2O5P (248.05620580000001)


Pyridoxamine 5-phosphate belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. Vitamin B6 is a water-soluble vitamin. The three major forms of vitamin B6 are pyridoxine (also known as pyridoxol), pyridoxal, and pyridoxamine, which are all converted in the liver to pyridoxal 5-phosphate (PLP) a cofactor in many reactions of amino acid metabolism. PLP also is necessary for the enzymatic reaction governing the release of glucose from glycogen. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. KEIO_ID P113; [MS3] KO009146 KEIO_ID P113; [MS2] KO009143 KEIO_ID P113

   

Pyridoxine

3-Hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine

C8H11NO3 (169.0738896)


Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

S-adenosylhomocysteine (SAH)

(2S)-2-Amino-4-({[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxytetrahydrofuran-2-yl]methyl}sulphanyl)butanoic acid

C14H20N6O5S (384.12158300000004)


S-Adenosyl-L-homocysteine (SAH) is formed by the demethylation of S-adenosyl-L-methionine. S-Adenosylhomocysteine (AdoHcy or SAH) is also the immediate precursor of all of the homocysteine produced in the body. The reaction is catalyzed by S-adenosylhomocysteine hydrolase and is reversible with the equilibrium favoring formation of SAH. In vivo, the reaction is driven in the direction of homocysteine formation by the action of the enzyme adenosine deaminase which converts the second product of the S-adenosylhomocysteine hydrolase reaction, adenosine, to inosine. Except for methyl transfer from betaine and from methylcobalamin in the methionine synthase reaction, SAH is the product of all methylation reactions that involve S-adenosylmethionine (SAM) as the methyl donor. Methylation is significant in epigenetic regulation of protein expression via DNA and histone methylation. The inhibition of these SAM-mediated processes by SAH is a proven mechanism for metabolic alteration. Because the conversion of SAH to homocysteine is reversible, with the equilibrium favoring the formation of SAH, increases in plasma homocysteine are accompanied by an elevation of SAH in most cases. Disturbances in the transmethylation pathway indicated by abnormal SAH, SAM, or their ratio have been reported in many neurodegenerative diseases, such as dementia, depression, and Parkinsons disease (PMID:18065573, 17892439). Therefore, when present in sufficiently high levels, S-adenosylhomocysteine can act as an immunotoxin and a metabotoxin. An immunotoxin disrupts, limits the function, or destroys immune cells. A metabotoxin is an endogenous metabolite that causes adverse health effects at chronically high levels. Chronically high levels of S-adenosylhomocysteine are associated with S-adenosylhomocysteine (SAH) hydrolase deficiency and adenosine deaminase deficiency. S-Adenosylhomocysteine forms when there are elevated levels of homocysteine and adenosine. S-Adenosyl-L-homocysteine is a potent inhibitor of S-adenosyl-L-methionine-dependent methylation reactions. It is toxic to immature lymphocytes and can lead to immunosuppression (PMID:221926). S-adenosylhomocysteine, also known as adohcy or sah, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. S-adenosylhomocysteine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). S-adenosylhomocysteine can be found in a number of food items such as rapini, european plum, rambutan, and pepper (c. pubescens), which makes S-adenosylhomocysteine a potential biomarker for the consumption of these food products. S-adenosylhomocysteine can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout most human tissues. S-adenosylhomocysteine exists in all living species, ranging from bacteria to humans. In humans, S-adenosylhomocysteine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(14:0/18:3(9Z,12Z,15Z)), phosphatidylcholine biosynthesis PC(22:4(7Z,10Z,13Z,16Z)/22:0), phosphatidylcholine biosynthesis PC(20:3(5Z,8Z,11Z)/22:2(13Z,16Z)), and phosphatidylcholine biosynthesis PC(18:3(6Z,9Z,12Z)/22:5(7Z,10Z,13Z,16Z,19Z)). S-adenosylhomocysteine is also involved in several metabolic disorders, some of which include 3-phosphoglycerate dehydrogenase deficiency, hawkinsinuria, non ketotic hyperglycinemia, and tyrosine hydroxylase deficiency. Moreover, S-adenosylhomocysteine is found to be associated with neurodegenerative disease and parkinsons disease. S-adenosylhomocysteine is a non-carcinogenic (not listed by IARC) potentially toxic compound. S-Adenosyl-L-homocysteine (SAH) is an amino acid derivative used in several metabolic pathways in most organisms. It is an intermediate in the synthesis of cysteine and adenosine . [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Adenosine (exact mass = 267.09675) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. [Spectral] S-Adenosyl-L-homocysteine (exact mass = 384.12159) and Cytidine (exact mass = 243.08552) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from PDB, Protein Data Bank, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2]. SAH (S-Adenosylhomocysteine) is an amino acid derivative and a modulartor in several metabolic pathways. It is an intermediate in the synthesis of cysteine and adenosine[1]. SAH is an inhibitor for METTL3-METTL14 heterodimer complex (METTL3-14) with an IC50 of 0.9 μM[2].

   

Isopentenyl pyrophosphate

({hydroxy[(3-methylbut-3-en-1-yl)oxy]phosphoryl}oxy)phosphonic acid

C5H12O7P2 (246.0058262)


Isopentenyl pyrophosphate, also known as delta3-isopentenyl diphosphate or ipp, is a member of the class of compounds known as isoprenoid phosphates. Isoprenoid phosphates are prenol lipids containing a phosphate group linked to an isoprene (2-methylbuta-1,3-diene) unit. Thus, isopentenyl pyrophosphate is considered to be an isoprenoid lipid molecule. Isopentenyl pyrophosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Isopentenyl pyrophosphate can be found in a number of food items such as american butterfish, conch, tea leaf willow, and butternut, which makes isopentenyl pyrophosphate a potential biomarker for the consumption of these food products. Isopentenyl pyrophosphate can be found primarily in human spleen tissue. Isopentenyl pyrophosphate exists in all living species, ranging from bacteria to humans. In humans, isopentenyl pyrophosphate is involved in several metabolic pathways, some of which include ibandronate action pathway, lovastatin action pathway, fluvastatin action pathway, and pravastatin action pathway. Isopentenyl pyrophosphate is also involved in several metabolic disorders, some of which include hypercholesterolemia, hyper-igd syndrome, lysosomal acid lipase deficiency (wolman disease), and wolman disease. Isopentenyl pyrophosphate (IPP, isopentenyl diphosphate, or IDP) is an isoprenoid precursor. IPP is an intermediate in the classical, HMG-CoA reductase pathway (commonly called the mevalonate pathway) and in the non-mevalonate MEP pathway of isoprenoid precursor biosynthesis. Isoprenoid precursors such as IPP, and its isomer DMAPP, are used by organisms in the biosynthesis of terpenes and terpenoids . Isopentenyl pyrophosphate, IPP or isopentenyl diphosphate, is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. IPP is formed from Mevalonate-5-pyrophosphate, in a reaction catalyzed by the enzyme mevalonate-5-pyrophosphate decarboxylase. (wikipedia).

   

Farnesyl pyrophosphate

{[hydroxy({[(2E,6E)-3,7,11-trimethyldodeca-2,6,10-trien-1-yl]oxy})phosphoryl]oxy}phosphonic acid

C15H28O7P2 (382.1310198)


Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia [HMDB]. Farnesyl pyrophosphate is found in many foods, some of which are kumquat, macadamia nut, sweet bay, and agave. Farnesyl pyrophosphate is an intermediate in the HMG-CoA reductase pathway used by organisms in the biosynthesis of terpenes and terpenoids. -- Wikipedia.

   

Nicotinamide adenine dinucleotide phosphate

{[(2R,3R,4R,5R)-2-(6-amino-9H-purin-9-yl)-5-[({[({[(2R,3S,4R,5R)-5-(3-carbamoyl-1,4-dihydropyridin-1-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-4-hydroxyoxolan-3-yl]oxy}phosphonic acid

C21H30N7O17P3 (745.0911)


NADPH is the reduced form of NADP+, and NADP+ is the oxidized form of NADPH. Nicotinamide adenine dinucleotide phosphate (NADP) is a coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled with a pyrophosphate linkage to 5-phosphate adenosine 2,5-bisphosphate. NADP serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). NADP is formed through the addition of a phosphate group to the 2 position of the adenosyl nucleotide through an ester linkage (Dorland, 27th ed). This extra phosphate is added by the enzyme NAD+ kinase and removed via NADP+ phosphatase. NADP is also known as TPN (triphosphopyridine nucleotide) and it is an important cofactor used in anabolic reactions in all forms of cellular life. Examples include the Calvin cycle, cholesterol synthesis, fatty acid elongation, and nucleic acid synthesis (Wikipedia). Nicotinamide adenine dinucleotide phosphate. A coenzyme composed of ribosylnicotinamide 5-phosphate (NMN) coupled by pyrophosphate linkage to the 5-phosphate adenosine 2,5-bisphosphate. It serves as an electron carrier in a number of reactions, being alternately oxidized (NADP+) and reduced (NADPH). (Dorland, 27th ed.) [HMDB]. NADPH is found in many foods, some of which are american pokeweed, rice, ginseng, and ostrich fern. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Retinal

(2E,4E,6E,8E)-3,7-dimethyl-9-(2,6,6-trimethylcyclohex-1-en-1-yl)nona-2,4,6,8-tetraenal

C20H28O (284.2140038)


A carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration. [HMDB]. Retinal is found in many foods, some of which are flaxseed, pepper (c. baccatum), climbing bean, and other soy product. Retinal is a carotenoid constituent of visual pigments. It is the oxidized form of retinol which functions as the active component of the visual cycle. It is bound to the protein opsin forming the complex rhodopsin. When stimulated by visible light, the retinal component of the rhodopsin complex undergoes isomerization at the 11-position of the double bond to the cis-form; this is reversed in "dark" reactions to return to the native trans-configuration. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids CONFIDENCE standard compound; INTERNAL_ID 142

   

Menadione

Vitamin K3: 1,4-dihydro-1,4-dioxo-2-methylnaphthalene

C11H8O2 (172.0524268)


Menadione is a synthetic naphthoquinone without the isoprenoid side chain and biological activity, but can be converted to active vitamin K2, menaquinone, after alkylation in vivo. -- Pubchem; Despite the fact that it can serve as a precursor to various types of vitamin K, menadione is generally not used as a nutritional supplement. Large doses of menadione have been reported to cause adverse outcomes including hemolytic anemia due to G6PD deficiency, neonatal brain or liver damage, or neonatal death in some cases. Moreover, menadione supplements have been banned by the FDA because of their high toxicity. It is sometimes called vitamin K3, although derivatives of naphthoquinone without the sidechain in the 3-position cannot exert all the functions of the K vitamins. Menadione is a vitamin precursor of K2 which utilizes alkylation in the liver to yield menaquinones (MK-n, n=1-13; K2 vitamers), and hence, is better classified as a provitamin. -- Wikipedia. B - Blood and blood forming organs > B02 - Antihemorrhagics > B02B - Vitamin k and other hemostatics > B02BA - Vitamin k D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics D050299 - Fibrin Modulating Agents > D000933 - Antifibrinolytic Agents D018977 - Micronutrients > D014815 - Vitamins Prothrombogenic vitamin (synthetic) Menadione is a naphthoquinone that is converted into active vitamin K2 in the body. Menadione is a naphthoquinone that is converted into active vitamin K2 in the body.

   

Thiamine

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-hydroxyethyl)-4-methyl-1,3-thiazol-3-ium

C12H17N4OS (265.1123012)


Thiamine, also known as aneurin or vitamin B1, belongs to the class of organic compounds known as thiamines. Thiamines are compounds containing a thiamine moiety, which is structurally characterized by a 3-[(4-Amino-2-methyl-pyrimidin-5-yl)methyl]-4-methyl-thiazol-5-yl backbone. Thiamine exists in all living species, ranging from bacteria to plants to humans. Thiamine biosynthesis occurs in bacteria, some protozoans, plants, and fungi. Thiamine is a vitamin and an essential nutrient meaning the body cannot synthesize it, and it must be obtained from the diet. It is soluble in water and insoluble in alcohol. Thiamine decomposes if heated. Thiamine was first discovered in 1897 by Umetaro Suzuki in Japan when researching how rice bran cured patients of Beriberi. Thiamine was the first B vitamin to be isolated in 1926 and was first made in 1936. Thiamine plays a key role in intracellular glucose metabolism and it is thought that thiamine inhibits the effect of glucose and insulin on arterial smooth muscle cell proliferation. Thiamine plays an important role in helping the body convert carbohydrates and fat into energy. It is essential for normal growth and development and helps to maintain proper functioning of the heart and the nervous and digestive systems. Thiamine cannot be stored in the body; however, once absorbed, the vitamin is concentrated in muscle tissue. Thiamine has antioxidant, erythropoietic, cognition-and mood-modulatory, antiatherosclerotic, putative ergogenic, and detoxification activities. Natural derivatives of thiamine, such as thiamine monophosphate (ThMP), thiamine diphosphate (ThDP), also sometimes called thiamine pyrophosphate (TPP), thiamine triphosphate (ThTP), and adenosine thiamine triphosphate (AThTP), act as coenzymes in addition to performing unique biological functions. Thiamine deficiency can lead to beriberi, Wernicke–Korsakoff syndrome, optic neuropathy, Leighs disease, African seasonal ataxia (or Nigerian seasonal ataxia), and central pontine myelinolysis. In Western countries, thiamine deficiency is seen mainly in chronic alcoholism. Thiamine supplements or thiamine therapy can be used for the treatment of a number of disorders including thiamine and niacin deficiency states, Korsakovs alcoholic psychosis, Wernicke-Korsakov syndrome, delirium, and peripheral neuritis. In humans, thiamine is involved in the metabolic disorder called 2-methyl-3-hydroxybutyryl-CoA dehydrogenase deficiency. Outside of the human body, Thiamine is found in high quantities in whole grains, legumes, pork, fruits, and yeast and fish. Grain processing removes much of the thiamine content in grains, so in many countries cereals and flours are enriched with thiamine. Thiamine is an essential vitamin. It is found in many foods, some of which are atlantic croaker, wonton wrapper, cereals and cereal products, and turmeric. A - Alimentary tract and metabolism > A11 - Vitamins > A11D - Vitamin b1, plain and in combination with vitamin b6 and b12 > A11DA - Vitamin b1, plain Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID T056; [MS2] KO009294 KEIO_ID T056

   

1-Methylnicotinamide

N(1)-Methylnicotinamide iodide, 3-(aminocarbonyl-13C)-labeled

[C7H9N2O]+ (137.0714844)


1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). [HMDB] 1-Methylnicotinamide is a metabolite of nicotinamide and is produced primarily in the liver. It has anti-inflammatory properties (PMID 16197374). It is a product of nicotinamide N-methyltransferase [EC 2.1.1.1] in the pathway of nicotinate and nicotinamide metabolism (KEGG). 1-Methylnicotinamide may be an endogenous activator of prostacyclin production and thus may regulate thrombotic as well as inflammatory processes in the cardiovascular system (PMID: 17641676). 1-Methylnicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=3106-60-3 (retrieved 2024-08-06) (CAS RN: 3106-60-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

5'-Deoxyadenosine

(2R,3R,4S,5R)-2-(6-amino-9H-purin-9-yl)-5-methyloxolane-3,4-diol

C10H13N5O3 (251.10183480000003)


5-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. Oxidized nucleosides represent excellent biomarkers for determining the extent of damage in genetic material, which has long been of interest in understanding the mechanism of aging, neurodegenerative diseases, and carcinogenesis. (PMID 15116424). The normal form of deoxyadenosine used in DNA synthesis and repair is 2-deoxyadenosine where the hydroxyl group (-OH) is at the 2 position of its ribose sugar moiety. 5-deoxyadenosine has its hydroxyl group at the 5 position of the ribose sugar. [HMDB] 5-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. Oxidized nucleosides represent excellent biomarkers for determining the extent of damage in genetic material, which has long been of interest in understanding the mechanism of aging, neurodegenerative diseases, and carcinogenesis. (PMID 15116424). The normal form of deoxyadenosine used in DNA synthesis and repair is 2-deoxyadenosine where the hydroxyl group (-OH) is at the 2 position of its ribose sugar moiety. 5-deoxyadenosine has its hydroxyl group at the 5 position of the ribose sugar. KEIO_ID D082; [MS2] KO008948 KEIO_ID D082 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1]. 5'-Deoxyadenosine is an oxidized nucleoside found in the urine of normal subjects. 5'-Deoxyadenosine shows anti-orthopoxvirus activity[1].

   

NADP+

beta-Nicotinamide adenine dinucleotide phosphate oxidized form sodium salt hydrate

[C21H29N7O17P3]+ (744.0832754)


[Spectral] NADP+ (exact mass = 743.07545) and NAD+ (exact mass = 663.10912) were not completely separated on HPLC under the present analytical conditions as described in AC$XXX. Additionally some of the peaks in this data contains dimers and other unidentified ions. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nicotinic acid mononucleotide

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1lambda5-pyridin-1-ylium

[C11H15NO9P]+ (336.048441)


Nicotinic acid mononucleotide, also known as nicotinate ribonucleotide, belongs to the class of organic compounds known as nicotinic acid nucleotides. These are pyridine nucleotides in which the pyridine base is nicotinic acid or a derivative thereof. Nicotinic acid mononucleotide is an extremely weak basic (essentially neutral) compound (based on its pKa). Nicotinic acid mononucleotide an intermediate in the cofactor biosynthesis and the nicotinate and nicotinamide metabolism pathways. It is a substrate for nicotinamide riboside kinase, ectonucleotide pyrophosphatase/phosphodiesterase, nicotinamide mononucleotide adenylyltransferase, 5-nucleotidase, nicotinate-nucleotide pyrophosphorylase, and 5(3)-deoxyribonucleotidase. Nicotinic acid mononucleotide is an intermediate in the metabolism of Nicotinate and nicotinamide. It is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 1, Nicotinamide mononucleotide adenylyltransferase 3, Cytosolic 5-nucleotidase IA, Cytosolic 5-nucleotidase IB, Nicotinate-nucleotide pyrophosphorylase, 5(3)-deoxyribonucleotidase (cytosolic type), Cytosolic purine 5-nucleotidase, Nicotinamide mononucleotide adenylyltransferase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 3, 5-nucleotidase, 5(3)-deoxyribonucleotidase (mitochondrial) and Nicotinamide mononucleotide adenylyltransferase 1. [HMDB] NaMN is the most common mononucleotide intermediate (a hub) in NAD biogenesis. For example, in E. coli all three pyridine precursors are converted into NaMN (Table 1 and Figure 3(a)). Qa produced by the de novo Asp–DHAP pathway (genes nadB and nadA) is converted into NaMN by QAPRT (gene nadC). Salvage of both forms of niacin proceeds via NAPRT (gene pncB) either directly upon or after deamidation by NMDSE (gene pncA). Overall, more than 90\% of approximately 680 analyzed bacterial genomes contain at least one of the pathways leading to the formation of NaMN. Most of them (∼480 genomes) have the entire set of nadBAC genes for NaMN de novo synthesis from Asp that are often clustered on the chromosome and/or are co-regulated by the same transcription factors (see Section 7.08.3.1.2). Among the examples provided in Table 1, F. tularensis (Figure 4(c)) has all three genes of this de novo pathway forming a single operon-like cluster and supporting the growth of this organism in the absence of any pyridine precursors in the medium. More than half the genomes with the Asp–DHAP pathway also contain a deamidating niacin salvage pathway (genes pncAB) as do many representatives of the α-, β-, and γ-Proteobacteria, Actinobacteria, and Bacillus/Clostridium group. As already emphasized, the genomic reconstruction approach provides an assessment of the metabolic potential of an organism, which may or may not be realized under given conditions. For example, E. coli and B. subtilis can utilize both de novo and PncAB Nm salvage pathways under the same growth conditions, whereas in M. tuberculosis (having the same gene pattern) the latter pathway was considered nonfunctional, so that the entire NAD pool is generated by the de novo NadABC route. However, a recent study demonstrated the functional activity of the Nm salvage pathway in vivo, under hypoxic conditions in infected macrophages.221 This study also implicated the two downstream enzymes of NAD synthesis (NAMNAT and NADSYN) as attractive chemotherapeutic targets to treat acute and latent forms of tuberculosis. In approximately 100 species, including many Cyanobacteria (e.g., Synechococcus spp.), Bacteroidetes (e.g., Chlorobium spp.) and Proteobacteria (e.g., Caulobacter crescentus, Zymomonas mobilis, Desulfovibrio spp., and Shewanella spp. representing α-, β-, δ-, and γ-groups, respectively) the Asp–DHAP pathway is the only route to NAD biogenesis. Among them, nearly all Helicobacter spp. (except H. hepaticus), contain only the two genes nadA and nadC but lack the first gene of the pathway (nadB), which is a likely subject of nonorthologous gene replacement. One case of NadB (ASPOX) replacement by the ASPDH enzyme in T. maritima (and methanogenic archaea) was discussed in Section 7.08.2.1. However, no orthologues of the established ASPDH could be identified in Helicobacter spp. as well as in approximately 15 other diverse bacterial species that have the nadAC but lack the nadB gene (e.g., all analyzed Corynebacterium spp. except for C. diphtheriae). Therefore, the identity of the ASPOX or ASPDH enzyme in these species is still unknown, representing one of the few remaining cases of ‘locally missing genes’220 in the NAD subsystem. All other bacterial species contain either both the nadA and nadB genes (plus nadC) or none. In a limited number of bacteria (∼20 species), mostly in the two distant groups of Xanthomonadales (within γ-Proteobacteria) and Flavobacteriales (within Bacteroidetes), the Asp–DHAP pathway of Qa synthesis is replaced by the Kyn pathway. As described in Section 7.08.2.1.2, four out of five enzymes (TRDOX, KYNOX, KYNSE, and HADOX) in the bacterial version of this pathway are close homologues of the respective eukaryotic enzymes, whereas the KYNFA gene is a subject of multiple nonorthologous replacements. Although the identity of one alternative form of KYNFA (gene kynB) was established in a group of bacteria that have a partial Kyn pathway for Trp degradation to anthranilate (e.g., in P. aeruginosa or B. cereus57), none of the known KYNFA homologues are present in Xanthomonadales or Flavobacteriales. In a few species (e.g., Salinispora spp.) a complete gene set of the Kyn pathway genes co-occurs with a complete Asp–DHAP pathway. Further experiments would be required to establish to what extent and under what conditions these two pathways contribute to Qa formation. As discussed, the QAPRT enzyme is shared by both de novo pathways, and a respective gene, nadC is always found in the genomes containing one or the other pathway. Similarly, gene nadC always co-occurs with Qa de novo biosynthetic genes with one notable exception of two groups of Streptococci, S. pneumonaie and S. pyogenes. Although all other members of the Lactobacillales group also lack the Qa de novo biosynthetic machinery and rely entirely on niacin salvage, only these two human pathogens contain a nadC gene. The functional significance of this ‘out of context’ gene is unknown, but it is tempting to speculate that it may be involved in a yet-unknown pathway of Qa salvage from the human host. Among approximately 150 bacterial species that lack de novo biosynthesis genes and rely on deamidating salvage of niacin (via NAPRT), the majority (∼100) are from the group of Firmicutes. Such a functional variant (illustrated for Staphylococcus aureus in Figure 4(b)) is characteristic of many bacterial pathogens, both Gram-positive and Gram-negative (e.g., Brucella, Bordetella, and Campylobacter spp. from α-, β-, and δ-Proteobacteria, Borrelia, and Treponema spp. from Spirochaetes). Most of the genomes in this group contain both pncA and pncB genes that are often clustered on the chromosome and/or are co-regulated (see Section 7.08.3.1.2). In some cases (e.g., within Mollicutes and Spirochaetales), only the pncB, but not the pncA gene, can be reliably identified, suggesting that either of these species can utilize only the deamidated form of niacin (Na) or that some of them contain an alternative (yet-unknown) NMASE. Although the nondeamidating conversion of Nm into NMN (via NMPRT) appears to be present in approximately 50 bacterial species (mostly in β- and γ-Proteobacteria), it is hardly ever the only route of NAD biogenesis in these organisms. The only possible exception is observed in Mycoplasma genitalium and M. pneumoniae that contain the nadV gene as the only component of pyridine mononucleotide biosynthetic machinery. In some species (e.g., in Synechocystes spp.), the NMPRT–NMNAT route is committed primarily to the recycling of endogenous Nm. On the other hand, in F. tularensis (Figure 4(c)), NMPRT (gene nadV) together with NMNAT (of the nadM family) constitute the functional nondeamidating Nm salvage pathway as it supports the growth of the nadE′-mutant on Nm but not on Na (L. Sorci et al., unpublished). A similar nondeamidating Nm salvage pathway implemented by NMPRT and NMNAT (of the nadR family) is present in some (but not all) species of Pasteurellaceae in addition to (but never instead of) the RNm salvage pathway (see below), as initially demonstrated for H. ducreyi.128 A two-step conversion of NaMN into NAD via a NaAD intermediate (Route I in Figure 2) is present in the overwhelming majority of bacteria. The signature enzyme of Route I, NAMNAT of the NadD family is present in nearly all approximately 650 bacterial species that are expected to generate NaMN via de novo or salvage pathways (as illustrated by Figures 3(a) and 3(b)). All these species, without a single exception, also contain NADSYN (encoded by either a short or a long form of the nadE gene), which is required for this route. The species that lack the NadD/NadE signature represent several relatively rare functional variants, including: 1. Route I of NAD synthesis (NaMN → NaAD → NAD) variant via a bifunctional NAMNAT/NMNAT enzyme of the NadM family is common for archaea (see Section 7.08.3.2), but it appears to be present in only a handful of bacteria, such as Acinetobacter, Deinococcus, and Thermus groups. Another unusual feature of the latter two groups is the absence of the classical NADKIN, a likely subject of a nonorthologous replacement that remains to be elucidated. 2. Route II of NAD synthesis (NaMN → NMN → NAD). This route is implemented by a combination of the NMNAT of either the NadM family (as in F. tularensis) or the NadR family (as in M. succinoproducens and A. succinogenes) with NMNSYN of the NadE′ family. The case of F. tularensis described in Section 7.08.2.4 is illustrated in Figure 3(b). The rest of the NAD biosynthetic machinery in both species from the Pasteurellaceae group, beyond the shared Route II, is remarkably different from that in F. tularensis. Instead of de novo biosynthesis, they harbor a Na salvage pathway via NAPRT encoded by a pncB gene that is present in a chromosomal cluster with nadE′. Neither of these two genes are present in other Pasteurellaceae that lack the pyridine carboxylate amidation machinery (see below). 3. Salvage of RNm (RNm → NMN → NAD). A genomic signature of this pathway, a combination of the PnuC-like transporter and a bifunctional NMNAT/RNMKIN of the NadR family, is present in many Enterobacteriaceae and in several other diverse species (e.g., in M. tuberculosis). However, in H. influenzae (Figure 3(d)) and related members of Pasteurellaceae, it is the only route of NAD biogenesis. As shown in Table 1, H. influenzae as well as many other members of this group have lost nearly all components of the rich NAD biosynthetic machinery that are present in their close phylogenetic neighbors (such as E. coli and many other Enterobacteriaceae). This pathway is an ultimate route for utilization of the so called V-factors (NADP, NAD, NMN, or RNm) that are required to support growth of H. influenzae. It was established that all other V-factors are degraded to RNm by a combination of periplasmic- and membrane-associated hydrolytic enzymes.222 Although PnuC was initially considered an NMN transporter,223 its recent detailed analysis in both H. influenzae and Salmonella confirmed that its actual physiological function is in the uptake of RNm coupled with the phosphorylation of RNM to NMN by RNMKIN.17,148,224 As already mentioned, H. ducreyi and several other V-factor-independent members of the Pasteurellaceae group (H. somnus, Actinobacillus pleuropneumoniae, and Actinomycetemcomitans) harbor the NMNAT enzyme (NadV) that allows them to grow in the presence of Nm (but not Na) in the medium (Section 7.08.2.2). 4. Uptake of the intact NAD. Several groups of phylogenetically distant intracellular endosymbionts with extremely truncated genomes contain only a single enzyme, NADKIN, from the entire subsystem. Among them are all analyzed species of the Wolbachia, Rickettsia, and Blochmannia groups. These species are expected to uptake and utilize the intact NAD from their host while retaining the ability to convert it into NADP. Among all analyzed bacteria, only the group of Chlamydia does not have NADKIN and depends on the salvage of both NAD and NADP via a unique uptake system.157 A comprehensive genomic reconstruction of the metabolic potential (gene annotations and asserted pathways) across approximately 680 diverse bacterial genomes sets the stage for the accurate cross-genome projection and prediction of regulatory mechanisms that control the realization of this potential in a variety of species and growth conditions. In the next section, we summarize the recent accomplishments in the genomic reconstruction of NAD-related regulons in bacteria. Nicotinic acid mononucleotide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=321-02-8 (retrieved 2024-06-29) (CAS RN: 321-02-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cholesterol

(1S,2R,5S,10S,11S,14R,15R)-2,15-dimethyl-14-[(2R)-6-methylheptan-2-yl]tetracyclo[8.7.0.0^{2,7}.0^{11,15}]heptadec-7-en-5-ol

C27H46O (386.3548466)


Cholesterol is a sterol (a combination steroid and alcohol) and a lipid found in the cell membranes of all body tissues and transported in the blood plasma of all animals. The name originates from the Greek chole- (bile) and stereos (solid), and the chemical suffix -ol for an alcohol. This is because researchers first identified cholesterol in solid form in gallstones in 1784. In the body, cholesterol can exist in either the free form or as an ester with a single fatty acid (of 10-20 carbons in length) covalently attached to the hydroxyl group at position 3 of the cholesterol ring. Due to the mechanism of synthesis, plasma cholesterol esters tend to contain relatively high proportions of polyunsaturated fatty acids. Most of the cholesterol consumed as a dietary lipid exists as cholesterol esters. Cholesterol esters have a lower solubility in water than cholesterol and are more hydrophobic. They are hydrolyzed by the pancreatic enzyme cholesterol esterase to produce cholesterol and free fatty acids. Cholesterol has vital structural roles in membranes and in lipid metabolism in general. It is a biosynthetic precursor of bile acids, vitamin D, and steroid hormones (glucocorticoids, estrogens, progesterones, androgens and aldosterone). In addition, it contributes to the development and functioning of the central nervous system, and it has major functions in signal transduction and sperm development. Cholesterol is a ubiquitous component of all animal tissues where much of it is located in the membranes, although it is not evenly distributed. The highest proportion of unesterified cholesterol is in the plasma membrane (roughly 30-50\\\\% of the lipid in the membrane or 60-80\\\\% of the cholesterol in the cell), while mitochondria and the endoplasmic reticulum have very low cholesterol contents. Cholesterol is also enriched in early and recycling endosomes, but not in late endosomes. The brain contains more cholesterol than any other organ where it comprises roughly a quarter of the total free cholesterol in the human body. Of all the organic constituents of blood, only glucose is present in a higher molar concentration than cholesterol. Cholesterol esters appear to be the preferred form for transport in plasma and as a biologically inert storage (de-toxified) form. They do not contribute to membranes but are packed into intracellular lipid particles. Cholesterol molecules (i.e. cholesterol esters) are transported throughout the body via lipoprotein particles. The largest lipoproteins, which primarily transport fats from the intestinal mucosa to the liver, are called chylomicrons. They carry mostly triglyceride fats and cholesterol that are from food, especially internal cholesterol secreted by the liver into the bile. In the liver, chylomicron particles give up triglycerides and some cholesterol. They are then converted into low-density lipoprotein (LDL) particles, which carry triglycerides and cholesterol on to other body cells. In healthy individuals, the LDL particles are large and relatively few in number. In contrast, large numbers of small LDL particles are strongly associated with promoting atheromatous disease within the arteries. (Lack of information on LDL particle number and size is one of the major problems of conventional lipid tests.). In conditions with elevated concentrations of oxidized LDL particles, especially small LDL particles, cholesterol promotes atheroma plaque deposits in the walls of arteries, a condition known as atherosclerosis, which is a major contributor to coronary heart disease and other forms of cardiovascular disease. There is a worldwide trend to believe that lower total cholesterol levels tend to correlate with lower atherosclerosis event rates (though some studies refute this idea). As a result, cholesterol has become a very large focus for the scientific community trying to determine the proper amount of cholesterol needed in a healthy diet. However, the primary association of atherosclerosis with c... Constituent either free or as esters, of fish liver oils, lard, dairy fats, egg yolk and bran Cholesterol is the major sterol in mammals. It is making up 20-25\\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3]. Cholesterol is the major sterol in mammals. It is making up 20-25\% of structural component of the plasma membrane. Plasma membranes are highly permeable to water but relatively impermeable to ions and protons. Cholesterol plays an important role in determining the fluidity and permeability characteristics of the membrane as well as the function of both the transporters and signaling proteins[1][2]. Cholesterol is also an endogenous estrogen-related receptor α (ERRα) agonist[3].

   

Prostaglandin I2

5-[(3aR,4R,5R,6aS)-5-hydroxy-4-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-hexahydro-2H-cyclopenta[b]furan-2-ylidene]pentanoic acid

C20H32O5 (352.2249622)


Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension.Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin I2 or prostacyclin (or PGI2) is a member of the family of lipid molecules known as eicosanoids. It is produced in endothelial cells from prostaglandin H2 (PGH2) by the action of the enzyme prostacyclin synthase. It is a powerful vasodilator and inhibits platelet aggregation. Prostaglandin I2 is the main prostaglandin synthesized by the blood vessel wall. This suggests that it may play an important role in limiting platelet-mediated thrombosis. In particular, prostacyclin (PGI2) chiefly prevents formation of the platelet plug involved in primary hemostasis (a part of blood clot formation). The sodium salt (known as epoprostenol) has been used to treat primary pulmonary hypertension. Prostacyclin (PGI2) is released by healthy endothelial cells and performs its function through a paracrine signaling cascade that involves G protein-coupled receptors on nearby platelets and endothelial cells. The platelet Gs protein-coupled receptor (prostacyclin receptor) is activated when it binds to PGI2. This activation, in turn, signals adenylyl cyclase to produce cAMP. cAMP goes on to inhibit any undue platelet activation (in order to promote circulation) and also counteracts any increase in cytosolic calcium levels which would result from thromboxane A2 (TXA2) binding (leading to platelet activation and subsequent coagulation). PGI2 also binds to endothelial prostacyclin receptors and in the same manner raise cAMP levels in the cytosol. This cAMP then goes on to activate protein kinase A (PKA). PKA then continues the cascade by inhibiting myosin light-chain kinase which leads to smooth muscle relaxation and vasodilation. Notably, PGI2 and TXA2 work as antagonists. PGI2 is stable in basic buffers (pH=8), but it is rapidly hydrolyzed to 6-keto PGF1alpha in neutral or acidic solutions. The half-life is short both in vivo and in vitro, ranging from 30 seconds to a few minutes. PGI2 is administered by continuous infusion in humans for the treatment of idiopathic pulmonary hypertension. B - Blood and blood forming organs > B01 - Antithrombotic agents > B01A - Antithrombotic agents > B01AC - Platelet aggregation inhibitors excl. heparin C78274 - Agent Affecting Cardiovascular System > C270 - Antihypertensive Agent COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents C78568 - Prostaglandin Analogue Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nicotinic acid adenine dinucleotide

1-[(2R,3R,4S,5R)-5-[({[({[(2R,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy}(hydroxy)phosphoryl)oxy](hydroxy)phosphoryl}oxy)methyl]-3,4-dihydroxyoxolan-2-yl]-3-carboxy-1lambda5-pyridin-1-ylium

[C21H27N6O15P2]+ (665.1009592)


Nicotinic acid adenine dinucleotide, also known as deamido-NAD or NAAD, belongs to the class of organic compounds known as (5->5)-dinucleotides. These are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. NAAD is possibly soluble (in water) and a strong basic compound (based on its pKa). NAAD exists in all living species, ranging from bacteria to humans. L-Glutamine and NAAD can be converted into L-glutamic acid and NAD; which is catalyzed by the enzyme glutamine-dependent nad(+) synthetase. In humans, NAAD is involved in the nicotinate and nicotinamide metabolism pathway. NAAD is also involved in the metabolic disorder called succinic semialdehyde dehydrogenase deficiency. Outside of the human body, NAAD has been detected, but not quantified in, several different foods, such as japanese walnuts, cauliflowers, sparkleberries, komatsuna, and macadamia nut (m. tetraphylla). This could make NAAD a potential biomarker for the consumption of these foods. NAAD is the product of the degradation of Nicotinic acid adenine dinucleotide phosphate (NAADP) by a Ca2+-sensitive phosphatase. NAADP is a Ca2+-mobilizing second messenger which is synthesized, in response to extracellular stimuli, via the base-exchange reaction by an ADP-ribosyl cyclase (ARC) family members (such as CD38). NAADP binds to and opens Ca2+ channels on intracellular organelles, thereby increasing the intracellular Ca2+ concentration which, in turn, modulates a variety of cellular processes. Structurally, NAADP it is a dinucleotide that only differs from the house-keeping enzyme cofactor, NADP, by a hydroxyl group (replacing the nicotinamide amino group) and yet this minor modification converts it into the most potent Ca2+-mobilizing second messenger yet described. NAADP may also be broken down to 2-phosphoadenosine diphosphoribose (ADPRP) by CD38 or reduced to NAADPH. Deamido-nad(+), also known as deamidonicotinamide adenine dinucleoetide, is a member of the class of compounds known as (5->5)-dinucleotides (5->5)-dinucleotides are dinucleotides where the two bases are connected via a (5->5)-phosphodiester linkage. Deamido-nad(+) is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Deamido-nad(+) can be found in a number of food items such as garden tomato, sea-buckthornberry, pitanga, and japanese walnut, which makes deamido-nad(+) a potential biomarker for the consumption of these food products. Deamido-nad(+) exists in all living species, ranging from bacteria to humans. In humans, deamido-nad(+) is involved in few metabolic pathways, which include glutamate metabolism, homocarnosinosis, and nicotinate and nicotinamide metabolism. Deamido-nad(+) is also involved in few metabolic disorders, which include 2-hydroxyglutric aciduria (D and L form), 4-hydroxybutyric aciduria/succinic semialdehyde dehydrogenase deficiency, hyperinsulinism-hyperammonemia syndrome, and succinic semialdehyde dehydrogenase deficiency.

   

Retinol(Vitamin A)

3,7-Dimethyl-9-(2,6,6-trimethyl-1-cyclohexen-1-yl)-2,4,6,8-nonatetraen-1-ol, (all-e)-isomer

C20H30O (286.229653)


Vitamin A (retinol) is a yellow fat-soluble, antioxidant vitamin important in vision and bone growth. It belongs to the family of chemical compounds known as retinoids. Retinol is ingested in a precursor form; animal sources (milk and eggs) contain retinyl esters, whereas plants (carrots, spinach) contain pro-vitamin A carotenoids. Hydrolysis of retinyl esters results in retinol while pro-vitamin A carotenoids can be cleaved to produce retinal. Retinal, also known as retinaldehyde, can be reversibly reduced to produce retinol or it can be irreversibly oxidized to produce retinoic acid. Retinol and derivatives of retinol that play an essential role in metabolic functioning of the retina, the growth of and differentiation of epithelial tissue, the growth of bone, reproduction, and the immune response. Dietary vitamin A is derived from a variety of carotenoids found in plants. It is enriched in the liver, egg yolks, and the fat component of dairy products. Retinyl esters from animal-sourced foods (or synthesized for dietary supplements for humans and domesticated animals) are acted upon by retinyl ester hydrolases in the lumen of the small intestine to release free retinol. Retinol enters intestinal absorptive cells by passive diffusion. Absorption efficiency is in the range of 70 to 90\%. Humans are at risk for acute or chronic vitamin A toxicity because there are no mechanisms to suppress absorption or excrete the excess in urine.[5] Within the cell, retinol is there bound to retinol binding protein 2 (RBP2). It is then enzymatically re-esterified by the action of lecithin retinol acyltransferase and incorporated into chylomicrons that are secreted into the lymphatic system. Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1). The protein is upregulated in times of vitamin A deficiency. If vitamin A status is in the normal range, SCARB1 is downregulated, reducing absorption.[6] Also downregulated is the enzyme beta-carotene 15,15'-dioxygenase (formerly known as beta-carotene 15,15'-monooxygenase) coded for by the BCMO1 gene, responsible for symmetrically cleaving β-carotene into retinal.[8] Absorbed β-carotene is either incorporated as such into chylomicrons or first converted to retinal and then retinol, bound to RBP2. After a meal, roughly two-thirds of the chylomicrons are taken up by the liver with the remainder delivered to peripheral tissues. Peripheral tissues also can convert chylomicron β-carotene to retinol.[6][15] The capacity to store retinol in the liver means that well-nourished humans can go months on a vitamin A deficient diet without manifesting signs and symptoms of deficiency. Two liver cell types are responsible for storage and release: hepatocytes and hepatic stellate cells (HSCs). Hepatocytes take up the lipid-rich chylomicrons, bind retinol to retinol-binding protein 4 (RBP4), and transfer the retinol-RBP4 to HSCs for storage in lipid droplets as retinyl esters. Mobilization reverses the process: retinyl ester hydrolase releases free retinol which is transferred to hepatocytes, bound to RBP4, and put into blood circulation. Other than either after a meal or when consumption of large amounts exceeds liver storage capacity, more than 95\% of retinol in circulation is bound to RBP4.[15] Vitamin A is a fat-soluble vitamin, hence an essential nutrient. The term "vitamin A" encompasses a group of chemically related organic compounds that includes retinol, retinal (also known as retinaldehyde), retinoic acid, and several provitamin (precursor) carotenoids, most notably beta-carotene.[3][4][5][6] Vitamin A has multiple functions: essential in embryo development for growth, maintaining the immune system, and healthy vision, where it combines with the protein opsin to form rhodopsin – the light-absorbing molecule necessary for both low-light (scotopic vision) and color vision.[7] Vitamin A occurs as two principal forms in foods: A) retinol, found in animal-sourced foods, either as retinol or bound to a fatty acid to become a retinyl ester, and B) the carotenoids alpha-carotene, β-carotene, gamma-carotene, and the xanthophyll beta-cryptoxanthin (all of which contain β-ionone rings) that function as provitamin A in herbivore and omnivore animals which possess the enzymes that cleave and convert provitamin carotenoids to retinal and then to retinol.[8] Some carnivore species lack this enzyme. The other carotenoids have no vitamin activity.[6] Dietary retinol is absorbed from the digestive tract via passive diffusion. Unlike retinol, β-carotene is taken up by enterocytes by the membrane transporter protein scavenger receptor B1 (SCARB1), which is upregulated in times of vitamin A deficiency.[6] Storage of retinol is in lipid droplets in the liver. A high capacity for long-term storage of retinol means that well-nourished humans can go months on a vitamin A- and β-carotene-deficient diet, while maintaining blood levels in the normal range.[4] Only when the liver stores are nearly depleted will signs and symptoms of deficiency show.[4] Retinol is reversibly converted to retinal, then irreversibly to retinoic acid, which activates hundreds of genes.[9] Vitamin A deficiency is common in developing countries, especially in Sub-Saharan Africa and Southeast Asia. Deficiency can occur at any age but is most common in pre-school age children and pregnant women, the latter due to a need to transfer retinol to the fetus. Vitamin A deficiency is estimated to affect approximately one-third of children under the age of five around the world, resulting in hundreds of thousands of cases of blindness and deaths from childhood diseases because of immune system failure.[10] Reversible night blindness is an early indicator of low vitamin A status. Plasma retinol is used as a biomarker to confirm vitamin A deficiency. Breast milk retinol can indicate a deficiency in nursing mothers. Neither of these measures indicates the status of liver reserves.[6] The European Union and various countries have set recommendations for dietary intake, and upper limits for safe intake. Vitamin A toxicity also referred to as hypervitaminosis A, occurs when there is too much vitamin A accumulating in the body. Symptoms may include nervous system effects, liver abnormalities, fatigue, muscle weakness, bone and skin changes, and others. The adverse effects of both acute and chronic toxicity are reversed after consumption of high dose supplements is stopped.[6]

   

Pantetheine

2,4-dihydroxy-3,3-dimethyl-N-{2-[(2-sulfanylethyl)carbamoyl]ethyl}butanamide

C11H22N2O4S (278.1300212)


Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. An intermediate in the pathway of coenzyme A formation in mammalian liver and some microorganisms. Pantetheine is the mercaptoethyl conjugated amide analogue of pantothenic acid (Vitamin B5). The dimer of this compound, pantethine is more commonly known, and is considered to be a more potent form of vitamin B5 than pantothenic acid. Pantetheine is an intermediate in the production of Coenzyme A by the body. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Water

oxidane

H2O (18.0105642)


Water is a chemical substance that is essential to all known forms of life. It appears colorless to the naked eye in small quantities, though it is actually slightly blue in color. It covers 71\\% of Earths surface. Current estimates suggest that there are 1.4 billion cubic kilometers (330 million m3) of it available on Earth, and it exists in many forms. It appears mostly in the oceans (saltwater) and polar ice caps, but it is also present as clouds, rain water, rivers, freshwater aquifers, lakes, and sea ice. Water in these bodies perpetually moves through a cycle of evaporation, precipitation, and runoff to the sea. Clean water is essential to human life. In many parts of the world, it is in short supply. From a biological standpoint, water has many distinct properties that are critical for the proliferation of life that set it apart from other substances. It carries out this role by allowing organic compounds to react in ways that ultimately allow replication. All known forms of life depend on water. Water is vital both as a solvent in which many of the bodys solutes dissolve and as an essential part of many metabolic processes within the body. Metabolism is the sum total of anabolism and catabolism. In anabolism, water is removed from molecules (through energy requiring enzymatic chemical reactions) in order to grow larger molecules (e.g. starches, triglycerides and proteins for storage of fuels and information). In catabolism, water is used to break bonds in order to generate smaller molecules (e.g. glucose, fatty acids and amino acids to be used for fuels for energy use or other purposes). Water is thus essential and central to these metabolic processes. Water is also central to photosynthesis and respiration. Photosynthetic cells use the suns energy to split off waters hydrogen from oxygen. Hydrogen is combined with CO2 (absorbed from air or water) to form glucose and release oxygen. All living cells use such fuels and oxidize the hydrogen and carbon to capture the suns energy and reform water and CO2 in the process (cellular respiration). Water is also central to acid-base neutrality and enzyme function. An acid, a hydrogen ion (H+, that is, a proton) donor, can be neutralized by a base, a proton acceptor such as hydroxide ion (OH-) to form water. Water is considered to be neutral, with a pH (the negative log of the hydrogen ion concentration) of 7. Acids have pH values less than 7 while bases have values greater than 7. Stomach acid (HCl) is useful to digestion. However, its corrosive effect on the esophagus during reflux can temporarily be neutralized by ingestion of a base such as aluminum hydroxide to produce the neutral molecules water and the salt aluminum chloride. Human biochemistry that involves enzymes usually performs optimally around a biologically neutral pH of 7.4. (Wikipedia). Water, also known as purified water or dihydrogen oxide, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Water can be found in a number of food items such as caraway, oxheart cabbage, alaska wild rhubarb, and japanese walnut, which makes water a potential biomarker for the consumption of these food products. Water can be found primarily in most biofluids, including ascites Fluid, blood, cerebrospinal fluid (CSF), and lymph, as well as throughout all human tissues. Water exists in all living species, ranging from bacteria to humans. In humans, water is involved in several metabolic pathways, some of which include cardiolipin biosynthesis CL(20:4(5Z,8Z,11Z,14Z)/18:0/20:4(5Z,8Z,11Z,14Z)/18:2(9Z,12Z)), cardiolipin biosynthesis cl(i-13:0/i-15:0/i-20:0/i-24:0), cardiolipin biosynthesis CL(18:0/18:0/20:4(5Z,8Z,11Z,14Z)/22:5(7Z,10Z,13Z,16Z,19Z)), and cardiolipin biosynthesis cl(a-13:0/i-18:0/i-13:0/i-19:0). Water is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis tg(i-21:0/i-13:0/21:0), de novo triacylglycerol biosynthesis tg(22:0/20:0/i-20:0), de novo triacylglycerol biosynthesis tg(a-21:0/i-20:0/i-14:0), and de novo triacylglycerol biosynthesis tg(i-21:0/a-17:0/i-12:0). Water is a drug which is used for diluting or dissolving drugs for intravenous, intramuscular or subcutaneous injection, according to instructions of the manufacturer of the drug to be administered [fda label]. Water plays an important role in the world economy. Approximately 70\\% of the freshwater used by humans goes to agriculture. Fishing in salt and fresh water bodies is a major source of food for many parts of the world. Much of long-distance trade of commodities (such as oil and natural gas) and manufactured products is transported by boats through seas, rivers, lakes, and canals. Large quantities of water, ice, and steam are used for cooling and heating, in industry and homes. Water is an excellent solvent for a wide variety of chemical substances; as such it is widely used in industrial processes, and in cooking and washing. Water is also central to many sports and other forms of entertainment, such as swimming, pleasure boating, boat racing, surfing, sport fishing, and diving .

   

Oxygen

Molecular oxygen

O2 (31.98983)


Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131) [HMDB]. Oxygen is found in many foods, some of which are soy bean, watermelon, sweet basil, and spinach. Oxygen is the third most abundant element in the universe after hydrogen and helium and the most abundant element by mass in the Earths crust. Diatomic oxygen gas constitutes 20.9\\% of the volume of air. All major classes of structural molecules in living organisms, such as proteins, carbohydrates, and fats, contain oxygen, as do the major inorganic compounds that comprise animal shells, teeth, and bone. Oxygen in the form of O2 is produced from water by cyanobacteria, algae and plants during photosynthesis and is used in cellular respiration for all living organisms. Green algae and cyanobacteria in marine environments provide about 70\\% of the free oxygen produced on earth and the rest is produced by terrestrial plants. Oxygen is used in mitochondria to help generate adenosine triphosphate (ATP) during oxidative phosphorylation. For animals, a constant supply of oxygen is indispensable for cardiac viability and function. To meet this demand, an adult human, at rest, inhales 1.8 to 2.4 grams of oxygen per minute. This amounts to more than 6 billion tonnes of oxygen inhaled by humanity per year. At a resting pulse rate, the heart consumes approximately 8-15 ml O2/min/100 g tissue. This is significantly more than that consumed by the brain (approximately 3 ml O2/min/100 g tissue) and can increase to more than 70 ml O2/min/100 g myocardial tissue during vigorous exercise. As a general rule, mammalian heart muscle cannot produce enough energy under anaerobic conditions to maintain essential cellular processes; thus, a constant supply of oxygen is indispensable to sustain cardiac function and viability. However, the role of oxygen and oxygen-associated processes in living systems is complex, and they and can be either beneficial or contribute to cardiac dysfunction and death (through reactive oxygen species). Reactive oxygen species (ROS) are a family of oxygen-derived free radicals that are produced in mammalian cells under normal and pathologic conditions. Many ROS, such as the superoxide anion (O2-)and hydrogen peroxide (H2O2), act within blood vessels, altering mechanisms mediating mechanical signal transduction and autoregulation of cerebral blood flow. Reactive oxygen species are believed to be involved in cellular signaling in blood vessels in both normal and pathologic states. The major pathway for the production of ROS is by way of the one-electron reduction of molecular oxygen to form an oxygen radical, the superoxide anion (O2-). Within the vasculature there are several enzymatic sources of O2-, including xanthine oxidase, the mitochondrial electron transport chain, and nitric oxide (NO) synthases. Studies in recent years, however, suggest that the major contributor to O2- levels in vascular cells is the membrane-bound enzyme NADPH-oxidase. Produced O2- can react with other radicals, such as NO, or spontaneously dismutate to produce hydrogen peroxide (H2O2). In cells, the latter reaction is an important pathway for normal O2- breakdown and is usually catalyzed by the enzyme superoxide dismutase (SOD). Once formed, H2O2 can undergo various reactions, both enzymatic and nonenzymatic. The antioxidant enzymes catalase and glutathione peroxidase act to limit ROS accumulation within cells by breaking down H2O2 to H2O. Metabolism of H2O2 can also produce other, more damaging ROS. For example, the endogenous enzyme myeloperoxidase uses H2O2 as a substrate to form the highly reactive compound hypochlorous acid. Alternatively, H2O2 can undergo Fenton or Haber-Weiss chemistry, reacting with Fe2+/Fe3+ ions to form toxic hydroxyl radicals (-.OH). (PMID: 17027622, 15765131). V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Carbon dioxide

Carbonic acid anhydride

CO2 (43.98983)


Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially. Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases

   

Hydrogen peroxide

Hydrogen peroxide (H2O2)

H2O2 (34.0054792)


Hydrogen peroxide (H2O2) is a very pale blue liquid that appears colourless in a dilute solution. H2O2 is slightly more viscous than water and is a weak acid. H2O2 is unstable and slowly decomposes in the presence of light. It has strong oxidizing properties and is, therefore, a powerful bleaching agent that is mostly used for bleaching paper. H2O2 has also found use as a disinfectant and as an oxidizer. H2O2 in the form of carbamide peroxide is widely used for tooth whitening (bleaching), both in professionally- and in self-administered products. H2O2 is a well-documented component of living cells and is a normal metabolite of oxygen in the aerobic metabolism of cells and tissues. A total of 31 human cellular H2O2 generating enzymes has been identified so far (PMID: 25843657). H2O2 plays important roles in host defence and oxidative biosynthetic reactions. At high levels (>100 nM) H2O2 is toxic to most cells due to its ability to non-specifically oxidize proteins, membranes and DNA, leading to general cellular damage and dysfunction. However, at low levels (<10 nM), H2O2 functions as a signalling agent, particularly in higher organisms. In plants, H2O2 plays a role in signalling to cause cell shape changes such as stomatal closure and root growth. As a messenger molecule in vertebrates, H2O2 diffuses through cells and tissues to initiate cell shape changes, to drive vascular remodelling, and to activate cell proliferation and recruitment of immune cells. H2O2 also plays a role in redox sensing, signalling, and redox regulation (PMID: 28110218). This is normally done through molecular redox “switches” such as thiol-containing proteins. The production and decomposition of H2O2 are tightly regulated (PMID: 17434122). In humans, H2O2 can be generated in response to various stimuli, including cytokines and growth factors. H2O2 is degraded by several enzymes including catalase and superoxide dismutase (SOD), both of which play important roles in keeping the amount of H2O2 in the body below toxic levels. H2O2 also appears to play a role in vitiligo. Vitiligo is a skin pigment disorder leading to patchy skin colour, especially among dark-skinned individuals. Patients with vitiligo have low catalase levels in their skin, leading to higher levels of H2O2. High levels of H2O2 damage the epidermal melanocytes, leading to a loss of pigment (PMID: 10393521). Accumulating evidence suggests that hydrogen peroxide H2O2 plays an important role in cancer development. Experimental data have shown that cancer cells produce high amounts of H2O2. An increase in the cellular levels of H2O2 has been linked to several key alterations in cancer, including DNA changes, cell proliferation, apoptosis resistance, metastasis, angiogenesis and hypoxia-inducible factor 1 (HIF-1) activation (PMID: 17150302, 17335854, 16677071, 16607324, 16514169). H2O2 is found in most cells, tissues, and biofluids. H2O2 levels in the urine can be significantly increased with the consumption of coffee and other polyphenolic-containing beverages (wine, tea) (PMID: 12419961). In particular, roasted coffee has high levels of 1,2,4-benzenetriol which can, on its own, lead to the production of H2O2. Normal levels of urinary H2O2 in non-coffee drinkers or fasted subjects are between 0.5-3 uM/mM creatinine whereas, for those who drink coffee, the levels are between 3-10 uM/mM creatinine (PMID: 12419961). It is thought that H2O2 in urine could act as an antibacterial agent and that H2O2 is involved in the regulation of glomerular function (PMID: 10766414). A - Alimentary tract and metabolism > A01 - Stomatological preparations > A01A - Stomatological preparations > A01AB - Antiinfectives and antiseptics for local oral treatment D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants S - Sensory organs > S02 - Otologicals > S02A - Antiinfectives > S02AA - Antiinfectives It is used in foods as a bleaching agent, antimicrobial agent and oxidising agent C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides D000890 - Anti-Infective Agents

   

zinc ion

Zinc cation

Zn+2 (63.929145)


A - Alimentary tract and metabolism > A16 - Other alimentary tract and metabolism products > A16A - Other alimentary tract and metabolism products > A16AB - Enzymes D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059004 - Topoisomerase I Inhibitors C307 - Biological Agent > C29726 - Enzyme Replacement or Supplement Agent D004791 - Enzyme Inhibitors

   

Calcium

Calcium Cation

Ca+2 (39.962591)


   

Tetrahydrofolic acid

2-{[4-({[(6S)-4-hydroxy-2-imino-5,6,7,8-tetrahydro-1H-pteridin-6-yl]methyl}amino)phenyl]formamido}pentanedioic acid

C19H23N7O6 (445.1709738)


Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593). Folate is important for cells and tissues that rapidly divide. Cancer cells divide rapidly, and drugs that interfere with folate metabolism are used to treat cancer. Methotrexate is a drug often used to treat cancer because it inhibits the production of the active form, tetrahydrofolate. Unfortunately, methotrexate can be toxic, producing side effects such as inflammation in the digestive tract that make it difficult to eat normally. -- Wikipedia; Signs of folic acid deficiency are often subtle. Diarrhea, loss of appetite, and weight loss can occur. Additional signs are weakness, sore tongue, headaches, heart palpitations, irritability, and behavioral disorders. Women with folate deficiency who become pregnant are more likely to give birth to low birth weight and premature infants, and infants with neural tube defects. In adults, anemia is a sign of advanced folate deficiency. In infants and children, folate deficiency can slow growth rate. Some of these symptoms can also result from a variety of medical conditions other than folate deficiency. It is important to have a physician evaluate these symptoms so that appropriate medical care can be given. -- Wikipedia; Folinic acid is a form of folate that can help rescue or reverse the toxic effects of methotrexate. Folinic acid is not the same as folic acid. Folic acid supplements have little established role in cancer chemotherapy. There have been cases of severe adverse effects of accidental substitution of folic acid for folinic acid in patients receiving methotrexate cancer chemotherapy. It is important for anyone receiving methotrexate to follow medical advice on the use of folic or folinic acid supplements. -- Wikipedia. Low concentrations of folate, vitamin B12, or vitamin B6 may increase the level of homocysteine, an amino acid normally found in blood. There is evidence that an elevated homocysteine level is an independent risk factor for heart disease and stroke. The evidence suggests that high levels of homocysteine may damage coronary arteries or make it easier for blood clotting cells called platelets to clump together and form a clot. However, there is currently no evidence available to suggest that lowering homocysteine with vitamins will reduce your risk of heart disease. Clinical intervention trials are needed to determine whether supplementation with folic acid, vitamin B12 or vitamin B6 can lower your risk of developing coronary heart disease. -- Wikipedia. Tetrahydrofolate is a soluble coenzyme (vitamin B9) that is synthesized de novo by plants and microorganisms, and absorbed from the diet by animals. It is composed of three distinct parts: a pterin ring, a p-ABA (p-aminobenzoic acid) and a polyglutamate chain with a number of residues varying between 1 and 8. Only the tetra-reduced form of the molecule serves as a coenzyme for C1 transfer reactions. In biological systems, the C1-units exist under various oxidation states and the different tetrahydrofolate derivatives constitute a family of related molecules named indistinctly under the generic term folate. (PMID 16042593)

   

Prostaglandin H2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O5 (352.2249622)


Prostaglandin H2 (PGH2) is the first intermediate in the biosynthesis of all prostaglandins. Prostaglandins are synthesized from arachidonic acid by the enzyme COX-1 and COX-2, which are also called PGH synthase 1 and 2. These enzymes generate a reactive intermediate PGH2 which has a reasonably long half-life (90-100 s) but is highly lipophilic. PGH2 is converted into the biologically active prostaglandins by prostaglandin isomerases, yielding PGE2, PGD2, and PGF2, or by thromboxane synthase to make TXA2 or by prostacyclin synthase to make PGI2. Most nonsteroidal anti-inflammatory drugs such as aspirin and indomethacin inhibit both PGH synthase 1 and 2. A key feature for eicosanoid transcellular biosynthesis is the export of PGH2 or LTA4 from the donor cell as well as the uptake of these reactive intermediates by the acceptor cell. Very little is known about either process despite the demonstrated importance of both events. In cells, PGH2 rearranges nonenzymatically to LGs even in the presence of enzymes that use PGH2 as a substrate. When platelets form thromboxane A2 (TXA2) from endogenous arachidonic acid (AA), PGH2 reaches concentrations very similar to those of TXA2 and high enough to produce strong platelet activation. Therefore, platelet activation by TXA2 appears to go along with an activation by PGH2. The agonism of PGH2 is limited by the formation of inhibitory prostaglandins, especially PGD2 at higher concentrations. That is why thromboxane synthase inhibitors in PRP and at a physiological HSA concentration do not augment platelet activation (PMID: 2798452, 15650407, 16968946). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent and are able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis through receptor-mediated G-protein linked signalling pathways. Prostaglandin h2, also known as pgh2 or 9s,11r-epidioxy-15s-hydroxy-5z,13e-prostadienoate, is a member of the class of compounds known as prostaglandins and related compounds. Prostaglandins and related compounds are unsaturated carboxylic acids consisting of a 20 carbon skeleton that also contains a five member ring, and are based upon the fatty acid arachidonic acid. Thus, prostaglandin h2 is considered to be an eicosanoid lipid molecule. Prostaglandin h2 is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Prostaglandin h2 can be found in a number of food items such as gooseberry, evergreen huckleberry, quince, and capers, which makes prostaglandin h2 a potential biomarker for the consumption of these food products. Prostaglandin h2 can be found primarily in human platelet tissue. In humans, prostaglandin h2 is involved in several metabolic pathways, some of which include magnesium salicylate action pathway, ketorolac action pathway, trisalicylate-choline action pathway, and salicylate-sodium action pathway. Prostaglandin h2 is also involved in a couple of metabolic disorders, which include leukotriene C4 synthesis deficiency and tiaprofenic acid action pathway. Prostaglandin h2 is acted upon by: Prostacyclin synthase to create prostacyclin Thromboxane-A synthase to create thromboxane A2 and 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) (see 12-Hydroxyheptadecatrienoic acid) Prostaglandin D2 synthase to create prostaglandin D2 Prostaglandin E synthase to create prostaglandin E2 Prostaglandin h2 rearranges non-enzymatically to: A mixture of 12-(S)-hydroxy-5Z,8E,10E-heptadecatrienoic acid (HHT) and 12-(S)-hydroxy-5Z,8Z,10E-heptadecatrienoic acid (see 12-Hydroxyheptadecatrienoic acid) Use of Prostaglandin H2: regulating the constriction and dilation of blood vessels stimulating platelet aggregation Effects of Aspirin on Prostaglandin H2: Aspirin has been hypothesized to block the conversion of arachidonic acid to Prostaglandin . D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Pyridoxine 5'-phosphate

5-Hydroxy-6-methyl-3,4-pyridinedimethanol alpha( 3)-(dihydrogen phosphate)

C8H12NO6P (249.0402222)


Pyridoxine phosphate, also known as pyridoxine 5-phosphoric acid or pyridoxine 5-(dihydrogen phosphate), is a member of the class of compounds known as pyridoxine-5-phosphates. Pyridoxine-5-phosphates are pyridoxines that carry a phosphate group at the 5-position. Pyridoxine phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Pyridoxine phosphate can be found primarily in blood. Within the cell, pyridoxine phosphate is primarily located in the cytoplasm (predicted from logP). Pyridoxine phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxine phosphate is involved in the vitamin B6 metabolism. Pyridoxine phosphate is also involved in hypophosphatasia, which is a metabolic disorder. Moreover, pyridoxine phosphate is found to be associated with obesity. Pyridoxine 5-phosphate is a substrate for Pyridoxine-5-phosphate oxidase and Pyridoxal kinase.

   

Hydrogen cyanide

Acid, hydrocyanic

CHN (27.010898599999997)


Hydrogen cyanide (with the historical common name of Prussic acid) is a chemical compound with chemical formula HCN. It is a colorless, extremely poisonous liquid that boils slightly above room temperature at 26 °C (79 °F). Hydrogen cyanide is a linear molecule, with a triple bond between carbon and nitrogen. A minor tautomer of HCN is HNC, hydrogen isocyanide. Hydrogen cyanide is weakly acidic with a pKa of 9.2. It partly ionizes in water solution to give the cyanide anion, CN. (Wikipedia) D009676 - Noxae > D011042 - Poisons > D002619 - Chemical Warfare Agents

   

Retinyl palmitate

(2E,4E,6E,8E)-3,7-Dimethyl-9-(2,6,6-trimethyl-cyclohex-1-enyl)-nona-2,4,6,8,tetraenyl hexadecanoic acid ester

C36H60O2 (524.459306)


Retinyl palmitate, also known as vitamin a palmitate or aquasol a, is a member of the class of compounds known as wax monoesters. Wax monoesters are waxes bearing an ester group at exactly one position. Thus, retinyl palmitate is considered to be an isoprenoid lipid molecule. Retinyl palmitate is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Retinyl palmitate can be found in a number of food items such as rocket salad (sspecies), black elderberry, common grape, and vaccinium (blueberry, cranberry, huckleberry), which makes retinyl palmitate a potential biomarker for the consumption of these food products. Retinyl palmitate can be found primarily in blood, as well as throughout most human tissues. In humans, retinyl palmitate is involved in the retinol metabolism. Retinyl palmitate is also involved in vitamin A deficiency, which is a metabolic disorder. An alternate spelling, retinol palmitate, which violates the -yl organic chemical naming convention for esters, is also frequently seen . Retinyl palmitate, or vitamin A palmitate, is a common vitamin supplement, with formula C36H60O2. It is available in both oral and injectable forms for treatment of vitamin A deficiency, under the brand names Aquasol and Palmitate. Retinyl palmitate is an alternate for retinyl acetate in vitamin A supplements, and is available in oily or dry forms. It is a pre-formed version of vitamin A, and can thus be realistically over-dosed, unlike beta-carotene. C274 - Antineoplastic Agent > C2122 - Cell Differentiating Agent > C1934 - Differentiation Inducer C274 - Antineoplastic Agent > C163758 - Targeted Therapy Agent > C804 - Retinoic Acid Agent C308 - Immunotherapeutic Agent > C129820 - Antineoplastic Immunomodulating Agent D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids D020011 - Protective Agents > D016588 - Anticarcinogenic Agents D000970 - Antineoplastic Agents Retinyl palmitate is an ester of Retinol and is the major form of vitamin A found in the epidermis. Retinyl palmitate has been widely used in pharmaceutical and cosmetic formulations.

   

Thiamine triphosphate

3-[(4-amino-2-methylpyrimidin-5-yl)methyl]-5-(2-{[hydroxy({[hydroxy(phosphonooxy)phosphoryl]oxy})phosphoryl]oxy}ethyl)-4-methyl-1,3-thiazol-3-ium

C12H20N4O10P3S+ (505.011299)


Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. [HMDB] Thiamine triphosphate is the triphosphate ester of thiamine. Thiamine triphosphate (ThTP) was previously considered to be a specific neuroactive form of thiamine. However, it was recently shown that ThTP exists in bacteria, fungi, plants and animals suggesting a much more general cellular role. In particular, it seems to play a role in response to amino acid starvation. In mammals, ThTP is hydrolyzed by a specific thiamine triphosphatase. In Leighs disease, this compound is present in decreased amounts in the brain due to a metabolic block in its formation. D018977 - Micronutrients > D014815 - Vitamins

   

Nicotinamide riboside

3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H15N2O5+ (255.098092)


Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside was originally identified as a nutrient in milk. It is a useful compound for the elevation of NAD+ levels in humans. Nicotinamide riboside has recently been discovered to be an NAD(+) precursor that is converted into nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. It has been shown that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends the lifespan of certain animal models without calorie restriction (PMID: 17482543). Supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities (PMID: 22682224). Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role in the phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID: 15137942). Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside has been identified as a nutrient in milk. It is a useful compound for elevation of NAD+ levels in humans. Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID 15137942). [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Dyspropterin

1-(2-amino-4-oxo-5,6,7,8-tetrahydro-3H-pteridin-6-yl)propane-1,2-dione

C9H11N5O3 (237.0861856)


Dyspropterin, an intermediate formed from dihydroneopterin triphosphate in the biosynthetic pathway of tetrahydrobiopterin. [HMDB] Dyspropterin, an intermediate formed from dihydroneopterin triphosphate in the biosynthetic pathway of tetrahydrobiopterin.

   

5-Methyltetrahydropteroyltri-L-glutamic acid

(2S)-2-[(4S)-4-[(4S)-4-{[4-({[(6S)-2-amino-5-methyl-4-oxo-1,4,5,6,7,8-hexahydropteridin-6-yl]methyl}amino)phenyl]formamido}-4-carboxybutanamido]-4-carboxybutanamido]pentanedioic acid

C30H39N9O12 (717.2718054)


5-Methyltetrahydropteroyltri-L-glutamic acid (CAS: 13061-55-7) is formed during the reaction between the carbonyl group of 5-methyltetrahydropteroate and the amine group on one end of three replicates of glutamate. It is involved in several pathways as a product of enzymatic reduction such as in tetrahydrofolate biosynthesis II and methionine biosynthesis I, II, and III. It is also involved in several pathways as a product of enzymatic oxidation such as in the pathways folate polyglutamylation I and carbon tetrachloride degradation II. In humans, this compound is produced by the bacteria in the gut and may be found in feces or urine. 5-Methyltetrahydropteroyltri-L-glutamate is formed under reaction between carbonyl group of 5-Methyltetrahydropteroate and amine group on one end of three replicates of glutamate. It is involved in several pathways such as tetrahydrofolate biosynthesis II, methionine biosynthesis I,II,III as a product of enzymatic reduction; while in pathways folate polyglutamylation I and carbon tetrachloride degradation II as a product of enzymatic oxidation. [HMDB]. 5-Methyltetrahydropteroyltri-L-glutamate is found in many foods, some of which are common cabbage, chives, lime, and garden rhubarb.

   

(S)-Nadphx

(6S)-6beta-Hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide phosphate; (S)-NADPH-hydrate; (S)-NADPHX; (6S)-6beta-Hydroxy-1,4,5,6-tetrahydronicotinamide-adenine dinucleotide 2-phosphate

C21H32N7O18P3 (763.1016642000001)


A tetrahydronicotinamide adenine dinucleotide obtained by formal stereo- and regioselective hydration across the 2,3-double bond in the nicotinyl ring of NADPH, with the hydroxy group located at position 2, having (S)-configuration.

   

Prostaglandin G2

(5Z)-7-[(1R,4S,5R,6R)-6-[(1E,3S)-3-hydroperoxyoct-1-en-1-yl]-2,3-dioxabicyclo[2.2.1]heptan-5-yl]hept-5-enoic acid

C20H32O6 (368.2198772)


Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. The COX site activity that catalyzes the conversion of arachidonic acid to PGG2 is the target for nonsteroidal antiinflammatory drugs (NSAIDs). The peroxidase site activity catalyzes the two-electron reduction of the hydroperoxide bond of PGG2 to yield the corresponding alcohol prostaglandin H2 (PGH2). The formation of a phenoxyl radical on Tyr385 couples the activities of the two sites. The Tyr385 radical is produced via oxidation by compound I, an oxoferryl porphyrin -cation radical, which is generated by reaction of the hemin resting state with PGG2 or other hydroperoxides. The tyrosyl radical homolytically abstracts the 13proS hydrogen atom of arachidonic acid which initiates a radical cascade that ends with the stereoselective formation of PGG2. PGG2 then migrates from the cyclooxygenase (COX) site to the peroxidase (POX) site where it reacts with the hemin group to generate PGH2 and compound I. The heterolytic oxygen-oxygen bond cleavage is assisted by the conserved distal residues His207 and Gln203, mutation of which has been shown to severely impair enzyme activity. Compound I, upon reaction with Tyr385, gives compound II, which in turn is reduced to the hemin resting state by one-electron oxidation of reducing cosubstrates or undergoes reactions that result in enzyme self-inactivation. Prostaglandin endoperoxide H synthase (PGHS) 1 is a bifunctional membrane enzyme of the endoplasmic reticulum that converts arachidonic acid into prostaglandin H2 (PGH2), the precursor of all prostaglandins, thromboxanes, and prostacyclins. These lipid mediators are intricately involved in normal physiology, namely, in mitogenesis, fever generation, pain response, lymphocyte chemotaxis, fertility, and contradictory stimuli such as vasoconstriction and vasodilatation, as well as platelet aggregation and quiescence. PGHS is implicated in numerous pathologies, including inflammation, cancers of the colon, lung, and breast, Alzheimers disease, Parkinsons disease, and numerous cardiovascular diseases including atherosclerosis, thrombosis, myocardial infarction, and stroke. (PMID: 14594816, 16552393, 16411757). Prostaglandins are eicosanoids. The eicosanoids consist of the prostaglandins (PGs), thromboxanes (TXs), leukotrienes (LTs), and lipoxins (LXs). The PGs and TXs are collectively identified as prostanoids. Prostaglandins were originally shown to be synthesized in the prostate gland, thromboxanes from platelets (thrombocytes), and leukotrienes from leukocytes, hence the derivation of their names. All mammalian cells except erythrocytes synthesize eicosanoids. These molecules are extremely potent, able to cause profound physiological effects at very dilute concentrations. All eicosanoids function locally at the site of synthesis, through receptor-mediated G-protein linked signalling pathways. Prostaglandin G2 (PGG2) is synthesized from arachidonic acid on a cyclooxygenase (COX) metabolic pathway as a primary step; the COX biosynthesis of prostaglandin (PG) begins with the highly specific oxygenation of arachidonic acid in the 11R configuration and ends with a 15S oxygenation to form PGG2. D009676 - Noxae > D016877 - Oxidants > D010545 - Peroxides

   

Tetrahydrofolyl-[Glu](2)

2-{4-[(4-{[(2-amino-4-oxo-5,6,7,8-tetrahydro-3H-pteridin-6-yl)methyl]amino}phenyl)formamido]-4-carboxybutanamido}pentanedioic acid

C24H30N8O9 (574.213565)


Tetrahydrofolyl-[Glu](n) is involved in the folate biosynthesis pathway. Tetrahydrofolyl-[Glu](n) can be reversibly converted into Tetrahydrofolyl-[Glu](2) by folylpolyglutamate synthase [EC:6.3.2.17]. Tetrahydrofolyl-[Glu](n) can be irreversibly converted into tetrahydrofolate by gamma-glutamyl hydrolase [EC:3.4.19.9]. [HMDB] Tetrahydrofolyl-[Glu](n) is involved in the folate biosynthesis pathway. Tetrahydrofolyl-[Glu](n) can be reversibly converted into Tetrahydrofolyl-[Glu](2) by folylpolyglutamate synthase [EC:6.3.2.17]. Tetrahydrofolyl-[Glu](n) can be irreversibly converted into tetrahydrofolate by gamma-glutamyl hydrolase [EC:3.4.19.9].

   

beta-Ionone

(E)-4-(2,6,6-trimethylcyclohexen-1-yl)but-3-en-2-one

C13H20O (192.151407)


Beta-ionone is a colorless to light yellow liquid with an odor of cedar wood. In very dilute alcoholic solution the odor resembles odor of violets. Used in perfumery. Beta-ionone is an ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. It has a role as an antioxidant and a fragrance. beta-Ionone is a natural product found in Nepeta nepetella, Vitis rotundifolia, and other organisms with data available. beta-Ionone is a metabolite found in or produced by Saccharomyces cerevisiae. beta-Ionone, also known as (e)-b-ionone or trans-beta-ionone, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Found in many essential oils including oil of Boronia megastigma (brown boronia) and coml. ionone. Flavouring agent An ionone that is but-3-en-2-one substituted by a 2,6,6-trimethylcyclohex-1-en-1-yl group at position 4. D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids β-Ionone is effective in the induction of apoptosis in gastric adenocarcinoma SGC7901 cells. Anti-cancer activity[1]. β-Ionone. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=79-77-6 (retrieved 2024-11-06) (CAS RN: 79-77-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Manganous cation

Manganous cation

Mn+2 (54.938046)


   

Ammonium

Ammonium compounds

H4N+ (18.0343724)


Ammonium, also known as ammonium(1+) or nh4+, is a member of the class of compounds known as homogeneous other non-metal compounds. Homogeneous other non-metal compounds are inorganic non-metallic compounds in which the largest atom belongs to the class of other nonmetals. Ammonium can be found in a number of food items such as irish moss, sago palm, sorghum, and malabar spinach, which makes ammonium a potential biomarker for the consumption of these food products. Ammonium can be found primarily in blood and sweat. Ammonium exists in all living species, ranging from bacteria to humans. In humans, ammonium is involved in the the oncogenic action of 2-hydroxyglutarate. Ammonium is also involved in a couple of metabolic disorders, which include the oncogenic action of d-2-hydroxyglutarate in hydroxygluaricaciduria and the oncogenic action of l-2-hydroxyglutarate in hydroxygluaricaciduria. Moreover, ammonium is found to be associated with n-acetylglutamate synthetase deficiency. The ammonium cation is a positively charged polyatomic ion with the chemical formula NH+ 4. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (NR+ 4), where one or more hydrogen atoms are replaced by organic groups (indicated by R) . Ammonium is an important source of nitrogen for many plant species, especially those growing on hypoxic soils. However, it is also toxic to most crop species and is rarely applied as a sole nitrogen source. The ammonium (more obscurely: aminium) cation is a positively charged polyatomic cation with the chemical formula NH4+. It is formed by the protonation of ammonia (NH3). Ammonium is also a general name for positively charged or protonated substituted amines and quaternary ammonium cations (NR4+), where one or more hydrogen atoms are replaced by organic radical groups (indicated by R). Ammonium is found to be associated with N-acetylglutamate synthetase deficiency, which is an inborn error of metabolism.

   

Hydrogen Ion

Hydrogen cation

H+ (1.0078246)


Hydrogen ion, also known as proton or h+, is a member of the class of compounds known as other non-metal hydrides. Other non-metal hydrides are inorganic compounds in which the heaviest atom bonded to a hydrogen atom is belongs to the class of other non-metals. Hydrogen ion can be found in a number of food items such as lowbush blueberry, groundcherry, parsley, and tarragon, which makes hydrogen ion a potential biomarker for the consumption of these food products. Hydrogen ion exists in all living organisms, ranging from bacteria to humans. In humans, hydrogen ion is involved in several metabolic pathways, some of which include cardiolipin biosynthesis cl(i-13:0/a-25:0/a-21:0/i-15:0), cardiolipin biosynthesis cl(a-13:0/a-17:0/i-13:0/a-25:0), cardiolipin biosynthesis cl(i-12:0/i-13:0/a-17:0/a-15:0), and cardiolipin biosynthesis CL(16:1(9Z)/22:5(4Z,7Z,10Z,13Z,16Z)/18:1(11Z)/22:5(7Z,10Z,13Z,16Z,19Z)). Hydrogen ion is also involved in several metabolic disorders, some of which include de novo triacylglycerol biosynthesis TG(20:3(8Z,11Z,14Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)/22:5(7Z,10Z,13Z,16Z,19Z)), de novo triacylglycerol biosynthesis TG(18:2(9Z,12Z)/20:0/20:4(5Z,8Z,11Z,14Z)), de novo triacylglycerol biosynthesis TG(18:4(6Z,9Z,12Z,15Z)/18:3(9Z,12Z,15Z)/18:4(6Z,9Z,12Z,15Z)), and de novo triacylglycerol biosynthesis TG(24:0/20:5(5Z,8Z,11Z,14Z,17Z)/24:0). A hydrogen ion is created when a hydrogen atom loses or gains an electron. A positively charged hydrogen ion (or proton) can readily combine with other particles and therefore is only seen isolated when it is in a gaseous state or a nearly particle-free space. Due to its extremely high charge density of approximately 2×1010 times that of a sodium ion, the bare hydrogen ion cannot exist freely in solution as it readily hydrates, i.e., bonds quickly. The hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions . Hydrogen ion is recommended by IUPAC as a general term for all ions of hydrogen and its isotopes. Depending on the charge of the ion, two different classes can be distinguished: positively charged ions and negatively charged ions. Under aqueous conditions found in biochemistry, hydrogen ions exist as the hydrated form hydronium, H3O+, but these are often still referred to as hydrogen ions or even protons by biochemists. [Wikipedia])

   

all-trans-Decaprenyl diphosphate

({[(3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl)oxy](hydroxy)phosphoryl}oxy)phosphonic acid

C50H84O7P2 (858.5691974)


All-trans-decaprenyl diphosphate is part of the Cofactor biosynthesis, and Terpenoid backbone biosynthesis pathways. It is a substrate for: Decaprenyl-diphosphate synthase subunit 2, and Decaprenyl-diphosphate synthase subunit 1.

   

10-Apo-beta-carotenal

10-Apo-beta-carotenal

C27H36O (376.2766006)


D020011 - Protective Agents > D000975 - Antioxidants > D002338 - Carotenoids

   

(R)-Nadphx

(R)-Nadphx

C21H32N7O18P3 (763.1016642000001)


A tetrahydronicotinamide adenine dinucleotide obtained by formal stero- and regioselective hydration across the 2,3-double bond in the nicotinyl ring of NADPH, with the hydroxy group located at position 2, having (R)-configuration.

   

(2S)-2-[[(4S)-4-[[(4S)-4-[[4-[[(6R)-2-amino-4-oxo-5,6,7,8-tetrahydro-3H-pteridin-6-yl]methyl-formylamino]benzoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]pentanedioic acid

(2S)-2-[[(4S)-4-[[(4S)-4-[[4-[[(6R)-2-amino-4-oxo-5,6,7,8-tetrahydro-3H-pteridin-6-yl]methyl-formylamino]benzoyl]amino]-4-carboxybutanoyl]amino]-4-carboxybutanoyl]amino]pentanedioic acid

C30H37N9O13 (731.2510712)


   

Menatetrenone

2-methyl-3-[(2E,6E,10E)-3,7,11,15-tetramethylhexadeca-2,6,10,14-tetraen-1-yl]-1,4-dihydronaphthalene-1,4-dione

C31H40O2 (444.302814)


Menatetrenone, also known as MK-4, is a vitamin K compound used as a hemostatic agent, and also as adjunctive therapy for the pain of osteoporosis. Menatetrenone is one of the nine forms of vitamin K2 and is a short-chain menaquinone. MK-4 is produced via conversion of vitamin K1 in the body, in the testes, pancreas and arterial walls (Wikipedia). Vitamin K2 is found in brassicas. Vitamin K2 is widely distributed in green leaves and vegetables. It is a fat-soluble dietary factor effective in controlling blood coagulation. All members of the vitamin K group of vitamins share a methylated naphthoquinone ring structure and vary in the aliphatic side chain attached at the 3-position. Phylloquinone (also known as vitamin K1) invariably contains in its side chain four isoprenoid residues, one of which is unsaturated. Human milk contains between 1 and 4 micrograms/litre of vitamin K1, while formula-derived milk can contain up to 100 micrograms/litre in supplemented formulas. Vitamin K2 concentrations in human milk appear to be much lower than those of vitamin K1. It is estimated that there is a 0.25 to 1.7 percent occurrence of vitamin K deficiency bleeding in the first week of the infants life with a prevalence of 2-10 cases per 100,000 births. The biochemistry of how vitamin K is used to convert glutamic acid (Glu) to gamma-carboxyglutamic acid (Gla) has been elucidated over the past thirty years in academic laboratories throughout the world. Within the cell, vitamin K undergoes electron reduction to a reduced form of vitamin K (called vitamin K hydroquinone) by the enzyme vitamin K epoxide reductase (or VKOR). Another enzyme then oxidizes vitamin K hydroquinone to allow carboxylation of Glu to Gla; this enzyme is called the gamma-glutamyl carboxylase or the vitamin K-dependent carboxylase. The carboxylation reaction will only proceed if the carboxylase enzyme is able to oxidize vitamin K hydroquinone to vitamin K epoxide at the same time. The carboxylation and epoxidation reactions are said to be coupled reactions. Vitamin K epoxide is then re-converted into vitamin K by the vitamin K epoxide reductase. These two enzymes comprise the so-called vitamin K cycle. Vitamin K2 is one of the reasons why vitamin K is rarely deficient in a human diet (vitamin K is continually recycled in our cells). Vitamin K1 is also known as phylloquinone or phytomenadione (also called phytonadione). Vitamin K2 (menaquinone, menatetrenone) is normally produced by bacteria in the large intestine, and dietary deficiency is extremely rare unless the intestines are heavily damaged or are unable to absorb the molecule, or due to decreased production by normal flora, as seen in broad spectrum antibiotic use. Menaquinone-4 is a menaquinone whose side-chain contains 4 isoprene units in an all-trans-configuration. It has a role as a bone density conservation agent, a human metabolite, an antioxidant, an anti-inflammatory agent and a neuroprotective agent. Menatetrenone has been used in trials studying the treatment of Diabetes, Osteoporosis, Prediabetic State, and Hepatocellular Carcinoma. Menatetrenone is a menaquinone compound and form of vitamin K2 with potential antineoplastic activity. Menatetrenone may act by modulating the signalling of certain tyrosine kinases, thereby affecting several transcription factors including c-myc and c-fos. This agent inhibits tumor cell growth by inducing apoptosis and cell cycle arrest. M - Musculo-skeletal system > M05 - Drugs for treatment of bone diseases > M05B - Drugs affecting bone structure and mineralization Inhibits bone resorption via PGE2 synthesis inhibition and other mechanisms. Antihaemorrhagic vitamin [CCD] A menaquinone whose side-chain contains 4 isoprene units in an all-trans-configuration. D006401 - Hematologic Agents > D003029 - Coagulants > D006490 - Hemostatics Menaquinone-4 is a vitamin K, used as a hemostatic agent, and also a adjunctive therapy for the pain of osteoporosis.

   

S-Adenosylmethionine

[(3S)-3-amino-3-carboxypropyl]({[(2S,3S,4R,5R)-5-(6-amino-9H-purin-9-yl)-3,4-dihydroxyoxolan-2-yl]methyl})methylsulfanium

C15H23N6O5S+ (399.1450568)


S-adenosylmethionine, also known as sam or adomet, is a member of the class of compounds known as 5-deoxy-5-thionucleosides. 5-deoxy-5-thionucleosides are 5-deoxyribonucleosides in which the ribose is thio-substituted at the 5position by a S-alkyl group. S-adenosylmethionine is slightly soluble (in water) and a moderately acidic compound (based on its pKa). S-adenosylmethionine can be found in a number of food items such as common grape, half-highbush blueberry, jerusalem artichoke, and thistle, which makes S-adenosylmethionine a potential biomarker for the consumption of these food products. S-adenosylmethionine can be found primarily in blood, cerebrospinal fluid (CSF), feces, and urine, as well as throughout most human tissues. S-adenosylmethionine exists in all eukaryotes, ranging from yeast to humans. In humans, S-adenosylmethionine is involved in several metabolic pathways, some of which include phosphatidylcholine biosynthesis PC(22:1(13Z)/22:6(4Z,7Z,10Z,13Z,16Z,19Z)), phosphatidylcholine biosynthesis PC(22:0/18:3(9Z,12Z,15Z)), phosphatidylcholine biosynthesis PC(24:0/24:0), and phosphatidylcholine biosynthesis PC(20:5(5Z,8Z,11Z,14Z,17Z)/20:0). S-adenosylmethionine is also involved in several metabolic disorders, some of which include methylenetetrahydrofolate reductase deficiency (MTHFRD), 3-phosphoglycerate dehydrogenase deficiency, monoamine oxidase-a deficiency (MAO-A), and aromatic l-aminoacid decarboxylase deficiency. Moreover, S-adenosylmethionine is found to be associated with diabetes mellitus type 2 and neurodegenerative disease. S-adenosylmethionine is a non-carcinogenic (not listed by IARC) potentially toxic compound. S-Adenosyl methionine is a common cosubstrate involved in methyl group transfers, transsulfuration, and aminopropylation. Although these anabolic reactions occur throughout the body, most SAM-e is produced and consumed in the liver. More than 40 methyl transfers from SAM-e are known, to various substrates such as nucleic acids, proteins, lipids and secondary metabolites. It is made from adenosine triphosphate (ATP) and methionine by methionine adenosyltransferase (EC 2.5.1.6). SAM was first discovered by Giulio Cantoni in 1952 . Significant first-pass metabolism in the liver. Approximately 50\\\% of S-Adenosylmethionine (SAMe) is metabolized in the liver. SAMe is metabolized to S-adenosylhomocysteine, which is then metabolized to homocysteine. Homocysteine can either be metabolized to cystathionine and then cysteine or to methionine. The cofactor in the metabolism of homocysteine to cysteine is vitamin B6. Cofactors for the metabolism of homocysteine to methionine are folic acid, vitamin B12 and betaine (T3DB). S-Adenosylmethionine (CAS: 29908-03-0), also known as SAM or AdoMet, is a physiologic methyl radical donor involved in enzymatic transmethylation reactions and present in all living organisms. It possesses anti-inflammatory activity and has been used in the treatment of chronic liver disease (From Merck, 11th ed). S-Adenosylmethionine is a natural substance present in the cells of the body. It plays a crucial biochemical role by donating a one-carbon methyl group in a process called transmethylation. S-Adenosylmethionine, formed from the reaction of L-methionine and adenosine triphosphate catalyzed by the enzyme S-adenosylmethionine synthetase, is the methyl-group donor in the biosynthesis of both DNA and RNA nucleic acids, phospholipids, proteins, epinephrine, melatonin, creatine, and other molecules.

   

Ubiquinol-10

2-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-5,6-dimethoxy-3-methylbenzene-1,4-diol

C59H92O4 (864.6995231999999)


Ubiquinol-10 is a benzoquinol and is the reduced product of ubiquinone also called coenzyme Q10.The reduction of ubiquinone to ubiquinol occurs in Complexes I&II in the electron transfer chain. The Q cycle is a process that occurs in cytochrome b[, a component of Complex III in the electron transport chain,and that converts ubiquinol to ubiquinone in a cyclic fashion. When ubiquinol binds to cytochrome b, the pKa of the phenolic group decreases so that the proton ionizes and the phenoxide anion is formed (Wikipedia). Ubiquinol-10, the reduced form of ubiquinone-10, efficiently scavenges free radicals generated chemically within liposomal membranes. Ubiquinol-10 is about as effective in preventing peroxidative damage to lipids as alpha-tocopherol, which is considered the best lipid-soluble antioxidant in humans. The number of radicals scavenged by each molecule of ubiquinol-10 is 1.1 under certain experimental conditions. In contrast to alpha-tocopherol, ubiquinol-10 is not recycled by ascorbate. However, it is known that ubiquinol-10 can be recycled by electron transport carriers present in various biomembranes and possibly by some enzymes. It is shown that ubiquinol-10 spares alpha-tocopherol when both antioxidants are present in the same liposomal membranes and that ubiquinol-10, like alpha-tocopherol, does not interact with reduced glutathione.It is suggested that ubiquinol-10 is an important physiological lipid-soluble antioxidant. [PMID: 2352956]. Ubiquinol-10 is a benzoquinol and is the reduced product of ubiquinone also called coenzyme Q10.The reduction of ubiquinone to ubiquinol occurs in Complexes I&II in the electron transfer chain. The Q cycle is a process that occurs in cytochrome b[, a component of Complex III in the electron transport chain,and that converts ubiquinol to ubiquinone in a cyclic fashion. When ubiquinol binds to cytochrome b, the pKa of the phenolic group decreases so that the proton ionizes and the phenoxide anion is formed (from wiki) COVID info from COVID-19 Disease Map, clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Decaprenyl-4-hydroxybenzoic acid

3-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-4-hydroxybenzoic acid

C57H86O3 (818.6576606)


3-Decaprenyl-4-hydroxybenzoic acid is the first intermediate in the conversion of p-hydroxybenzoate (PHB) to ubiquinone. It is a 3-polyprenyl derivative of PHB. It has been found that PPHB is located primarily in the inner membrane of liver mitochondria. (PMID: 4338233) [HMDB] 3-Decaprenyl-4-hydroxybenzoic acid is the first intermediate in the conversion of p-hydroxybenzoate (PHB) to ubiquinone. It is a 3-polyprenyl derivative of PHB. It has been found that PPHB is located primarily in the inner membrane of liver mitochondria. (PMID: 4338233).

   

3-Decaprenyl-4-hydroxy-5-methoxybenzoate

3-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-4-hydroxy-5-methoxybenzoic acid

C58H88O4 (848.6682248)


This compound belongs to the family of Polyprenylphenols. These are compounds containing a polyisoprene chain attached to a phenol group.

   

3-Decaprenyl-4,5-dihydroxybenzoate

3-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-4,5-dihydroxybenzoic acid

C57H86O4 (834.6525756)


This compound belongs to the family of Polyprenylphenols. These are compounds containing a polyisoprene chain attached to a phenol group.

   

3-demethylubiquinol-10

5-[(2E,6E,10E,14E,18E,22E,26E,30E,34E)-3,7,11,15,19,23,27,31,35,39-decamethyltetraconta-2,6,10,14,18,22,26,30,34,38-decaen-1-yl]-3-methoxy-6-methylbenzene-1,2,4-triol

C58H90O4 (850.683874)


3-demethylubiquinol-10 is considered to be practically insoluble (in water) and acidic

   

formate

Formic acid, cromium (+3), sodium (4:1:1) salt

CHO2- (44.997654600000004)


Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO‚àí or HCOO‚àí or HCO2‚àí. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid . Formate, also known as formic acid or methanoic acid, is a member of the class of compounds known as carboxylic acids. Carboxylic acids are compounds containing a carboxylic acid group with the formula -C(=O)OH. Formate is soluble (in water) and a weakly acidic compound (based on its pKa). Formate can be found in a number of food items such as mammee apple, chicory roots, malabar spinach, and grapefruit, which makes formate a potential biomarker for the consumption of these food products. Formate (IUPAC name: methanoate) is the anion derived from formic acid. Its formula is represented in various equivalent ways: CHOO− or HCOO− or HCO2−. It is the product of deprotonation of formic acid. It is the simplest carboxylate anion. A formate (compound) is a salt or ester of formic acid .

   

nicotinate ribose

1-((2R,3R,4S,5R)-3,4-Dihydroxy-5-(hydroxymethyl)tetrahydrofuran-2-yl)pyridin-1-ium-3-carboxylate

C11H13NO6 (255.07428380000002)


D-ribosylnicotinate is conjugate base of D-ribosylnicotinic acid. It has a role as a human metabolite. It is a conjugate base of a D-ribosylnicotinic acid. Nicotinic acid riboside is a natural product found in Vitis vinifera, Saccharomyces cerevisiae, and Homo sapiens with data available. Conjugate base of D-ribosylnicotinic acid. Nicotinic acid riboside is a NAD+ precursor in human cells. Nicotinic acid riboside is an authentic intermediate of human NAD+ metabolism[1][2].

   

7,8-Dihydro-L-biopterin

2-amino-6-(1R,2S-dihydroxypropyl)-7,8-dihydro-4(1H)-pteridinone

C9H13N5O3 (239.1018348)


7,8-Dihydro-L-biopterin is an oxidation product of tetrahydrobiopterin.

   

S-Adenosyl-L-methionine

S-Adenosyl-L-methionine

C15H23N6O5S+ (399.1450568)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nicotinamide adenine dinucleotide

Nicotinamide adenine dinucleotide

C21H26N7O14P2- (662.1012936000001)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-[[(2R)-2,4-dihydroxy-3,3-dimethylbutanoyl]amino]propanoate

3-[[(2R)-2,4-dihydroxy-3,3-dimethylbutanoyl]amino]propanoate

C9H16NO5- (218.10284260000003)


   

Coenzyme II

Coenzyme II

C21H25N7O17P3-3 (740.051977)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   

5-Phosphoribosyl 1-pyrophosphate

5-Phosphoribosyl 1-pyrophosphate

C5H13O14P3 (389.9518188)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   
   
   

Pyridoxal 5-phosphate(2-)

Pyridoxal 5-phosphate(2-)

C8H8NO6P-2 (245.0089238)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

[Hydroxy(oxido)phosphoryl] phosphate

[Hydroxy(oxido)phosphoryl] phosphate

HO7P2-3 (174.9197556)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Menatetrenone Epoxide

Menatetrenone Epoxide

C31H40O3 (460.297729)


   
   

MeCbl

MeCbl

C63H91CoN13O14P-3 (1343.5877716)


B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BA - Vitamin b12 (cyanocobalamin and analogues)

   

(2S)-2-azaniumylpropanoate

(2S)-2-azaniumylpropanoate

C3H7NO2 (89.0476762)


   

2-Azaniumylacetate

2-Azaniumylacetate

C2H5NO2 (75.032027)


   
   

(2S)-2-ammonio-4-(methylsulfanyl)butanoate

(2S)-2-ammonio-4-(methylsulfanyl)butanoate

C5H11NO2S (149.0510466)


   

D,L-Cysteine

(2R)-2-ammonio-3-mercaptopropanoate

C3H7NO2S (121.0197482)


   

Rubramin

Rubramin

C63H88CoN14O14P-3 (1354.5673717999998)


B - Blood and blood forming organs > B03 - Antianemic preparations > B03B - Vitamin b12 and folic acid > B03BA - Vitamin b12 (cyanocobalamin and analogues) COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D018977 - Micronutrients > D014815 - Vitamins Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cob(II)alamin

Cob(II)alamin

C62H88CoN13O14P-2 (1328.5642978)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

5-S-[(3S)-3-azaniumyl-3-carboxylatopropyl]-5-thioadenosine

C14H20N6O5S (384.12158300000004)


   
   

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

[[[(2R,3S,4R,5R)-5-(6-aminopurin-9-yl)-3,4-dihydroxyoxolan-2-yl]methoxy-oxidophosphoryl]oxy-oxidophosphoryl] phosphate

C10H12N5O13P3-4 (502.9644492)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-diphosphate

Adenosine-diphosphate

C10H12N5O10P2-3 (424.0059412)


COVID info from COVID-19 Disease Map, WikiPathways Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-yl diphosphate

(2E,6E,10E)-3,7,11,15-Tetramethylhexadeca-2,6,10,14-tetraen-1-yl diphosphate

C20H33O7P2-3 (447.1701428)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Adenosine-5-monophosphate(2-)

Adenosine-5-monophosphate(2-)

C10H12N5O7P-2 (345.0474332)


   

Cysteaminium

Cysteaminium

C2H8NS+ (78.0377428)


An ammonium ion that is the conjugate acid of cysteamine; major species at pH 7.3.

   

Thiamine(1+) diphosphate(3-)

Thiamine(1+) diphosphate(3-)

C12H16N4O7P2S-2 (422.0214926)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Flavin mononucleotide(3-)

Flavin mononucleotide(3-)

C17H18N4O9P-3 (453.0811368)


D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

(2S)-2,6-diammoniohexanoate

(2S)-2,6-diammoniohexanoate

C6H15N2O2+ (147.113347)


   

3-carbamoyl-1-(5-O-phosphonato-beta-D-ribofuranosyl)pyridinium

3-carbamoyl-1-(5-O-phosphonato-beta-D-ribofuranosyl)pyridinium

C11H14N2O8P- (333.0487754)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

L-glutamate(1-)

L-glutamate(1-)

C5H8NO4- (146.0453308)


An alpha-amino-acid anion that is the conjugate base of L-glutamic acid, having anionic carboxy groups and a cationic amino group

   
   
   

D-pantetheine 4-phosphate(2-)

D-pantetheine 4-phosphate(2-)

C11H21N2O7PS-2 (356.08070460000005)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

ADP-D-ribose(2-)

ADP-D-ribose(2-)

C15H21N5O14P2-2 (557.0560226)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

5-Methyltetrahydrofolate(2-)

5-Methyltetrahydrofolate(2-)

C20H23N7O6-2 (457.1709738)


   

(2S)-5-amino-2-ammonio-5-oxopentanoate

(2S)-5-amino-2-ammonio-5-oxopentanoate

C5H10N2O3 (146.069139)


   

7,8-Dihydroneopterin 3-triphosphate(4-)

7,8-Dihydroneopterin 3-triphosphate(4-)

C9H12N5O13P3-4 (490.9644492)


   

FAD trianion

FAD trianion

C27H30N9O15P2-3 (782.1336550000001)


COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

10-Formyltetrahydrofolate dianion

10-Formyltetrahydrofolate dianion

C20H21N7O7-2 (471.1502396)


   
   

5,10-methenyltetrahydrofolate tri-L-glutamate

5,10-methenyltetrahydrofolate tri-L-glutamate

C30H32N9O12-3 (710.2170332)


   
   

2-[[4-(3-Amino-1-oxo-2,5,6,6a,7,9-hexahydroimidazo[1,5-f]pteridin-8-yl)benzoyl]amino]pentanedioate

2-[[4-(3-Amino-1-oxo-2,5,6,6a,7,9-hexahydroimidazo[1,5-f]pteridin-8-yl)benzoyl]amino]pentanedioate

C20H21N7O6-2 (455.15532460000003)


   

2-Ammonio-4-sulfanylbutanoate

2-Ammonio-4-sulfanylbutanoate

C4H9NO2S (135.0353974)