FAD trianion (BioDeep_00000899103)
代谢物信息卡片
化学式: C27H30N9O15P2-3 (782.1336550000001)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 80%
分子结构信息
SMILES: CC1=CC2=C(C=C1C)N(C3=NC(=NC(=O)C3=N2)[O-])CC(C(C(COP(=O)([O-])OP(=O)([O-])OCC4C(C(C(O4)N5C=NC6=C(N=CN=C65)N)O)O)O)O)O
InChI: InChI=1S/C27H33N9O15P2/c1-10-3-12-13(4-11(10)2)35(24-18(32-12)25(42)34-27(43)33-24)5-14(37)19(39)15(38)6-48-52(44,45)51-53(46,47)49-7-16-20(40)21(41)26(50-16)36-9-31-17-22(28)29-8-30-23(17)36/h3-4,8-9,14-16,19-21,26,37-41H,5-7H2,1-2H3,(H,44,45)(H,46,47)(H2,28,29,30)(H,34,42,43)/p-3/t14-,15+,16+,19-,20+,21+,26+/m0/s1
描述信息
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
相关代谢途径
Reactome(105)
- Metabolism
- Biological oxidations
- Phase I - Functionalization of compounds
- Metabolism of vitamins and cofactors
- Disease
- Phase II - Conjugation of compounds
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Drug ADME
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Metabolism of cofactors
- Ubiquinol biosynthesis
- Diseases of metabolism
- Metabolism of polyamines
- Choline catabolism
- Methylation
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Nucleotide metabolism
- Nucleotide catabolism
- Purine catabolism
- Fatty acid metabolism
- Mitochondrial Fatty Acid Beta-Oxidation
- mitochondrial fatty acid beta-oxidation of saturated fatty acids
- Beta oxidation of myristoyl-CoA to lauroyl-CoA
- Metabolism of water-soluble vitamins and cofactors
- Vitamin B6 activation to pyridoxal phosphate
- Azathioprine ADME
- Beta oxidation of hexanoyl-CoA to butanoyl-CoA
- Bile acid and bile salt metabolism
- Synthesis of bile acids and bile salts
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- RHO GTPases Activate NADPH Oxidases
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection - Other responses of Mtb to phagocytosis
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Transcriptional Regulation by TP53
- Infection with Mycobacterium tuberculosis
- Cellular response to chemical stress
- Bacterial Infection Pathways
- Selenoamino acid metabolism
- Peroxisomal lipid metabolism
- Beta-oxidation of pristanoyl-CoA
- The tricarboxylic acid cycle
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Lysine catabolism
- Heme synthesis
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Glycine degradation
- Sulfur amino acid metabolism
- Degradation of cysteine and homocysteine
- Amine Oxidase reactions
- Biogenic amines are oxidatively deaminated to aldehydes by MAOA and MAOB
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Norepinephrine Neurotransmitter Release Cycle
- Neurotransmitter clearance
- Clearance of dopamine
- Enzymatic degradation of dopamine by COMT
- Enzymatic degradation of Dopamine by monoamine oxidase
- Phenylalanine and tyrosine metabolism
- Phenylalanine metabolism
- Porphyrin metabolism
- Heme biosynthesis
- Synthesis of bile acids and bile salts via 7alpha-hydroxycholesterol
- Clearance of seratonin
- Metabolism of serotonin
- Hemostasis
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate
- Branched-chain amino acid catabolism
- Defects in vitamin and cofactor metabolism
- Metabolic disorders of biological oxidation enzymes
- Nicotinate metabolism
- VEGFR2 mediated vascular permeability
- Beta oxidation of palmitoyl-CoA to myristoyl-CoA
- Interconversion of polyamines
- PAOs oxidise polyamines to amines
- Cytosolic iron-sulfur cluster assembly
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism
- alpha-linolenic acid (ALA) metabolism
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA
- Beta-oxidation of very long chain fatty acids
- Nicotinamide salvaging
- FMO oxidises nucleophiles
- Mitochondrial iron-sulfur cluster biogenesis
- Electron transport from NADPH to Ferredoxin
- Defective FMO3 causes TMAU
BioCyc(166)
- superpathway of pyrimidine ribonucleosides degradation
- staphyloxanthin biosynthesis
- 4-hydroxyacetophenone degradation
- 4-nitrophenol degradation I
- alkylnitronates degradation
- O-antigen building blocks biosynthesis (E. coli)
- superpathway of b heme biosynthesis from glycine
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- aspartate superpathway
- spinosyn A biosynthesis
- superpathway of tryptophan utilization
- superpathway of glycol metabolism and degradation
- heme b biosynthesis I (aerobic)
- glycolate and glyoxylate degradation I
- trans-4-hydroxy-L-proline degradation II
- pyrimidine deoxyribonucleotides de novo biosynthesis III
- nicotine degradation I (pyridine pathway)
- superpathway of L-citrulline metabolism
- L-citrulline biosynthesis
- L-Nδ-acetylornithine biosynthesis
- L-arginine degradation VIII (arginine oxidase pathway)
- L-arginine degradation X (arginine monooxygenase pathway)
- creatinine degradation I
- superpathway of aromatic compound degradation
- methanol oxidation to formaldehyde IV
- pterocarpan phytoalexins modification (maackiain, medicarpin, pisatin, phaseollin)
- superpathway of trimethylamine degradation
- trimethylamine degradation
- methanesulfonate degradation
- glycine betaine degradation I
- phenylmercury acetate degradation
- aurachin A, B, C and D biosynthesis
- pentachlorophenol degradation
- cytokinins degradation
- respiration (anaerobic)-- electron acceptors reaction list
- anhydromuropeptides recycling I
- choline degradation IV
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- TCA cycle I (prokaryotic)
- aromatic biogenic amine degradation (bacteria)
- mixed acid fermentation
- 2-hydroxybiphenyl degradation
- nicotine degradation II (pyrrolidine pathway)
- nicotinate degradation I
- L-valine degradation I
- superpathway of glyoxylate bypass and TCA
- (-)-dehydrodiconiferyl alcohol degradation
- superpathway of tetracycline and oxytetracycline biosynthesis
- spheroidene and spheroidenone biosynthesis
- superpathway of L-lysine degradation
- purine nucleotides degradation II (aerobic)
- N10-formyl-tetrahydrofolate biosynthesis
- L-phenylalanine degradation IV (mammalian, via side chain)
- superpathway of ergotamine biosynthesis
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- propane degradation I
- bile acids degradation
- caffeine degradation V (bacteria, via trimethylurate)
- coumarins biosynthesis (engineered)
- 2,4-dichlorophenoxyacetate degradation
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- flavin biosynthesis II (archaea)
- phenol degradation I (aerobic)
- styrene degradation
- leucine degradation IV
- coenzyme B/coenzyme M regeneration III (coenzyme F420-dependent)
- coenzyme B/coenzyme M regeneration I (methanophenazine-dependent)
- tetracycline and oxytetracycline biosynthesis
- superpathway of ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- cholesterol degradation to androstenedione I (cholesterol oxidase)
- cholesterol degradation to androstenedione II (cholesterol dehydrogenase)
- limonene degradation II (L-limonene)
- 2,4,6-trichlorophenol degradation
- L-lysine degradation IV
- hopanoid biosynthesis (bacteria)
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
- ammonia assimilation cycle III
- ethylmalonyl-CoA pathway
- sanguinarine and macarpine biosynthesis
- CDP-archaeol biosynthesis
- archaetidylinositol biosynthesis
- archaetidylserine and archaetidylethanolamine biosynthesis
- L-glutamine degradation II
- vitamin B6 degradation
- Entner-Doudoroff pathway II (non-phosphorylative)
- L-lysine degradation V
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- L-tyrosine degradation II
- 3,3'-disulfanediyldipropannoate degradation
- gliotoxin biosynthesis
- L-glutamate and L-glutamine biosynthesis
- L-carnitine degradation III
- 4-hydroxymandelate degradation
- orcinol degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- 4-hydroxyphenylacetate degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- peptidoglycan biosynthesis I (meso-diaminopimelate containing)
- peptidoglycan biosynthesis II (staphylococci)
- superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)
- L-leucine degradation I
- taxadiene biosynthesis (engineered)
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- L-valine biosynthesis
- deacetylcephalosporin C biosynthesis
- superpathway of CDP-glucose-derived O-antigen building blocks biosynthesis
- CDP-4-dehydro-3,6-dideoxy-D-glucose biosynthesis
- androstenedione degradation
- methylerythritol phosphate pathway I
- L-ascorbate biosynthesis IV
- superpathway of phylloquinol biosynthesis
- superpathway of UDP-glucose-derived O-antigen building blocks biosynthesis
- superpathway of L-threonine metabolism
- limonene degradation III (to perillate)
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- pyrrolnitrin biosynthesis
- NADH to fumarate electron transfer
- nitrate reduction IX (dissimilatory)
- succinate to cytochrome bo oxidase electron transfer
- NADH to cytochrome bo oxidase electron transfer II
- D-lactate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- hydrogen to fumarate electron transfer
- glycerol-3-phosphate to fumarate electron transfer
- holomycin biosynthesis
- methylglyoxal degradation VI
- 2,2'-dihydroxybiphenyl degradation
- 2,4-xylenol degradation to protocatechuate
- citronellol degradation
- phylloquinol biosynthesis
- ascorbate glutathione cycle
- superpathway of mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- mAGP
- mycolyl-arabinogalactan-peptidoglycan complex biosynthesis
- γ-resorcylate degradation I
- 4-nitrophenol degradation II
- 2,4,5-trichlorophenoxyacetate degradation
- citrulline-nitric oxide cycle
- NADH to cytochrome bd oxidase electron transfer II
- succinate to cytochrome bd oxidase electron transfer
- nitric oxide biosynthesis II (mammals)
- nitrate reduction VIIIb (dissimilatory)
- coelimycin P1 biosynthesis
- benzene degradation
- stipitatate biosynthesis
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
- pyruvate fermentation to isobutanol (engineered)
- butanol and isobutanol biosynthesis (engineered)
- tetracenomycin C biosynthesis
- rebeccamycin biosynthesis
- isorenieratene biosynthesis I (actinobacteria)
- superpathway of L-isoleucine biosynthesis I
- prodigiosin biosynthesis
- spongiadioxin C biosynthesis
PlantCyc(7)
代谢反应
585 个相关的代谢反应过程信息。
Reactome(438)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
ATP + BUT ⟶ AMP + BT-CoA + PPi
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
(S)-3-hydroxypalmitoyl-CoA + NAD ⟶ 3-Oxopalmitoyl-CoA + H+ + NADH
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of myristoyl-CoA to lauroyl-CoA:
(S)-3-Hydroxytetradecanoyl-CoA + NAD ⟶ 3-Oxotetradecanoyl-CoA + H+ + NADH
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
CoA + FAD + H2O + LIN-CoA + NAD ⟶ (3Z,6Z)-dodecadienoyl-CoA + Ac-CoA + FADH2(2-) + H+ + NADH
- Metabolism of nitric oxide: NOS3 activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
GTP + H2O ⟶ DHNTP + HCOOH
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
6MMP + H+ + Oxygen + TPNH ⟶ 6MP + CH2O + H2O + TPN
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSTRIN mediated eNOS trafficking:
eNOS:Caveolin-1:NOSTRIN:Dynamin-2 + wasla ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASp + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
B12r + NADH ⟶ B12s + H+ + NAD
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
Nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
H2O + cAMP ⟶ AMP
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
Nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Methylation:
6MMP + H+ + Oxygen + TPNH ⟶ 6MP + CH2O + H2O + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
PAK1,2,3 dimer + p-VAV family:PIP3:RAC1:GTP ⟶ 2 x p-VAV family:PIP3:RAC1:GTP:PAK 1-3
- NOSIP mediated eNOS trafficking:
nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- Interconversion of 2-oxoglutarate and 2-hydroxyglutarate:
2HG + FAD ⟶ 2OG + FADH2
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Mitochondrial Fatty Acid Beta-Oxidation:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
4-cis-decenoyl-CoA + FAD ⟶ (2E,4Z)-deca-2,4-dienoyl-CoA + FADH2
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- mitochondrial fatty acid beta-oxidation of unsaturated fatty acids:
(2E,4Z)-deca-2,4-dienoyl-CoA + H+ + NADH ⟶ 3-trans-decenoyl-CoA + NAD
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Proline catabolism:
FAD + HPRO ⟶ 1PYR-5COOH + FADH2 + H2O
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Proline catabolism:
FAD + HPRO ⟶ 1PYR-5COOH + FADH2 + H2O
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Proline catabolism:
FAD + HPRO ⟶ 1PYR-5COOH + FADH2 + H2O
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Proline catabolism:
FAD + HPRO ⟶ 1PYR-5COOH + FADH2 + H2O
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Proline catabolism:
FAD + HPRO ⟶ 1PYR-5COOH + FADH2 + H2O
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Proline catabolism:
H2O + L-Glu5S + NAD ⟶ Glu + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- mitochondrial fatty acid beta-oxidation of saturated fatty acids:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
FAD + Octanoyl-CoA ⟶ FADH2 + trans-Oct-2-enoyl-CoA
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Beta oxidation of octanoyl-CoA to hexanoyl-CoA:
(S)-Hydroxyoctanoyl-CoA + NAD ⟶ 3-Oxooctanoyl-CoA + H+ + NADH
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
(S)-Hydroxydecanoyl-CoA + NAD ⟶ 3-Oxodecanoyl-CoA + H+ + NADH
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Beta oxidation of decanoyl-CoA to octanoyl-CoA-CoA:
(S)-Hydroxydecanoyl-CoA + NAD ⟶ 3-Oxodecanoyl-CoA + H+ + NADH
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
H2O + oleoyl-Phe ⟶ L-Phe + oleate
- Respiratory electron transport:
CoQ + Cytochrome c (oxidised) + H+ + ubiquinol ⟶ CoQ + Cytochrome c (reduced) + H+ + ubiquinol
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c-Fe2+ + H+ + Oxygen ⟶ Cytochrome c-Fe3+ + H+ + H2O
- Respiratory electron transport:
Cytochrome c-Fe2+ + H+ + Oxygen ⟶ Cytochrome c-Fe3+ + H+ + H2O
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
H2O + oleoyl-Phe ⟶ L-Phe + oleate
- Respiratory electron transport:
CoQ + Cytochrome c (oxidised) + H+ + ubiquinol ⟶ CoQ + Cytochrome c (reduced) + H+ + ubiquinol
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
H2O + oleoyl-Phe ⟶ L-Phe + oleate
- Respiratory electron transport:
CoQ + Cytochrome c (oxidised) + H+ + ubiquinol ⟶ CoQ + Cytochrome c (reduced) + H+ + ubiquinol
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- Respiratory electron transport, ATP synthesis by chemiosmotic coupling, and heat production by uncoupling proteins.:
CoQ + H+ + NADH ⟶ H+ + NAD + ubiquinol
- Respiratory electron transport:
CoQ + H+ + NADH ⟶ H+ + NAD + ubiquinol
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX2 (reduced) + L-Cys ⟶ FDX2 (oxidized) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + L-Cys + Reduced Ferredoxin ⟶ FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala + Oxidized Ferredoxin
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX1 (red.) + L-Cys ⟶ FDX1 (ox.) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Electron transport from NADPH to Ferredoxin:
FDXR:FAD + H+ + TPNH ⟶ FDXR:FADH2 + TPN
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- The tricarboxylic acid cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
BioCyc(20)
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- pyrrolnitrin biosynthesis:
7-chloro-L-tryptophan + A(H2) + O2 ⟶ A + CO2 + H2O + monodechloroaminopyrrolnitrin
- 2,4,6-trichlorophenol degradation:
2,6-dichlorohydroquinone + FADH2 + O2 ⟶ 6-chlorohydroxyquinol + FAD + H+ + H2O + chloride
- 4,4'-diapolycopenedioate biosynthesis:
all-trans-4,4'-diapo-ζ-carotene + FAD + H+ ⟶ all-trans-4,4'-diaponeurosporene + FADH2
- staphyloxanthin biosynthesis:
all-trans-4,4'-diapo-ζ-carotene + FAD + H+ ⟶ all-trans-4,4'-diaponeurosporene + FADH2
- staphyloxanthin biosynthesis:
4,4'-diaponeurosporenal + H2O + NAD+ ⟶ 4,4'-diaponeurosporenoate + H+ + NADH
- 2,4,5-trichlorophenoxyacetate degradation:
5-chlorohydroxyquinol + FAD ⟶ 5-chlorohydroxyquinone + FADH2
- 6'-dechloromelleolide F biosynthesis:
(2E,6E)-farnesyl diphosphate ⟶ Δ2,4-protoilludene + diphosphate
- styrene degradation:
(S)-2-phenyloxirane ⟶ phenylacetaldehyde
- γ-resorcylate degradation I:
γ-resorcylate + H+ ⟶ CO2 + resorcinol
- hopanoid biosynthesis (bacteria):
SAM + methylcob(III)alamin + tetrahymanol ⟶ 2-methyltetrahymanol + 5'-deoxyadenosine + cob(III)alamin + met
- 3,5,6-trichloro-2-pyridinol degradation:
3,5,6-trichloro-2-pyridinol + FADH2 + H2O + O2 ⟶ 3,6-dihydroxypyridine-2,5-dione + FAD + H+ + chloride
- flavin biosynthesis II (archaea):
ATP + FMN + H+ ⟶ FAD + diphosphate
- superpathway of polybrominated aromatic compound biosynthesis:
2,4-dibromophenol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 2-bromo-4-(2,4-dibromophenoxy)phenol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- brominated pyrroles biosynthesis:
FADH2 + O2 + a 4,5-dibromo-1H-pyrrole-2-carbonyl-[Bmp1 prolyl-carrier protein] + bromide ⟶ FAD + H2O + a 3,4,5-tribromo-1H-pyrrole-2-carbonyl-[Bmp1 prolyl-carrier protein]
- coelimycin P1 biosynthesis:
(2E,5S,6E,8E,10E)-1-aminododeca-2,6,8,10-tetraen-5-ol + pyruvate ⟶ (2E,5S,6E,8E,10E)-5-hydroxydodeca-2,6,8,10-tetraenal + ala
- calcium-dependent antibiotic biosynthesis:
FAD + O2 + beta-ketohexanoyl-CoA ⟶ FADH2 + hydrogen peroxide + trans-hexenoyl-CoA
- rebeccamycin biosynthesis:
4'-O-demethylrebeccamycin + SAM ⟶ H+ + SAH + rebeccamycin
- pyoluteorin biosynthesis:
FADH2 + O2 + a 5-chloro-1H-pyrrole-2-carbonyl-[PltL prolyl-carrier protein] + chloride ⟶ FAD + H2O + a 4,5-dichloro-1H-pyrrole-2-carbonyl-[PltL prolyl-carrier protein]
- chlorotetracycline biosynthesis:
FADH2 + O2 + chloride + tetracycline ⟶ 7-chlorotetracycline + FAD + H+ + H2O
WikiPathways(0)
Plant Reactome(11)
- Responses to stimuli: abiotic stimuli and stresses:
Al3+ + CIT ⟶ Al:citrate
- Gravitropism under normal or artificial gravity environments:
FAD + H+ + H2O + isopentenyladenine ⟶ 3-methyl-2-butenal + Adenine + FADH2(2-)
- Regulation of lemma joints development and leaf angle by cytokinin:
FAD + H+ + H2O + isopentenyladenine ⟶ 3-methyl-2-butenal + Adenine + FADH2(2-)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Valine degradation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Citrulline biosynthesis:
H2O + L-Gln ⟶ L-Glu + ammonia
- Proline degradation:
FAD + L-Pro ⟶ 1PYR-5COOH + FADH2
- Beta-alanine biosynthesis II:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
INOH(0)
PlantCyc(115)
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
trans-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-trans-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
cis-zeatin + FAD + H+ + H2O ⟶ 3-methyl-4-cis-hydroxy-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6-dimethylallyladenine + FAD + H+ + H2O ⟶ 3-methyl-2-butenal + FADH2 + adenine
- cytokinins degradation:
N6--prenyladenine + FAD + H+ + H2O ⟶ 3-methylbut-2-enal + FADH2 + adenine
COVID-19 Disease Map(1)
- @COVID-19 Disease
Map["name"]:
2-Methyl-3-acetoacetyl-CoA + Coenzyme A ⟶ Acetyl-CoA + Propanoyl-CoA
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sadequl Islam, Yang Sun, Yuan Gao, Tomohisa Nakamura, Arshad Ali Noorani, Tong Li, Philip C Wong, Noriyuki Kimura, Etsuro Matsubara, Kensaku Kasuga, Takeshi Ikeuchi, Taisuke Tomita, Kun Zou, Makoto Michikawa. Presenilin Is Essential for ApoE Secretion, a Novel Role of Presenilin Involved in Alzheimer's Disease Pathogenesis.
The Journal of neuroscience : the official journal of the Society for Neuroscience.
2022 02; 42(8):1574-1586. doi:
10.1523/jneurosci.2039-21.2021
. [PMID: 34987110] - Shaiju S Nazeer, T P Sreedevi, Ramapurath S Jayasree. Autofluorescence spectroscopy and multivariate analysis for predicting the induced damages to other organs due to liver fibrosis.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2021 Aug; 257(?):119741. doi:
10.1016/j.saa.2021.119741
. [PMID: 33872953] - Shima Mehrvar, Soudeh Mostaghimi, Amadou K Camara, Farnaz Foomani, Jayashree Narayanan, Brian Fish, Meetha Medhora, Mahsa Ranji. Three-dimensional vascular and metabolic imaging using inverted autofluorescence.
Journal of biomedical optics.
2021 07; 26(7):. doi:
10.1117/1.jbo.26.7.076002
. [PMID: 34240589] - Yuan Ma, Yan Zheng, Yanli Ji, Xiuli Wang, Baoxian Ye. Raloxifene, identified as a novel LSD1 inhibitor, suppresses the migration of renal cell carcinoma.
Future medicinal chemistry.
2021 03; 13(6):533-542. doi:
10.4155/fmc-2020-0323
. [PMID: 33527838] - Celia Arib, Hui Liu, Qiqian Liu, Anne-Marie Cieutat, Didier Paleni, Xiaowu Li, Jolanda Spadavecchia. A Pegylated Flavin Adenine Dinucleotide PEG Complex to Boost Immunogenic and Therapeutic Effects in a Liver Cancer Model.
Nanotheranostics.
2021; 5(4):405-416. doi:
10.7150/ntno.59290
. [PMID: 33912380] - Shima Mehrvar, Amadou K S Camara, Mahsa Ranji. 3D Optical Cryo-Imaging Method: A Novel Approach to Quantify Renal Mitochondrial Bioenergetics Dysfunction.
Methods in molecular biology (Clifton, N.J.).
2021; 2276(?):259-270. doi:
10.1007/978-1-0716-1266-8_20
. [PMID: 34060048] - Paola Pizzo, Emy Basso, Riccardo Filadi, Elisa Greotti, Alessandro Leparulo, Diana Pendin, Nelly Redolfi, Michela Rossini, Nicola Vajente, Tullio Pozzan, Cristina Fasolato. Presenilin-2 and Calcium Handling: Molecules, Organelles, Cells and Brain Networks.
Cells.
2020 09; 9(10):. doi:
10.3390/cells9102166
. [PMID: 32992716] - Huiying Liu, Feng Xu, Yuqing Gao, Yuanyuan Pang, Cen Xie, Changtao Jiang. An Integrated LC-MS/MS Strategy for Quantifying the Oxidative-Redox Metabolome in Multiple Biological Samples.
Analytical chemistry.
2020 07; 92(13):8810-8818. doi:
10.1021/acs.analchem.0c00242
. [PMID: 32510199] - Tingting Tian, Mingxia Liu, Lixia Chen, Fengjiao Zhang, Xin Yao, Hong Zhao, Xiangjun Li. D-amino acid electrochemical biosensor based on D-amino acid oxidase: Mechanism and high performance against enantiomer interference.
Biosensors & bioelectronics.
2020 Mar; 151(?):111971. doi:
10.1016/j.bios.2019.111971
. [PMID: 31868610] - V V Vorobieva, P D Shabanov. Tissue-Specific Peculiarities of Vibration-Induced Hypoxia in Rabbit Liver and Kidney.
Bulletin of experimental biology and medicine.
2019 Sep; 167(5):621-623. doi:
10.1007/s10517-019-04583-0
. [PMID: 31606807] - Shima Mehrvar, Mette Funding la Cour, Meetha Medhora, Amadou K S Camara, Mahsa Ranji. Optical Metabolic Imaging for Assessment of Radiation-Induced Injury to Rat Kidney and Mitigation by Lisinopril.
Annals of biomedical engineering.
2019 Jul; 47(7):1564-1574. doi:
10.1007/s10439-019-02255-8
. [PMID: 30963380] - John M Robbins, Jiafeng Geng, Bridgette A Barry, Giovanni Gadda, Andreas S Bommarius. Photoirradiation Generates an Ultrastable 8-Formyl FAD Semiquinone Radical with Unusual Properties in Formate Oxidase.
Biochemistry.
2018 10; 57(40):5818-5826. doi:
10.1021/acs.biochem.8b00571
. [PMID: 30226367] - Wei Peng, Xiu-Wei Ma, Xiao Yang, Wan-Qiao Zhang, Lei Yan, Yong-Xia Wang, Xin Liu, Yan Wang, Zhi-Chun Feng. Two novel L2HGDH mutations identified in a rare Chinese family with L-2-hydroxyglutaric aciduria.
BMC medical genetics.
2018 09; 19(1):167. doi:
10.1186/s12881-018-0675-9
. [PMID: 30217188] - M Atif, M S AlSalhi, S Devanesan, V Masilamani, K Farhat, D Rabah. A study for the detection of kidney cancer using fluorescence emission spectra and synchronous fluorescence excitation spectra of blood and urine.
Photodiagnosis and photodynamic therapy.
2018 Sep; 23(?):40-44. doi:
10.1016/j.pdpdt.2018.05.012
. [PMID: 29800712] - Congyun Jin, Yoshiaki Yao, Atsushi Yonezawa, Satoshi Imai, Hiroki Yoshimatsu, Yuki Otani, Tomohiro Omura, Shunsaku Nakagawa, Takayuki Nakagawa, Kazuo Matsubara. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane.
Biological & pharmaceutical bulletin.
2017; 40(11):1990-1995. doi:
10.1248/bpb.b17-00292
. [PMID: 29093349] - Maria Barile, Teresa Anna Giancaspero, Piero Leone, Michele Galluccio, Cesare Indiveri. Riboflavin transport and metabolism in humans.
Journal of inherited metabolic disease.
2016 07; 39(4):545-57. doi:
10.1007/s10545-016-9950-0
. [PMID: 27271694] - Chao Kang, Hai-Long Wu, Chang Zhou, Shou-Xia Xiang, Xiao-Hua Zhang, Yong-Jie Yu, Ru-Qin Yu. Quantitative fluorescence kinetic analysis of NADH and FAD in human plasma using three- and four-way calibration methods capable of providing the second-order advantage.
Analytica chimica acta.
2016 Mar; 910(?):36-44. doi:
10.1016/j.aca.2015.12.047
. [PMID: 26873466] - Valerii Fedchenko, Arthur Kopylov, Nadezhda Kozlova, Olga Buneeva, Alexei Kaloshin, Victor Zgoda, Alexei Medvedev. Renalase Secreted by Human Kidney HEK293T Cells Lacks its N-Terminal Peptide: Implications for Putative Mechanisms of Renalase Action.
Kidney & blood pressure research.
2016; 41(5):593-603. doi:
10.1159/000443460
. [PMID: 27577995] - Ross D Milton, Koun Lim, David P Hickey, Shelley D Minteer. Employing FAD-dependent glucose dehydrogenase within a glucose/oxygen enzymatic fuel cell operating in human serum.
Bioelectrochemistry (Amsterdam, Netherlands).
2015 Dec; 106(Pt A):56-63. doi:
10.1016/j.bioelechem.2015.04.005
. [PMID: 25890695] - I S Severina, V I Fedchenko, A V Veselovsky, A E Medvedev. [The history of renalase from amine oxidase to a a-NAD(P)H-oxidase/anomerase].
Biomeditsinskaia khimiia.
2015 Nov; 61(6):667-79. doi:
10.18097/pbmc20156106667
. [PMID: 26716738] - F Salehpour, Z Ghanian, C Yang, N N Zheleznova, T Kurth, R K Dash, A W Cowley, M Ranji. Effects of p67phox on the mitochondrial oxidative state in the kidney of Dahl salt-sensitive rats: optical fluorescence 3-D cryoimaging.
American journal of physiology. Renal physiology.
2015 Aug; 309(4):F377-82. doi:
10.1152/ajprenal.00098.2015
. [PMID: 26062875] - Valerii I Fedchenko, Olga A Buneeva, Arthur T Kopylov, Alexander V Veselovsky, Victor G Zgoda, Alexei E Medvedev. Human urinary renalase lacks the N-terminal signal peptide crucial for accommodation of its FAD cofactor.
International journal of biological macromolecules.
2015; 78(?):347-53. doi:
10.1016/j.ijbiomac.2015.04.023
. [PMID: 25910647] - Vadivel Masilamani, Sandhanasamy Devanesan, Mani Ravikumar, Kantharaj Perinbam, Mohamad Saleh AlSalhi, Saradh Prasad, Siddanna Palled, Kadirampatti Mani Ganesh, Abbas Habeeb Alsaeed. Fluorescence spectral diagnosis of malaria: a preliminary study.
Diagnostic pathology.
2014 Oct; 9(?):182. doi:
10.1186/s13000-014-0182-z
. [PMID: 25322673] - Zahra Ghanian, Sepideh Maleki, SunYoung Park, Christine M Sorenson, Nader Sheibani, Mahsa Ranji. Organ specific optical imaging of mitochondrial redox state in a rodent model of hereditary hemorrhagic telangiectasia-1.
Journal of biophotonics.
2014 Oct; 7(10):799-809. doi:
10.1002/jbio.201300033
. [PMID: 23740865] - Dandan Liu, Janos Zempleni. Transcriptional regulation of the albumin gene depends on the removal of histone methylation marks by the FAD-dependent monoamine oxidase lysine-specific demethylase 1 in HepG2 human hepatocarcinoma cells.
The Journal of nutrition.
2014 Jul; 144(7):997-1001. doi:
10.3945/jn.114.192187
. [PMID: 24744315] - Sandhanasamy Devanesan, AlSalhi Mohamad Saleh, Mani Ravikumar, Kantharaj Perinbam, Saradh Prasad, H Al-Saeed Abbas, Siddanna R Palled, Karuppaiah Jeyaprakash, Vadivel Masilamani. Fluorescence spectral classification of iron deficiency anemia and thalassemia.
Journal of biomedical optics.
2014 Feb; 19(2):027008. doi:
10.1117/1.jbo.19.2.027008
. [PMID: 24549488] - Jin Young Choi, Kyeheui Lee, Seung Min Lee, Sun Hong Yoo, Seong Gyu Hwang, Jong Young Choi, Sang Wook Lee, Jae Seok Hwang, Kyoung Kon Kim, Hee Cheol Kang, Gab Jin Cheon, Young Min Park. Efficacy and safety of human placental extract for alcoholic and nonalcoholic steatohepatitis: an open-label, randomized, comparative study.
Biological & pharmaceutical bulletin.
2014; 37(12):1853-9. doi:
10.1248/bpb.b13-00979
. [PMID: 25590055] - Ishraq Alim, Renee E Haskew-Layton, Hossein Aleyasin, Hengchang Guo, Rajiv R Ratan. Spatial, temporal, and quantitative manipulation of intracellular hydrogen peroxide in cultured cells.
Methods in enzymology.
2014; 547(?):251-73. doi:
10.1016/b978-0-12-801415-8.00014-x
. [PMID: 25416362] - Mingxue Zhou, Tong Liang, Yifeng Wang, Da Jin, Jian Wang, Liyun Jia, Shuping Zhang. Expression and tissue localization of renalase, a novel soluble FAD-dependent protein, in reproductive/steroidogenic systems.
Molecular biology reports.
2013 Jun; 40(6):3987-94. doi:
10.1007/s11033-012-2476-0
. [PMID: 23271136] - Makoto Yoshimoto, Miku Yamasaki, Masakazu Okamoto, Hiroshi Umakoshi, Ryoichi Kuboi. Oligolamellar vesicles for covalent immobilization and stabilization of D-amino acid oxidase.
Enzyme and microbial technology.
2013 Jan; 52(1):13-9. doi:
10.1016/j.enzmictec.2012.09.001
. [PMID: 23199733] - Abhigyan Sengupta, Wilbee D Sasikala, Arnab Mukherjee, Partha Hazra. Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach.
Chemphyschem : a European journal of chemical physics and physical chemistry.
2012 Jun; 13(8):2142-53. doi:
10.1002/cphc.201200044
. [PMID: 22532419] - Elaine Y L Leung, Campbell S Roxburgh, Dinesh Talwar, Denis S O'Reilly, Ruth F McKee, Paul G Horgan, Donald C McMillan. The relationships between plasma and red cell vitamin B2 and B6 concentrations and the systemic and local inflammatory responses in patients with colorectal cancer.
Nutrition and cancer.
2012; 64(4):515-20. doi:
10.1080/01635581.2012.661512
. [PMID: 22439733] - Sabine Weidensee, Peter Goettig, Marko Bertone, Dorothea Haas, Viktor Magdolen, Marion Kiechle, Alfons Meindl, André B P van Kuilenburg, Eva Gross. A mild phenotype of dihydropyrimidine dehydrogenase deficiency and developmental retardation associated with a missense mutation affecting cofactor binding.
Clinical biochemistry.
2011 Jun; 44(8-9):722-4. doi:
10.1016/j.clinbiochem.2011.03.033
. [PMID: 21420945] - Rajender Kumar, Vinita Hooda, C S Pundir. Purification and partial characterization of oxalate oxidase from leaves of forage Sorghum (Sorghum vulgare var. KH-105) seedlings.
Indian journal of biochemistry & biophysics.
2011 Feb; 48(1):42-6. doi:
. [PMID: 21469601]
- Aikaterini T Vasilaki, Donald C McMillan, John Kinsella, Andrew Duncan, Denis St J O'Reilly, Dinesh Talwar. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness.
Clinica chimica acta; international journal of clinical chemistry.
2010 Nov; 411(21-22):1750-5. doi:
10.1016/j.cca.2010.07.024
. [PMID: 20667447] - A E Medvedev, A V Veselovsky, V I Fedchenko. Renalase, a new secretory enzyme responsible for selective degradation of catecholamines: achievements and unsolved problems.
Biochemistry. Biokhimiia.
2010 Aug; 75(8):951-8. doi:
10.1134/s0006297910080018
. [PMID: 21073414] - Adam Heller, Ben Feldman. Electrochemistry in diabetes management.
Accounts of chemical research.
2010 Jul; 43(7):963-73. doi:
10.1021/ar9002015
. [PMID: 20384299] - Bianca T van Maldegem, Marinus Duran, Ronald J A Wanders, Hans R Waterham, Frits A Wijburg. Flavin adenine dinucleotide status and the effects of high-dose riboflavin treatment in short-chain acyl-CoA dehydrogenase deficiency.
Pediatric research.
2010 Mar; 67(3):304-8. doi:
10.1203/pdr.0b013e3181cbd57b
. [PMID: 19952864] - Lars Lindqvist, Simona Apostol, Chaibia El Hanine-Lmoumene, Florence Lederer. Dynamics of flavin semiquinone protolysis in L-alpha-hydroxyacid-oxidizing flavoenzymes--a study using nanosecond laser flash photolysis.
The FEBS journal.
2010 Feb; 277(4):964-72. doi:
10.1111/j.1742-4658.2009.07539.x
. [PMID: 20074210] - Yasuzo Nishina, Kyosuke Sato, Haruhiko Tamaoki, Chiaki Setoyama, Retsu Miura, Kiyoshi Shiga. FT-IR spectroscopic studies on the molecular mechanism for substrate specificity/activation of medium-chain acyl-CoA dehydrogenase.
Journal of biochemistry.
2009 Sep; 146(3):351-7. doi:
10.1093/jb/mvp077
. [PMID: 19470521] - Benjamin Yazdanpanah, Katja Wiegmann, Vladimir Tchikov, Oleg Krut, Carola Pongratz, Michael Schramm, Andre Kleinridders, Thomas Wunderlich, Hamid Kashkar, Olaf Utermöhlen, Jens C Brüning, Stefan Schütze, Martin Krönke. Riboflavin kinase couples TNF receptor 1 to NADPH oxidase.
Nature.
2009 Aug; 460(7259):1159-63. doi:
10.1038/nature08206
. [PMID: 19641494] - Klaus-Peter Michel, Ann-Kristin Schröder, Maike Zimmermann, Sonja Brandt, Elfriede K Pistorius, Nicole Frankenberg-Dinkel, Dorothee Staiger. The hybrid histidine kinase Slr1759 of the cyanobacterium Synechocystis sp. PCC 6803 contains FAD at its PAS domain.
Archives of microbiology.
2009 Jun; 191(6):553-9. doi:
10.1007/s00203-009-0483-x
. [PMID: 19424679] - E Van Schaftingen, R Rzem, M Veiga-da-Cunha. L: -2-Hydroxyglutaric aciduria, a disorder of metabolite repair.
Journal of inherited metabolic disease.
2009 Apr; 32(2):135-42. doi:
10.1007/s10545-008-1042-3
. [PMID: 19020988] - Silvia Sacchi, Mariagrazia Bernasconi, Magalie Martineau, Jean-Pierre Mothet, Maria Ruzzene, Mirella S Pilone, Loredano Pollegioni, Gianluca Molla. pLG72 modulates intracellular D-serine levels through its interaction with D-amino acid oxidase: effect on schizophrenia susceptibility.
The Journal of biological chemistry.
2008 Aug; 283(32):22244-56. doi:
10.1074/jbc.m709153200
. [PMID: 18544534] - M Samuraki, K Komai, Y Hasegawa, M Kimura, S Yamaguchi, N Terada, M Yamada. A successfully treated adult patient with L-2-hydroxyglutaric aciduria.
Neurology.
2008 Mar; 70(13):1051-2. doi:
10.1212/01.wnl.0000287141.90944.95
. [PMID: 18362286] - Annette Faust, Karsten Niefind, Werner Hummel, Dietmar Schomburg. The structure of a bacterial L-amino acid oxidase from Rhodococcus opacus gives new evidence for the hydride mechanism for dehydrogenation.
Journal of molecular biology.
2007 Mar; 367(1):234-48. doi:
10.1016/j.jmb.2006.11.071
. [PMID: 17234209] - Masayuki Akimoto, Yuko Sato, Toshimi Okubo, Hiroaki Todo, Tetsuya Hasegawa, Kenji Sugibayashi. Conversion of FAD to FMN and riboflavin in plasma: effects of measuring method.
Biological & pharmaceutical bulletin.
2006 Aug; 29(8):1779-82. doi:
10.1248/bpb.29.1779
. [PMID: 16880644] - Jean-Yves Hautem, Claire Morel, Rémy Couderc, Fathi Moussa. Liquid chromatographic determination of B(2) vitamers in human plasma and whole blood.
Clinical chemistry.
2006 May; 52(5):907-8. doi:
10.1373/clinchem.2005.065920
. [PMID: 16638966] - Petra Reihl, Jürgen Stolz. The monocarboxylate transporter homolog Mch5p catalyzes riboflavin (vitamin B2) uptake in Saccharomyces cerevisiae.
The Journal of biological chemistry.
2005 Dec; 280(48):39809-17. doi:
10.1074/jbc.m505002200
. [PMID: 16204239] - Tara Quasim, Donald C McMillan, Dinesh Talwar, Aikaterina Vasilaki, Denis St J O'Reilly, John Kinsella. The relationship between plasma and red cell B-vitamin concentrations in critically-ill patients.
Clinical nutrition (Edinburgh, Scotland).
2005 Dec; 24(6):956-60. doi:
10.1016/j.clnu.2005.06.004
. [PMID: 16054730] - Rim Rzem, Maria Veiga-da-Cunha, Gaëtane Noël, Sophie Goffette, Marie-Cécile Nassogne, Brahim Tabarki, Christina Schöller, Thorsten Marquardt, Miikka Vikkula, Emile Van Schaftingen. A gene encoding a putative FAD-dependent L-2-hydroxyglutarate dehydrogenase is mutated in L-2-hydroxyglutaric aciduria.
Proceedings of the National Academy of Sciences of the United States of America.
2004 Nov; 101(48):16849-54. doi:
10.1073/pnas.0404840101
. [PMID: 15548604] - Susanna Iossa, Maria Pina Mollica, Lillà Lionetti, Raffaella Crescenzo, Rosaria Tasso, Giovanna Liverini. A possible link between skeletal muscle mitochondrial efficiency and age-induced insulin resistance.
Diabetes.
2004 Nov; 53(11):2861-6. doi:
10.2337/diabetes.53.11.2861
. [PMID: 15504966] - Min Zhang, Tommi A White, Jonathan P Schuermann, Berevan A Baban, Donald F Becker, John J Tanner. Structures of the Escherichia coli PutA proline dehydrogenase domain in complex with competitive inhibitors.
Biochemistry.
2004 Oct; 43(39):12539-48. doi:
10.1021/bi048737e
. [PMID: 15449943] - Juan-C Vidal, Javier Espuelas, Juan-R Castillo. Amperometric cholesterol biosensor based on in situ reconstituted cholesterol oxidase on an immobilized monolayer of flavin adenine dinucleotide cofactor.
Analytical biochemistry.
2004 Oct; 333(1):88-98. doi:
10.1016/j.ab.2004.06.005
. [PMID: 15351284] - Andrew Gray, Donald C McMillan, Chris Wilson, Cathy Williamson, Denis St J O'Reilly, Dinesh Talwar. The relationship between plasma and red cell concentrations of vitamins thiamine diphosphate, flavin adenine dinucleotide and pyridoxal 5-phosphate following elective knee arthroplasty.
Clinical nutrition (Edinburgh, Scotland).
2004 Oct; 23(5):1080-3. doi:
10.1016/j.clnu.2004.01.013
. [PMID: 15380899] - Mo K Kang, Ayako Kameta, Ki-Hyuk Shin, Marcel A Baluda, No-Hee Park. Senescence occurs with hTERT repression and limited telomere shortening in human oral keratinocytes cultured with feeder cells.
Journal of cellular physiology.
2004 Jun; 199(3):364-70. doi:
10.1002/jcp.10410
. [PMID: 15095283] - Mikio Bakke, Naoki Kajiyama. Improvement in thermal stability and substrate binding of pig kidney D-amino acid oxidase by chemical modification.
Applied biochemistry and biotechnology.
2004 Mar; 112(3):123-31. doi:
10.1385/abab:112:3:123
. [PMID: 15007180] - Horatiu Olteanu, Kirsten R Wolthers, Andrew W Munro, Nigel S Scrutton, Ruma Banerjee. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase.
Biochemistry.
2004 Feb; 43(7):1988-97. doi:
10.1021/bi035910i
. [PMID: 14967039] - Jiaquan Wu, Alasdair F Bell, Lian Luo, Avery W Stephens, Marian T Stankovich, Peter J Tonge. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
Biochemistry.
2003 Oct; 42(40):11846-56. doi:
10.1021/bi0344578
. [PMID: 14529297] - Merima Bublin, Christian Radauer, Iain B H Wilson, Dietrich Kraft, Otto Scheiner, Heimo Breiteneder, Karin Hoffmann-Sommergruber. Cross-reactive N-glycans of Api g 5, a high molecular weight glycoprotein allergen from celery, are required for immunoglobulin E binding and activation of effector cells from allergic patients.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2003 Sep; 17(12):1697-9. doi:
10.1096/fj.02-0872fje
. [PMID: 12958180] - Kyousuke Sato, Yasuzou Nishina, Kiyoshi Shiga, Fumio Tanaka. Hydrogen-bonding dynamics of free flavins in benzene and FAD in electron-transferring flavoprotein upon excitation.
Journal of photochemistry and photobiology. B, Biology.
2003 May; 70(2):67-73. doi:
10.1016/s1011-1344(03)00056-3
. [PMID: 12849696] - Sandeep K Misra, Vinod Bhakuni. Unique holoenzyme dimers of the tetrameric enzyme Escherichia coli methylenetetrahydrofolate reductase: characterization of structural features associated with modulation of the enzyme's function.
Biochemistry.
2003 Apr; 42(13):3921-8. doi:
10.1021/bi0340200
. [PMID: 12667083] - Friederike Traunmüller, Michael Ramharter, Heimo Lagler, Florian Thalhammer, Peter G Kremsner, Wolfgang Graninger, Stefan Winkler. Normal riboflavin status in malaria patients in Gabon.
The American journal of tropical medicine and hygiene.
2003 Feb; 68(2):182-5. doi:
. [PMID: 12641409]
- Teresa R Lamm, Theresa D Kohls, Amy K Saenger, Marian T Stankovich. Comparison of ligand polarization and enzyme activation in medium- and short-chain acyl-coenzyme A dehydrogenase-novel analog complexes.
Archives of biochemistry and biophysics.
2003 Jan; 409(2):251-61. doi:
10.1016/s0003-9861(02)00632-x
. [PMID: 12504892] - Steinar Hustad, Michelle C McKinley, Helene McNulty, Jørn Schneede, J J Strain, John M Scott, Per Magne Ueland. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation.
Clinical chemistry.
2002 Sep; 48(9):1571-7. doi:
. [PMID: 12194936]
- Y Nohara, J Suzuki, T Kinoshita, M Watanabe. Creatinine inhibits D-amino acid oxidase.
Nephron.
2002 Jun; 91(2):281-5. doi:
10.1159/000058405
. [PMID: 12053066] - Gerardo D Castro, Martín H Costantini, Aurora M A Delgado de Layño, José A Castro. Rat liver microsomal and nuclear activation of methanol to hydroxymethyl free radicals.
Toxicology letters.
2002 Mar; 129(3):227-36. doi:
10.1016/s0378-4274(02)00021-8
. [PMID: 11888706] - Chiaki Setoyama, Yasuzo Nishina, Haruhiko Tamaoki, Hisashi Mizutani, Ikuko Miyahara, Ken Hirotsu, Kiyoshi Shiga, Retsu Miura. Effects of hydrogen bonds in association with flavin and substrate in flavoenzyme d-amino acid oxidase. The catalytic and structural roles of Gly313 and Thr317.
Journal of biochemistry.
2002 Jan; 131(1):59-69. doi:
10.1093/oxfordjournals.jbchem.a003078
. [PMID: 11754736] - K Takekawa, K Sugihara, S Kitamura, S Ohta. Enzymatic and non-enzymatic reduction of brucine N-oxide by aldehyde oxidase and catalase.
Xenobiotica; the fate of foreign compounds in biological systems.
2001 Nov; 31(11):769-82. doi:
10.1080/00498250110065612
. [PMID: 11765140] - I Rudik, C Thorpe. Thioester enolate stabilization in the acyl-CoA dehydrogenases: the effect of 5-deaza-flavin substitution.
Archives of biochemistry and biophysics.
2001 Aug; 392(2):341-8. doi:
10.1006/abbi.2001.2467
. [PMID: 11488611] - O Sawada, T Ishida, K Horiike. Frontal gel chromatographic analysis of the interaction of a protein with self-associating ligands: aberrant saturation in the binding of flavins to bovine serum albumin.
Journal of biochemistry.
2001 Jun; 129(6):899-907. doi:
10.1093/oxfordjournals.jbchem.a002935
. [PMID: 11388904] - B Benayoun, A Esnard-Fève, S Castella, Y Courty, F Esnard. Rat seminal vesicle FAD-dependent sulfhydryl oxidase. Biochemical characterization and molecular cloning of a member of the new sulfhydryl oxidase/quiescin Q6 gene family.
The Journal of biological chemistry.
2001 Apr; 276(17):13830-7. doi:
10.1074/jbc.m010933200
. [PMID: 11278790] - G Cicek, T Vuorinen, I Stähle, P Stepanek, N Freudenberg, R Brandsch. Coxsackievirus B3 infection induces anti-flavoprotein antibodies in mice.
Clinical and experimental immunology.
2000 Dec; 122(3):404-9. doi:
10.1046/j.1365-2249.2000.01389.x
. [PMID: 11122247] - H Lindsay, E Beaumont, S D Richards, S M Kelly, S J Sanderson, N C Price, J G Lindsay. FAD insertion is essential for attaining the assembly competence of the dihydrolipoamide dehydrogenase (E3) monomer from Escherichia coli.
The Journal of biological chemistry.
2000 Nov; 275(47):36665-70. doi:
10.1074/jbc.m004777200
. [PMID: 10970889] - J D Pellett, K M Sabaj, A W Stephens, A F Bell, J Wu, P J Tonge, M T Stankovich. Medium-chain acyl-coenzyme A dehydrogenase bound to a product analogue, hexadienoyl-coenzyme A: effects on reduction potential, pK(a), and polarization.
Biochemistry.
2000 Nov; 39(45):13982-92. doi:
10.1021/bi0006464
. [PMID: 11076541] - K Sugihara, S Kitamura, S Ohta, K Tatsumi. Reduction of hydroxamic acids to the corresponding amides catalyzed by rabbit blood.
Xenobiotica; the fate of foreign compounds in biological systems.
2000 May; 30(5):457-67. doi:
10.1080/004982500237479
. [PMID: 10875680] - C D Capo-Chichi, F Feillet, J L Guéant, K Amouzou, N Zonon, A Sanni, E Lefebvre, K Assimadi, M Vidailhet. Concentrations of riboflavin and related organic acids in children with protein-energy malnutrition.
The American journal of clinical nutrition.
2000 Apr; 71(4):978-86. doi:
10.1093/ajcn/71.4.978
. [PMID: 10731506] - L Gille, H Nohl. The existence of a lysosomal redox chain and the role of ubiquinone.
Archives of biochemistry and biophysics.
2000 Mar; 375(2):347-54. doi:
10.1006/abbi.1999.1649
. [PMID: 10700391] - C D Capo-chichi, J L Guéant, F Feillet, F Namour, M Vidailhet. Analysis of riboflavin and riboflavin cofactor levels in plasma by high-performance liquid chromatography.
Journal of chromatography. B, Biomedical sciences and applications.
2000 Feb; 739(1):219-24. doi:
10.1016/s0378-4347(99)00469-7
. [PMID: 10744329] - L Vergani, M Barile, C Angelini, A B Burlina, L Nijtmans, M P Freda, C Brizio, E Zerbetto, F Dabbeni-Sala. Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies.
Brain : a journal of neurology.
1999 Dec; 122 ( Pt 12)(?):2401-11. doi:
10.1093/brain/122.12.2401
. [PMID: 10581232] - W N Kuo, R N Kanadia, V P Shanbhag, R Toro. Denitration of peroxynitrite-treated proteins by 'protein nitratases' from rat brain and heart.
Molecular and cellular biochemistry.
1999 Nov; 201(1-2):11-6. doi:
10.1023/a:1007024126947
. [PMID: 10630617] - M Suzuki, H Muraoka, M Kurata, N S Agar. Glutathione reductase activity and flavin concentration in guinea-pig tissues.
Experimental animals.
1999 Jul; 48(3):199-202. doi:
10.1538/expanim.48.199
. [PMID: 10480025] - S Hustad, P M Ueland, J Schneede. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma by capillary electrophoresis and laser-induced fluorescence detection.
Clinical chemistry.
1999 Jun; 45(6 Pt 1):862-8. doi:
10.1093/clinchem/45.6.862
. [PMID: 10351996] - B D Guenther, C A Sheppard, P Tran, R Rozen, R G Matthews, M L Ludwig. The structure and properties of methylenetetrahydrofolate reductase from Escherichia coli suggest how folate ameliorates human hyperhomocysteinemia.
Nature structural biology.
1999 Apr; 6(4):359-65. doi:
10.1038/7594
. [PMID: 10201405] - S Engst, P Vock, M Wang, J J Kim, S Ghisla. Mechanism of activation of acyl-CoA substrates by medium chain acyl-CoA dehydrogenase: interaction of the thioester carbonyl with the flavin adenine dinucleotide ribityl side chain.
Biochemistry.
1999 Jan; 38(1):257-67. doi:
10.1021/bi9815041
. [PMID: 9890906] - S Kitamura, M Kuwasako, K Sugihara, K Tatsumi, S Ohta. Debromination of (alpha-bromoiso-valeryl)urea catalysed by rat blood.
The Journal of pharmacy and pharmacology.
1999 Jan; 51(1):73-8. doi:
10.1211/0022357991771980
. [PMID: 10197421] - A Otto, I Stähle, R Klein, P A Berg, S Pankuweit, R Brandsch. Anti-mitochondrial antibodies in patients with dilated cardiomyopathy (anti-M7) are directed against flavoenzymes with covalently bound FAD.
Clinical and experimental immunology.
1998 Mar; 111(3):541-7. doi:
10.1046/j.1365-2249.1998.00531.x
. [PMID: 9528896] - L K Kwong, R S Sohal. Substrate and site specificity of hydrogen peroxide generation in mouse mitochondria.
Archives of biochemistry and biophysics.
1998 Feb; 350(1):118-26. doi:
10.1006/abbi.1997.0489
. [PMID: 9466828] - T Uemura, K Hirai. L-kynurenine 3-monooxygenase from mitochondrial outer membrane of pig liver: purification, some properties, and monoclonal antibodies directed to the enzyme.
Journal of biochemistry.
1998 Feb; 123(2):253-62. doi:
10.1093/oxfordjournals.jbchem.a021930
. [PMID: 9538200] - A A Olkowski, H L Classen. The study of riboflavin requirement in broiler chickens.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1998; 68(5):316-27. doi:
NULL
. [PMID: 9789764] - A A Raibekas, V Massey. Glycerol-assisted restorative adjustment of flavoenzyme conformation perturbed by site-directed mutagenesis.
The Journal of biological chemistry.
1997 Aug; 272(35):22248-52. doi:
10.1074/jbc.272.35.22248
. [PMID: 9268372] - B E Reuber, C Karl, S A Reimann, S J Mihalik, G Dodt. Cloning and functional expression of a mammalian gene for a peroxisomal sarcosine oxidase.
The Journal of biological chemistry.
1997 Mar; 272(10):6766-76. doi:
10.1074/jbc.272.10.6766
. [PMID: 9045710] - Q Zhao, X L Yang, W D Holtzclaw, P Talalay. Unexpected genetic and structural relationships of a long-forgotten flavoenzyme to NAD(P)H:quinone reductase (DT-diaphorase).
Proceedings of the National Academy of Sciences of the United States of America.
1997 Mar; 94(5):1669-74. doi:
10.1073/pnas.94.5.1669
. [PMID: 9050836] - K Sato, Y Nishina, K Shiga. In vitro assembly of FAD, AMP, and the two subunits of electron-transferring flavoprotein: an important role of AMP related with the conformational change of the apoprotein.
Journal of biochemistry.
1997 Mar; 121(3):477-86. doi:
10.1093/oxfordjournals.jbchem.a021612
. [PMID: 9133616] - M F Yueh, S K Krueger, D E Williams. Pulmonary flavin-containing monooxygenase (FMO) in rhesus macaque: expression of FMO2 protein, mRNA and analysis of the cDNA.
Biochimica et biophysica acta.
1997 Feb; 1350(3):267-71. doi:
10.1016/s0167-4781(97)00004-3
. [PMID: 9061021] - K Sato, Y Nishina, K Shiga. In vitro refolding and unfolding of subunits of electron-transferring flavoprotein: characterization of the folding intermediates and the effects of FAD and AMP on the folding reaction.
Journal of biochemistry.
1996 Aug; 120(2):276-85. doi:
10.1093/oxfordjournals.jbchem.a021410
. [PMID: 8889811] - H Mizutani, I Miyahara, K Hirotsu, Y Nishina, K Shiga, C Setoyama, R Miura. Three-dimensional structure of porcine kidney D-amino acid oxidase at 3.0 A resolution.
Journal of biochemistry.
1996 Jul; 120(1):14-7. doi:
10.1093/oxfordjournals.jbchem.a021376
. [PMID: 8864836] - K P Shatwell, A Dancis, A R Cross, R D Klausner, A W Segal. The FRE1 ferric reductase of Saccharomyces cerevisiae is a cytochrome b similar to that of NADPH oxidase.
The Journal of biological chemistry.
1996 Jun; 271(24):14240-4. doi:
10.1074/jbc.271.24.14240
. [PMID: 8662973] - A Stocker, H J Hecht, A F Bückmann. Synthesis, characterization and preliminary crystallographic data of N6-(6-carbamoylhexyl)-FAD-D-amino-acid oxidase from pig kidney, a semi-synthetic oxidase.
European journal of biochemistry.
1996 Jun; 238(2):519-28. doi:
10.1111/j.1432-1033.1996.0519z.x
. [PMID: 8681967]