Flavin mononucleotide(3-) (BioDeep_00000897860)
代谢物信息卡片
化学式: C17H18N4O9P-3 (453.0811)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 100%
分子结构信息
SMILES: CC1=CC2=C(C=C1C)N(C3=NC(=NC(=O)C3=N2)[O-])CC(C(C(COP(=O)([O-])[O-])O)O)O
InChI: InChI=1S/C17H21N4O9P/c1-7-3-9-10(4-8(7)2)21(15-13(18-9)16(25)20-17(26)19-15)5-11(22)14(24)12(23)6-30-31(27,28)29/h3-4,11-12,14,22-24H,5-6H2,1-2H3,(H,20,25,26)(H2,27,28,29)/p-3/t11-,12+,14-/m0/s1
描述信息
D018977 - Micronutrients > D014815 - Vitamins
COVID info from COVID-19 Disease Map
Corona-virus
Coronavirus
SARS-CoV-2
COVID-19
SARS-CoV
COVID19
SARS2
SARS
同义名列表
1 个代谢物同义名
相关代谢途径
Reactome(31)
- Metabolism
- Biological oxidations
- Metabolism of vitamins and cofactors
- Disease
- Phase II - Conjugation of compounds
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Metabolism of cofactors
- Diseases of metabolism
- Methylation
- Signaling Pathways
- Nucleotide metabolism
- Nucleotide catabolism
- Metabolism of water-soluble vitamins and cofactors
- Vitamin B6 activation to pyridoxal phosphate
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- The citric acid (TCA) cycle and respiratory electron transport
- Sulfur amino acid metabolism
- Metabolism of RNA
- tRNA processing
- tRNA modification in the nucleus and cytosol
- Defects in vitamin and cofactor metabolism
- Metabolism of amine-derived hormones
- Thyroxine biosynthesis
- VEGFR2 mediated vascular permeability
- Cytosolic iron-sulfur cluster assembly
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
BioCyc(45)
- 4-nitrophenol degradation I
- alkylnitronates degradation
- L-lysine biosynthesis II
- superpathway of fucose and rhamnose degradation
- nicotine degradation I (pyridine pathway)
- superpathway of L-citrulline metabolism
- L-arginine degradation X (arginine monooxygenase pathway)
- superpathway of purines degradation in plants
- superpathway of C1 compounds oxidation to CO2
- superpathway of trimethylamine degradation
- glycine betaine degradation I
- superpathway of coenzyme A biosynthesis I (bacteria)
- dimethyl sulfide degradation II (oxidation)
- methylamine degradation II
- matairesinol biosynthesis
- pentachlorophenol degradation
- formate oxidation to CO2
- nicotine degradation II (pyrrolidine pathway)
- superpathway of testosterone and androsterone degradation
- phenazine-1-carboxylate biosynthesis
- inosine 5'-phosphate degradation
- NADH to cytochrome bo oxidase electron transfer I
- NADH to cytochrome bd oxidase electron transfer I
- flavin biosynthesis II (archaea)
- UMP biosynthesis
- superpathway of cholesterol degradation II (cholesterol dehydrogenase)
- superpathway of cholesterol degradation I (cholesterol oxidase)
- fumigaclavine biosynthesis
- 2-nitrobenzoate degradation I
- superpathway of heme b biosynthesis from uroporphyrinogen-III
- L-glutamine degradation II
- 4-hydroxymandelate degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- nitrilotriacetate degradation
- androstenedione degradation
- mandelate degradation to acetyl-CoA
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- pyrrolnitrin biosynthesis
- nitrate reduction IX (dissimilatory)
- glycerol-3-phosphate to fumarate electron transfer
- 2,4,5-trichlorophenoxyacetate degradation
- citrulline-nitric oxide cycle
- nitric oxide biosynthesis II (mammals)
- prodigiosin biosynthesis
PlantCyc(10)
- superpathway of purines degradation in plants
- inosine 5'-phosphate degradation
- adenosine nucleotides degradation I
- ureide biosynthesis
- purine nucleotides degradation I (plants)
- guanosine nucleotides degradation II
- superpathway of guanosine nucleotides degradation (plants)
- guanosine nucleotides degradation I
- superpathway of photosynthetic hydrogen production
- matairesinol biosynthesis
代谢反应
263 个相关的代谢反应过程信息。
Reactome(228)
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
GTP + H2O ⟶ DHNTP + HCOOH
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
6MMP + H+ + Oxygen + TPNH ⟶ 6MP + CH2O + H2O + TPN
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSTRIN mediated eNOS trafficking:
eNOS:Caveolin-1:NOSTRIN:Dynamin-2 + wasla ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + aflatoxin B1 ⟶ AFXBO + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + SAH ⟶ Ade-Rib + HCYS
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASp + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
H+ + Oxygen + TPNH + progesterone ⟶ 11DCORST + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
B12r + NADH ⟶ B12s + H+ + NAD
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
Nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
H2O + cAMP ⟶ AMP
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
Nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
H2O + PNPB ⟶ BUT + PNP
- Methylation:
H2O + SAH ⟶ Ade-Rib + HCYS
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Cobalamin (Cbl, vitamin B12) transport and metabolism:
ATP + B12s ⟶ AdoCbl + PPP
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
MTAD + Pi ⟶ Ade + MTRIBP
- Biological oxidations:
11DCORT + H+ + Oxygen + TPNH ⟶ CORT + H2O + TPN
- Phase II - Conjugation of compounds:
PAPS + beta-estradiol ⟶ E2-SO4 + PAP
- Methylation:
6MMP + H+ + Oxygen + TPNH ⟶ 6MP + CH2O + H2O + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
PAK1,2,3 dimer + p-VAV family:PIP3:RAC1:GTP ⟶ 2 x p-VAV family:PIP3:RAC1:GTP:PAK 1-3
- NOSIP mediated eNOS trafficking:
nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
- Cobalamin (Cbl) metabolism:
H+ + MMACHC:cob(I)alamin + NAD ⟶ MMACHC:cob(II)alamin + NADH
BioCyc(34)
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- superpathway of cholesterol degradation I (cholesterol oxidase):
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- androstenedione degradation:
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- superpathway of testosterone and androsterone degradation:
3-hydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMNH2 + O2 ⟶ 3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + FMN + H+ + H2O
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + O2 ⟶ (1E,2Z)-3-hydroxy-5,9,17-trioxo-4,5:9,10-disecoandrosta-1 (10),2-dien-4-oate + H+
- androstenedione degradation:
3,4-dihydroxy-9,10-secoandrosta-1,3,5(10)-triene-9,17-dione + O2 ⟶ (1E,2Z)-3-hydroxy-5,9,17-trioxo-4,5:9,10-disecoandrosta-1 (10),2-dien-4-oate + H+
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- superpathway of testosterone and androsterone degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- androstenedione degradation:
NAD+ + coenzyme A + propanal ⟶ H+ + NADH + propanoyl-CoA
- superpathway of cholesterol degradation I (cholesterol oxidase):
O2 + cholesterol ⟶ cholest-5-en-3-one + hydrogen peroxide
- androstenedione degradation:
5-hydroxy-3-[(3aS,4S,5R,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + NADP+ ⟶ 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + H+ + NADPH
- superpathway of cholesterol degradation II (cholesterol dehydrogenase):
NAD+ + cholesterol ⟶ H+ + NADH + cholest-5-en-3-one
- androstenedione degradation:
5-hydroxy-3-[(3aS,4S,5R,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + NADP+ ⟶ 3-[(3aS,4S,7aS)-7a-methyl-1,5-dioxo-octahydro-1H-inden-4-yl]propanoyl-CoA + H+ + NADPH
- dibenzothiophene desulfurization:
FMNH2 + O2 + dibenzothiophene-5,5-dioxide ⟶ 2'-hydroxybiphenyl-2-sulfinate + FMN + H+ + H2O
- actinorhodin biosynthesis:
A + THN ⟶ A(H2) + actinorhodin
- dimethyl sulfide degradation II (oxidation):
H+ + NADPH + O2 + dimethyl sulfide ⟶ H2O + NADP+ + dimethyl sulfoxide
- uracil degradation III:
FMNH2 + O2 + uracil ⟶ (Z)-3-ureidoacrylate peracid + FMN + H+
- uracil degradation III:
H+ + carbamate ⟶ CO2 + ammonium
- uracil degradation III:
3-hydroxypropanoate + NADP+ ⟶ H+ + NADPH + malonate semialdehyde
- uracil degradation III:
3-hydroxypropanoate + NADP+ ⟶ H+ + NADPH + malonate semialdehyde
- alkylnitronates degradation:
FMNH2 + O2 + ethylnitronate ⟶ FMN + H2O + H+ + acetaldehyde + nitrite
- two-component alkanesulfonate monooxygenase:
FMNH2 + O2 + an alkylsulfonate ⟶ FMN + H+ + H2O + an aldehyde + sulfite
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- two-component alkanesulfonate monooxygenase:
FMNH2 + O2 + an alkylsulfonate ⟶ FMN + H+ + H2O + an aldehyde + sulfite
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- two-component alkanesulfonate monooxygenase:
FMNH2 + NADP+ ⟶ FMN + H+ + NADPH
- flavin biosynthesis II (archaea):
ATP + FMN + H+ ⟶ FAD + diphosphate
- flavin biosynthesis I (bacteria and plants):
2,5-diamino-6-(5-phospho-D-ribosylamino)pyrimidin-4(3H)-one + H2O ⟶ 5-amino-6-(5-phospho-D-ribosylamino)uracil + ammonia
- flavin biosynthesis IV (mammalian):
ATP + riboflavin ⟶ ADP + FMN + H+
- riboflavin, FMN and FAD transformations:
ATP + riboflavin ⟶ ADP + FMN + H+
- flavin biosynthesis III (fungi):
2,5-diamino-6-(5-phospho-D-ribitylamino)pyrimidin-4(3H)-one + H2O ⟶ 5-amino-6-(5-phospho-D-ribosylamino)uracil + ammonia
- roseoflavin biosynthesis:
8-amino-8-demethylriboflavin + SAM ⟶ 8-demethyl-8-(methylamino)riboflavin + H+ + SAH
Plant Reactome(0)
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Xiaoying Jing, Shanchao Hong, Jian Zhang, Xue Yang, Xianlong Geng, Yan Ye, Zhigang Hu. A rapid and quantitative detection method for plasma soluble growth stimulating gene protein 2 based on time resolved fluorescence immunochromatography.
Analytical methods : advancing methods and applications.
2022 06; 14(22):2179-2187. doi:
10.1039/d2ay00120a
. [PMID: 35608240] - Changjing Zhang, Leilei Zhu, Shuaifei Lu, Mengyuan Li, Ming Bai, Yucheng Li, Erping Xu. The antidepressant-like effect of formononetin on chronic corticosterone-treated mice.
Brain research.
2022 05; 1783(?):147844. doi:
10.1016/j.brainres.2022.147844
. [PMID: 35218705] - E V Ekusheva, V B Voitenkov, O A Rizakhanova. [The effectiveness of cytoflavin in complex therapy of patients with the coronavirus infection COVID-19].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2021; 121(12):33-39. doi:
10.17116/jnevro202112112133
. [PMID: 35041310] - M V Putilina, N V Teplova, K I Bairova, A E Petrikeeva, N I Shabalina. [The result of prospective randomized study CITADEL - the efficacy and safety of drug cytoflavin in postcovid rehabilitation].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2021; 121(10):45-51. doi:
10.17116/jnevro202112110145
. [PMID: 34874654] - Sweta Narayanan Iyer, Nemeshwaree Behary, Vincent Nierstrasz, Jinping Guan. Glow-in-the-Dark Patterned PET Nonwoven Using Air-Atmospheric Plasma Treatment and Vitamin B2-Derivative (FMN).
Sensors (Basel, Switzerland).
2020 Nov; 20(23):. doi:
10.3390/s20236816
. [PMID: 33260671] - M Cicuéndez, V S Silva, J Santos, A Coimbra, H Oliveira, M Ayán-Varela, J I Paredes, S Villar-Rodil, M Vila. MoS2 flakes stabilized with DNA/RNA nucleotides: In vitro cell response.
Materials science & engineering. C, Materials for biological applications.
2019 Jul; 100(?):11-22. doi:
10.1016/j.msec.2019.02.002
. [PMID: 30948045] - Yujie Liu, Wei Wu, Zhongzhou Chen. Structures of glycolate oxidase from Nicotiana benthamiana reveal a conserved pH sensor affecting the binding of FMN.
Biochemical and biophysical research communications.
2018 09; 503(4):3050-3056. doi:
10.1016/j.bbrc.2018.08.092
. [PMID: 30143257] - Benjamin Ricken, Boris A Kolvenbach, Christian Bergesch, Dirk Benndorf, Kevin Kroll, Hynek Strnad, Čestmír Vlček, Ricardo Adaixo, Frederik Hammes, Patrick Shahgaldian, Andreas Schäffer, Hans-Peter E Kohler, Philippe F-X Corvini. FMNH2-dependent monooxygenases initiate catabolism of sulfonamides in Microbacterium sp. strain BR1 subsisting on sulfonamide antibiotics.
Scientific reports.
2017 Nov; 7(1):15783. doi:
10.1038/s41598-017-16132-8
. [PMID: 29150672] - Congyun Jin, Yoshiaki Yao, Atsushi Yonezawa, Satoshi Imai, Hiroki Yoshimatsu, Yuki Otani, Tomohiro Omura, Shunsaku Nakagawa, Takayuki Nakagawa, Kazuo Matsubara. Riboflavin Transporters RFVT/SLC52A Mediate Translocation of Riboflavin, Rather than FMN or FAD, across Plasma Membrane.
Biological & pharmaceutical bulletin.
2017; 40(11):1990-1995. doi:
10.1248/bpb.b17-00292
. [PMID: 29093349] - A V Deriugina, A V Shumilova. [An influence of cytoflavin on oxidative stress and activity of Na/K-ATPase of erythrocytes after brain trauma].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2017 ; 117(11):51-55. doi:
10.17116/jnevro201711711151-55
. [PMID: 29265087] - Jiansong Ren, Gwen Murphy, Jinhu Fan, Sanford M Dawsey, Philip R Taylor, Jacob Selhub, Youlin Qiao, Christian C Abnet. Prospective study of serum B vitamins levels and oesophageal and gastric cancers in China.
Scientific reports.
2016 10; 6(?):35281. doi:
10.1038/srep35281
. [PMID: 27748414] - V A Dorovskikh, O N Li, N V Simonova, M A Shtarberg. [EFFECT OF CITOFLAVIN ON THE PARAMETERS OF LIPID PEROXIDATION IN BLOOD PLASMA OF RATS UNDER COLD STRESS CONDITIONS.].
Eksperimental'naia i klinicheskaia farmakologiia.
2016; 79(7):29-34. doi:
. [PMID: 29782743]
- V V Boyarintsev, I A Denisenko. Comparative evaluation of contemporary methods of treatment and rehabilitation of post-apoplexy patients.
Meditsina truda i promyshlennaia ekologiia.
2016 ; ?(11):1-7. doi:
NULL
. [PMID: 30351684] - I V Gatckikh, M M Petrova, T P Shalda, E L Varygina, M N Kuznetsov, A N Narkevich. Dynamics of cognitive disorders in patients with type 2 diabetes mellitus under effect of metabolic therapy.
Klinicheskaia meditsina.
2016 ; 94(7):533-9. doi:
NULL
. [PMID: 30289219] - I V Zadnipryanyi, O S Tretyakova, T P Sataeva. [Investigation of the antioxidant activity and cardioprotective effect of reamberin and cytoflavin in newborn rats exposed to chronic hemic hypoxia].
Arkhiv patologii.
2015 Nov; 77(6):39-44. doi:
10.17116/patol201577639-44
. [PMID: 26841648] - I V Gatskikh, O F Veselova, I N Brikman, T P Shalda, E L Varygina, M N Kuznetsov, A V Shul'min, M M Petrova. [EFFECTIVENESS OF CYTOFLAVIN FOR THE CORRECTION OF COGNITIVE IMPAIRMENTS IN PATIENTS WITH TYPE 2 DIABETES MELLITUS].
Eksperimental'naia i klinicheskaia farmakologiia.
2015; 78(11):21-5. doi:
. [PMID: 27017701]
- N V Tsygan, A P Trashkov, V A Yakovleva, V M Malkova, E V Gracheva, A L Kovalenko, A G Vasiliev. [Characteristics of the regulation of neurotrophic mechanisms in ischemic stroke].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2015; 115(7):112-116. doi:
10.17116/jnevro201511571112-116
. [PMID: 26356524] - N I Zhernakova, T V Gorbach, O V Romashchenko, V V Rumbesht. Age-related features of Cytoflavin effectiveness during experimental myocardial ischemia.
Bulletin of experimental biology and medicine.
2014 Apr; 156(6):785-8. doi:
10.1007/s10517-014-2450-z
. [PMID: 24824697] - N V Tsygan, A P Trashkov. [Brain functional state and cytoprotective potential in model of acute cerebral hypoxia (experimental research)].
Patologicheskaia fiziologiia i eksperimental'naia terapiia.
2013 Oct; ?(4):10-6. doi:
NULL
. [PMID: 24640767] - Abhigyan Sengupta, Wilbee D Sasikala, Arnab Mukherjee, Partha Hazra. Comparative study of flavins binding with human serum albumin: a fluorometric, thermodynamic, and molecular dynamics approach.
Chemphyschem : a European journal of chemical physics and physical chemistry.
2012 Jun; 13(8):2142-53. doi:
10.1002/cphc.201200044
. [PMID: 22532419] - S Turunen, E Käpylä, K Terzaki, J Viitanen, C Fotakis, M Kellomäki, M Farsari. Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity.
Biofabrication.
2011 Dec; 3(4):045002. doi:
10.1088/1758-5082/3/4/045002
. [PMID: 21904026] - Shu-Chun Chuang, Rachael Stolzenberg-Solomon, Per Magne Ueland, Stein Emil Vollset, Øivind Midttun, Anja Olsen, Anne Tjønneland, Kim Overvad, Marie-Christine Boutron-Ruault, Sophie Morois, Françoise Clavel-Chapelon, Birgit Teucher, Rudolf Kaaks, Cornelia Weikert, Heiner Boeing, Antonia Trichopoulou, Vassiliki Benetou, Androniki Naska, Mazda Jenab, Nadia Slimani, Isabelle Romieu, Dominique S Michaud, Domenico Palli, Sabina Sieri, Salvatore Panico, Carlotta Sacerdote, Rosario Tumino, Guri Skeie, Eric J Duell, Laudina Rodriguez, Esther Molina-Montes, José Marı A Huerta, Nerea Larrañaga, Aurelio Barricarte Gurrea, Dorthe Johansen, Jonas Manjer, Weimin Ye, Malin Sund, Petra H M Peeters, Suzanne Jeurnink, Nicholas Wareham, Kay-Tee Khaw, Francesca Crowe, Elio Riboli, Bas Bueno-de-Mesquita, Paolo Vineis. A U-shaped relationship between plasma folate and pancreatic cancer risk in the European Prospective Investigation into Cancer and Nutrition.
European journal of cancer (Oxford, England : 1990).
2011 Aug; 47(12):1808-16. doi:
10.1016/j.ejca.2011.02.007
. [PMID: 21411310] - Rajender Kumar, Vinita Hooda, C S Pundir. Purification and partial characterization of oxalate oxidase from leaves of forage Sorghum (Sorghum vulgare var. KH-105) seedlings.
Indian journal of biochemistry & biophysics.
2011 Feb; 48(1):42-6. doi:
. [PMID: 21469601]
- S O Rogatkin, N N Volodin, M G Degtiareva, O V Grebennikova, M Sh Marganiia, N D Serova. [Current approaches to cerebroprotective treatment of premature newborns in reanimation and intensive care departments].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2011; 111(1):27-32. doi:
NULL
. [PMID: 21350408] - I V Gordiushina, R P Savchenko, D S Sukhanov, A Iu Petrov, M G Romantsov. [Antioxidant and membranoprotector treatment of chronic pyelonephritis].
Eksperimental'naia i klinicheskaia farmakologiia.
2011; 74(4):27-30. doi:
NULL
. [PMID: 21678656] - E V Silina, S A Rumiantseva, S B Bolevich, N I Men'shova. [Course of free radical processes and prognosis of ischemic and hemorrhagic stroke].
Zhurnal nevrologii i psikhiatrii imeni S.S. Korsakova.
2011; 111(12 Pt 2):36-42. doi:
NULL
. [PMID: 22792747] - Aikaterini T Vasilaki, Donald C McMillan, John Kinsella, Andrew Duncan, Denis St J O'Reilly, Dinesh Talwar. Relation between riboflavin, flavin mononucleotide and flavin adenine dinucleotide concentrations in plasma and red cells in patients with critical illness.
Clinica chimica acta; international journal of clinical chemistry.
2010 Nov; 411(21-22):1750-5. doi:
10.1016/j.cca.2010.07.024
. [PMID: 20667447] - S N Karpishchenko, S N Zheregelia, S I Glushkov. [Using cytoflavin for correcting x-ray contrasting agent-induced nephropathy].
Eksperimental'naia i klinicheskaia farmakologiia.
2010 Oct; 73(10):40-2. doi:
NULL
. [PMID: 21254514] - V A Kashuro, S I Glushkov, L V Minaeva, T M Novikova. [Experimental study on cytoflavin pharmacological correction of cyclophosphamide-induced toxic affections of the liver and kidneys].
Antibiotiki i khimioterapiia = Antibiotics and chemoterapy [sic].
2010; 55(9-10):29-32. doi:
NULL
. [PMID: 21400751] - Benjamin Yazdanpanah, Katja Wiegmann, Vladimir Tchikov, Oleg Krut, Carola Pongratz, Michael Schramm, Andre Kleinridders, Thomas Wunderlich, Hamid Kashkar, Olaf Utermöhlen, Jens C Brüning, Stefan Schütze, Martin Krönke. Riboflavin kinase couples TNF receptor 1 to NADPH oxidase.
Nature.
2009 Aug; 460(7259):1159-63. doi:
10.1038/nature08206
. [PMID: 19641494] - Carmen G Gherasim, Uzma Zaman, Ashraf Raza, Ruma Banerjee. Impeded electron transfer from a pathogenic FMN domain mutant of methionine synthase reductase and its responsiveness to flavin supplementation.
Biochemistry.
2008 Nov; 47(47):12515-22. doi:
10.1021/bi8008328
. [PMID: 18980384] - G A Livanov, A N Lodiagin, I P Nikolaeva, B V Batotsyrenov. [The diagnosis and treatment of pulmonary hyperhydration in critically ill patients with acute poisoning by neurotropic agents].
Anesteziologiia i reanimatologiia.
2008 Nov; ?(6):27-30. doi:
NULL
. [PMID: 19227289] - Slavica Mijatovic, Giovanni Gadda. Oxidation of alkyl nitronates catalyzed by 2-nitropropane dioxygenase from Hansenula mrakii.
Archives of biochemistry and biophysics.
2008 May; 473(1):61-8. doi:
10.1016/j.abb.2008.02.029
. [PMID: 18329375] - Masayuki Akimoto, Yuko Sato, Toshimi Okubo, Hiroaki Todo, Tetsuya Hasegawa, Kenji Sugibayashi. Conversion of FAD to FMN and riboflavin in plasma: effects of measuring method.
Biological & pharmaceutical bulletin.
2006 Aug; 29(8):1779-82. doi:
10.1248/bpb.29.1779
. [PMID: 16880644] - Jean-Yves Hautem, Claire Morel, Rémy Couderc, Fathi Moussa. Liquid chromatographic determination of B(2) vitamers in human plasma and whole blood.
Clinical chemistry.
2006 May; 52(5):907-8. doi:
10.1373/clinchem.2005.065920
. [PMID: 16638966] - Horatiu Olteanu, Kirsten R Wolthers, Andrew W Munro, Nigel S Scrutton, Ruma Banerjee. Kinetic and thermodynamic characterization of the common polymorphic variants of human methionine synthase reductase.
Biochemistry.
2004 Feb; 43(7):1988-97. doi:
10.1021/bi035910i
. [PMID: 14967039] - Astrid Lorenz, Ralf Kaldenhoff, Rainer Hertel. A major integral protein of the plant plasma membrane binds flavin.
Protoplasma.
2003 May; 221(1-2):19-30. doi:
10.1007/s00709-002-0066-z
. [PMID: 12768338] - Friederike Traunmüller, Michael Ramharter, Heimo Lagler, Florian Thalhammer, Peter G Kremsner, Wolfgang Graninger, Stefan Winkler. Normal riboflavin status in malaria patients in Gabon.
The American journal of tropical medicine and hygiene.
2003 Feb; 68(2):182-5. doi:
. [PMID: 12641409]
- José Mauro Granjeiro, Carmen Verissima Ferreira, Paulo Afonso Granjeiro, Cinthia Celestino Da Silva, Eulázio Mikio Taga, Pedro Luiz Onofre Volpe, Hiroshi Aoyama. Inhibition of bovine kidney low molecular mass phosphotyrosine protein phosphatase by uric acid.
Journal of enzyme inhibition and medicinal chemistry.
2002 Oct; 17(5):345-50. doi:
10.1080/1475636021000013939
. [PMID: 12683751] - Steinar Hustad, Michelle C McKinley, Helene McNulty, Jørn Schneede, J J Strain, John M Scott, Per Magne Ueland. Riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma and erythrocytes at baseline and after low-dose riboflavin supplementation.
Clinical chemistry.
2002 Sep; 48(9):1571-7. doi:
. [PMID: 12194936]
- O Sawada, T Ishida, K Horiike. Frontal gel chromatographic analysis of the interaction of a protein with self-associating ligands: aberrant saturation in the binding of flavins to bovine serum albumin.
Journal of biochemistry.
2001 Jun; 129(6):899-907. doi:
10.1093/oxfordjournals.jbchem.a002935
. [PMID: 11388904] - C D Capo-Chichi, F Feillet, J L Guéant, K Amouzou, N Zonon, A Sanni, E Lefebvre, K Assimadi, M Vidailhet. Concentrations of riboflavin and related organic acids in children with protein-energy malnutrition.
The American journal of clinical nutrition.
2000 Apr; 71(4):978-86. doi:
10.1093/ajcn/71.4.978
. [PMID: 10731506] - C D Capo-chichi, J L Guéant, F Feillet, F Namour, M Vidailhet. Analysis of riboflavin and riboflavin cofactor levels in plasma by high-performance liquid chromatography.
Journal of chromatography. B, Biomedical sciences and applications.
2000 Feb; 739(1):219-24. doi:
10.1016/s0378-4347(99)00469-7
. [PMID: 10744329] - L Vergani, M Barile, C Angelini, A B Burlina, L Nijtmans, M P Freda, C Brizio, E Zerbetto, F Dabbeni-Sala. Riboflavin therapy. Biochemical heterogeneity in two adult lipid storage myopathies.
Brain : a journal of neurology.
1999 Dec; 122 ( Pt 12)(?):2401-11. doi:
10.1093/brain/122.12.2401
. [PMID: 10581232] - S Hustad, P M Ueland, J Schneede. Quantification of riboflavin, flavin mononucleotide, and flavin adenine dinucleotide in human plasma by capillary electrophoresis and laser-induced fluorescence detection.
Clinical chemistry.
1999 Jun; 45(6 Pt 1):862-8. doi:
10.1093/clinchem/45.6.862
. [PMID: 10351996] - S Kitamura, M Kuwasako, K Sugihara, K Tatsumi, S Ohta. Debromination of (alpha-bromoiso-valeryl)urea catalysed by rat blood.
The Journal of pharmacy and pharmacology.
1999 Jan; 51(1):73-8. doi:
10.1211/0022357991771980
. [PMID: 10197421] - A A Olkowski, H L Classen. The study of riboflavin requirement in broiler chickens.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1998; 68(5):316-27. doi:
NULL
. [PMID: 9789764] - M Honjo, T Ishida, K Horiike. Semi-micro-scale frontal gel chromatography of interacting systems of a protein and small molecules: binding of warfarin, tryptophan, or FMN to albumin, and of o-nitrophenol to catechol 2,3-dioxygenase.
Journal of biochemistry.
1997 Aug; 122(2):258-63. doi:
10.1093/oxfordjournals.jbchem.a021747
. [PMID: 9378700] - J M Granjeiro, C V Ferreira, M B Jucá, E M Taga, H Aoyama. Bovine kidney low molecular weight acid phosphatase: FMN-dependent kinetics.
Biochemistry and molecular biology international.
1997 May; 41(6):1201-8. doi:
10.1080/15216549700202291
. [PMID: 9161715] - J Zempleni, J R Galloway, D B McCormick. The metabolism of riboflavin in female patients with liver cirrhosis.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
1996; 66(3):237-43. doi:
NULL
. [PMID: 8899458] - H Xia, D S Bredt. Cloned and expressed nitric oxide synthase proteins.
Methods in enzymology.
1996; 268(?):427-36. doi:
10.1016/s0076-6879(96)68045-8
. [PMID: 8782609] - J Zempleni. Determination of riboflavin and flavocoenzymes in human blood plasma by high-performance liquid chromatography.
Annals of nutrition & metabolism.
1995; 39(4):224-6. doi:
10.1159/000177866
. [PMID: 8546438] - P J Sausen, R J Duescher, A A Elfarra. Further characterization and purification of the flavin-dependent S-benzyl-L-cysteine S-oxidase activities of rat liver and kidney microsomes.
Molecular pharmacology.
1993 Mar; 43(3):388-96. doi:
NULL
. [PMID: 8450833] - P N Mooij, R P Steegers-Theunissen, C M Thomas, W H Doesburg, T K Eskes. Periconceptional vitamin profiles are not suitable for identifying women at risk for neural tube defects.
The Journal of nutrition.
1993 Feb; 123(2):197-203. doi:
10.1093/jn/123.2.197
. [PMID: 8429368] - K L Proulx, H A Dailey. Characteristics of murine protoporphyrinogen oxidase.
Protein science : a publication of the Protein Society.
1992 Jun; 1(6):801-9. doi:
10.1002/pro.5560010612
. [PMID: 1304921] - K Penta, S Gullapalli, M Rau, T Ramasarma. Stimulation of NADH oxidation by xanthine oxidase and polyvanadate in presence of some dehydrogenases and flavin compounds.
Molecular and cellular biochemistry.
1991 Sep; 107(1):31-7. doi:
10.1007/bf02424573
. [PMID: 1784272] - P N Mooij, C M Thomas, W H Doesburg, T K Eskes. Multivitamin supplementation in oral contraceptive users.
Contraception.
1991 Sep; 44(3):277-88. doi:
10.1016/0010-7824(91)90018-b
. [PMID: 1764944] - D W Batey, C D Eckhert. Identification of FAD, FMN, and riboflavin in the retina by microextraction and high-performance liquid chromatography.
Analytical biochemistry.
1990 Jul; 188(1):164-7. doi:
10.1016/0003-2697(90)90546-l
. [PMID: 2221357] - J Lee, Y Y Wang, B G Gibson. Recovery of components of fluorescence spectra of mixtures by intensity- and anisotropy decay-associated analysis: the bacterial luciferase intermediates.
Analytical biochemistry.
1990 Mar; 185(2):220-9. doi:
10.1016/0003-2697(90)90283-f
. [PMID: 2339779] - V S Aboobaker, R K Bhattacharya. Modulation of flavocoenzyme levels in rat tissues by N-nitrosodiethylamine.
Cancer letters.
1989 Mar; 44(3):167-71. doi:
10.1016/0304-3835(89)90056-6
. [PMID: 2924285] - H J Shin, J L Mego. A rat liver lysosomal membrane flavin-adenine dinucleotide phosphohydrolase: purification and characterization.
Archives of biochemistry and biophysics.
1988 Nov; 267(1):95-103. doi:
10.1016/0003-9861(88)90012-4
. [PMID: 2848456] - P Urban, I Chirat, F Lederer. Rat kidney L-2-hydroxyacid oxidase. Structural and mechanistic comparison with flavocytochrome b2 from baker's yeast.
Biochemistry.
1988 Sep; 27(19):7365-71. doi:
10.1021/bi00419a029
. [PMID: 3061453] - A Lopez-Anaya, M Mayersohn. Quantification of riboflavin, riboflavin 5'-phosphate and flavin adenine dinucleotide in plasma and urine by high-performance liquid chromatography.
Journal of chromatography.
1987 Dec; 423(?):105-13. doi:
10.1016/0378-4347(87)80332-8
. [PMID: 3443641] - R Miura, Y Miyake. 13C-NMR studies on the reaction intermediates of porcine kidney D-amino acid oxidase reconstituted with 13C-enriched flavin adenine dinucleotide.
Journal of biochemistry.
1987 Dec; 102(6):1345-54. doi:
10.1093/oxfordjournals.jbchem.a122180
. [PMID: 2896189] - C L George, S J Ferguson. Immunochemical probing of the structure and cofactor of NADH dehydrogenase from Paracoccus denitrificans.
The Biochemical journal.
1987 Jun; 244(3):661-8. doi:
10.1042/bj2440661
. [PMID: 3446183] - T Yagi. Purification and characterization of NADH dehydrogenase complex from Paracoccus denitrificans.
Archives of biochemistry and biophysics.
1986 Nov; 250(2):302-11. doi:
10.1016/0003-9861(86)90731-9
. [PMID: 3096211] - F Funk, C Lecrenier, E Lesuisse, R R Crichton, W Schneider. A comparative study on iron sources for mitochondrial haem synthesis including ferritin and models of transit pool species.
European journal of biochemistry.
1986 Jun; 157(2):303-9. doi:
10.1111/j.1432-1033.1986.tb09669.x
. [PMID: 3011435] - N Ichinose, K Adachi, G Schwedt. Determination of B2 vitamers in serum of fish using high-performance liquid chromatography with fluorescence detection.
The Analyst.
1985 Dec; 110(12):1505-8. doi:
10.1039/an9851001505
. [PMID: 4096390] - W S Innis, D B McCormick, A H Merrill. Variations in riboflavin binding by human plasma: identification of immunoglobulins as the major proteins responsible.
Biochemical medicine.
1985 Oct; 34(2):151-65. doi:
10.1016/0006-2944(85)90106-1
. [PMID: 4084240] - B Mackler, R Person, K A Davis, H Ochs. Studies of pyridine nucleotide oxidizing enzymes from human neutrophils.
Biochemistry international.
1985 Sep; 11(3):319-25. doi:
. [PMID: 3933511]
- M Oka, D B McCormick. Urinary lumichrome-level catabolites of riboflavin are due to microbial and photochemical events and not rat tissue enzymatic cleavage of the ribityl chain.
The Journal of nutrition.
1985 Apr; 115(4):496-9. doi:
10.1093/jn/115.4.496
. [PMID: 3981268] - F Sakane, K Takahashi, J Koyama. Purification and characterization of a membrane-bound NADPH-cytochrome c reductase capable of catalyzing menadione-dependent O2- formation in guinea pig polymorphonuclear leukocytes.
Journal of biochemistry.
1984 Sep; 96(3):671-8. doi:
10.1093/oxfordjournals.jbchem.a134884
. [PMID: 6094521] - R Lutter, R van Zwieten, R S Weening, M N Hamers, D Roos. Cytochrome b, flavins, and ubiquinone-50 in enucleated human neutrophils (polymorphonuclear leukocyte cytoplasts).
The Journal of biological chemistry.
1984 Aug; 259(15):9603-6. doi:
10.1016/s0021-9258(17)42743-8
. [PMID: 6746662] - E Christensen, S Kølvraa, N Gregersen. Glutaric aciduria type II: evidence for a defect related to the electron transfer flavoprotein or its dehydrogenase.
Pediatric research.
1984 Jul; 18(7):663-7. doi:
10.1203/00006450-198407000-00020
. [PMID: 6433313] - N Masuda, H Oda, S Hirano, M Masuda, H Tanaka. 7 alpha-Dehydroxylation of bile acids by resting cells of a Eubacterium lentum-like intestinal anaerobe, strain c-25.
Applied and environmental microbiology.
1984 Apr; 47(4):735-9. doi:
10.1128/aem.47.4.735-739.1984
. [PMID: 6721490] - S B West, P G Wislocki, F J Wolf, A Y Lu. Drug residue formation from ronidazole, a 5-nitroimidazole. II. Involvement of microsomal NADPH-cytochrome P-450 reductase in protein alkylation in vitro.
Chemico-biological interactions.
1982 Sep; 41(3):281-96. doi:
10.1016/0009-2797(82)90106-5
. [PMID: 6809346] - R J Ulvik, I Romslo, F Roland, R R Crichton. Mobilization of iron from ferritin by isolated mitochondria. Effects of species compatibility between ferritin and mitochondria and iron content of ferritin.
Biochimica et biophysica acta.
1981 Sep; 677(1):50-6. doi:
10.1016/0304-4165(81)90144-6
. [PMID: 7295789] - S Singh. Interaction of riboflavin-5'-monophosphate with human serum albumin.
Indian journal of biochemistry & biophysics.
1981 Jun; 18(3):236-7. doi:
NULL
. [PMID: 7309104] - E A Stroev, N T Kazakova. [Effect of flavin coenzymes on the pyridoxine treatment of avitaminosis B6].
Voprosy pitaniia.
1981 Jan; ?(1):43-5. doi:
NULL
. [PMID: 7222553] - E A Stroev, N T Kazakova. [Effect of the combined use of flavin coenzyme preparations and pyridoxine on the body vitamin balance in animals].
Farmakologiia i toksikologiia.
1980 Sep; 43(5):601-3. doi:
NULL
. [PMID: 7449991] - M D Smith. Rapid method for determination of riboflavin in urine by high-performance liquid chromatography.
Journal of chromatography.
1980 Jun; 182(3-4):285-91. doi:
10.1016/s0378-4347(00)81476-0
. [PMID: 7391169] - M Okumura, K Yagi. Hydrolysis of flavin adenine dinucleotide and flavin mononucleotide by rabbit blood.
Journal of nutritional science and vitaminology.
1980; 26(3):231-6. doi:
10.3177/jnsv.26.231
. [PMID: 7441382] - J Leclerc. [Effect of methionine supplementation of a diet low in riboflavin and at 2 levels of protein on metabolism of riboflavin in the lactating rat].
Annales de la nutrition et de l'alimentation.
1980; 34(4):641-55. doi:
NULL
. [PMID: 7224490] - S D Feighner, V D Bokkenheuser, J Winter, P B Hylemon. Characterization of a C21 neutral steroid hormone transforming enzyme, 21-dehydroxylase, in crude cell extracts of Eubacterium lentum.
Biochimica et biophysica acta.
1979 Jul; 574(1):154-63. doi:
10.1016/0005-2760(79)90094-8
. [PMID: 38850] - D Trachewsky. Aldosterone stimulation of riboflavin incorporation into rat renal flavin coenzymes and the effect of inhibition by riboflavin analogues on sodium reabsorption.
The Journal of clinical investigation.
1978 Dec; 62(6):1325-33. doi:
10.1172/jci109253
. [PMID: 748381] - H Andersen, A Contestabile. The pyridine nucleotide and non-pyridine nucleotide dependence of L-glutamate dehydrogenase in the histochemical system.
Histochemistry.
1977 Aug; 53(2):117-33. doi:
10.1007/bf00498487
. [PMID: 19379] - S Sirivech, J Driskell, E Frieden. NADH-FMN oxidoreductase activity and iron content of organs from riboflavin and iron-deficient rats.
The Journal of nutrition.
1977 May; 107(5):739-45. doi:
10.1093/jn/107.5.739
. [PMID: 859041] - J Iwanowska, T Piechocki. Effect of atebrine on glucose blood levels and on flavinic nucleotides content in rat liver in deficiency state and in satisfied demand of riboflavine.
Polish journal of pharmacology and pharmacy.
1977 Mar; 29(2):75-84. doi:
NULL
. [PMID: 870888] - S Shoji, H Tsukagoshi, S Miyazawa, T F Hashimoto. Effect of triamcinolone administration on content of flavins in rabbit liver.
Biochimica et biophysica acta.
1976 May; 428(3):707-10. doi:
10.1016/0304-4165(76)90201-4
. [PMID: 1276176] - A G Fazekas, T Sandor. The influence of corticosteroids on flavin nucleotide biosynthesis in rat liver and kidney.
Journal of steroid biochemistry.
1976 Jan; 7(1):29-32. doi:
10.1016/0022-4731(76)90160-6
. [PMID: 1271814] - T A Moskvitina. [Current achievements in the study of the structure and specificity of flavin enzymes].
Uspekhi sovremennoi biologii.
1976 Jan; 81(1):68-82. doi:
NULL
. [PMID: 944972] - L L Fan, B S Masters. Properties of purified kidney microsomal NADPH-cytochrome c reductase.
Archives of biochemistry and biophysics.
1974 Dec; 165(2):665-71. doi:
10.1016/0003-9861(74)90295-1
. [PMID: 4374137] - M Bates, N Avdalović. The value of Dowex-50 in fractionation of nucleotides from acid soluble pool. A caution.
Analytical biochemistry.
1974 Oct; 61(2):508-12. doi:
10.1016/0003-2697(74)90418-7
. [PMID: 4609348] - T Iyanagi. Some properties of kidney cortex and splenic microsomal NADPH-cytochrome c reductase.
FEBS letters.
1974 Sep; 46(1):51-4. doi:
10.1016/0014-5793(74)80332-7
. [PMID: 4153561] - V S Aboobaker, M V Narurkar. Flavin coenzymes & flavin enzymes in liver & kidney of developing rat.
Indian journal of biochemistry & biophysics.
1974 Jun; 11(2):170-1. doi:
NULL
. [PMID: 4448470] - A G Fazekas, C E Menendez, R S Rivlin. A competitive protein binding assay for urinary riboflavin.
Biochemical medicine.
1974 Feb; 9(2):167-76. doi:
10.1016/0006-2944(74)90049-0
. [PMID: 4822036] - A G Fazekas, T Sandor. Studies on the biosynthesis of flavin nucleotides from 2- 14 C-riboflavin by rat liver and kidney.
Canadian journal of biochemistry.
1973 Jun; 51(6):772-82. doi:
10.1139/o73-096
. [PMID: 4717063] - C H Hammer, E G Buss, C O Clagett. Avian riboflavinuria. 8. The fate of the riboflavin-binding protein-riboflavin complex during incubation of hen's eggs.
Poultry science.
1973 Mar; 52(2):520-30. doi:
10.3382/ps.0520520
. [PMID: 4196814] - D Koerner, M I Surks, J H Oppenheimer. In vitro formation of apparent covalent complexes between L-triiodothyronine and plasma protein.
The Journal of clinical endocrinology and metabolism.
1973 Feb; 36(2):239-45. doi:
10.1210/jcem-36-2-239
. [PMID: 4683181]