Carbon dioxide (BioDeep_00000004364)
Secondary id: BioDeep_00001867606
human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite
Metabolite Card
Formula: CO2 (43.9898)
Chinese Names: 二氧化碳
Spectrum Hits:
Top Source Homo sapiens(blood) 43.6%
Molecular Structure
SMILES: C(=O)=O
InChI: InChI=1S/CO2/c2-1-3
Description
Carbon dioxide is a colorless, odorless gas that can be formed by the body and is necessary for the respiration cycle of plants and animals. Carbon dioxide is produced during respiration by all animals, fungi and microorganisms that depend on living and decaying plants for food, either directly or indirectly. It is, therefore, a major component of the carbon cycle. Additionally, carbon dioxide is used by plants during photosynthesis to make sugars which may either be consumed again in respiration or used as the raw material to produce polysaccharides such as starch and cellulose, proteins and the wide variety of other organic compounds required for plant growth and development. When inhaled at concentrations much higher than usual atmospheric levels, it can produce a sour taste in the mouth and a stinging sensation in the nose and throat. These effects result from the gas dissolving in the mucous membranes and saliva, forming a weak solution of carbonic acid. Carbon dioxide is used by the food industry, the oil industry, and the chemical industry. Carbon dioxide is used to produce carbonated soft drinks and soda water. Traditionally, the carbonation in beer and sparkling wine comes about through natural fermentation, but some manufacturers carbonate these drinks artificially.
Leavening agent, propellant, aerating agent, preservative. Solvent for supercritical extraction e.g. of caffeine in manufacture of caffeine-free instant coffee. It is used in carbonation of beverages, in the frozen food industry and as a component of controlled atmosphere packaging (CAD) to inhibit bacterial growth. Especies effective against Gram-negative spoilage bacteria, e.g. Pseudomonas
V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AN - Medical gases
Synonyms
16 synonym names
Carbonic acid anhydride; Anhydride, carbonic; Carbonic anhydride; Carbonic acid gas; Carbon-12 dioxide; Dioxide, carbon; carbon dioxide; Carbon oxide; methanedione; e 290; e-290; R-744; [CO2]; e290; CO2; CO2
Cross Reference
20 cross reference id
- ChEBI: CHEBI:16526
- KEGG: C00011
- KEGGdrug: D00004
- PubChem: 280
- HMDB: HMDB0001967
- Metlin: METLIN3199
- DrugBank: DB09157
- ChEMBL: CHEMBL1231871
- Wikipedia: Carbon_dioxide
- MeSH: Carbon Dioxide
- MetaCyc: CARBON-DIOXIDE
- foodb: FDB014084
- chemspider: 274
- CAS: 18923-20-1
- CAS: 124-38-9
- PMhub: MS000016775
- PDB-CCD: CO2
- 3DMET: B01131
- NIKKAJI: J43.600C
- KNApSAcK: 16526
Classification Terms
Related Pathways
Reactome(114)
- Metabolism
- Metabolism of vitamins and cofactors
- Metabolism of proteins
- Post-translational protein modification
- Gamma carboxylation, hypusinylation, hydroxylation, and arylsulfatase activation
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins
- Gamma-carboxylation of protein precursors
- Disease
- Diseases of hemostasis
- Defects of Formation of Fibrin Clot (Clotting Cascade)
- Defective factor IX causes hemophilia B
- Defective gamma-carboxylation of F9
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Asparagine N-linked glycosylation
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein
- Synthesis of substrates in N-glycan biosythesis
- Metabolism of lipids
- Metabolism of steroids
- Cholesterol biosynthesis
- Metabolism of cofactors
- Ubiquinol biosynthesis
- Synthesis of Dolichyl-phosphate
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Transport of small molecules
- Metabolism of polyamines
- Agmatine biosynthesis
- DNA replication and repair
- DNA repair
- Developmental Biology
- DNA Repair
- DNA Damage Reversal
- Reversal of alkylation damage by DNA dioxygenases
- ALKBH2 mediated reversal of alkylation damage
- ALKBH3 mediated reversal of alkylation damage
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- RHO GTPases activate PKNs
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Mitotic Prophase
- Condensation of Prophase Chromosomes
- Chromatin organization
- Chromatin modifying enzymes
- HDMs demethylate histones
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Maternal to zygotic transition (MZT)
- Chromatin modifications during the maternal to zygotic transition (MZT)
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Purine metabolism
- Nucleotide metabolism
- Nucleotide catabolism
- Fatty acid metabolism
- Mitochondrial Fatty Acid Beta-Oxidation
- Amino acid synthesis and interconversion (transamination)
- Metabolism of water-soluble vitamins and cofactors
- Tryptophan catabolism
- Cellular responses to stimuli
- Cellular responses to stress
- Gene expression (Transcription)
- Peroxisomal lipid metabolism
- Histidine catabolism
- The tricarboxylic acid cycle
- Carbohydrate metabolism
- Glucose metabolism
- Fatty acyl-CoA biosynthesis
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Pentose phosphate pathway
- Lysine catabolism
- Heme synthesis
- Extracellular matrix organization
- Collagen formation
- Phospholipid metabolism
- Glycerophospholipid biosynthesis
- Synthesis of PE
- Phenylalanine and tyrosine catabolism
- Glycine degradation
- Sulfur amino acid metabolism
- Degradation of cysteine and homocysteine
- Neuronal System
- Transmission across Chemical Synapses
- Neurotransmitter release cycle
- Metabolism of RNA
- tRNA processing
- tRNA modification in the nucleus and cytosol
- Aspartate and asparagine metabolism
- Phenylalanine and tyrosine metabolism
- Porphyrin metabolism
- Heme biosynthesis
- Gluconeogenesis
- Sphingolipid metabolism
- Branched-chain amino acid catabolism
- Nicotinate metabolism
- De novo synthesis of UMP
- Metabolism of amine-derived hormones
- Sphingolipid de novo biosynthesis
- Lipid metabolism
- Tyrosine catabolism
- Cellular response to hypoxia
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism
- alpha-linolenic acid (ALA) metabolism
- Linoleic acid (LA) metabolism
- Alpha-oxidation of phytanate
- Beta-oxidation of very long chain fatty acids
- Metabolism of folate and pterines
- NADPH regeneration
BioCyc(417)
- nucleoside and nucleotide degradation (archaea)
- superpathway of pyrimidine ribonucleosides degradation
- creatinine degradation II
- firefly bioluminescence
- allantoin degradation to ureidoglycolate II (ammonia producing)
- allantoin degradation to glyoxylate III
- superpathway of b heme biosynthesis from glycine
- superpathway of L-phenylalanine biosynthesis
- patulin biosynthesis
- anaerobic energy metabolism (invertebrates, mitochondrial)
- superpathway of anaerobic energy metabolism (invertebrates)
- superpathway of demethylmenaquinol-8 biosynthesis I
- lupanine biosynthesis
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis I
- superpathway of aromatic amino acid biosynthesis
- superpathway of bacteriochlorophyll a biosynthesis
- 2-carboxy-1,4-naphthoquinol biosynthesis
- superpathway of L-tyrosine biosynthesis
- superpathway of menaquinol-8 biosynthesis I
- superpathway of hyoscyamine and scopolamine biosynthesis
- superpathway of chorismate metabolism
- gallate degradation III (anaerobic)
- aspartate superpathway
- superpathway of betalain biosynthesis
- superpathway of L-tryptophan biosynthesis
- superpathway of anaerobic sucrose degradation
- tetrapyrrole biosynthesis II (from glycine)
- methanogenesis from acetate
- hyoscyamine and scopolamine biosynthesis
- p-cymene degradation
- Amaryllidacea alkaloids biosynthesis
- plant sterol biosynthesis
- spinosyn A biosynthesis
- chlorzoxazone degradation
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from tyrosine
- bacteriochlorophyll e biosynthesis
- superpathway of tryptophan utilization
- superpathway of glycol metabolism and degradation
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- heme b biosynthesis I (aerobic)
- glycolate and glyoxylate degradation I
- protocatechuate degradation I (meta-cleavage pathway)
- bacteriochlorophyll c biosynthesis
- bacteriochlorophyll d biosynthesis
- L-lysine biosynthesis II
- L-lysine biosynthesis I
- glucosinolate biosynthesis from hexahomomethionine
- ubiquinone (coenzyme Q) biosynthesis
- superpathway of sterol biosynthesis
- putrescine biosynthesis IV
- putrescine biosynthesis I
- superpathway of allantoin degradation in yeast
- superpathway of allantoin degradation in plants
- spermidine biosynthesis III
- superpathway of polyamine biosynthesis I
- superpathway of arginine and polyamine biosynthesis
- clavulanate biosynthesis
- urea degradation I
- urea degradation II
- L-arginine degradation VIII (arginine oxidase pathway)
- L-arginine degradation XII
- superpathway of L-arginine, putrescine, and 4-aminobutanoate degradation
- L-arginine degradation III (arginine decarboxylase/agmatinase pathway)
- L-arginine degradation X (arginine monooxygenase pathway)
- L-arginine degradation IX (arginine:pyruvate transaminase pathway)
- superpathway of L-arginine and L-ornithine degradation
- superpathway of purines degradation in plants
- superpathway of citrulline metabolism
- urea degradation
- arginine degradation III (arginine decarboxylase/agmatinase pathway)
- superpathway of arginine and ornithine degradation
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation
- arginine degradation X (arginine monooxygenase pathway)
- formaldehyde oxidation (glutathione-dependent)
- superpathway of aromatic compound degradation
- methanol oxidation to carbon dioxide
- formaldehyde oxidation I
- morphine biosynthesis
- superpathway of C1 compounds oxidation to CO2
- 12-epi-hapalindole biosynthesis
- paerucumarin biosynthesis
- rhabduscin biosynthesis
- hapalindole H biosynthesis
- 12-epi-fischerindole biosynthesis
- 4-hydroxycoumarin and dicoumarol biosynthesis
- 5,5'-dehydrodivanillate degradation
- superpathway of coenzyme A biosynthesis I (bacteria)
- nevadensin biosynthesis
- formaldehyde assimilation I (serine pathway)
- 3-[(E)-2-isocyanoethenyl]-1H-indole biosynthesis
- linamarin biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- glucosinolate biosynthesis from dihomomethionine
- superpathway of histidine, purine, and pyrimidine biosynthesis
- purine nucleotides de novo biosynthesis II
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- isoflavonoid biosynthesis II
- aflatoxins B1 and G1 biosynthesis
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- aurachin A, B, C and D biosynthesis
- hentriaconta-3,6,9,12,15,19,22,25,28-nonaene biosynthesis
- formate to dimethyl sulfoxide electron transfer
- 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis
- superpathway of quinolone and alkylquinolone biosynthesis
- chitin degradation to ethanol
- tryptophan degradation via kynurenine
- NAD biosynthesis (from tryptophan)
- hydroxycinnamic acid tyramine amides biosynthesis
- ubiquinol-10 biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (prokaryotic)
- ubiquinone-10 biosynthesis (eukaryotic)
- superpathway of nicotine biosynthesis
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass
- superpathay of heme b biosynthesis from glutamate
- TCA cycle I (prokaryotic)
- formate oxidation to CO2
- γ-butyrobetaine degradation
- superpathway of microbial D-galacturonate and D-glucuronate degradation
- D-carnitine degradation I
- L-carnitine degradation II
- mixed acid fermentation
- 2-aminophenol degradation
- nicotinate degradation I
- L-valine degradation I
- L-arginine degradation V (arginine deiminase pathway)
- superpathway of glyoxylate bypass and TCA
- superpathway of proto- and siroheme biosynthesis
- (-)-dehydrodiconiferyl alcohol degradation
- phenolphthiocerol biosynthesis
- 6-methylpretetramide biosynthesis
- superpathway of tetracycline and oxytetracycline biosynthesis
- vindoline and vinblastine biosynthesis
- plant sterol biosynthesis II
- phenazine-1-carboxylate biosynthesis
- 3,8-divinyl-chlorophyllide a biosynthesis I (aerobic, light-dependent)
- 3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic)
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- lysine biosynthesis
- beta-alanine degradation
- lysine degradation
- TCA cycle, aerobic respiration
- pantothenate and coenzyme A biosynthesis
- superpathway of gluconate degradation
- superpathway of central carbon metabolism
- IAA biosynthesis I
- NAD biosynthesis II (from tryptophan)
- superpathway of L-lysine degradation
- N10-formyl-tetrahydrofolate biosynthesis
- L-phenylalanine degradation IV (mammalian, via side chain)
- superpathway of ergotamine biosynthesis
- isopropanol biosynthesis (engineered)
- acetone degradation III (to propane-1,2-diol)
- acetone degradation I (to methylglyoxal)
- acetone degradation II (to acetoacetate)
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation
- pyruvate fermentation to acetone
- superpathway of Clostridium acetobutylicum solventogenic fermentation
- ketogenesis
- caffeine degradation V (bacteria, via trimethylurate)
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- superpathway of scopolin and esculin biosynthesis
- aflatoxins B2 and G2 biosynthesis
- adenosylcobalamin biosynthesis I (early cobalt insertion)
- 2,4-dichlorophenoxyacetate degradation
- tetrahydroxyxanthone biosynthesis (from benzoate)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- plumbagin biosynthesis
- superpathway of tetrahydroxyxanthone biosynthesis
- photosynthetic 3-hydroxybutanoate biosynthesis (engineered)
- pentose phosphate pathway
- ethylene biosynthesis III (microbes)
- ethylene biosynthesis
- NAD/NADP-NADH/NADPH cytosolic interconversion (yeast)
- superpathway NAD/NADP - NADH/NADPH interconversion (yeast)
- spermidine biosynthesis I
- gluconeogenesis I
- superpathway NAD/NADP - NADH/NADPH interconversion
- NAD/NADP-NADH/NADPH cytosolic interconversion
- oleandomycin biosynthesis
- UMP biosynthesis
- L-tyrosine biosynthesis I
- L-phenylalanine biosynthesis I
- validamycin biosynthesis
- salicylate degradation III
- glucosinolate biosynthesis from pentahomomethionine
- itaconate biosynthesis
- polyamine biosynthesis
- spermine biosynthesis II
- ellagic acid degradation to urolithins
- superpathway of histidine, purine and pyrimidine biosynthesis
- allantoin degradation
- glycine cleavage complex
- 2-amino-3-carboxymuconate semialdehyde degradation to 2-oxopentenoate
- proline biosynthesis II (from arginine)
- tryptophan degradation III (eukaryotic)
- uracil degradation II (reductive)
- Serine degradation II
- heme biosynthesis II
- purine nucleotides degradation III (anaerobic)
- purine nucleotides degradation IV (anaerobic)
- folate transformations II (plants)
- glutamate degradation V (via hydroxyglutarate)
- glycine degradation I
- glutamate degradation VII (to butanoate)
- leucine degradation IV
- isoleucine degradation III
- dimethylsulfoniopropionate biosynthesis II (Spartina)
- phenylalanine degradation IV (mammalian, via side chain)
- heme biosynthesis I
- TCA cycle VI (obligate autotrophs)
- tryptophan degradation X (mammalian, via tryptamine)
- glutamine biosynthesis III
- glycine degradation III
- threonine degradation III (to methylglyoxal)
- superpathway of threonine metabolism
- superpathway of lysine, threonine and methionine biosynthesis II
- isoleucine biosynthesis I
- superpathway of lysine, threonine and methionine biosynthesis I
- formylTHF biosynthesis II
- formylTHF biosynthesis I
- isoleucine biosynthesis I (from threonine)
- reductive acetyl coenzyme A pathway II (autotrophic methanogens)
- gluconeogenesis II (Methanobacterium thermoautotrophicum)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- methyl-coenzyme M oxidation to CO2
- methanogenesis from H2 and CO2
- rhodoquinone-9 biosynthesis
- ubiquinone-9 biosynthesis (eukaryotic)
- heme biosynthesis from uroporphyrinogen-III II
- superpathway of ergosterol biosynthesis I
- superpathway of ergosterol biosynthesis
- L-lysine degradation IV
- L-lysine degradation III
- ephedrine biosynthesis
- prunasin and amygdalin biosynthesis
- lysine degradation I (saccharopine pathway)
- secologanin and strictosidine biosynthesis
- L-homomethionine biosynthesis
- allantoin degradation to glyoxylate II
- allantoin degradation IV (anaerobic)
- 2-nitrobenzoate degradation I
- procollagen hydroxylation and glycosylation
- ethylmalonyl-CoA pathway
- methylaspartate cycle
- superpathway of heme b biosynthesis from uroporphyrinogen-III
- conversion of succinate to propanoate
- pyruvate fermentation to acetate and lactate II
- pyruvate fermentation to acetate I
- archaetidylserine and archaetidylethanolamine biosynthesis
- vitamin B6 degradation
- crotonyl-CoA/ethylmalonyl-CoA/hydroxybutyryl-CoA cycle (engineered)
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase)
- Entner-Doudoroff pathway II (non-phosphorylative)
- pyruvate fermentation to (R)-acetoin II
- L-lysine degradation V
- L-lysine degradation XI (mammalian)
- superpathway of Clostridium acetobutylicum acidogenic fermentation
- grixazone biosynthesis
- L-tyrosine degradation II
- 2-oxobutanoate degradation I
- L-malate degradation I
- L-carnitine degradation III
- superpathway of purine nucleotides de novo biosynthesis I
- methylgallate degradation
- reductive TCA cycle I
- 4-hydroxymandelate degradation
- 4-amino-3-hydroxybenzoate degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- 4-hydroxyphenylacetate degradation
- purine nucleobases degradation I (anaerobic)
- purine nucleobases degradation II (anaerobic)
- superpathway of aromatic compound degradation via 3-oxoadipate
- anaerobic energy metabolism (invertebrates, cytosol)
- UDP-sugars interconversion
- norspermidine biosynthesis
- superpathway of polyamine biosynthesis III
- superpathway of geranylgeranyl diphosphate biosynthesis II (via MEP)
- L-leucine degradation I
- superpathway of (R,R)-butanediol biosynthesis
- superpathway of 2,3-butanediol biosynthesis
- taxadiene biosynthesis (engineered)
- superpathway of rifamycin B biosynthesis
- novobiocin biosynthesis
- superpathway of penicillin, cephalosporin and cephamycin biosynthesis
- L-valine biosynthesis
- deacetylcephalosporin C biosynthesis
- myo-, chiro- and scyllo-inositol degradation
- myo-inositol degradation I
- oxalate degradation V
- rhizocticin A and B biosynthesis
- phosphinothricin tripeptide biosynthesis
- oxalate degradation IV
- L-threonine degradation III (to methylglyoxal)
- meta cleavage pathway of aromatic compounds
- flaviolin dimer and mompain biosynthesis
- L-ascorbate degradation I (bacterial, anaerobic)
- catechol degradation II (meta-cleavage pathway)
- aromatic compounds degradation via β-ketoadipate
- UDP-α-D-xylose biosynthesis
- mandelate degradation to acetyl-CoA
- L-malate degradation II
- methylerythritol phosphate pathway I
- methylerythritol phosphate pathway II
- ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of phylloquinol biosynthesis
- aminopropanol phosphate biosynthesis II
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of L-threonine metabolism
- sphingolipid biosynthesis (plants)
- L-carnitine biosynthesis
- (S)-reticuline biosynthesis I
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- superpathway of L-methionine salvage and degradation
- L-isoleucine biosynthesis IV
- L-isoleucine biosynthesis II
- UDP-D-xylose biosynthesis
- zymosterol biosynthesis
- cholesterol biosynthesis I
- cholesterol biosynthesis III (via desmosterol)
- superpathway of cholesterol biosynthesis
- fenchone biosynthesis
- fenchol biosynthesis I
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle
- superpathway of glyoxylate cycle
- hinokiresinol biosynthesis
- pyrrolnitrin biosynthesis
- nitrate reduction III (dissimilatory)
- pyruvate to cytochrome bo oxidase electron transfer
- holomycin biosynthesis
- 2,2'-dihydroxybiphenyl degradation
- 2,4-xylenol degradation to protocatechuate
- dhurrin biosynthesis
- taxiphyllin biosynthesis
- superpathway of fumitremorgin biosynthesis
- 2-amino-3-hydroxycyclopent-2-enone biosynthesis
- sphingolipid metabolism
- superpathway of phospholipid biosynthesis
- ester phospholipid biosynthesis
- hyperxanthone E biosynthesis
- phylloquinol biosynthesis
- polyacyltrehalose biosynthesis
- γ-resorcylate degradation II
- γ-resorcylate degradation I
- coenzyme M biosynthesis I
- coelimycin P1 biosynthesis
- lactate oxidation
- superpathway of benzoxazinoid glucosides biosynthesis
- indole-3-acetate degradation
- 4'-methoxyviridicatin biosynthesis
- stipitatate biosynthesis
- myo-, chiro- and scillo-inositol degradation
- myo-inositol degradation
- curcuminoid biosynthesis
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol)
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- umbelliferone biosynthesis
- pyruvate fermentation to isobutanol (engineered)
- butanol and isobutanol biosynthesis (engineered)
- L-valine degradation II
- valine degradation II
- L-methionine salvage cycle I (bacteria and plants)
- superpathway of bitter acids biosynthesis
- hyperforin and adhyperforin biosynthesis
- colupulone and cohumulone biosynthesis
- tetracenomycin C biosynthesis
- rebeccamycin biosynthesis
- L-glutamate degradation VII (to butanoate)
- L-ascorbate degradation II (bacterial, aerobic)
- biotin biosynthesis
- superpathway of erythromycin biosynthesis
- superpathway of megalomicin A biosynthesis
- erythromycin D biosynthesis
- superpathway of erythromycin biosynthesis (without sugar biosynthesis)
- camptothecin biosynthesis
- superpathway of seleno-compound metabolism
- seleno-amino acid detoxification and volatilization II
- superpathway of L-isoleucine biosynthesis I
- prodigiosin biosynthesis
- superpathway of acetoin and butanediol biosynthesis
- thiocyanate degradation II
- carbon disulfide oxidation I (anaerobic)
- carbon disulfide oxidation II (aerobic)
- carbon disulfide oxidation III (metazoa)
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
- ajmaline and sarpagine biosynthesis
- isoleucine degradation I
- tyrosol biosynthesis
- leucopelargonidin and leucocyanidin biosynthesis
- anthocyanin biosynthesis (pelargonidin 3-O-glucoside)
- glucosinolate biosynthesis from tetrahomomethionine
- gibberellin biosynthesis IV (Gibberella fujikuroi)
- superpathway of gibberellin biosynthesis
- L-threonate degradation
- D-threonate degradation
- uracil degradation I (reductive)
- squid bioluminescence
- 2-keto glutarate dehydrogenase complex
- phenylalanine biosynthesis
- pyridoxal 5'-phosphate biosynthesis
- (5R)-carbapenem biosynthesis
- TCA cycle variation IV
- purine degradation II (anaerobic)
- C4 photosynthetic carbon assimilation cycle
- chlorophyllide a biosynthesis I
- fatty acid biosynthesis -- elongase pathway
- respiration (anaerobic)
- oxaloacetate degradation to pyruvate
- lysine biosynthesis VI
- lysine biosynthesis I
- D-carnitine degradation II
PlantCyc(111)
- superpathway of hyoscyamine and scopolamine biosynthesis
- hyoscyamine and scopolamine biosynthesis
- superpathway of betalain biosynthesis
- lupanine biosynthesis
- superpathway of anaerobic sucrose degradation
- superpathway of isoflavonoids (via naringenin)
- glucosinolate biosynthesis from tyrosine
- superpathway of cytosolic glycolysis (plants), pyruvate dehydrogenase and TCA cycle
- hydroxycinnamic acid tyramine amides biosynthesis
- leucodelphinidin biosynthesis
- luteolinidin 5-O-glucoside biosynthesis
- luteolin biosynthesis
- flavonoid biosynthesis (in equisetum)
- leucopelargonidin and leucocyanidin biosynthesis
- L-arginine degradation X (arginine monooxygenase pathway)
- urea degradation I
- putrescine biosynthesis I
- superpathway of allantoin degradation in plants
- allantoin degradation to glyoxylate III
- superpathway of purines degradation in plants
- urea degradation II
- putrescine biosynthesis IV
- Organic Nitrogen Assimilation
- superpathway of hyoscyamine (atropine) and scopolamine biosynthesis
- nevadensin biosynthesis
- 4-hydroxycoumarin and dicoumarol biosynthesis
- morphine biosynthesis
- superpathway of linamarin and lotaustralin biosynthesis
- linamarin biosynthesis
- superpathway of purine nucleotides de novo biosynthesis I
- inosine-5'-phosphate biosynthesis II
- ureide biosynthesis
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium)
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium)
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium)
- ajmaline and sarpagine biosynthesis
- resveratrol biosynthesis
- phytosterol biosynthesis (plants)
- superpathway of gibberellin biosynthesis
- gibberellin biosynthesis II (early C-3 hydroxylation)
- urate conversion to allantoin I
- pinobanksin biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (late decarboxylation)
- superpathway of proto- and siroheme biosynthesis
- superpathway of nicotine biosynthesis
- superpathway of Allium flavor precursors
- alliin metabolism
- 3,8-divinyl-chlorophyllide a biosynthesis III (aerobic, light independent)
- vindoline, vindorosine and vinblastine biosynthesis
- ketogenesis
- scopoletin biosynthesis
- coumarins biosynthesis (engineered)
- superpathway of scopolin and esculin biosynthesis
- gibberellin inactivation I (2β-hydroxylation)
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate)
- superpathway of tetrahydroxyxanthone biosynthesis
- plumbagin biosynthesis
- tetrahydroxyxanthone biosynthesis (from benzoate)
- calystegine biosynthesis
- tropane alkaloids biosynthesis
- 4-hydroxyindole-3-carbonyl nitrile biosynthesis
- superpathway of flavones and derivatives biosynthesis
- aliphatic glucosinolate biosynthesis, side chain elongation cycle
- glucosinolate biosynthesis from pentahomomethionine
- UMP biosynthesis I
- superpathway of pyrimidine deoxyribonucleotides de novo biosynthesis
- superpathway of pyrimidine ribonucleotides de novo biosynthesis
- L-lysine degradation I
- superpathway of glyoxylate cycle and fatty acid degradation
- ephedrine biosynthesis
- prunasin and amygdalin biosynthesis
- flavonol biosynthesis
- syringetin biosynthesis
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- oxalate degradation IV
- 1,4-dihydroxy-2-naphthoate biosynthesis II (plants)
- superpathway of phylloquinol biosynthesis
- (S)-reticuline biosynthesis I
- allantoin degradation to glyoxylate II
- allantoin degradation to ureidoglycolate II (ammonia producing)
- superpathway of phospholipid biosynthesis II (plants)
- sphingolipid biosynthesis (plants)
- 2-carboxy-1,4-naphthoquinol biosynthesis
- cholesterol biosynthesis I
- zymosterol biosynthesis
- superpathway of seleno-compound metabolism
- fenchol biosynthesis I
- fenchone biosynthesis
- chrysin biosynthesis
- hypoglycin biosynthesis
- hinokiresinol biosynthesis
- superpathway of L-lysine, L-threonine and L-methionine biosynthesis II
- beta-carboline biosynthesis
- taxiphyllin biosynthesis
- dhurrin biosynthesis
- hyperxanthone E biosynthesis
- superpathway of benzoxazinoid glucosides biosynthesis
- Amaryllidacea alkaloids biosynthesis
- curcuminoid biosynthesis
- cholesterol biosynthesis (plants)
- cholesterol biosynthesis (plants, early side-chain reductase)
- isoprene biosynthesis II (engineered)
- isoprene biosynthesis I
- umbelliferone biosynthesis
- L-methionine salvage cycle I (bacteria and plants)
- phylloquinol biosynthesis
- camptothecin biosynthesis
- seleno-amino acid detoxification and volatilization II
- proanthocyanidins biosynthesis from flavanols
- glucosinolate biosynthesis from tetrahomomethionine
Biological Process
18073 related biological process reactions.
Reactome(1124)
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acyl-CoA biosynthesis:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Synthesis of very long-chain fatty acyl-CoAs:
ATP + CoA + VLCFA ⟶ AMP + PPi + VLCFA-CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- The citric acid (TCA) cycle and respiratory electron transport:
ETF:FAD + FADH2 ⟶ ETF:FADH2 + FAD
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
CoQ + ETF:FADH2 ⟶ ETF:FAD + ubiquinol
- Pyruvate metabolism and Citric Acid (TCA) cycle:
CIT ⟶ ISCIT
- Pyruvate metabolism:
GSH + MGXL ⟶ (R)-S-LGSH
- Citric acid cycle (TCA cycle):
CIT ⟶ ISCIT
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Q0VCN9 ⟶ FOLR2:FOLA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of folate and pterines:
A0A5F4C041 + FOLA ⟶ FOLR2:FOLA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + folr ⟶ FOLR2:FOLA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
F1N9X0 + FOLA ⟶ FOLR2:FOLA
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + FOLR2_HUMAN ⟶ FOLR2:FOLA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Folr2 ⟶ FOLR2:FOLA
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
D4A4S5 + FOLA ⟶ FOLR2:FOLA
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
A0A5G2QLX9 + FOLA ⟶ FOLR2:FOLA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Homologues of FOLR2 ⟶ FOLR2:FOLA
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ N-carbamoyl-L-aspartate + Pi
- De novo synthesis of UMP:
CAP + L-Asp ⟶ N-carbamoyl-L-aspartate + Pi
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Pyrimidine biosynthesis:
CAP + L-Asp ⟶ N-carbamoyl-L-aspartate + Pi
- Nucleotide metabolism:
H2O + XTP ⟶ PPi + XMP
- Nucleobase biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Pyrimidine biosynthesis:
orotidylic acid ⟶ UMP + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Lysine catabolism:
2OG + H+ + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Lysine catabolism:
2OG + H+ + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
ATP + L-His + b-Ala ⟶ ADP + CARN + Pi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Metabolism of lipids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of lipids:
H2O + lysoPC ⟶ GPCho + LCFA(-)
- Fatty acid metabolism:
12S-HpETE + GSH ⟶ 12S-HETE + GSSG + H2O
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
Malonyl-CoA + SDA-CoA + TPNH ⟶ CoA-SH + ETA-CoA + H2O + TPN + carbon dioxide
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of lipids:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Fatty acid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
DHA-CoA + H2O ⟶ CoA-SH + DHA
- Linoleic acid (LA) metabolism:
ATP + TPA-CoA ⟶ ADP + Pi + TPA-CoA
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of lipids:
ACA + H+ + NADH ⟶ NAD + bHBA
- Fatty acid metabolism:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
Malonyl-CoA + SDA-CoA + TPNH ⟶ CoA-SH + ETA-CoA + H2O + TPN + carbon dioxide
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Metabolism of lipids:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Fatty acid metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
ATP + CoA-SH + LA ⟶ AMP + LA-CoA + PPi
- Metabolism of lipids:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Fatty acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic (omega3) and linoleic (omega6) acid metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Linoleic acid (LA) metabolism:
GLA-CoA + Malonyl-CoA + TPNH ⟶ CoA-SH + DGL-CoA + H2O + TPN + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
2OH-PALM + Oxygen ⟶ 2oxo-PALM + H2O2
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Peroxisomal lipid metabolism:
3-oxopristanoyl-CoA + CoA-SH ⟶ 4,8,12-trimethyltridecanoyl-CoA + propionyl CoA
- Alpha-oxidation of phytanate:
2OG + Oxygen + Phytanoyl-CoA ⟶ 3S2HPhy-CoA + SUCCA + carbon dioxide
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
7-dehydroCHOL + H+ + TPNH ⟶ CHOL + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + TPNH + estrone ⟶ EST17b + TPN
- Cholesterol biosynthesis:
H+ + LAN + Oxygen + TPNH ⟶ 4,4DMCHtOL + H2O + HCOOH + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of lipids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
17aHPROG + H+ + Oxygen + TPNH ⟶ 11-deoxycortisol + H2O + TPN
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Mitochondrial Fatty Acid Beta-Oxidation:
H+ + TPNH + tdec2-CoA ⟶ DEC-CoA + TPN
- Propionyl-CoA catabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + Oxygen ⟶ CH2O + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + HIF1A + Oxygen ⟶ G5EGD2 + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A + Oxygen ⟶ 2xHP-HIF1A + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Cellular response to hypoxia:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A,HIF2A + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Chromatin organization:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Cellular responses to external stimuli:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular responses to stress:
HSP90:ATP:PTGES3:FKBP52:SHR:SH ⟶ ADP + H0ZSE5 + H0ZZA2 + HSP90-beta dimer + Pi + SHR:SH
- Cellular response to hypoxia:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Regulation of Hypoxia-inducible Factor (HIF) by oxygen:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF-alpha + Oxygen ⟶ SUCCA + carbon dioxide + hydroxyAsn-HIF1A,HIF2A
- Oxygen-dependent proline hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + HIF1A + Oxygen ⟶ H0ZRX1 + SUCCA + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + Homologues of Me2sR4-HIST1H4 + Oxygen ⟶ CH2O + Homologues of MeR4-HIST1H4 + SUCCA + carbon dioxide
- DNA Repair:
MUTYH:(OGUA:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Extracellular matrix organization:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Collagen formation:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Collagen biosynthesis and modifying enzymes:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Cellular response to hypoxia:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Oxygen-dependent asparagine hydroxylation of Hypoxia-inducible Factor Alpha:
2OG + Oxygen ⟶ SUCCA + carbon dioxide
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of polyamines:
GAA + SAM ⟶ CRET + H+ + SAH
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Fatty acid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Peroxisomal lipid metabolism:
Ac-CoA + H2O ⟶ CH3COO- + CoA-SH
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Beta-oxidation of very long chain fatty acids:
C26:0 CoA + Oxygen ⟶ H2O2 + trans-2-hexacosenoyl-CoA
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Rho GTPases:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- RHO GTPase Effectors:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- Chromatin organization:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
2OG + Me2K10-histone H3 + Oxygen ⟶ CH2O + MeK10-histone H3 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + Me2K10-histone H3 + Oxygen ⟶ CH2O + MeK10-histone H3 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + Me2K10-histone H3 + Oxygen ⟶ CH2O + MeK10-histone H3 + SUCCA + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
SAM ⟶ SAH
- Chromatin modifying enzymes:
SAM ⟶ SAH
- HDMs demethylate histones:
2OG + His4:CG33889 + Oxygen ⟶ CH2O + His4:CG33889 + SUCCA + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- Cell Cycle:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Cell Cycle, Mitotic:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- M Phase:
H2O + NAD + Q8MQX9 ⟶ 2'-O-acetyl-ADP-ribose + NAM + Q8MQX9
- Mitotic Prophase:
Ca2+ + DAG ⟶ DAG:active PKC:Ca+2
- DNA replication and repair:
2OG + Oxygen ⟶ CH2O + CH3CHO + SUCCA + carbon dioxide
- DNA repair:
2OG + Oxygen ⟶ CH2O + CH3CHO + SUCCA + carbon dioxide
- DNA Damage Reversal:
2OG + Oxygen ⟶ CH2O + CH3CHO + SUCCA + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + H4-VI + Oxygen ⟶ CH2O + H4-VI + SUCCA + carbon dioxide
- Developmental Biology:
Early cornified envelope + Lamellar body ⟶ Cornified envelope
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- ALKBH2 mediated reversal of alkylation damage:
2OG + ALKBH2:Fe2+:1-meA-dsDNA + Oxygen ⟶ ALKBH2:Fe2+ + CH2O + SUCCA + carbon dioxide
- ALKBH3 mediated reversal of alkylation damage:
2OG + ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3:1-meA-dsDNA + Oxygen ⟶ ALKBH3:Fe2+:ASCC1:ASCC2:ASCC3 + CH2O + SUCCA + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
2OG + H3K4me2 + Oxygen ⟶ CH2O + MeK5-histone H3 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + H3K4me2 + Oxygen ⟶ CH2O + MeK5-histone H3 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + H3K4me2 + Oxygen ⟶ CH2O + MeK5-histone H3 + SUCCA + carbon dioxide
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Chromatin organization:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Chromatin organization:
2OG + MeK-HIST1H4A + Oxygen ⟶ CH2O + HIST1H4 + SUCCA + carbon dioxide
- Chromatin modifying enzymes:
2OG + MeK-HIST1H4A + Oxygen ⟶ CH2O + HIST1H4 + SUCCA + carbon dioxide
- HDMs demethylate histones:
2OG + MeK-HIST1H4A + Oxygen ⟶ CH2O + HIST1H4 + SUCCA + carbon dioxide
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Chromatin organization:
H2O ⟶ ammonia
- Chromatin modifying enzymes:
H2O ⟶ ammonia
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases activate PKNs:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- DNA Repair:
MUTYH:(8oxoG:Ade)-dsDNA ⟶ Ade + MUTYH:AP-dsDNA
- DNA Damage Reversal:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Reversal of alkylation damage by DNA dioxygenases:
2OG + Fe2+ + N6-methyladenosine ⟶ CH2O + SUCCA + adenosine + carbon dioxide
- Cell Cycle:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Cell Cycle, Mitotic:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- M Phase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Mitotic Prophase:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + SUCCA + carbon dioxide + kdm4b + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- HDMs demethylate histones:
2OG + MeK37-histone H3 + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Condensation of Prophase Chromosomes:
2OG + Oxygen + PHF8:Nucleosome with H3K4me2/3:H4K20me1 ⟶ CH2O + PHF8:Nucleosome with H3K4me2/3 + SUCCA + carbon dioxide
- Activated PKN1 stimulates transcription of AR (androgen receptor) regulated genes KLK2 and KLK3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,Me2K-10-H3:KDM1A ⟶ CH2O + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,KLK3 Gene:Nucleosome with p-T12,MeK-10-H3:KDM1A
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3:
NOX2 complex:RAC2:GTP + S100A8:S100A9:AA:Ca2+ ⟶ NOX2 complex:S100A8:S100A9:Ca2+
- Maternal to zygotic transition (MZT):
2OG + Histone H3 (H3K4me3) + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Chromatin modifications during the maternal to zygotic transition (MZT):
2OG + Histone H3 (H3K4me3) + Oxygen ⟶ CH2O + Histone H3 + SUCCA + carbon dioxide
- Extracellular matrix organization:
2OG + Oxygen + Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides ⟶ Prolyl 3-hydroxylases:Fe2+:3,4-Hyp collagen propeptides + SUCCA + carbon dioxide
- Collagen formation:
2OG + Oxygen + Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides ⟶ Prolyl 3-hydroxylases:Fe2+:3,4-Hyp collagen propeptides + SUCCA + carbon dioxide
- Collagen biosynthesis and modifying enzymes:
2OG + Oxygen + Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides ⟶ Prolyl 3-hydroxylases:Fe2+:3,4-Hyp collagen propeptides + SUCCA + carbon dioxide
- Extracellular matrix organization:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Collagen formation:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Collagen biosynthesis and modifying enzymes:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Extracellular matrix organization:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Collagen formation:
H2O + Oxygen ⟶ H2O2 + ammonia
- Collagen biosynthesis and modifying enzymes:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Extracellular matrix organization:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen formation:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen biosynthesis and modifying enzymes:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Extracellular matrix organization:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen formation:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen biosynthesis and modifying enzymes:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Extracellular matrix organization:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen formation:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen biosynthesis and modifying enzymes:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Extracellular matrix organization:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen formation:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen biosynthesis and modifying enzymes:
4-Hyp collagen propeptides + Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Extracellular matrix organization:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Collagen formation:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Collagen biosynthesis and modifying enzymes:
2OG + Lysyl hydroxylases:Lysyl hydroxylase procollagen substrates + Oxygen ⟶ Lysyl hydroxylases:Lysyl hydroxylated collagen propeptides + SUCCA + carbon dioxide
- Extracellular matrix organization:
Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen formation:
Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Collagen biosynthesis and modifying enzymes:
Prolyl 3-hydroxylases:Fe2+ ⟶ Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides
- Extracellular matrix organization:
2OG + Oxygen + Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides ⟶ Prolyl 3-hydroxylases:Fe2+:3,4-Hyp collagen propeptides + SUCCA + carbon dioxide
- Collagen formation:
2OG + Oxygen + Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides ⟶ Prolyl 3-hydroxylases:Fe2+:3,4-Hyp collagen propeptides + SUCCA + carbon dioxide
- Collagen biosynthesis and modifying enzymes:
2OG + Oxygen + Prolyl 3-hydroxylases:Fe2+:4-Hyp collagen propeptides ⟶ Prolyl 3-hydroxylases:Fe2+:3,4-Hyp collagen propeptides + SUCCA + carbon dioxide
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Glucose metabolism:
ADP + Glc ⟶ AMP + G6P
- Gluconeogenesis:
D-Fructose 1,6-bisphosphate + H2O ⟶ Fru(6)P + Pi
- Sphingolipid metabolism:
H2O + dehydroepiandrosterone sulfate ⟶ DHEA + SO4(2-)
- Sphingolipid de novo biosynthesis:
3-ketosphinganine + H+ + TPNH ⟶ SPA + TPN
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- tRNA processing:
H2O ⟶ ammonia
- tRNA modification in the nucleus and cytosol:
H2O ⟶ ammonia
- Synthesis of wybutosine at G37 of tRNA(Phe):
2OG + dioxygen ⟶ SUCCA + carbon dioxide
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
H+ + HCO3- ⟶ H2O + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H2O + Hydrouracil ⟶ H+ + UPROP
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
CHOL + NPC2 ⟶ NPC2:CHOL
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
H+ + HCO3- ⟶ H2O + carbon dioxide
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Nucleotide metabolism:
ATP + Thy-dRib ⟶ ADP + TMP
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
H+ + HCO3- ⟶ H2O + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
H+ + HCO3- ⟶ H2O + carbon dioxide
- Transport of small molecules:
CHOL + phosphatidylcholines ⟶ 1-acyl LPC + CHEST
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
H2O + dGMP ⟶ 2DORP + Gua
- Pyrimidine catabolism:
H2O + UIBA ⟶ 3AIB + NH4+ + carbon dioxide
- Nucleotide metabolism:
Ade + PRPP ⟶ AMP + PPi
- Nucleotide catabolism:
AMP + H2O ⟶ Ade-Rib + Pi
- Pyrimidine catabolism:
H+ + TPNH + Ura ⟶ Hydrouracil + TPN
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- Nucleobase catabolism:
H2O + XTP ⟶ PPi + XMP
- Pyrimidine catabolism:
Dihydrothymine + H2O ⟶ UIBA
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
Oxygen + Protonated Carbamino DeoxyHbA ⟶ H+ + OxyHbA + carbon dioxide
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up oxygen and release carbon dioxide:
H+ + HCO3- ⟶ H2O + carbon dioxide
- Reversible hydration of carbon dioxide:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B5 (pantothenate) metabolism:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Coenzyme A biosynthesis:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin B5 (pantothenate) metabolism:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Coenzyme A biosynthesis:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Vitamin B5 (pantothenate) metabolism:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Coenzyme A biosynthesis:
ATP + L-Cys + PPanK ⟶ AMP + PPC + PPi
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
ATP + R5P ⟶ AMP + PRPP
- Carbohydrate metabolism:
D-glucuronate + H+ + TPNH ⟶ L-gulonate + TPN
- Pentose phosphate pathway:
ATP + R5P ⟶ AMP + PRPP
- Pentose phosphate pathway:
ATP + R5P ⟶ AMP + PRPP
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
MHDB ⟶ DMPhOH + carbon dioxide
- Nicotinate metabolism:
ATP + H2O + L-Gln + NAAD ⟶ AMP + L-Glu + NAD + PPi
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Nicotinate metabolism:
H+ + PRPP + QUIN ⟶ NAMN + PPi + carbon dioxide
- Nicotinate metabolism:
H+ + Oxygen + dh-beta-NAD ⟶ H2O2 + NAD
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinate metabolism:
ATP + H2O + L-Gln + NAAD ⟶ AMP + L-Glu + NAD + PPi
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Nicotinate metabolism:
H+ + PRPP + QUIN ⟶ NAMN + PPi + carbon dioxide
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- Nicotinate metabolism:
ATP + H2O + L-Gln + NAAD ⟶ AMP + L-Glu + NAD + PPi
- Nicotinate metabolism:
NAM + SAM ⟶ MNA + SAH
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
Oxygen + THA-CoA ⟶ H2O2 + delta2-THA-CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Heme biosynthesis:
H2O + PBG ⟶ HMBL + ammonia
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
BIL + Homologues of GSTA1 ⟶ BIL:GSTA1, FABP1
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Heme synthesis:
H2O + PBG ⟶ HMBL + ammonia
- Heme synthesis:
H2O + PBG ⟶ HMBL + ammonia
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Heme biosynthesis:
H2O + PBG ⟶ HMBL + ammonia
- Porphyrin metabolism:
BIL + GST ⟶ BIL:GSTA1, FABP1
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
BIL + UDP-GlcA ⟶ BMG + UDP
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme biosynthesis:
H2O + PBG ⟶ HMBL + ammonia
- Porphyrin metabolism:
BV + TPNH ⟶ BIL + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Agmatine biosynthesis:
L-Arg ⟶ AGM + carbon dioxide
- Agmatine biosynthesis:
L-Arg ⟶ AGM + carbon dioxide
- Purine ribonucleoside monophosphate biosynthesis:
ATP + H2O + L-Gln + XMP ⟶ AMP + GMP + L-Glu + PPi
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Histidine catabolism:
CARN + SAM ⟶ Anserine + SAH
- Histidine catabolism:
CARN + SAM ⟶ Anserine + SAH
- Histidine catabolism:
CARN + SAM ⟶ Anserine + SAH
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Catecholamine biosynthesis:
Dopa ⟶ DA + carbon dioxide
- Amine-derived hormones:
Dopa ⟶ DA + carbon dioxide
- Catecholamine biosynthesis:
Dopa ⟶ DA + carbon dioxide
- Amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Catecholamine biosynthesis:
DA + Oxygen + VitC ⟶ DHA + H2O + NAd
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
Oxygen + PPCA ⟶ H2O2 + P6C
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
CoA + NAD + aKADA ⟶ GL-CoA + NADH + carbon dioxide
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Lysine catabolism:
2OG + H+ + L-Lys + TPNH ⟶ H2O + SACN + TPN
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
Oxygen + PPCA ⟶ H2O2 + P6C
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Sulfur amino acid metabolism:
H2O + L-Cystathionine ⟶ 2OBUTA + L-Cys + ammonia
- Degradation of cysteine and homocysteine:
H2O + HCYS ⟶ 2OBUTA + H2S + ammonia
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Serotonin and melatonin biosynthesis:
5HTP ⟶ 5HT + carbon dioxide
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH + Q9GU68
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Post-translational protein modification:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of proteins:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Post-translational protein modification:
EIF5A2 + NAD + SPM ⟶ 1,3-diaminopropane + H+ + H0ZKZ7 + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
Fru(6)P + L-Gln ⟶ GlcN6P + L-Glu
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Metabolism of steroids:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Cholesterol biosynthesis:
H+ + LTHSOL + Oxygen + TPNH ⟶ 7-dehydroCHOL + H2O + TPN
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Synthesis of Dolichyl-phosphate:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Branched-chain amino acid catabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- alpha-linolenic acid (ALA) metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- alpha-linolenic acid (ALA) metabolism:
Malonyl-CoA + SDA-CoA + TPNH ⟶ CoA-SH + ETA-CoA + H2O + TPN + carbon dioxide
- alpha-linolenic acid (ALA) metabolism:
DHA-CoA + H2O ⟶ CoA-SH + DHA
- alpha-linolenic acid (ALA) metabolism:
Malonyl-CoA + SDA-CoA + TPNH ⟶ CoA-SH + ETA-CoA + H2O + TPN + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TEABT ⟶ CAR + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- Carnitine synthesis:
2OG + Oxygen + TMLYS ⟶ HTMLYS + SUCCA + carbon dioxide
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Carbohydrate metabolism:
Glu + OAA ⟶ 2OG + L-Asp
- Gluconeogenesis:
Glu + OAA ⟶ 2OG + L-Asp
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- The citric acid (TCA) cycle and respiratory electron transport:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Pyruvate metabolism and Citric Acid (TCA) cycle:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Citric acid cycle (TCA cycle):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
F1MBC5 + Oxygen + carbon dioxide + menatetrenone ⟶ F1MBC5 + H2O + MK4 epoxide
- Gamma-carboxylation of protein precursors:
3D-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ 12xCbxE-3D-F9(29-461) + H2O + MK4 epoxide
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
Oxygen + carbon dioxide + menatetrenone + pro-factor X, uncarboxylated ⟶ H2O + MK4 epoxide + pro-factor X
- Gamma-carboxylation of protein precursors:
Oxygen + carbon dioxide + menatetrenone + pro-factor X, uncarboxylated ⟶ H2O + MK4 epoxide + pro-factor X
- Gamma-carboxylation of protein precursors:
Oxygen + carbon dioxide + f9a + menatetrenone ⟶ H2O + MK4 epoxide + f9a
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
Homologues of 3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ H2O + Homologues of 12xCbxE-3D-F9(29-461) + MK4 epoxide
- Gamma-carboxylation of protein precursors:
Homologues of 3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ H2O + Homologues of 12xCbxE-3D-F9(29-461) + MK4 epoxide
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ H2O + MK4 epoxide + pro-factor IX
- Gamma-carboxylation of protein precursors:
3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ H2O + MK4 epoxide + pro-factor IX
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ 12xCbxE-3D-F9(29-461) + H2O + MK4 epoxide
- Gamma-carboxylation of protein precursors:
3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ 12xCbxE-3D-F9(29-461) + H2O + MK4 epoxide
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ 12xCbxE-3D-F9(29-461) + H2O + MK4 epoxide
- Gamma-carboxylation of protein precursors:
3OHD110-F9(29-461) + Oxygen + carbon dioxide + menatetrenone ⟶ 12xCbxE-3D-F9(29-461) + H2O + MK4 epoxide
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
F1RN40 + Oxygen + carbon dioxide + menatetrenone ⟶ F1RN40 + H2O + MK4 epoxide
- Gamma-carboxylation of protein precursors:
F1RN40 + Oxygen + carbon dioxide + menatetrenone ⟶ F1RN40 + H2O + MK4 epoxide
- Gamma carboxylation, hypusine formation and arylsulfatase activation:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Gamma-carboxylation, transport, and amino-terminal cleavage of proteins:
A0A803KLC2 + Oxygen + carbon dioxide + menatetrenone ⟶ A0A803KLC2 + H2O + MK4 epoxide
- Gamma-carboxylation of protein precursors:
Oxygen + Q5M8Y0 + carbon dioxide + menatetrenone ⟶ H2O + MK4 epoxide + Q5M8Y0
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter release cycle:
H2O + NAd + Oxygen ⟶ 3,4-dihydroxymandelaldehyde + H2O2 + ammonia
- GABA synthesis, release, reuptake and degradation:
2OG + GABA + PXLP ⟶ Glu + PXLP + SUCCSA
- GABA synthesis:
H+ + L-Glu + PXLP ⟶ GABA + PXLP + carbon dioxide
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
HGTA + Oxygen ⟶ 4MAA
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Melanin biosynthesis:
Dopachrome ⟶ DHI + carbon dioxide
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NADPH regeneration:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Fatty acyl-CoA biosynthesis:
Mal-CoA + PALM-CoA ⟶ 3OOD-CoA + CoA-SH + carbon dioxide
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Fatty acyl-CoA biosynthesis:
ATP + CIT + CoA-SH ⟶ ADP + Ac-CoA + OA + Pi
- Lipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
- Sphingolipid metabolism:
PALM-CoA + Ser ⟶ 3-ketosphinganine + CoA-SH + carbon dioxide
BioCyc(1142)
- L-tyrosine degradation IV (to 4-methylphenol):
(4-hydroxyphenyl)acetate + H+ ⟶ 4-methylphenol + CO2
- tyrosine degradation IV (to 4-methylphenol):
4-hydroxyphenylpyruvate + H+ + O2 ⟶ 4-hydroxyphenylacetate + CO2 + H2O
- L-tyrosine degradation IV (to 4-methylphenol):
4-hydroxyphenylacetate + H+ ⟶ 4-methylphenol + CO2
- fermentation:
H2O + NAD+ + acetaldehyde ⟶ NADH + acetate
- superpathway of leucine, valine, and isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- gluconeogenesis:
NAD+ + malate ⟶ CO2 + NADH + pyruvate
- isoleucine biosynthesis:
L-threonine ⟶ 2-oxobutanoate + ammonia
- pyruvate dehydrogenase complex:
enzyme N6-(lipoyl)lysine + pyruvate ⟶ CO2 + enzyme N6-(S-acetyldihydrolipoyl)lysine
- valine biosynthesis:
2,3-dihydroxy-3-methylbutanoate ⟶ 2-keto-isovalerate + H2O
- ketogenesis:
H+ + acetoacetate ⟶ CO2 + acetone
- acetone degradation I (to methylglyoxal):
H+ + acetoacetate ⟶ CO2 + acetone
- isopropanol biosynthesis (engineered):
NADP+ + propan-2-ol ⟶ H+ + NADPH + acetone
- acetone degradation III (to propane-1,2-diol):
NADP+ + propan-2-ol ⟶ H+ + NADPH + acetone
- acetone degradation I (to methylglyoxal):
NADP+ + propan-2-ol ⟶ H+ + NADPH + acetone
- acetone degradation II (to acetoacetate):
NADP+ + propan-2-ol ⟶ H+ + NADPH + acetone
- superpathway of Clostridium acetobutylicum acidogenic and solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- pyruvate fermentation to acetone:
H+ + acetoacetate ⟶ CO2 + acetone
- superpathway of Clostridium acetobutylicum solventogenic fermentation:
H+ + acetoacetate ⟶ CO2 + acetone
- ketogenesis:
H+ + acetoacetate ⟶ CO2 + acetone
- ketogenesis:
H+ + acetoacetate ⟶ CO2 + acetone
- ketogenesis:
H+ + acetoacetate ⟶ CO2 + acetone
- pyruvate fermentation to acetone:
acetoacetate + acetyl-CoA ⟶ acetate + acetoacetyl-CoA
- pyruvate fermentation to (R)-acetoin II:
(S)-2-acetolactate + H+ ⟶ (R)-acetoin + CO2
- superpathway of (R,R)-butanediol biosynthesis:
(S)-2-acetolactate + H+ ⟶ (R)-acetoin + CO2
- superpathway of 2,3-butanediol biosynthesis:
(S)-2-acetolactate + H+ ⟶ (R)-acetoin + CO2
- superpathway of (R,R)-butanediol biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- superpathway of (R,R)-butanediol biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- pyruvate fermentation to (R)-acetoin II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- superpathway of (R,R)-butanediol biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- pyruvate fermentation to (R)-acetoin II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- pyruvate fermentation to (R)-acetoin II:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- phenazine-1-carboxylate biosynthesis:
(1R,10aS)-1,4,10,10a-tetrahydrophenazine-1-carboxylate ⟶ (1R)-1,4,5,10-tetrahydrophenazine-1-carboxylate
- fumitremorgin A biosynthesis:
DMAPP + verruculogen ⟶ diphosphate + fumitremorgin A
- superpathway of fumitremorgin biosynthesis:
DMAPP + verruculogen ⟶ diphosphate + fumitremorgin A
- linamarin biosynthesis:
(E)-2-methylpropanal-oxime ⟶ (Z)-2-methylpropanal-oxime
- superpathway of linamarin and lotaustralin biosynthesis:
(E)-2-methylpropanal-oxime ⟶ (Z)-2-methylpropanal-oxime
- superpathway of chorismate metabolism:
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of chorismate metabolism:
2-oxoglutarate + phe ⟶ 3-phenyl-2-oxopropanoate + glu
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvoyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of chorismate:
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenyl-6-methoxyphenol + H+ + NADPH + O2 ⟶ 2-octaprenyl-6-methoxyquinol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- ethylene biosynthesis IV (engineered):
2-oxoglutarate + H+ + O2 ⟶ CO2 + H2O + ethene
- ethylene biosynthesis II (microbes):
2-oxoglutarate + H+ + O2 ⟶ CO2 + H2O + ethene
- ethylene biosynthesis III (microbes):
4-(methylsulfanyl)-2-oxobutanoate + hydroxyl radical ⟶ CO2 + ethene + methanethiol
- ethylene biosynthesis V (engineered):
2-oxoglutarate + H+ + O2 ⟶ CO2 + H2O + ethene
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis:
H+ + superoxide ⟶ O2 + hydrogen peroxide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethene + hydrogen cyanide
- ethylene biosynthesis I (plants):
1-aminocyclopropane-1-carboxylate + H+ + L-ascorbate + O2 ⟶ CO2 + H2O + L-dehydro-ascorbate + ethylene + hydrogen cyanide
- chlorzoxazone degradation:
2-amino-5-chlorophenyl carbonate + H+ ⟶ 2-amino-5-chlorophenol + CO2
- vitamin K-epoxide cycle:
H+ + H2O + a [protein] 4-carboxy-L-glutamate + vitamin K 2,3-epoxide ⟶ CO2 + O2 + a [protein]-α-L-glutamate + phylloquinol
- vitamin K-epoxide cycle:
a reduced thioredoxin + phylloquinone ⟶ an oxidized thioredoxin + phylloquinol
- bacteriochlorophyll e biosynthesis:
(31R)-8-ethyl-12-methylbacteriochlorophyllide d ⟶ 8-ethyl-12-methyl-3-vinylbacteriochlorophyllide d + H2O
- bacteriochlorophyll c biosynthesis:
(31R)-8-ethyl-12-methylbacteriochlorophyllide d ⟶ 8-ethyl-12-methyl-3-vinylbacteriochlorophyllide d + H2O
- bacteriochlorophyll d biosynthesis:
(31R)-8-ethyl-12-methylbacteriochlorophyllide d ⟶ 8-ethyl-12-methyl-3-vinylbacteriochlorophyllide d + H2O
- 2-nitrobenzoate degradation II:
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- indole-3-acetate degradation:
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- superpathway of salicylate degradation:
O2 + catechol ⟶ H+ + cis,cis-muconate
- naphthalene degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- benzoate degradation I (aerobic):
3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- meta cleavage pathway of aromatic compounds:
O2 + catechol ⟶ H+ + HMS
- toluene degradation IV (aerobic) (via catechol):
O2 + catechol ⟶ H+ + HMS
- mandelate degradation to acetyl-CoA:
O2 + catechol ⟶ H+ + HMS
- 2-chlorobenzoate degradation:
2-chlorobenzoate + H+ + NADH + O2 ⟶ CO2 + NAD+ + catechol + chloride
- superpathway of aerobic toluene degradation:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonia + catechol
- benzoate degradation I (aerobic):
(1R,6S)-1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- anthranilate degradation I (aerobic):
H+ + NAD(P)H + O2 + anthranilate ⟶ CO2 + NAD(P)+ + ammonium + catechol
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- benzoate degradation I (aerobic):
3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- salicylate degradation I:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- superpathway of aromatic compound degradation:
O2 + protocatechuate ⟶ 3-carboxy-cis,cis-muconate + H+
- benzoate degradation I (aerobic):
3,5-cyclohexadiene-1,2-diol-1-carboxylate + NAD+ ⟶ CO2 + NADH + catechol
- 2-nitrobenzoate degradation II:
2-nitrobenzoate + H+ + NADPH ⟶ 2-hydroxylaminobenzoate + H2O + NADP+
- butanol and isobutanol biosynthesis (engineered):
NAD+ + butan-1-ol ⟶ H+ + NADH + butan-1-al
- pyrrolnitrin biosynthesis:
7-chloro-L-tryptophan + A(H2) + O2 ⟶ A + CO2 + H2O + monodechloroaminopyrrolnitrin
- jadomycin biosynthesis:
dTDP-β-L-digitoxose + jadomycin A ⟶ H+ + dTDP + jadomycin B
- beta-alanine degradation:
α-ketoglutarate + β-alanine ⟶ L-glutamate + malonate semialdehyde
- nevadensin biosynthesis:
2-oxoglutarate + O2 + gardenin B ⟶ CO2 + formaldehyde + nevadensin + succinate
- superpathway of ubiquinol-6 biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-hexaprenylbenzoate + H+ ⟶ 2-hexaprenyl-6-methoxyphenol + CO2
- ubiquinol-6 biosynthesis from 4-hydroxybenzoate (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-hexaprenylbenzoate + H+ ⟶ 2-hexaprenyl-6-methoxyphenol + CO2
- ubiquinol-6 bypass biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-hexaprenylbenzoate + H+ ⟶ 2-hexaprenyl-6-methoxyphenol + CO2
- ubiquinol-6 bypass biosynthesis:
3,4-dihydroxy-5-all-trans-hexaprenylbenzoate + SAM ⟶ 3-methoxy-4-hydroxy-5-all-trans-hexaprenylbenzoate + H+ + SAH
- ubiquinol-6 biosynthesis (eukaryotic):
3-hexaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-hexaprenylbenzoate + H2O + NADP+
- ubiquinone-6 biosynthesis (eukaryotic):
3-hexaprenyl-4-hydroxy-5-methoxybenzoate + H+ ⟶ 2-hexaprenyl-6-methoxyphenol + CO2
- ubiquinol-6 biosynthesis (eukaryotic):
3-hexaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-hexaprenylbenzoate + H2O + NADP+
- ubiquinone (coenzyme Q) biosynthesis:
L-tyrosine ⟶ ammonia + p-hydroxyphenylpyruvate
- urea cycle:
ATP + L-citrulline + asp ⟶ AMP + H+ + L-arginino-succinate + diphosphate
- pyruvate fermentation to isobutanol (engineered):
NAD+ + isobutanol ⟶ H+ + NADH + isobutanal
- L-valine degradation II:
NAD+ + isobutanol ⟶ H+ + NADH + isobutanal
- valine degradation:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glu
- L-valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- valine degradation II:
2-oxoisovalerate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
2-oxoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- valine degradation II:
3-methyl-2-oxobutanoate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
2-oxoisovalerate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- L-valine degradation II:
3-methyl-2-oxobutanoate + H+ ⟶ CO2 + isobutanal
- valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- L-valine degradation II:
2-oxoglutarate + val ⟶ 3-methyl-2-oxobutanoate + glt
- reductive acetyl coenzyme A pathway II (autotrophic methanogens):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- reductive acetyl coenzyme A pathway I (homoacetogenic bacteria):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- carbon monoxide oxidation to CO2:
CO + H2O + an electron-transfer quinone ⟶ CO2 + an electron-transfer quinol
- gluconeogenesis II (Methanobacterium thermoautotrophicum):
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- Methanobacterium thermoautotrophicum biosynthetic metabolism:
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- carbon tetrachloride degradation II:
A(H2) + carbon tetrachloride ⟶ A + H+ + chloride + trichloromethyl radical
- hydrogen production VI:
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- methanogenesis from acetate:
CO + H2O + an oxidized ferredoxin [iron-sulfur] cluster ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- reductive acetyl coenzyme A pathway:
H2O + an oxidized ferredoxin [iron-sulfur] cluster + carbon monoxide ⟶ CO2 + H+ + a reduced ferredoxin [iron-sulfur] cluster
- hydrogen production VI:
A + H2O + carbon monoxide ⟶ A(H2) + CO2
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- Methanobacterium thermoautotrophicum biosynthetic metabolism:
2-oxoglutarate + ala ⟶ glt + pyruvate
- gluconeogenesis II (Methanobacterium thermoautotrophicum):
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
ATP + formate + tetrahydrofolate ⟶ 10-formyl-tetrahydrofolate + ADP + phosphate
- methanogenesis from acetate:
ATP + acetate ⟶ ADP + acetylphosphate
- hydrogen production VI:
A + H2O + carbon monoxide ⟶ A(H2) + CO2
- reductive acetyl coenzyme A pathway I (homoacetogenic bacteria):
NADP+ + formate ⟶ CO2 + NADPH
- reductive acetyl coenzyme A pathway:
NADP+ + formate ⟶ CO2 + NADPH
- uridine-5'-phosphate biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- pyrimidine ribonucleotides de novo biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- superpathway of histidine, purine, and pyrimidine biosynthesis:
glt + imidazole acetol-phosphate ⟶ 2-oxoglutarate + L-histidinol-phosphate
- pyrimidine ribonucleotides de novo biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- uridine-5'-phosphate biosynthesis:
H+ + orotidine-5'-phosphate ⟶ CO2 + UMP
- superpathway of histidine, purine and pyrimidine biosynthesis:
ATP + D-ribose 5-phosphate ⟶ 5-phosphoribosyl 1-pyrophosphate + AMP
- pyrimidine ribonucleotides de novo biosynthesis:
O2 + dihydroorotate ⟶ H2O2 + orotate
- clavulanate biosynthesis:
2-oxoglutarate + O2 + dihydroclavaminate ⟶ CO2 + H2O + clavaminate + succinate
- 2-heptyl-3-hydroxy-4(1H)-quinolone biosynthesis:
(2-aminobenzoyl)acetate + H+ + a [PqsC protein]-S-octanoyl-L-cysteine ⟶ 1-(2-aminophenyl)decane-1,3-dione + CO2 + a [PqsC protein]-L-cysteine
- superpathway of quinolone and alkylquinolone biosynthesis:
(2-aminobenzoyl)acetyl-CoA ⟶ 4-hydroxy-2(1H)-quinolone + coenzyme A
- lactate oxidation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- lactate oxidation:
ATP + acetate ⟶ ADP + acetyl phosphate
- aflatoxins B1 and G1 biosynthesis:
8-O-methylsterigmatocystin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + MeOH + aflatoxin B1 + an oxidized [NADPH-hemoprotein reductase]
- aflatoxins B2 and G2 biosynthesis:
8-O-methyldihydrosterigmatocystin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ CO2 + H2O + MeOH + aflatoxin B2 + an oxidized [NADPH-hemoprotein reductase]
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- ajmaline and sarpagine biosynthesis:
H2O + polyneuridine aldehyde ⟶ 16-epivellosimine + CO2 + MeOH
- chlorophyll a degradation I:
H2O + chlorophyll a ⟶ H+ + chlorophyllide a + phytol
- aflatoxins B1 and G1 biosynthesis:
8-O-methylsterigmatocystin + H+ + NADPH + O2 ⟶ CO2 + H2O + NADP+ + aflatoxin B1 + methanol
- aflatoxins B2 and G2 biosynthesis:
H+ + NADPH + O2 + dihydro-O-methylsterigmatocystin ⟶ CO2 + H2O + NADP+ + aflatoxin B2 + methanol
- oleandomycin biosynthesis:
(S)-methylmalonyl-CoA + H+ + NADPH + acetyl-CoA ⟶ 8,8a-deoxyoleandolide + CO2 + H2O + NADP+ + coenzyme A
- ethene and chloroethene degradation:
H+ + NADH + O2 + ethene ⟶ H2O + NAD+ + ethylene oxide
- superpathway of phenylalanine, tyrosine and tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- tyrosine biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- phenylalanine biosynthesis:
L-glutamate + phenylpyruvate ⟶ α-ketoglutarate + L-phenylalanine
- glucosinolate biosynthesis from homomethionine:
(E)-4-(methylsulfanyl)butanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-4-aci-nitrobutane + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from homomethionine:
(E)-4-(methylthio)-butanaldoxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-aci-nitro-4-(methylsulfanyl)butane + H2O + an oxidized [NADPH-hemoprotein reductase]
- phenylacetate degradation II (anaerobic):
ATP + coenzyme A + phenylacetate ⟶ AMP + H+ + diphosphate + phenylacetyl-CoA
- tyrosine degradation II:
4-hydroxyphenylpyruvate + H+ + O2 ⟶ 4-hydroxyphenylacetate + CO2 + H2O
- autoinducer CAI-1 biosynthesis:
SAM + decanoyl-CoA ⟶ 3-aminotridec-2-en-4-one + S-methyl-5'-thioadenosine + CO2 + coenzyme A
- isoflavonoid biosynthesis II:
2-oxoglutarate + O2 + naringenin ⟶ CO2 + H2O + apigenin + succinate
- superpathway of isoflavonoids (via naringenin):
2-oxoglutarate + O2 + naringenin ⟶ CO2 + H2O + apigenin + succinate
- (5R)-carbapenem biosynthesis:
(3S,5S)-carbapenam + 2-oxoglutarate + O2 ⟶ (5R)-carbapenem + CO2 + H2O + succinate
- deacetylcephalosporin C biosynthesis:
2-oxoglutarate + O2 + deacetoxycephalosporin C ⟶ CO2 + deacetylcephalosporin-C + succinate
- arginine degradation X (arginine monooxygenase pathway):
4-guanidinobutyramide + H2O ⟶ 4-guanidinobutyrate + H+ + ammonia
- anthocyanin biosynthesis (delphinidin 3-O-glucoside):
(2R,3S,4S)-leucodelphinidin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + delphinidin + succinate
- D-malate degradation:
(R)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- D-malate degradation:
(R)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- glycine cleavage complex:
a [glycine-cleavage complex H protein] N6-aminomethyldihydrolipoyl-L-lysine + tetrahydrofolate ⟶ 5,10-methylene-THF + a [glycine-cleavage complex H protein] N6-dihydrolipoyl-L-lysine + ammonia
- glycine degradation III:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- glycine biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formylTHF biosynthesis II:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- formylTHF biosynthesis I:
H+ + NAD+ + gly + tetrahydrofolate ⟶ 5,10-methylenetetrahydrofolate + CO2 + NADH + ammonia
- methionine salvage pathway:
S-methyl-5'-thioadenosine + phosphate ⟶ 5-methylthioribose-1-phosphate + adenine
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- spermidine biosynthesis I:
S-adenosyl-L-methionine + H+ ⟶ S-adenosyl-L-methioninamine + CO2
- superpathway of polyamine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- superpathway of polyamine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- superpathway of arginine and polyamine biosynthesis:
N-acetyl-L-ornithine + H2O ⟶ L-ornithine + acetate
- spermidine biosynthesis I:
S-adenosyl-L-methionine + H+ ⟶ S-adenosyl-L-methioninamine + CO2
- polyamine biosynthesis:
L-ornithine ⟶ CO2 + putrescine
- very long chain fatty acid biosynthesis:
NADP+ + a (3R)-3-hydroxyacyl-CoA ⟶ H+ + NADPH + a 3-oxoacyl-CoA
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- flaviolin dimer and mompain biosynthesis:
1,3,6,8-naphthalenetetrol + O2 ⟶ H+ + H2O + flaviolin
- superpathway of hyoscyamine and scopolamine biosynthesis:
(S)-atropinium + 2-oxoglutarate + O2 ⟶ (6S)-hydroxyhyoscyamine + CO2 + succinate
- hyoscyamine and scopolamine biosynthesis:
(S)-atropinium + 2-oxoglutarate + O2 ⟶ (6S)-hydroxyhyoscyamine + CO2 + succinate
- 6-methoxypodophyllotoxin biosynthesis:
(-)-yatein + 2-oxoglutarate + O2 ⟶ (-)-deoxypodophyllotoxin + CO2 + H2O + succinate
- (-)-4'-demethyl-epipodophyllotoxin biosynthesis:
(-)-deoxypodophyllotoxin + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (-)-4'-demethyl-deoxypodophyllotoxin + H2O + MeOH + an oxidized [NADPH-hemoprotein reductase]
- vitamin E biosynthesis (tocopherols):
δ-tocopherol ⟶ 2-methyl-6-phytyl-1,4-benzoquinol
- morphine biosynthesis:
2-oxoglutarate + O2 + codeine ⟶ CO2 + formaldehyde + morphine + succinate
- morphine biosynthesis:
2-oxoglutarate + O2 + codeine ⟶ CO2 + formaldehyde + morphine + succinate
- pinosylvin metabolism:
SAM + pinosylvin ⟶ H+ + SAH + pinosylvin monomethylether
- tryptophan degradation:
α-ketoglutarate + L-tryptophan ⟶ L-glutamate + indolepyruvate
- superpathway of nicotinate degradation:
6-hydroxynicotinate + H+ + NADH + O2 ⟶ 2,5-dihydroxypyridine + CO2 + H2O + NAD+
- nicotinate degradation I:
6-hydroxynicotinate + H+ + NADH + O2 ⟶ 2,5-dihydroxypyridine + CO2 + H2O + NAD+
- (S)-reticuline biosynthesis:
2-oxoglutarate + L-dopa ⟶ 3,4-dihydroxyphenylpyruvate + glu
- (S)-reticuline biosynthesis II:
3,4-dihydroxyphenylacetaldehyde + dopamine ⟶ (S)-norlaudanosoline + H2O
- plant sterol biosynthesis:
4α-formyl-ergosta-7,24(241)-dien-3β-ol + H+ + O2 + a ferrocytochrome b5 ⟶ 4α-carboxy-ergosta-7,24(241)-dien-3β-ol + H2O + a ferricytochrome b5
- plant sterol biosynthesis:
4α-hydroxymethyl-ergosta-7,24(241)-dien-3β-ol + H+ + NADH + O2 ⟶ 4α-formyl-ergosta-7,24(241)-dien-3β-ol + H2O + NAD+
- sphingolipid metabolism:
NADP+ + a sphinganine ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid metabolism:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- superpathway of bitter acids biosynthesis:
DMAPP + phlorisovalerophenone ⟶ 4-prenylphlorisovalerophenone + H+ + diphosphate
- hyperforin and adhyperforin biosynthesis:
DMAPP + phlorisovalerophenone ⟶ 4-prenylphlorisovalerophenone + H+ + diphosphate
- lupulone and humulone biosynthesis:
DMAPP + phlorisovalerophenone ⟶ 4-prenylphlorisovalerophenone + H+ + diphosphate
- uracil degradation I (reductive):
3-ureidopropanoate + H+ + H2O ⟶ β-alanine + CO2 + ammonium
- CO2 fixation into oxaloacetate (anaplerotic):
H+ + hydrogencarbonate ⟶ CO2 + H2O
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- stipitatate biosynthesis:
H2O + stipitatonate ⟶ CO2 + H+ + stipitatate
- cyanate degradation:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- thiocyanate degradation II:
H2O + carbonyl sulfide ⟶ CO2 + hydrogen sulfide
- γ-resorcylate degradation I:
γ-resorcylate + H+ ⟶ CO2 + resorcinol
- carbon disulfide oxidation I (anaerobic):
H2O + carbon disulfide ⟶ carbonyl sulfide + hydrogen sulfide
- superpathway of pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- pyridoxal 5'-phosphate biosynthesis I:
4-phosphooxy-L-threonine + NAD+ ⟶ 3-amino-1-hydroxyacetone 1-phosphate + CO2 + NADH
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
ATP + pyridoxal ⟶ ADP + H+ + PLP
- C4 photosynthetic carbon assimilation cycle, PEPCK type:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- C4 photosynthetic carbon assimilation cycle, NADP-ME type:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- pyridoxal 5'-phosphate biosynthesis I:
O2 + pyridoxine 5'-phosphate ⟶ PLP + hydrogen peroxide
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle V (2-oxoglutarate:ferredoxin oxidoreductase):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- pantothenate and coenzyme A biosynthesis:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- superpathway of central carbon metabolism:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- pentose phosphate pathway (oxidative branch):
6-phospho-D-gluconate + NAD(P)+ ⟶ CO2 + D-ribulose-5-phosphate + NAD(P)H
- pentose phosphate pathway:
6-phospho-D-gluconate + NAD(P)+ ⟶ CO2 + D-ribulose-5-phosphate + NAD(P)H
- formaldehyde oxidation I:
6-phospho-D-gluconate + NAD+ ⟶ CO2 + D-ribulose-5-phosphate + NADH
- pentose phosphate pathway:
6-phospho-D-gluconate + NAD(P)+ ⟶ CO2 + D-ribulose-5-phosphate + NAD(P)H
- pentose phosphate pathway (oxidative branch):
6-phospho-D-gluconate + NAD(P)+ ⟶ CO2 + D-ribulose-5-phosphate + NAD(P)H
- heterolactic fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- formaldehyde oxidation I:
β-D-glucose-6-phosphate + NADP+ ⟶ D-glucono-δ-lactone-6-phosphate + H+ + NADPH
- superpathway of gluconate degradation:
ATP + D-gluconate ⟶ 6-phospho-D-gluconate + ADP + H+
- pentose phosphate pathway (oxidative branch):
β-D-glucose-6-phosphate + NADP+ ⟶ D-glucono-δ-lactone-6-phosphate + H+ + NADPH
- pentose phosphate pathway:
β-D-glucose-6-phosphate + NADP+ ⟶ D-glucono-δ-lactone-6-phosphate + H+ + NADPH
- prodigiosin biosynthesis:
2-methyl-3-pentyl-1H-pyrrole + 4-methoxy-2,2'-bipyrrole-5-carbaldehyde + ATP ⟶ ADP + H+ + phosphate + prodigiosin
- ubiquinol-10 biosynthesis:
3-methoxy-4-hydroxy-5-all-trans-decaprenylbenzoate + H+ ⟶ 6-(all-trans-decaprenyl)-2-methoxy-phenol + CO2
- ubiquinol-10 biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-decaprenylbenzoate + H+ ⟶ 6-(all-trans-decaprenyl)-2-methoxy-phenol + CO2
- ubiquinone-10 biosynthesis (eukaryotic):
3-decaprenyl-4-hydroxy-5-methoxybenzoate + H+ ⟶ 2-decaprenyl-6-methoxyphenol + CO2
- olivetol biosynthesis:
3,5,7-trioxododecanoyl-CoA ⟶ CO2 + coenzyme A + olivetol
- olivetol biosynthesis:
H+ + hexanoyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + olivetol
- NAD biosynthesis II (from tryptophan):
H+ + O2 + trp ⟶ N-formylkynurenine
- NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde:
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- aspartate superpathway:
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- NAD biosynthesis II (from tryptophan):
N-formylkynurenine + H2O ⟶ H+ + formate + kynurenine
- NAD biosynthesis from 2-amino-3-carboxymuconate semialdehyde:
ATP + H2O + gln + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate + glt
- NAD biosynthesis I (from aspartate):
ATP + ammonia + nicotinate adenine dinucleotide ⟶ AMP + H+ + NAD+ + diphosphate
- tryptophan degradation via kynurenine:
N-formylkynurenine + H2O ⟶ formate + kynurenine
- NAD biosynthesis (from tryptophan):
N-formylkynurenine + H2O ⟶ formate + kynurenine
- curcuminoid biosynthesis:
(E)-4-coumaroyl-CoA + H2O + feruloylacetyl-CoA ⟶ CO2 + coenzyme A + demethoxycurcumin
- pyridoxal 5'-phosphate biosynthesis:
2-oxo-3-hydroxy-4-phosphobutanoate + L-glutamate ⟶ 2-oxoglutarate + 4-(phosphonooxy)-threonine
- superpathway of pyridoxal 5'-phosphate biosynthesis and salvage:
2-oxo-3-hydroxy-4-phosphobutanoate + L-glutamate ⟶ 2-oxoglutarate + 4-(phosphonooxy)-threonine
- aliphatic glucosinolate biosynthesis, side chain elongation cycle:
2-[(2'-methylsulfanyl)propyl]maleate + H2O ⟶ 3-[(3'-methylsulfanyl)propyl]malate
- methylsalicylate degradation:
5-methylsalicylate + H+ + NADH + O2 ⟶ 4-methylcatechol + CO2 + H2O + NAD+
- methylsalicylate degradation:
4-methylsalicylate + H+ + NADH + O2 ⟶ 4-methylcatechol + CO2 + H2O + NAD+
- methylsalicylate degradation:
5-methylsalicylate + H+ + NADH + O2 ⟶ 4-methylcatechol + CO2 + H2O + NAD+
- superpathway of the 3-hydroxypropanoate cycle:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- 3-hydroxypropanoate cycle:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- 3-hydroxypropanoate/4-hydroxybutanate cycle:
NADP+ + propanoyl-CoA ⟶ H+ + NADPH + acryloyl-CoA
- glyoxylate assimilation:
NADP+ + propanoyl-CoA ⟶ H+ + NADPH + acryloyl-CoA
- C4 photosynthetic carbon assimilation cycle, NAD-ME type:
H+ + hydrogencarbonate ⟶ CO2 + H2O
- CO2 fixation into oxaloacetate (anaplerotic):
H+ + hydrogencarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogencarbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonia
- cyanate degradation:
H+ + bicarbonate + cyanate ⟶ CO2 + carbamate
- CO2 fixation into oxaloacetate (anapleurotic):
oxaloacetate + phosphate ⟶ bicarbonate + phosphoenolpyruvate
- cyanate degradation:
H+ + cyanate + hydrogen carbonate ⟶ CO2 + carbamate
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonia
- cyanate degradation:
H+ + hydrogen carbonate ⟶ CO2 + H2O
- CO2 fixation into oxaloacetate (anaplerotic):
H+ + hydrogen carbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + hydrogen carbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + cyanate + hydrogen carbonate ⟶ CO2 + carbamate
- CO2 fixation into oxaloacetate (anapleurotic):
H+ + bicarbonate ⟶ CO2 + H2O
- cyanate degradation:
H+ + carbamate ⟶ CO2 + ammonia
- CO2 fixation into oxaloacetate (anaplerotic):
H+ + hydrogen carbonate ⟶ CO2 + H2O
- coenzyme A biosynthesis:
H+ + R-4'-phosphopantothenoyl-L-cysteine ⟶ 4'-phosphopantetheine + CO2
- coenzyme A biosynthesis:
H+ + R-4'-phosphopantothenoyl-L-cysteine ⟶ 4'-phosphopantetheine + CO2
- mixed acid fermentation:
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- purine nucleotides de novo biosynthesis II:
adenylo-succinate ⟶ AMP + fumarate
- inosine-5'-phosphate biosynthesis II:
5'-phosphoribosyl-4-(N-succinocarboxamide)-5-aminoimidazole ⟶ aminoimidazole carboxamide ribonucleotide + fumarate
- phenolphthiocerol biosynthesis:
19-(4-hydroxyphenyl)nonadecanoyl adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a 19-(4-hydroxyphenyl)-nonadecanoyl-[(phenol)carboxyphthiodiolenone synthase]
- phenolphthiocerol biosynthesis:
19-(4-hydroxyphenyl)nonadecanoyl adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a 19-(4-hydroxyphenyl)-nonadecanoyl-[(phenol)carboxyphthiodiolenone synthase]
- putrescine biosynthesis III:
H+ + L-ornithine ⟶ CO2 + putrescine
- superpathway of ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- superpathway of arginine and ornithine degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- spermine biosynthesis II:
H+ + L-ornithine ⟶ CO2 + putrescine
- putrescine biosynthesis II:
N-carbamoylputrescine + H2O + H+ ⟶ CO2 + ammonia + putrescine
- putrescine biosynthesis III:
H+ + L-ornithine ⟶ CO2 + putrescine
- plumbagin biosynthesis:
1,8-dihydroxy-3-methylnaphthalene ⟶ plumbagin
- K-252 biosynthesis:
K-252c + dTDP-2-deoxy-5-keto-dihydrostreptose ⟶ 2-deoxy-5-keto-dihydrostreptosyl-K252c + dTDP
- staurosporine biosynthesis:
K-252c + dTDP-L-ristosamine ⟶ H+ + dTDP + holyrine A
- mixed acid fermentation:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- mixed acid fermentation:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
oxaloacetate + phosphate ⟶ hydrogencarbonate + phosphoenolpyruvate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
citrate ⟶ cis-aconitate + H2O
- respiration (anaerobic):
citrate ⟶ cis-aconitate + H2O
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- mixed acid fermentation:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- 4-nitrotoluene degradation II:
(S)-4-hydroxy-2-oxohexanoate + A ⟶ (3Z)-4-hydroxy-2-oxohexenoate + A(H2)
- heme biosynthesis:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- heme biosynthesis:
O2 + coproporphyrinogen III ⟶ CO2 + H2O2 + protoporphyrinogen
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine biosynthesis:
3-hydroxy-N6,N6,N6-trimethyl-L-lysine ⟶ 4-trimethylammoniobutanal + gly
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- L-carnitine biosynthesis:
γ-butyrobetaine + 2-oxoglutarate + O2 ⟶ CO2 + L-carnitine + succinate
- γ-butyrobetaine degradation:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- 3-chlorobenzoate degradation I (via chlorocatechol):
3-chloro-3,5-cyclohexadiene-l,2-diol-1-carboxylate + NAD+ ⟶ 3-chlorocatechol + CO2 + NADH
- chlorosalicylate degradation:
(2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate + H2O ⟶ 2-maleylacetate + H+ + chloride
- chlorosalicylate degradation:
(2R)-2-chloro-2,5-dihydro-5-oxofuran-2-acetate ⟶ CO2 + chloride + protoanemonin
- putrescine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- arginine degradation III (arginine decarboxylase/agmatinase pathway):
H2O + agmatine ⟶ putrescine + urea
- superpathway of arginine, putrescine, and 4-aminobutyrate degradation:
γ-glutamyl-L-putrescine + H2O + O2 ⟶ γ-glutamyl-γ-aminobutyraldehyde + ammonium + hydrogen peroxide
- putrescine biosynthesis I:
H2O + agmatine ⟶ putrescine + urea
- superpathway of dimethylsulfoniopropanoate degradation:
DMSP ⟶ H+ + acrylate + dimethyl sulfide
- methylthiopropanoate degradation I (cleavage):
3-(methylsulfanyl)acryloyl-CoA + H2O ⟶ CO2 + acetaldehyde + coenzyme A + methanethiol
- validamycin biosynthesis:
GDP-valienol + validamine 7-phosphate ⟶ GDP + H+ + validoxylamine A 7'-phosphate
- plant sterol biosynthesis II:
4α-methyl-zymosterol ⟶ 4α-methyl-5α-cholesta-7,24-dien-3β-ol
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd terminal oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bo oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd terminal oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd terminal oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- pyruvate to cytochrome bd oxidase electron transfer:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- ubiquinol-8 biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-octaprenylbenzoate + H+ ⟶ 2-methoxy-6-(all-trans-octaprenyl)phenol + CO2
- ubiquinol-8 biosynthesis (eukaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- ubiquinone-8 biosynthesis (eukaryotic):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinol-8 biosynthesis (eukaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-octaprenylbenzoate + H2O + NADP+
- chitin degradation to ethanol:
H2O + chitin ⟶ acetate + chitosan
- long chain fatty acid ester synthesis (engineered):
UQ + ethanol ⟶ UQH2 + acetaldehyde
- pyruvate fermentation to acetate VIII:
H2O + NADP+ + acetaldehyde ⟶ H+ + NADPH + acetate
- pyruvate fermentation to acetoin III:
acetaldehyde ⟶ acetoin
- superpathway of fermentation (Chlamydomonas reinhardtii):
H2 + an oxidized ferredoxin [iron-sulfur] cluster ⟶ H+ + a reduced ferredoxin [iron-sulfur] cluster
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- superpathway of anaerobic sucrose degradation:
β-D-fructofuranose + ATP ⟶ ADP + F6P + H+
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetoin biosynthesis III:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- superpathway of acetoin and butanediol biosynthesis:
H+ + acetaldehyde + pyruvate ⟶ CO2 + acetoin
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- chitin degradation to ethanol:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to acetate VIII:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- sucrose degradation to ethanol and lactate (anaerobic):
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis II:
H+ + pyruvate ⟶ CO2 + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- acetaldehyde biosynthesis I:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- pyruvate fermentation to ethanol II:
NAD+ + ethanol ⟶ H+ + NADH + acetaldehyde
- vitamin E biosynthesis (tocotrienols):
γ-tocotrienol ⟶ 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol
- vitamin E biosynthesis (tocotrienols):
2-methyl-6-geranylgeranyl-1,4-benzoquinol + SAM ⟶ 2,3-dimethyl-6-geranylgeranyl-1,4-benzoquinol + H+ + SAH
- cannabinoid biosynthesis:
H+ + cannabichromenate ⟶ CO2 + cannabichromene
- mithramycin biosynthesis:
dTDP-α-D-olivose + premithramycin A3 ⟶ 3A-deolivosylpremithramycin B + H+ + dTDP
- 4-hydroxymandelate degradation:
2-(4-hydroxyphenyl)-2-oxoacetate + H+ ⟶ 4-hydroxybenzaldehyde + CO2
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- 2,4-dichlorophenoxyacetate degradation:
2,4-dichlorophenoxyacetate + 2-oxoglutarate + O2 ⟶ 2,4-dichlorophenol + CO2 + glyoxylate + succinate
- polymethylated quercetin glucoside biosynthesis II - quercetagetin series (Chrysosplenium):
3,6,7-trimethylquercetagetin + SAM ⟶ 3,6,7,4'-tetramethylquercetagetin + H+ + SAH
- superpathway of polymethylated quercetin/quercetagetin glucoside biosynthesis (Chrysosplenium):
3,6,7-trimethylquercetagetin + SAM ⟶ 3,6,7,4'-tetramethylquercetagetin + H+ + SAH
- rosamicin biosynthesis:
(2S)-ethylmalonyl-CoA + (S)-methylmalonyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + tylactone
- tylosin biosynthesis:
(2S)-ethylmalonyl-CoA + (S)-methylmalonyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + tylactone
- fenchone biosynthesis:
α-fenchene + O2 ⟶ α-fenchocamphorone + CO2 + H2O
- fenchol biosynthesis I:
α-fenchene + O2 ⟶ α-fenchocamphorone + CO2 + H2O
- ephedrine biosynthesis:
(+)-norpseudoephedrine + SAM ⟶ H+ + SAH + pseudoephedrine
- juglone biosynthesis:
1,4-naphthoquinone + A(H2) + O2 ⟶ A + H2O + juglone
- plastoquinol-9 biosynthesis I:
2-methyl-6-all-trans-nonaprenyl-1,4-benzoquinol + SAM ⟶ H+ + SAH + plastoquinol-9
- superpathway of plastoquinol biosynthesis:
2-methyl-6-all-trans-nonaprenyl-1,4-benzoquinol + SAM ⟶ H+ + SAH + plastoquinol-9
- ureide biosynthesis:
(S)-5-hydroxyisourate + H2O ⟶ (S)-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline + H+
- urate conversion to allantoin I:
(S)-5-hydroxyisourate + H2O ⟶ (S)-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline + H+
- urate conversion to allantoin II:
(S)-5-hydroxyisourate + H2O ⟶ (S)-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline + H+
- urate conversion to allantoin III:
(S)-5-hydroxyisourate + H2O ⟶ (S)-2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline + H+
- superpathway of purines degradation in plants:
H2O + inosine ⟶ D-ribofuranose + hypoxanthine
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- ureide biosynthesis:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- urate conversion to allantoin I:
H2O + O2 + urate ⟶ (S)-5-hydroxyisourate + hydrogen peroxide
- superpathway of taurine degradation:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- L-cysteine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ 2-aminoacetaldehyde + CO2 + H+ + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- taurine degradation IV:
2-oxoglutarate + O2 + taurine ⟶ CO2 + H+ + aminoacetaldehyde + succinate + sulfite
- glutamate degradation to succinate:
α-ketoglutarate + 4-aminobutyrate ⟶ L-glutamate + succinate semialdehyde
- L-methionine degradation III:
NAD+ + methionol ⟶ 3-(methylsulfanyl)propanal + H+ + NADH
- L-methionine degradation III:
4-(methylsulfanyl)-2-oxobutanoate + H+ ⟶ 3-methylthiopropanal + CO2
- methionine degradation III:
met + phenylpyruvate ⟶ 2-oxo-4-methylthiobutanoate + phe
- methionine degradation III:
keto-phenylpyruvate + met ⟶ 2-oxo-4-methylthiobutanoate + phe
- L-phenylalanine degradation III:
2-phenylethanol + NAD+ ⟶ H+ + NADH + phenylacetaldehyde
- L-phenylalanine degradation II (anaerobic):
3-phenyl-2-oxopropanoate + H+ ⟶ CO2 + phenylacetaldehyde
- phenylethanol biosynthesis:
2-phenylethylamine + H2O + O2 ⟶ ammonium + hydrogen peroxide + phenylacetaldehyde
- L-phenylalanine degradation II (anaerobic):
keto-phenylpyruvate + glu ⟶ 2-oxoglutarate + phe
- phenylalanine degradation:
phe + pyruvate ⟶ keto-phenylpyruvate + ala
- L-phenylalanine degradation III:
2-phenylethanol + NAD+ ⟶ H+ + NADH + phenylacetaldehyde
- phenylalanine degradation II (anaerobic):
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- phenylalanine degradation III:
phe + pyruvate ⟶ ala + phenylpyruvate
- phenylalanine degradation II (anaerobic):
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- L-phenylalanine degradation II (anaerobic):
H2O + NAD+ + phenylacetaldehyde ⟶ H+ + NADH + phenylacetate
- phenylalanine degradation III:
phe + pyruvate ⟶ ala + keto-phenylpyruvate
- phenylethanol biosynthesis:
H2O + O2 + phe ⟶ CO2 + ammonia + hydrogen peroxide + phenylacetaldehyde
- L-phenylalanine degradation II (anaerobic):
2-oxo-3-phenylpropanoate + glt ⟶ 2-oxoglutarate + phe
- phenylethanol biosynthesis:
2-phenylethylamine + H2O + O2 ⟶ ammonium + hydrogen peroxide + phenylacetaldehyde
- phenylalanine degradation III:
phe + pyruvate ⟶ ala + phenylpyruvate
- phenylethanol biosynthesis:
H2O + O2 + phe ⟶ CO2 + ammonia + hydrogen peroxide + phenylacetaldehyde
- phenylalanine degradation III:
phe + pyruvate ⟶ ala + keto-phenylpyruvate
- phenylethanol biosynthesis:
H2O + O2 + phe ⟶ CO2 + ammonia + hydrogen peroxide + phenylacetaldehyde
- L-glutamate degradation V (via hydroxyglutarate):
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- pyruvate oxidation pathway:
H2O + UQ + pyruvate ⟶ CO2 + UQH2 + acetate
- prunasin and amygdalin biosynthesis:
(R)-prunasin + UDP-α-D-glucose ⟶ (R)-amygdalin + H+ + UDP
- glucosinolate biosynthesis from phenylalanine:
(Z)-2-phenyl-1-thioacetohydroximate + UDP-α-D-glucose ⟶ UDP + desulfoglucotropaeolin
- glucosinolate biosynthesis from phenylalanine:
(Z)-2-phenyl-1-thioacetohydroximate + UDP-α-D-glucose ⟶ UDP + desulfoglucotropeolin
- 4-hydroxy-2(1H)-quinolone biosynthesis:
(2-aminobenzoyl)acetyl-CoA ⟶ 4-hydroxy-2(1H)-quinolone + coenzyme A
- salinosporamide A biosynthesis:
5'-chloro-5'-deoxyadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- salinosporamide A biosynthesis:
5'-deoxy-5'-chloroadenosine + phosphate ⟶ 5-chloro-5-deoxyribose 1-phosphate + adenine
- superpathway of erythromycin biosynthesis:
dTDP-β-L-mycarose + erythronolide B ⟶ 3-α-mycarosylerythronolide B + H+ + dTDP
- superpathway of megalomicin A biosynthesis:
dTDP-β-L-mycarose + erythronolide B ⟶ 3-α-mycarosylerythronolide B + H+ + dTDP
- erythromycin D biosynthesis:
dTDP-β-L-mycarose + erythronolide B ⟶ 3-α-mycarosylerythronolide B + H+ + dTDP
- superpathway of erythromycin biosynthesis (without sugar biosynthesis):
dTDP-β-L-mycarose + erythronolide B ⟶ 3-α-mycarosylerythronolide B + H+ + dTDP
- ceramide de novo biosynthesis:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- sphingolipid biosynthesis (mammals):
D-erythro-sphinganine + an acyl-CoA ⟶ H+ + a dihydroceramide + coenzyme A
- ceramide de novo biosynthesis:
D-erythro-sphinganine + an acyl-CoA ⟶ H+ + a dihydroceramide + coenzyme A
- sphingolipid biosynthesis (plants):
H+ + O2 + a dihydroceramide + a ferrocytochrome b5 ⟶ H2O + a ferricytochrome b5 + a phytoceramide
- sphingolipid biosynthesis (yeast):
D-erythro-sphinganine + NADP+ ⟶ 3-dehydrosphinganine + H+ + NADPH
- sphingolipid biosynthesis:
H+ + palmitoyl-CoA + ser ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- ceramide de novo biosynthesis:
D-erythro-sphinganine + NADP+ ⟶ 3-dehydrosphinganine + H+ + NADPH
- (5R)-carbapenem carboxylate biosynthesis:
an electron-transfer quinone + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + an electron-transfer quinol
- glucosinolate biosynthesis from tetrahomomethionine:
L-tetrahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-7-(methyltsulfanyl)heptanal oxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- 6-gingerol analog biosynthesis (engineered):
(E)-4-coumaroyl-CoA + 3-oxooctanoyl-CoA + H2O ⟶ 4-coumaroylhexanoylmethane + CO2 + coenzyme A
- glucosinolate biosynthesis from pentahomomethionine:
(E)-8-(methylsulfanyl)octanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-8-aci-nitrooctane + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from pentahomomethionine:
L-pentahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-8-(methylthio)octanaldoxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- polybrominated dihydroxylated diphenyl ethers biosynthesis:
3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 3-bromo-5-(3,5-dibromo-2-hydroxyphenoxy)benzene-1,2-diol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- spongiadioxin C biosynthesis:
2,4-dibromophenol + 3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 6,6'-oxybis(2,4-dibromophenol) + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- D-carnitine degradation I:
D-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- D-carnitine degradation II:
D-carnitine ⟶ L-carnitine
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- L-carnitine degradation II:
L-carnitine + NAD+ ⟶ 3-dehydrocarnitine + H+ + NADH
- aminopropylcadaverine biosynthesis:
H+ + lys ⟶ CO2 + cadaverine
- aminopropylcadaverine biosynthesis:
S-adenosyl-L-methioninamine + cadaverine ⟶ S-methyl-5'-thioadenosine + H+ + aminopropylcadaverine
- lysine degradation I:
H+ + L-lysine ⟶ CO2 + cadaverine
- tetrahydroxyxanthone biosynthesis (from 3-hydroxybenzoate):
2,3',4,6-tetrahydroxybenzophenone + NADPH + O2 ⟶ 1,3,5-trihydroxyxanthone + H2O + NADP+
- superpathway of tetrahydroxyxanthone biosynthesis:
2,3',4,6-tetrahydroxybenzophenone + NADPH + O2 ⟶ 1,3,5-trihydroxyxanthone + H2O + NADP+
- superpathway of lysine, threonine and methionine biosynthesis II:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- superpathway of lysine, threonine and methionine biosynthesis I:
H2O + L-cystathionine ⟶ H+ + L-homocysteine + ammonia + pyruvate
- lysine biosynthesis VI:
2-oxoglutarate + L,L-diaminopimelate ⟶ H2O + H+ + glt + tetrahydrodipicolinate
- lysine biosynthesis I:
2-oxoglutarate + N-succinyl-L,L-2,6-diaminopimelate ⟶ N-succinyl-2-amino-6-ketopimelate + glt
- glucosinolate biosynthesis from trihomomethionine:
L-trihomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-6-(methylthio)hexanaldoxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- pyruvate fermentation to (R)-acetoin I:
(R)-acetoin + NAD+ ⟶ H+ + NADH + diacetyl
- pyruvate fermentation to (S)-acetoin:
(S)-acetoin + NAD+ ⟶ H+ + NADH + diacetyl
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- pyruvate fermentation to (R)-acetoin I:
(R)-acetoin + NAD+ ⟶ H+ + NADH + diacetyl
- pyruvate fermentation to (R)-acetoin I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (S)-acetoin biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (S)-acetoin biosynthesis:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- (R)-acetoin biosynthesis I:
H+ + pyruvate ⟶ (S)-2-acetolactate + CO2
- dimethylsulfoniopropanoate biosynthesis III (algae):
A + H2O + dimethylsulfonio-2-hydroxybutanoate ⟶ A(H2) + CO2 + DMSP
- narbomycin, pikromycin and novapikromycin biosynthesis:
(S)-methylmalonyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + narbonolide
- chlorosalicylate degradation:
5-chlorosalicylate + H+ + NADH + O2 ⟶ 4-chlorocatechol + CO2 + H2O + NAD+
- glucosinolate biosynthesis from dihomomethionine:
L-dihomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-5-(methylthio)pentanaldoxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- adlupulone and adhumulone biosynthesis:
DMAPP + phlormethylbutanophenone ⟶ 4-prenylphlormethylbutanophenone + H+ + diphosphate
- γ-resorcylate degradation II:
O2 + hydroxyquinol ⟶ 2-maleylacetate + H+
- glucosinolate biosynthesis from tetrahomomethionine:
L-tetrahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-7-(methylthio)heptanaldoxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- cholesterol biosynthesis III (via desmosterol):
H+ + NADPH + desmosterol ⟶ NADP+ + cholesterol
- superpathway of cholesterol biosynthesis:
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- zymosterol biosynthesis:
4α-carboxy-5α-cholesta-8,24-dien-3β-ol + NAD(P)+ ⟶ CO2 + NAD(P)H + zymosterone
- cholesterol biosynthesis I:
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- superpathway of ergosterol biosynthesis I:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- zymosterol biosynthesis:
NADP+ + zymosterol ⟶ H+ + NADPH + zymosterone
- cholesterol biosynthesis I:
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- cholesterol biosynthesis III (via desmosterol):
(3S)-2,3-epoxy-2,3-dihydrosqualene ⟶ lanosterol
- superpathway of cholesterol biosynthesis:
24,25-dihydrolanosterol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-8-en-3β-ol + H2O + an oxidized [NADPH-hemoprotein reductase]
- superpathway of ergosterol biosynthesis:
NADP+ + ergosterol ⟶ H+ + NADPH + ergosta-5,7,22,24(28)-tetraen-3-β-ol
- zymosterol biosynthesis:
4α-carboxy-5α-cholesta-8,24-dien-3β-ol + NAD(P)+ ⟶ CO2 + NAD(P)H + zymosterone
- zymosterol biosynthesis:
H+ + NADPH + O2 + lanosterol ⟶ 14-demethyllanosterol + H2O + NADP+ + formate
- caffeine degradation V (bacteria, via trimethylurate):
1,6,8-trimethylallantoate + H2O ⟶ N,N'-dimethylurea + N-methylurea + glyoxylate
- urate degradation to allantoin I:
2-oxo-4-hydroxy-4-carboxy-5-ureidoimidazoline + H+ ⟶ (S)-(+)-allantoin + CO2
- ureide biosynthesis:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- urate degradation to allantoin:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- urate degradation to allantoin I:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- superpathway of purines degradation in plants:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- ureide biosynthesis:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- urate degradation to allantoin I:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- urate degradation to allantoin:
H2O + O2 + urate ⟶ 5-hydroxyisourate + hydrogen peroxide
- superpathway of flavones and derivatives biosynthesis:
UDP-β-L-rhamnose + quercetin 3-O-sophoroside ⟶ H+ + UDP + quercetin 3-O-rhamnosyl(1->2)glucoside-7-O-rhamnoside
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonoid biosynthesis (in equisetum):
(+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
- flavonol biosynthesis:
(+)-dihydrokaempferol + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + kaempferol + succinate
- flavonoid biosynthesis (in equisetum):
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- flavonol biosynthesis:
(+)-dihydrokaempferol + NADPH + O2 ⟶ (+)-taxifolin + H2O + NADP+
- flavonoid biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ (+)-dihydrokaempferol + CO2 + succinate
- glucosinolate biosynthesis from trihomomethionine:
(E)-6-(methylsulfanyl)hexanal oxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-(methylsulfanyl)-6-aci-nitrohexane + H2O + an oxidized [NADPH-hemoprotein reductase]
- flavonoid di-C-glucosylation:
UDP-α-D-glucose + nothofagin ⟶ 3',5'-di-C-glucosylphloretin + H+ + UDP
- phloridzin biosynthesis:
H+ + dihydro-4-coumaroyl-CoA + malonyl-CoA ⟶ CO2 + coenzyme A + phloretin
- glucosinolate biosynthesis from hexahomomethionine:
1-(methylsulfanyl)-9-aci-nitrononane + glutathione ⟶ (E)-1-(glutathion-S-yl)-N-hydroxy-ω-(methylsulfanyl)nonan-1-imine + H2O
- glucosinolate biosynthesis from hexahomomethionine:
L-hexahomomethionine + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (E)-9-(methylthio)nonanaldoxime + CO2 + H2O + an oxidized [NADPH-hemoprotein reductase]
- glucosinolate biosynthesis from dihomomethionine:
4-(methylsulfanyl)butyl-desulfoglucosinolate + PAPS ⟶ 3',5'-ADP + 4-(methylsulfanyl)butyl-glucosinolate + H+
- superpathway of allantoin degradation in plants:
(S)-(+)-allantoin + H2O ⟶ H+ + allantoate
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- 2-oxoglutarate decarboxylation to succinyl-CoA:
2-oxoglutarate + H+ + a [2-oxoglutarate dehydrogenase E2 protein] N6-lipoyl-L-lysine ⟶ CO2 + a [2-oxoglutarate dehydrogenase E2 protein] N6-S-succinyldihydrolipoyl-L-lysine
- IAA biosynthesis I:
acetate + indole ⟶ H+ + indole-3-acetate
- superpathway of sterol biosynthesis:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- mevalonate pathway I:
(R)-mevalonate + NADP+ + coenzyme A ⟶ 3-hydroxy-3-methyl-glutaryl-CoA + NADPH
- superpathway of ergosterol biosynthesis:
H+ + NADPH + O2 + lanosterol ⟶ 4,4-dimethyl-5-α-cholesta-8,14,24-trien-3-β-ol + NADP+ + formate
- cyanurate degradation:
H2O + cyanurate ⟶ CO2 + biuret
- superpathway of atrazine degradation:
H2O + atrazine ⟶ H+ + chloride + hydroxyatrazine
- superpathway of threonine metabolism:
2-oxobutanoate + coenzyme A ⟶ formate + propanoyl-CoA
- isoleucine biosynthesis I:
thr ⟶ 2-oxobutanoate + H+ + ammonia
- isoleucine biosynthesis I (from threonine):
thr ⟶ 2-oxobutanoate + H+ + ammonia
- threonine degradation III (to methylglyoxal):
H2O + O2 + aminoacetone ⟶ H+ + ammonia + hydrogen peroxide + methylglyoxal
- aminopropanol biosynthesis:
NAD+ + thr ⟶ 2-amino-3-oxobutanoate + H+ + NADH
- anthocyanin biosynthesis (pelargonidin 3-O-glucoside):
(2R,3S,4S)-leucopelargonidin + 2-oxoglutarate + O2 ⟶ (4S)-2,3-dehydroleucopelargonidin + CO2 + H+ + H2O + succinate
- hydroxylated mugineic acid phytosiderophore biosynthesis:
2'-deoxymugineate + 2-oxoglutarate + O2 ⟶ 3-epihydroxy-2'-deoxymugineate + CO2 + H+ + succinate
- viridicatin biosynthesis:
(-)-cyclopenine ⟶ H+ + methyl isocyanate + viridicatin
- hinokiresinol biosynthesis:
(E)-4-coumaroyl-CoA + 4-coumaryl alcohol ⟶ 4-coumaryl-4-coumarate + coenzyme A
- tetrapyrrole biosynthesis II:
H+ + glycine + succinyl-CoA ⟶ 5-amino-levulinate + CO2 + coenzyme A
- tetrapyrrole biosynthesis:
H2O + porphobilinogen ⟶ ammonia + hydroxymethylbilane
- carbon disulfide oxidation II (aerobic):
H+ + NADH + O2 + carbon disulfide ⟶ H2O + NAD+ + carbonyl sulfide + hydrogen sulfide
- carbon disulfide oxidation III (metazoa):
O2 + a reduced [NADPH-hemoprotein reductase] + carbon disulfide ⟶ H2O + an oxidized [NADPH-hemoprotein reductase] + sulfinylidenemethanethione
- rhodoquinone-9 biosynthesis:
H2O + ammonium + ubiquinone-9 ⟶ CO2 + rhodoquinone-9
- indole-3-acetate biosynthesis VI (bacteria):
(indol-3-yl)acetaldehyde + H2O + O2 ⟶ (indol-3-yl)acetate + H+ + hydrogen peroxide
- L-tryptophan degradation V (side chain pathway):
NAD(P)+ + indole-3-ethanol ⟶ (indol-3-yl)acetaldehyde + H+ + NAD(P)H
- L-tryptophan degradation VIII (to tryptophol):
NAD+ + indole-3-ethanol ⟶ (indol-3-yl)acetaldehyde + H+ + NADH
- tryptophan degradation VIII (to tryptophol):
2-oxoglutarate + trp ⟶ (indol-3-yl)pyruvate + glu
- IAA biosynthesis I:
H2O + indole-3-acetamide ⟶ H+ + ammonia + indole-3-acetate
- violacein biosynthesis:
H+ + N-[2-(carboxylatoamino)-1,2-bis(1H-indol-3-yl)ethyl]carbamate ⟶ CO2 + ammonium + protodeoxyviolaceinate
- polymethylated quercetin glucoside biosynthesis I - quercetin series (Chrysosplenium):
2-oxoglutarate + 3,7,4'-trimethylquercetin + O2 ⟶ 3,7,4'-trimethylquercetagetin + CO2 + succinate
- L-isoleucine degradation II:
2-methylbutanol + NAD+ ⟶ 2-methylbutanal + H+ + NADH
- isoleucine degradation:
2-oxoglutarate + ile ⟶ (S)-3-methyl-2-oxopentanoate + glu
- isoleucine degradation II:
2-oxoglutarate + ile ⟶ (S)-3-methyl-2-oxopentanoate + glu
- isoleucine degradation II:
2-oxoglutarate + ile ⟶ 2-keto-3-methyl-valerate + glt
- isoleucine degradation II:
2-oxoglutarate + ile ⟶ 2-keto-3-methyl-valerate + glt
- L-tyrosine degradation III:
4-tyrosol + NAD+ ⟶ (4-hydroxyphenyl)acetaldehyde + H+ + NADH
- (S)-reticuline biosynthesis I:
3-(4-hydroxyphenyl)pyruvate + H+ ⟶ (4-hydroxyphenyl)acetaldehyde + CO2
- tyrosine degradation:
pyruvate + tyr ⟶ 4-hydroxyphenylpyruvate + ala
- tyrosine degradation III:
4-hydroxyphenylpyruvate + ala ⟶ pyruvate + tyr
- tyrosine degradation III:
pyruvate + tyr ⟶ 4-hydroxyphenylpyruvate + ala
- anthocyanin biosynthesis (pelargonidin 3-O-glucoside):
(2R,3S,4S)-leucopelargonidin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + pelargonidin + succinate
- isoflavonoid biosynthesis II:
SAM + genistein ⟶ SAH + prunetin
- luteolin biosynthesis:
(2S)-naringenin + 2-oxoglutarate + O2 ⟶ CO2 + H+ + H2O + apigenin + succinate
- superpathway of isoflavonoids (via naringenin):
SAM + genistein ⟶ SAH + prunetin
- methymycin, neomethymycin and novamethymycin biosynthesis:
(S)-methylmalonyl-CoA + H+ + NADPH + malonyl-CoA ⟶ 10-deoxymethynolide + CO2 + H2O + NADP+ + coenzyme A
- aucuparin biosynthesis:
H+ + benzoyl-CoA + malonyl-CoA ⟶ 3,5-dihydroxybiphenyl + CO2 + coenzyme A
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- formaldehyde assimilation I (serine pathway):
L-malyl-CoA ⟶ acetyl-CoA + glyoxylate
- gluconeogenesis I:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- allantoin degradation:
H2O + urea-1-carboxylate ⟶ CO2 + ammonia
- biotin biosynthesis:
7,8-diaminononanoate + ATP + CO2 ⟶ ADP + dethiobiotin + phosphate
- purine nucleotides de novo biosynthesis:
ATP + XMP + ammonia ⟶ AMP + GMP + pyrophosphate
- superpathway of allantoin degradation in yeast:
(S)-(+)-allantoin + H2O ⟶ H+ + allantoate
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- urea degradation:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- superpathway of allantoin degradation in yeast:
H2O + allantoate ⟶ (S)-ureidoglycolate + urea
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- superpathway of allantoin degradation in yeast:
S-ureidoglycolate ⟶ glyoxylate + urea
- superpathway of allantoin degradation in plants:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation II:
H2O + urea ⟶ CO2 + ammonia
- urea degradation I:
H2O + H+ + urea-1-carboxylate ⟶ CO2 + ammonia
- urea degradation II:
H2O + urea ⟶ CO2 + ammonia
- urea degradation I:
H2O + H+ + urea-1-carboxylate ⟶ CO2 + ammonia
- urea degradation II:
H2O + urea ⟶ CO2 + ammonia
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- urea degradation I:
ATP + CO2 + H2O + urea ⟶ ADP + H+ + phosphate + urea-1-carboxylate
- urea degradation II:
H+ + H2O + urea ⟶ CO2 + ammonium
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
H+ + O2 + a ferrocytochrome b5 + lathosterol ⟶ 7-dehydrocholesterol + H2O + a ferricytochrome b5
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
24,25-dihydrolanosterol + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 4,4-dimethyl-14α-hydroxymethyl-5α-cholesta-8-en-3β-ol + H2O + an oxidized [NADPH-hemoprotein reductase]
- valine degradation I:
(S)-methylmalonate-semialdehyde + H2O + NAD+ + coenzyme A ⟶ H+ + NADH + bicarbonate + propanoyl-CoA
- valine degradation I:
(S)-methylmalonate-semialdehyde + H2O + NAD+ + coenzyme A ⟶ H+ + NADH + bicarbonate + propanoyl-CoA
- resveratrol biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ trans-resveratrol + CO2 + coenzyme A
- resveratrol biosynthesis:
4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ trans-resveratrol + CO2 + coenzyme A
- camalexin biosynthesis:
2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ (R)-dihydrocamalexate + H+ + H2O + an oxidized [NADPH-hemoprotein reductase] + hydrogen cyanide
- camalexin biosynthesis:
2-(cystein-S-yl)-2-(1H-indol-3-yl)-acetonitrile + NADP+ ⟶ H+ + NADPH + dihydrocamalexate + hydrogen cyanide
- superpathway of phenylalanine, tyrosine, and tryptophan biosynthesis:
4-hydroxyphenylpyruvate + L-glutamate ⟶ 2-oxoglutarate + L-tyrosine
- phenylalanine biosynthesis I:
L-glutamate + phenylpyruvate ⟶ 2-oxoglutarate + L-phenylalanine
- phenylalanine degradation:
L-glutamate + phenylpyruvate ⟶ α-ketoglutarate + L-phenylalanine
- aminopropanol phosphate biosynthesis I:
H+ + L-threonine 3-O-phosphate ⟶ (R)-1-amino-2-propanol O-2-phosphate + CO2
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- superpathway of threonine metabolism:
H2O + O2 + aminoacetone ⟶ ammonium + hydrogen peroxide + methylglyoxal
- aminopropanol phosphate biosynthesis I:
H+ + L-threonine 3-O-phosphate ⟶ (R)-1-amino-2-propanol O-2-phosphate + CO2
- isoleucine degradation I:
2-methylacetoacetyl-CoA + coenzyme A ⟶ acetyl-CoA + propanoyl-CoA
- holomycin biosynthesis:
O2 + dithioholomycin ⟶ holomycin + hydrogen peroxide
- 6-methoxymellein biosynthesis:
6-hydroxymellein + SAM ⟶ 6-methoxymellein + H+ + SAH
- coelimycin P1 biosynthesis:
(2E,5S,6E,8E,10E)-1-aminododeca-2,6,8,10-tetraen-5-ol + pyruvate ⟶ (2E,5S,6E,8E,10E)-5-hydroxydodeca-2,6,8,10-tetraenal + ala
- pentaketide chromone biosynthesis:
H+ + malonyl-CoA ⟶ 5,7-dihydroxy-2-methylchromone + CO2 + H2O + coenzyme A
- (-)-microperfuranone biosynthesis:
3-phenyl-2-oxopropanoate + ATP + H2O ⟶ (-)-microperfuranone + AMP + CO2 + diphosphate
- TCA cycle, aerobic respiration:
H2O + cis-aconitate ⟶ isocitrate
- glycine degradation:
a ferricytochrome b1 + formate ⟶ CO2 + a ferrocytochrome b1
- formaldehyde oxidation (glutathione-dependent):
formaldehyde + glutathione ⟶ S-hydroxymethylglutathione
- 2,2'-dihydroxybiphenyl degradation:
2,2',3-trihydroxybiphenyl + H+ + NADH + O2 ⟶ 2,2',3,3'-tetrahydroxybiphenyl + H2O + NAD+
- gallate degradation III (anaerobic):
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- gallate degradation III (anaerobic):
3-hydroxy-5-oxohexanoate + acetyl-CoA ⟶ 3-hydroxy-5- oxohexanoyl-CoA + acetate
- gallate degradation III (anaerobic):
acetate + butanoyl-CoA ⟶ acetyl-CoA + butanoate
- gallate degradation III (anaerobic):
3-hydroxy-5-oxohexanoate + acetyl-CoA ⟶ 3-hydroxy-5- oxohexanoyl-CoA + acetate
- gallate degradation III (anaerobic):
3-hydroxy-5- oxohexanoyl-CoA + acetate ⟶ 3-hydroxy-5-oxohexanoate + acetyl-CoA
- 4-hydroxycoumarin and dicoumarol biosynthesis:
4-hydroxycoumarin + formaldehyde ⟶ H2O + dicoumarol
- polybrominated phenols biosynthesis:
2,4-dibromophenol + H+ + NADPH + O2 + bromide ⟶ 2,4,6-tribromophenol + H2O + NADP+
- superpathway of polybrominated aromatic compound biosynthesis:
2,4-dibromophenol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 2-bromo-4-(2,4-dibromophenoxy)phenol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- 4'-methoxyviridicatin biosynthesis:
(-)-4'-methoxycyclopenine ⟶ 4'-methoxyviridicatin + H+ + methyl isocyanate
- calystegine biosynthesis:
pseudotropine ⟶ an unknown compound
- cocaine biosynthesis:
NADP+ + ecgonine methyl ester ⟶ H+ + NADPH + methyl ecgonone
- hyoscyamine and scopolamine biosynthesis:
2-oxoglutarate + L-hyoscyamine + O2 ⟶ (6S)-hydroxyhyoscyamine + CO2 + succinate
- allantoin degradation to ureidoglycolate II (ammonia producing):
(S)-(+)-allantoin + H2O ⟶ H+ + allantoate
- allantoin degradation to glyoxylate II:
(S)-(+)-allantoin + H2O ⟶ H+ + allantoate
- allantoin degradation to glyoxylate III:
(S)-(+)-allantoin + H2O ⟶ H+ + allantoate
- allantoin degradation IV (anaerobic):
(S)-(+)-allantoin + H2O ⟶ H+ + allantoate
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
ATP + pyruvate ⟶ ADP + H+ + phosphoenolpyruvate
- superpathay of heme b biosynthesis from glutamate:
ATP + glu ⟶ AMP + diphosphate
- superpathway of heme b biosynthesis from uroporphyrinogen-III:
H+ + O2 + coproporphyrinogen III ⟶ CO2 + H2O + protoporphyrinogen IX
- heme b biosynthesis I (aerobic):
H+ + O2 + coproporphyrinogen III ⟶ CO2 + H2O + protoporphyrinogen IX
- TCA cycle I (prokaryotic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- vitamin B6 degradation:
4-pyridoxolactone + H2O ⟶ 4-pyridoxate + H+
- L-tyrosine degradation II:
3-(4-hydroxyphenyl)pyruvate + O2 ⟶ (4-hydroxyphenyl)acetate + CO2
- L-malate degradation I:
(S)-malate + H+ ⟶ (S)-lactate + CO2
- L-carnitine degradation III:
H+ + L-carnitine + NAD(P)H + O2 ⟶ H2O + L-malic semialdehyde + NAD(P)+ + trimethylamine
- anaerobic energy metabolism (invertebrates, mitochondrial):
ATP + hydrogencarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- superpathway of anaerobic energy metabolism (invertebrates):
ATP + hydrogencarbonate + propanoyl-CoA ⟶ (S)-methylmalonyl-CoA + ADP + H+ + phosphate
- anaerobic energy metabolism (invertebrates, cytosol):
GTP + oxaloacetate ⟶ CO2 + GDP + phosphoenolpyruvate
- 2-aminophenol degradation:
2-aminophenol + O2 ⟶ (2Z,4E)-2-amino-6-oxohexa-2,4-dienoate + H+
- superpathway of demethylmenaquinol-8 biosynthesis I:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + H+ ⟶ 1,4-dihydroxy-2-naphthoyl-CoA + H2O
- gluconeogenesis I:
β-D-fructose 1,6-bisphosphate ⟶ D-glyceraldehyde 3-phosphate + DHAP
- oxalate degradation V:
H+ + oxalate ⟶ CO2 + formate
- oxalate degradation IV:
H+ + O2 + oxalate ⟶ CO2 + hydrogen peroxide
- 2-carboxy-1,4-naphthoquinol biosynthesis:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + H+ ⟶ 1,4-dihydroxy-2-naphthoyl-CoA + H2O
- superpathway of menaquinol-8 biosynthesis I:
4-(2'-carboxyphenyl)-4-oxobutyryl-CoA + H+ ⟶ 1,4-dihydroxy-2-naphthoyl-CoA + H2O
- L-arginine degradation VIII (arginine oxidase pathway):
4-guanidinobutanoate + H2O ⟶ 4-aminobutanoate + urea
- L-arginine degradation X (arginine monooxygenase pathway):
4-guanidinobutanoate + H2O ⟶ 4-aminobutanoate + urea
- L-malate degradation II:
(S)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- superpathway of phylloquinol biosynthesis:
SAM + demethylphylloquinol ⟶ H+ + SAH + phylloquinol
- superpathway of glyoxylate bypass and TCA:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- L-isoleucine biosynthesis IV:
ATP + coenzyme A + propanoate ⟶ AMP + diphosphate + propanoyl-CoA
- 2-carboxy-1,4-naphthoquinol biosynthesis:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvoyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- allantoin degradation to glyoxylate III:
(S)-ureidoglycolate ⟶ glyoxylate + urea
- allantoin degradation to ureidoglycolate II (ammonia producing):
H+ + H2O + allantoate ⟶ (S)-ureidoglycine + CO2 + ammonium
- TCA cycle I (prokaryotic):
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of menaquinol-8 biosynthesis I:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvoyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- heme b biosynthesis I (aerobic):
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- superpathway of heme b biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- superpathway of glycolysis, pyruvate dehydrogenase, TCA, and glyoxylate bypass:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- allantoin degradation IV (anaerobic):
H+ + carbamate ⟶ CO2 + ammonium
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- gluconeogenesis I:
(S)-malate + NADP+ ⟶ CO2 + NADPH + pyruvate
- allantoin degradation to ureidoglycolate II (ammonia producing):
(S)-(+)-allantoin + H2O ⟶ H+ + allantoate
- oxalate degradation V:
H+ + oxalate ⟶ CO2 + formate
- rebeccamycin biosynthesis:
4'-O-demethylrebeccamycin + SAM ⟶ H+ + SAH + rebeccamycin
- rhodoquinone-10 biosynthesis:
H2O + ammonium + ubiquinone-10 ⟶ CO2 + rhodoquinone-10
- colupulone and cohumulone biosynthesis:
DMAPP + phlorisobutanophenone ⟶ 4-prenylphlorisobutyrophenone + H+ + diphosphate
- leucine degradation I:
4-methyl-2-oxopentanoate + NAD+ + coenzyme A ⟶ CO2 + NADH + isovaleryl-CoA
- leucine degradation I:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glt
- mandelate degradation I:
H+ + phenylglyoxylate ⟶ CO2 + benzaldehyde
- mandelate degradation I:
H2O + NADP+ + benzaldehyde ⟶ H+ + NADPH + benzoate
- pyruvate oxidation pathway:
ATP + acetate + coenzyme A ⟶ AMP + acetyl-CoA + diphosphate
- phthiocerol biosynthesis:
(behenoyl)adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a behenoyl-[(phenol)carboxyphthiodiolenone synthase]
- phthiocerol biosynthesis:
(behenoyl)adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a behenoyl-[(phenol)carboxyphthiodiolenone synthase]
- purine nucleobases degradation I (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- purine nucleobases degradation II (anaerobic):
3,5-dihydro-4H-imidazol-4-one + H2O ⟶ N-formimino-glycine
- aurachin RE biosynthesis:
H+ + NADPH + O2 + aurachin D ⟶ 9'-hydroxy-aurachin D + H2O + NADP+
- aurachin A, B, C and D biosynthesis:
aurachin B epoxide ⟶ aurachin A
- L-homomethionine biosynthesis:
4-(methylsulfanyl)-2-oxobutanoate + H2O + acetyl-CoA ⟶ 2-[(2'-methylsulfanyl)ethyl]malate + H+ + coenzyme A
- luteolinidin 5-O-glucoside biosynthesis:
UDP-α-D-glucose + luteolinidin ⟶ H+ + UDP + luteolinidin 5-O-glucoside
- p-cymene degradation:
p-cymene + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 4-isopropylbenzyl alcohol + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- p-cumate degradation:
NAD+ + acetaldehyde + coenzyme A ⟶ H+ + NADH + acetyl-CoA
- p-cumate degradation to 2-hydroxypentadienoate:
2-hydroxy-3-carboxy-6-oxo-7-methylocta-2,4-dienoate + H+ ⟶ 2-hydroxy-7-methyl-6-oxo-2,4-octadienoate + CO2
- tyrosine degradation I:
4-hydroxyphenylpyruvate + O2 ⟶ CO2 + homogentisate
- tyrosine biosynthesis I:
4-hydroxyphenylpyruvate + L-glutamate ⟶ 2-oxoglutarate + L-tyrosine
- tyrosol biosynthesis:
L-alanine + p-hydroxyphenylpyruvate ⟶ L-tyrosine + pyruvate
- salicylate degradation III:
H+ + salicylate ⟶ CO2 + phenol
- dhurrin biosynthesis:
(Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
- taxiphyllin biosynthesis:
(Z)-[(4-hydroxyphenyl)acetaldehyde oxime] ⟶ (4-hydroxyphenyl)acetonitrile + H2O
- glucosinolate biosynthesis from tyrosine:
PAPS + desulfosinalbin ⟶ 3',5'-ADP + H+ + sinalbin
- dhurrin biosynthesis:
(E)-4-hydroxyphenylacetaldehyde oxime ⟶ (Z)-[(4-hydroxyphenyl)acetaldehyde oxime]
- isoleucine biosynthesis I (from threonine):
2-oxoglutarate + L-isoleucine ⟶ 2-keto-3-methyl-valerate + L-glutamate
- isoleucine biosynthesis I:
2-oxoglutarate + L-isoleucine ⟶ 2-keto-3-methyl-valerate + L-glutamate
- superpathway of leucine, valine, and isoleucine biosynthesis:
2-oxoglutarate + L-isoleucine ⟶ 2-keto-3-methyl-valerate + L-glutamate
- purine nucleobases degradation I (anaerobic):
ATP + acetate ⟶ ADP + acetyl phosphate
- purine nucleotides degradation III (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- purine nucleotides degradation IV (anaerobic):
4-aminoimidazole + H2O ⟶ 4-imidazolone + H+ + ammonia
- purine nucleotides degradation IV (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine nucleotides degradation IV (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine nucleotides degradation III (anaerobic):
acetylphosphate + ammonia + an oxidized thioredoxin ⟶ a reduced thioredoxin + gly + phosphate
- purine nucleobases degradation II (anaerobic):
ser ⟶ H+ + ammonia + pyruvate
- purine nucleobases degradation I (anaerobic):
4-ureido-5-imidazole carboxylate + H2O + H+ ⟶ 4-amino-5-imidazole carboxylate + CO2 + ammonia
- purine nucleobases degradation I (anaerobic):
ATP + acetate ⟶ ADP + acetyl phosphate
- indole-3-acetate biosynthesis II:
(indole-3-yl)acetonitrile + H2O ⟶ (indol-3-yl)acetate + ammonium
- glucosinolate biosynthesis from tryptophan:
1-hydroxyglucobrassicin + SAM ⟶ H+ + SAH + neoglucobrassicin
- glucosinolate biosynthesis from tryptophan:
(E)-indol-3-ylacetaldoxime + O2 + a reduced [NADPH-hemoprotein reductase] ⟶ 1-aci-nitro-2-(1H-indol-3-yl)ethane + H2O + an oxidized [NADPH-hemoprotein reductase]
- indole-3-acetate biosynthesis II:
(E)-indol-3-ylacetaldoxime ⟶ H2O + indole-3-acetonitrile
- protocatechuate degradation II (ortho-cleavage pathway):
O2 + protocatechuate ⟶ 3-carboxy-cis,cis-muconate + H+
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8-en-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14-dien-3-β-ol + H2O + NADP+ + formate
- superpathway of cholesterol biosynthesis:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8-en-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14-dien-3-β-ol + H2O + NADP+ + formate
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
4,4-dimethyl-14α-formyl-5α-cholesta-8-en-3β-ol + NADPH + O2 ⟶ 4,4-dimethyl-5-α-cholesta-8,14-dien-3-β-ol + H2O + NADP+ + formate
- superpathway of cholesterol biosynthesis:
H+ + NADPH + desmosterol ⟶ NADP+ + cholesterol
- cholesterol biosynthesis II (via 24,25-dihydrolanosterol):
NADP+ + cholesterol ⟶ 7-dehydro-cholesterol + H+ + NADPH
- TCA cycle IV (2-oxoglutarate decarboxylase):
2-oxoglutarate + H+ ⟶ CO2 + succinate semialdehyde
- vitamin B6 degradation:
pyridoxamine + pyruvate ⟶ ala + pyridoxal
- TCA cycle variation I:
2-oxoglutarate + H+ ⟶ CO2 + succinate semialdehyde
- TCA cycle IV (2-oxoglutarate decarboxylase):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle IV (2-oxoglutarate decarboxylase):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glycolysis and TCA variant VIII:
2-oxoglutarate + H+ ⟶ CO2 + succinate semialdehyde
- TCA cycle IV (2-oxoglutarate decarboxylase):
2-oxoglutarate + H+ ⟶ CO2 + succinate semialdehyde
- TCA cycle IV (2-oxoglutarate decarboxylase):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle variation I:
2-oxoglutarate + H+ ⟶ CO2 + succinate semialdehyde
- vitamin B6 degradation:
2-(acetamidomethylene)succinate + H2O ⟶ CO2 + acetate + ammonia + succinate semialdehyde
- vitamin B6 degradation:
2-(acetamidomethylene)succinate + H2O ⟶ CO2 + acetate + ammonia + succinate semialdehyde
- branched-chain α-keto acid dehydrogenase complexes:
2-keto-isovalerate + enzyme N6-(lipoyl)lysine ⟶ CO2 + enzyme N6-(S-[2-methylpropanoyl]dihydrolipoyl)lysine
- valine degradation:
α-ketoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- xanthohumol biosynthesis:
DMAPP + naringenin chalcone ⟶ H+ + desmethylxanthohumol + diphosphate
- aromatic polyketides biosynthesis:
(E)-4-coumaroyl-CoA + H+ + malonyl-CoA ⟶ CO2 + coenzyme A + naringenin chalcone
- naringenin biosynthesis (engineered):
naringenin chalcone ⟶ (2S)-naringenin
- D-erythronate degradation I:
4-phospho-D-erythronate + NAD+ ⟶ 3-dehydro-4-phospho-D-erythronate + H+ + NADH
- D-erythronate degradation II:
3-dehydro-D-erythronate + ATP ⟶ 3-dehydro-4-phospho-D-erythronate + ADP + H+
- 4-chloronitrobenzene degradation:
2-amino-5-chlorophenol + O2 ⟶ (2Z,4Z)-2-amino-5-chloro-6-oxohexa-2,4-dienoate + H+
- TCA cycle:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- superpathway of glyoxylate bypass and TCA:
2-oxoglutarate + NAD+ + coenzyme A ⟶ CO2 + NADH + succinyl-CoA
- lysine biosynthesis:
α-aminoadipate + α-ketoglutarate ⟶ α-ketoadipate + L-glutamate
- lysine degradation:
α-aminoadipate + α-ketoglutarate ⟶ α-ketoadipate + L-glutamate
- folate transformations II:
L-serine + a tetrahydrofolate ⟶ H2O + a 5,10-methylenetetrahydrofolate + glycine
- leucine biosynthesis:
2-isopropylmalate + coenzyme A ⟶ 2-keto-isovalerate + H2O + acetyl-CoA
- indole-3-acetate biosynthesis III (bacteria):
O2 + trp ⟶ (indol-3-yl)acetamide + CO2 + H2O
- indole-3-acetate biosynthesis III (bacteria):
(indol-3-yl)acetamide + H2O ⟶ (indol-3-yl)acetate + ammonium
- TCA cycle:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- superpathway of glycolysis, pyruvate dehydrogenase and TCA cycle:
ATP + H2O + pyruvate ⟶ AMP + H+ + phosphate + phosphoenolpyruvate
- roseoflavin biosynthesis:
8-amino-8-demethylriboflavin + SAM ⟶ 8-demethyl-8-(methylamino)riboflavin + H+ + SAH
- terminal olefins biosynthesis I:
H+ + a long-chain fatty acid + hydrogen peroxide ⟶ CO2 + H2O + a terminal olefin
- heme b biosynthesis IV (Gram-positive bacteria):
H+ + harderoheme III + hydrogen peroxide ⟶ CO2 + H2O + ferroheme b
- superpathway of L-lysine degradation:
acetoacetate + butanoyl-CoA ⟶ acetoacetyl-CoA + butanoate
- L-lysine degradation VII:
H2O + O2 + lys ⟶ 6-amino-2-oxohexanoate + ammonium + hydrogen peroxide
- heme b biosynthesis IV (Gram-positive bacteria):
H+ + coproheme III + hydrogen peroxide ⟶ CO2 + H2O + harderoheme III
- vindoline and vinblastine biosynthesis:
O2 + vinblastine ⟶ H+ + H2O + vincristine
- tetrahydroxyxanthone biosynthesis (from benzoate):
2,3',4,6-tetrahydroxybenzophenone + NADPH + O2 ⟶ 1,3,7-trihydroxyxanthone + H2O + NADP+
- hyperxanthone E biosynthesis:
2,4,6-trihydroxybenzophenone + DMAPP ⟶ diphosphate + hyperxanthone E
- firefly bioluminescence:
O2 + hydroquinone ⟶ 1,4-benzoquinone + H2O
- pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- thymine degradation:
3-(carbamoylamino)-2-methylpropanoate + H+ + H2O ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonium
- uracil degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- folate transformations I:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- putrescine biosynthesis II:
H2O + agmatine ⟶ N-carbamoylputrescine + ammonium
- D-cycloserine biosynthesis:
O-acetyl-L-serine + hydroxyurea ⟶ O-ureido-L-serine + H+ + acetate
- N10-formyl-tetrahydrofolate biosynthesis:
L-homocysteine + a 5-methyltetrahydrofolate ⟶ a tetrahydrofolate + met
- superpathway of polyamine biosynthesis II:
dAdoMet + spermidine ⟶ S-methyl-5'-thioadenosine + H+ + spermine
- folate transformations II:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- folate transformations I:
a tetrahydrofolate + trimethyl sulfonium ⟶ H+ + a 5-methyltetrahydrofolate + dimethyl sulfide
- kanamycin biosynthesis:
2-deoxy-L-scyllo-inosose + gln ⟶ 2-deoxy-scyllo-inosamine + 2-oxoglutaramate
- uracil degradation III:
FMNH2 + O2 + uracil ⟶ (Z)-3-ureidoacrylate peracid + FMN + H+
- tetramethylpyrazine degradation:
2,3,5,6-tetramethylpyrazine + H+ + NAD(P)H + O2 ⟶ (Z)-N,N'-(but-2-ene-2,3-diyl)diacetamide + NAD(P)+
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- L-arginine degradation (Stickland reaction):
NAD(P)+ + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + NAD(P)H
- L-arginine degradation II (AST pathway):
H+ + H2O + N2-succinyl-L-arginine ⟶ CO2 + N2-succinyl-L-ornithine + ammonium
- L-arginine degradation IV (arginine decarboxylase/agmatine deiminase pathway):
H2O + agmatine ⟶ N-carbamoylputrescine + ammonium
- thymine degradation:
5,6-dihydrothymine + H2O ⟶ 3-(carbamoylamino)-2-methylpropanoate + H+
- L-proline biosynthesis II (from arginine):
NAD(P)+ + pro ⟶ (S)-1-pyrroline-5-carboxylate + H+ + NAD(P)H
- creatinine degradation II:
H+ + H2O + creatinine ⟶ N-methylhydantoin + ammonium
- photorespiration:
O2 + glycolate ⟶ glyoxylate + hydrogen peroxide
- L-arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ N2-succinyl-L-glutamate 5-semialdehyde + glu
- N10-formyl-tetrahydrofolate biosynthesis:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- uracil degradation III:
H+ + carbamate ⟶ CO2 + ammonium
- folate transformations:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- folate interconversions:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- thymine degradation:
(R)-3-ureido-isobutanoate + H+ + H2O ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonium
- photorespiration:
O2 + glycolate ⟶ glyoxylate + hydrogen peroxide
- superpathway of polyamine biosynthesis:
dAdoMet + putrescine ⟶ S-methyl-5'-thioadenosine + H+ + spermidine
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- allantoin degradation to glyoxylate II:
S-ureidoglycine + H2O ⟶ S-ureidoglycolate + ammonium
- folate transformations II:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- ornithine-citrulline shuttle:
ATP + H2O + gln + hydrogencarbonate ⟶ ADP + Glu + H+ + carbamoyl phosphate + phosphate
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- putrescine biosynthesis II:
H2O + agmatine ⟶ N-carbamoylputrescine + ammonium
- folate transformations I:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- folate transformations II:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- N10-formyl-tetrahydrofolate biosynthesis:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- L-arginine degradation V (arginine deiminase pathway):
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- L-arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ Glu + N2-succinyl-L-glutamate 5-semialdehyde
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- folate transformations I:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- L-arginine degradation V (arginine deiminase pathway):
H+ + carbamate ⟶ CO2 + ammonium
- N10-formyl-tetrahydrofolate biosynthesis:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- N10-formyl-tetrahydrofolate biosynthesis:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- folate transformations I:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- L-arginine degradation V (arginine deiminase pathway):
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- formylTHF biosynthesis I:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- folate transformations I:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- formylTHF biosynthesis:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- allantoin degradation to glyoxylate II:
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- allantoin degradation IV (anaerobic):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- allantoin degradation to glyoxylate III:
S-ureidoglycolate ⟶ glyoxylate + urea
- formylTHF biosynthesis:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- arginine degradation V (arginine deiminase pathway):
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ N2-succinyl-L-glutamate 5-semialdehyde + glt
- folate transformations I:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- allantoin degradation to ureidoglycolate II (ammonia producing):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- formylTHF biosynthesis I:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropionate + H+
- arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ N2-succinyl-L-glutamate 5-semialdehyde + glt
- folate transformations II:
ATP + formate + tetrahydrofolate ⟶ 10-formyl-tetrahydrofolate + ADP + phosphate
- folate transformations I:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- arginine, ornithine and proline interconversion:
D-proline + H+ + NADH ⟶ 5-aminopentanoate + NAD+
- folate transformations I:
H2O + a 10-formyltetrahydrofolate ⟶ H+ + a tetrahydrofolate + formate
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- thymine degradation:
3-(carbamoylamino)-2-methylpropanoate + H+ + H2O ⟶ (R)-3-amino-2-methylpropanoate + CO2 + ammonium
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- folate transformations I:
a tetrahydrofolate + trimethyl sulfonium ⟶ H+ + a 5-methyltetrahydrofolate + dimethyl sulfide
- N10-formyl-tetrahydrofolate biosynthesis:
NAD+ + a tetrahydrofolate + gly ⟶ CO2 + NADH + a 5,10-methylenetetrahydrofolate + ammonium
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- folate transformations II:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- folate transformations I:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- putrescine biosynthesis II:
H+ + arg ⟶ CO2 + agmatine
- folate transformations II:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- allantoin degradation to ureidoglycolate II (ammonia producing):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- superpathway of polyamine biosynthesis II:
H+ + arg ⟶ CO2 + agmatine
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- folate transformations I:
H2O + a 10-formyltetrahydrofolate ⟶ H+ + a tetrahydrofolate + formate
- folate transformations I:
H2O + a 10-formyltetrahydrofolate ⟶ H+ + a tetrahydrofolate + formate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- allantoin degradation to ureidoglycolate II (ammonia producing):
H+ + H2O + allantoate ⟶ (S)-ureidoglycine + CO2 + ammonium
- allantoin degradation to glyoxylate III:
(S)-ureidoglycolate ⟶ glyoxylate + urea
- L-citrulline degradation:
H+ + carbamate ⟶ CO2 + ammonium
- allantoin degradation to ureidoglycolate II (ammonia producing):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- folate transformations I:
H2O + a 10-formyltetrahydrofolate ⟶ H+ + a tetrahydrofolate + formate
- superpathway of polyamine biosynthesis II:
H+ + L-ornithine ⟶ CO2 + putrescine
- putrescine biosynthesis II:
N-carbamoylputrescine + H+ + H2O ⟶ CO2 + ammonium + putrescine
- photorespiration:
O2 + glycolate ⟶ glyoxylate + hydrogen peroxide
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- folate transformations I:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ N2-succinyl-L-glutamate 5-semialdehyde + glt
- formylTHF biosynthesis:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- allantoin degradation to glyoxylate III:
S-ureidoglycolate ⟶ glyoxylate + urea
- allantoin degradation IV (anaerobic):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- allantoin degradation to ureidoglycolate II (ammonia producing):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- uracil degradation III:
3-hydroxypropanoate + NADP+ ⟶ H+ + NADPH + malonate semialdehyde
- formylTHF biosynthesis:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- allantoin degradation IV (anaerobic):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- allantoin degradation to ureidoglycolate II (ammonia producing):
H+ + H2O + allantoate ⟶ S-ureidoglycine + CO2 + ammonium
- allantoin degradation to glyoxylate III:
S-ureidoglycolate ⟶ glyoxylate + urea
- arginine degradation II (AST pathway):
2-oxoglutarate + N2-succinyl-L-ornithine ⟶ N2-succinyl-L-glutamate 5-semialdehyde + glt
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- uracil degradation III:
3-hydroxypropanoate + NADP+ ⟶ H+ + NADPH + malonate semialdehyde
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- formylTHF biosynthesis:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- folate transformations I:
ATP + formate + tetrahydrofolate ⟶ 10-formyl-tetrahydrofolate + ADP + phosphate
- citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- formylTHF biosynthesis:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- folate transformations I:
ATP + formate + tetrahydrofolate ⟶ 10-formyl-tetrahydrofolate + ADP + phosphate
- citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- formylTHF biosynthesis:
10-formyl-tetrahydrofolate + H2O ⟶ H+ + formate + tetrahydrofolate
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- superpathway of pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- folate transformations I:
H2O + a 10-formyltetrahydrofolate ⟶ H+ + a tetrahydrofolate + formate
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- arginine, ornithine and proline interconversion:
D-proline + H+ + NADH ⟶ 5-aminopentanoate + NAD+
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- urea cycle:
H2O + arg ⟶ L-ornithine + urea
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl-phosphate
- folate transformations I:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- putrescine biosynthesis II:
H+ + arg ⟶ CO2 + agmatine
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- creatinine degradation II:
H2O + O2 + sarcosine ⟶ formaldehyde + gly + hydrogen peroxide
- superpathway of pyrimidine ribonucleosides degradation:
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- folate transformations I:
H2O + a 10-formyltetrahydrofolate ⟶ H+ + a tetrahydrofolate + formate
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a 5,10-methylenetetrahydrofolate ⟶ NADPH + a 5,10-methenyltetrahydrofolate
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- uracil degradation I (reductive):
5,6-dihydrouracil + NADP+ ⟶ H+ + NADPH + uracil
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- folate transformations I:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- folate transformations I:
ATP + a tetrahydrofolate + formate ⟶ ADP + a 10-formyltetrahydrofolate + phosphate
- L-arginine degradation V (arginine deiminase pathway):
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- L-citrulline degradation:
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- thymine degradation:
5,6-dihydrothymine + NADP+ ⟶ H+ + NADPH + thymine
- L-arginine degradation V (arginine deiminase pathway):
ATP + CO2 + ammonium ⟶ ADP + H+ + carbamoyl phosphate
- uracil degradation I (reductive):
5,6-dihydrouracil + H2O ⟶ 3-ureidopropanoate + H+
- N10-formyl-tetrahydrofolate biosynthesis:
NADP+ + a tetrahydrofolate ⟶ H+ + NADPH + a 7,8-dihydrofolate
- oxaloacetate degradation to pyruvate:
(S)-malate + NADP+ ⟶ CO2 + NADPH + pyruvate
- tyrosine biosynthesis II:
L-glutamate + prephenate ⟶ 2-oxoglutarate + L-arogenate
- respiration (anaerobic):
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- TCA cycle variation II:
2-oxoglutarate + an oxidized ferredoxin [iron-sulfur] cluster + coenzyme A ⟶ CO2 + a reduced ferredoxin [iron-sulfur] cluster + succinyl-CoA
- C4 photosynthetic carbon assimilation cycle:
NADP+ + malate ⟶ CO2 + NADPH + pyruvate
- TCA cycle variation IV:
D-threo-isocitrate + NADP+ ⟶ 2-oxoglutarate + CO2 + NADPH
- gluconeogenesis I:
NADP+ + malate ⟶ CO2 + NADPH + pyruvate
- L-threonate degradation:
3-dehydro-L-erythronate + ATP ⟶ 3-dehydro-4-phospho-L-erythronate + ADP + H+
- D-threonate degradation:
4-phospho-D-threonate + NAD+ ⟶ 3-dehydro-4-phospho-L-erythronate + H+ + NADH
- naphthalene degradation:
H+ + NADH + O2 + salicylate ⟶ CO2 + H2O + NAD+ + catechol
- folate transformations:
5,10-methylene-THF + NADP+ ⟶ 5,10-methenyltetrahydrofolate + NADPH
- isoleucine degradation I:
2-oxoglutarate + L-isoleucine ⟶ 2-keto-3-methyl-valerate + L-glutamate
- valine degradation I:
2-oxoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- photorespiration:
2-oxoglutarate + glycine ⟶ L-glutamate + glyoxylate
- purine degradation II (anaerobic):
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- pyruvate fermentation to acetate V:
acetyl-CoA + succinate ⟶ acetate + succinyl-CoA
- myo-inositol degradation:
NAD+ + coenzyme A + malonate semialdehyde ⟶ CO2 + H+ + NADH + acetyl-CoA
- formate oxidation to CO2:
NAD+ + formate ⟶ CO2 + NADH
- β-alanine degradation II:
NAD+ + coenzyme A + malonate semialdehyde ⟶ CO2 + H+ + NADH + acetyl-CoA
- formylTHF biosynthesis II:
NADP+ + tetrahydrofolate ⟶ 7,8-dihydrofolate + H+ + NADPH
- formylTHF biosynthesis I:
NADP+ + tetrahydrofolate ⟶ 7,8-dihydrofolate + H+ + NADPH
- purine degradation III (anaerobic):
ATP + acetate ⟶ ADP + H+ + acetylphosphate
- tyrosine biosynthesis III:
L-glutamate + prephenate ⟶ 2-oxoglutarate + L-arogenate
- leucine degradation I:
2-oxoglutarate + L-leucine ⟶ 4-methyl-2-oxopentanoate + L-glutamate
- succinic fermentation pathway:
(S)-malate ⟶ H2O + fumarate
- superpathway of glyoxylate cycle:
ATP + a fatty acid + coenzyme A ⟶ AMP + H+ + a 2,3,4-saturated fatty acyl CoA + diphosphate
- superpathway of citrulline metabolism:
ATP + CO2 + H2O + ammonia ⟶ ADP + H+ + carbamoyl-phosphate + phosphate
- gluconeogenesis I:
(S)-malate + NAD+ ⟶ CO2 + NADH + pyruvate
- urea cycle:
ATP + CO2 + H2O + ammonia ⟶ ADP + H+ + carbamoyl-phosphate + phosphate
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + isopentenyl diphosphate + phosphate
- superpathway of glyoxylate cycle:
O2 + a 2,3,4-saturated fatty acyl CoA ⟶ a trans-2-enoyl-CoA + hydrogen peroxide
- superpathway of citrulline metabolism:
H2O + gln ⟶ H+ + ammonia + glt
- urea cycle:
ATP + CO2 + H2O + ammonia ⟶ ADP + H+ + carbamoyl-phosphate + phosphate
- citrulline degradation:
ATP + CO2 + ammonia ⟶ ADP + H+ + carbamoyl-phosphate
- superpathway of cholesterol biosynthesis:
ATP + mevalonate-5-phosphate ⟶ ADP + mevalonate-diphosphate
- mevalonate pathway I:
ATP + mevalonate-5-phosphate ⟶ ADP + mevalonate-diphosphate
- gluconeogenesis I:
ATP + oxaloacetate ⟶ ADP + CO2 + phosphoenolpyruvate
- mevalonate pathway I:
ATP + mevalonate-diphosphate ⟶ ADP + CO2 + H+ + isopentenyl diphosphate + phosphate
- mevalonate pathway I:
ATP + mevalonate-5-phosphate ⟶ ADP + H+ + mevalonate-diphosphate
- biotin biosynthesis II:
H+ + ala + pimeloyl-CoA ⟶ 7-keto-8-aminopelargonate + CO2 + coenzyme A
- biotin biosynthesis I:
H+ + ala + pimeloyl-CoA ⟶ 7-keto-8-aminopelargonate + CO2 + coenzyme A
- superpathway of geranylgeranyldiphosphate biosynthesis I (via mevalonate):
ATP + mevalonate-5-phosphate ⟶ ADP + H+ + mevalonate-diphosphate
- urea cycle:
ATP + CO2 + H2O + ammonia ⟶ ADP + H+ + carbamoyl-phosphate + phosphate
- superpathway of ergosterol biosynthesis:
ATP + mevalonate-5-phosphate ⟶ ADP + H+ + mevalonate-diphosphate
- citrulline degradation:
ATP + CO2 + ammonia ⟶ ADP + H+ + carbamoyl-phosphate
- gluconeogenesis I:
3-phospho-D-glycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP + H+
- gluconeogenesis:
3-phospho-D-glycerate + ATP ⟶ 1,3-diphosphateglycerate + ADP + H+
- 12-epi-fischerindole biosynthesis:
D-ribulose 5-phosphate + trp ⟶ (2S)-3-(1H-indol-3-yl)-2-isocyanopropanoate + H+ + H2O + acetol + formaldehyde + phosphate
- acridone alkaloid biosynthesis:
N-methylanthraniloyl-CoA + malonyl-CoA ⟶ 1,3-dihydroxy-N-methylacridone + CO2 + coenzyme A
- lotaustralin biosynthesis:
2-hydroxy-2-methylbutanenitrile + UDP-α-D-glucose ⟶ H+ + UDP + lotaustralin
- linuron degradation:
3,4-dichloroaniline + H+ + NADPH + O2 ⟶ 4,5-dichlorobenzene-1,2-diol + NADP+ + ammonium
- 4-chloro-2-methylphenoxyacetate degradation:
2-methyl-4-chlorophenol + H+ + NADPH + O2 ⟶ 5-chloro-3-methylcatechol + H2O + NADP+
- acetoin biosynthesis I:
H+ + pyruvate ⟶ 2-acetolactate + CO2
- acetoin biosynthesis II:
H+ + pyruvate ⟶ 2-acetolactate + CO2
- valine biosynthesis:
2-oxoglutarate + L-valine ⟶ 2-keto-isovalerate + L-glutamate
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- eumelanin biosynthesis:
5,6-dihydroxyindole + 5,6-dihydroxyindole-2-carboxylate + indole-5,6-quinone + indole-5,6-quinone-2-carboxylate ⟶ melanochrome
- eumelanin biosynthesis:
5,6-dihydroxyindole + A(H2) + O2 ⟶ A + H2O + indole-5,6-quinone
- eumelanin biosynthesis:
H+ + L-dopachrome ⟶ 5,6-dihydroxyindole + CO2
- tryptophan biosynthesis:
L-serine + indole ⟶ H2O + L-tryptophan
- mycinamicin biosynthesis:
(S)-methylmalonyl-CoA + H+ + NADPH + malonyl-CoA ⟶ CO2 + H2O + NADP+ + coenzyme A + protomycinolide IV
- wybutosine biosynthesis:
7-[(3S)-4-methoxy-(3-amino-3-carboxypropyl)]-wyosine37 in tRNAPhe + CO2 + SAM ⟶ H+ + SAH + wybutosine37 in tRNAPhe
- 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis:
SAM + an N1-methylguanine37 in tRNAPhe + pyruvate ⟶ 4-demethylwyosine37 in tRNAPhe + 5'-deoxyadenosine + CO2 + H2O + met
- heme b biosynthesis III (from siroheme):
12,18-didecarboxysiroheme + A(H2) + SAM ⟶ 5'-deoxyadenosine + A + H+ + acetate + coproheme III + met
- heme b biosynthesis II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- 3,8-divinyl-chlorophyllide a biosynthesis II (anaerobic):
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + SAM ⟶ 3,8-divinyl protochlorophyllide a + 5'-deoxyadenosine + H+ + met
- wybutosine biosynthesis:
4-demethylwyosine37 in tRNAPhe + SAM ⟶ 7-[(3S)-3-amino-3-carboxypropyl]-4-demethylwyosine37 in tRNAPhe + S-methyl-5'-thioadenosine + H+
- methylwyosine biosynthesis:
SAM + an N1-methylguanine37 in tRNAPhe + pyruvate ⟶ 4-demethylwyosine37 in tRNAPhe + 5'-deoxyadenosine + CO2 + H2O + met
- 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis:
4-demethylwyosine37 in tRNAPhe + SAM ⟶ 7-[(3S)-3-amino-3-carboxypropyl]-4-demethylwyosine37 in tRNAPhe + S-methyl-5'-thioadenosine + H+
- superpathway of bacteriochlorophyll a biosynthesis:
131-oxo-magnesium-protoporphyrin IX 13-monomethyl ester + SAM ⟶ 3,8-divinyl protochlorophyllide a + 5'-deoxyadenosine + H+ + met
- heme b biosynthesis II (anaerobic):
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- wybutosine biosynthesis:
7-[(3S)-4-methoxy-(3-amino-3-carboxypropyl)]-wyosine37 in tRNAPhe + CO2 + SAM ⟶ H+ + SAH + wybutosine37 in tRNAPhe
- 7-(3-amino-3-carboxypropyl)-wyosine biosynthesis:
SAM + an N1-methylguanine37 in tRNAPhe + pyruvate ⟶ 4-demethylwyosine37 in tRNAPhe + 5'-deoxyadenosine + CO2 + H2O + met
- superpathway of heme b biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme b biosynthesis II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- heme biosynthesis II (anaerobic):
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme b biosynthesis II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- superpathway of heme b biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis II (anaerobic):
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
H+ + ferroheme b ⟶ Fe2+ + protoporphyrin IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II (anaerobic):
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of heme b biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme b biosynthesis II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- heme b biosynthesis II (anaerobic):
H+ + ferroheme b ⟶ Fe2+ + protoporphyrin IX
- superpathway of heme b biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- heme b biosynthesis II (anaerobic):
H+ + ferroheme b ⟶ Fe2+ + protoporphyrin IX
- superpathway of heme b biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis II (anaerobic):
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II (anaerobic):
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- heme biosynthesis from uroporphyrinogen-III II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II (anaerobic):
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- heme b biosynthesis II (anaerobic):
H+ + ferroheme b ⟶ Fe2+ + protoporphyrin IX
- superpathway of heme biosynthesis from uroporphyrinogen-III:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis II (anaerobic):
SAM + coproporphyrinogen III ⟶ 5'-deoxyadenosine + CO2 + met + protoporphyrinogen IX
- heme biosynthesis II (anaerobic):
H+ + ferroheme b ⟶ Fe2+ + protoporphyrin IX
- heme biosynthesis III (from siroheme):
12,18-didecarboxysiroheme + A(H2) + SAM ⟶ 5'-deoxyadenosine + A + Fe-coproporphyrin III + H+ + acetate + met
- 3-methylbutanol biosynthesis (engineered):
3-methylbutanol + NAD+ ⟶ 3-methylbutanal + H+ + NADH
- L-leucine degradation III:
3-methylbutanol + NAD+ ⟶ 3-methylbutanal + H+ + NADH
- leucine degradation III:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glu
- leucine degradation:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glu
- leucine degradation III:
2-oxoglutarate + leu ⟶ 4-methyl-2-oxopentanoate + glt
- leucine degradation III:
2-oxoglutarate + L-leucine ⟶ 4-methyl-2-oxopentanoate + L-glutamate
- leucine degradation III:
4-methyl-2-oxopentanoate + H+ ⟶ 3-methylbutanal + CO2
- leucine degradation:
α-ketoglutarate + L-leucine ⟶ 2-keto-4-methyl-pentanoate + L-glutamate
- phylloquinol biosynthesis:
SAM + demethylphylloquinol ⟶ H+ + SAH + phylloquinol
- phylloquinol biosynthesis:
H+ + NADPH + demethylphylloquinone ⟶ NADP+ + demethylphylloquinol
- hentriaconta-3,6,9,12,15,19,22,25,28-nonaene biosynthesis:
(6Z,9Z,12Z,15Z)-3-hydroxy-2-[(2Z,5Z,8Z,11Z)-tetradeca-2,5,8,11-tetraen-1-yl]octadeca-6,9,12,15-tetraenoate + ATP ⟶ 3-[(3Z,6Z,9Z,12Z)-pentadeca-3,6,9,12-tetraen-1-yl]-4-[(2Z,5Z,8Z,11Z)-tetradeca-2,5,8,11-tetraen-1-yl]oxetan-2-one + AMP + diphosphate
- sphingolipid metabolism:
L-serine + palmitoyl CoA ⟶ 3-dehydrosphinganine + CO2 + coenzyme A
- tetrahydromethanopterin biosynthesis:
7,8-dihydroneopterin ⟶ 6-(hydroxymethyl)-7,8-dihydropterin + glycolaldehyde
- tetrahydromethanopterin biosynthesis:
4-(β-D-ribofuranosyl)-N-succinylaminobenzene 5'-phosphate ⟶ 4-(β-D-ribofuranosyl)aminobenzene-5'-phosphate + fumarate
- patulin biosynthesis:
NADP+ + ascladiol ⟶ H+ + NADPH + patulin
WikiPathways(0)
Plant Reactome(4334)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
PYR + glyceraldehyde 3-phosphate ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
ISCIT + NAD ⟶ 2OG + H+ + NADH + carbon dioxide
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
GA3P + PYR ⟶ 1-deoxy-D-xylulose 5-phosphate + carbon dioxide
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- DXP pathway:
1-deoxy-D-xylulose 5-phosphate + TPNH ⟶ 2-C-methyl-D-erythritol-4-phosphate + TPN
- Pyridoxal 5'-phosphate biosynthesis:
Oxygen + PDXP ⟶ H2O2 + PXLP
- Thiamin biosynthesis:
ATP + hydroxymethylpyrimidine phosphate ⟶ 4-amino-2-methyl-5-diphosphomethylpyrimidine + ADP
- Inorganic nutrients metabolism:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Glutamate synthase cycle:
ATP + L-Glu + ammonia ⟶ ADP + L-Gln + Pi
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Generation of precursor metabolites and energy:
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- pyruvate dehydrogenase complex:
CoA + NAD + PYR ⟶ Ac-CoA + H+ + NADH + carbon dioxide
- TCA cycle (plant):
Ac-CoA + H2O + OAA ⟶ CIT + CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid biosynthesis:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Isoleucine biosynthesis from threonine:
L-Thr ⟶ 2OBUTA + ammonia
- Valine biosynthesis:
2,3-dihydroxy-isovalerate ⟶ H2O + KIV
- Cofactor biosyntheses: <