(2S)-2-azaniumylpropanoate (BioDeep_00000896595)
代谢物信息卡片
化学式: C3H7NO2 (89.0477)
中文名称:
谱图信息:
最多检出来源 Viridiplantae(plant) 58.82%
分子结构信息
SMILES: CC(C(=O)[O-])[NH3+]
InChI: InChI=1S/C3H7NO2/c1-2(4)3(5)6/h2H,4H2,1H3,(H,5,6)/t2-/m0/s1
相关代谢途径
Reactome(23)
- Metabolism
- Metabolism of vitamins and cofactors
- Metabolism of proteins
- Amino acid and derivative metabolism
- Glyoxylate metabolism and glycine degradation
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Transport of small molecules
- SLC-mediated transmembrane transport
- Nucleotide metabolism
- Nucleotide catabolism
- Transport of inorganic cations/anions and amino acids/oligopeptides
- Amino acid synthesis and interconversion (transamination)
- Metabolism of water-soluble vitamins and cofactors
- Tryptophan catabolism
- Selenoamino acid metabolism
- Metabolism of ingested SeMet, Sec, MeSec into H2Se
- Phenylalanine and tyrosine catabolism
- Phenylalanine and tyrosine metabolism
- Phenylalanine metabolism
- Metabolism of amine-derived hormones
- Thyroxine biosynthesis
- Mitochondrial iron-sulfur cluster biogenesis
- Glutamate and glutamine metabolism
BioCyc(40)
- superpathway of L-phenylalanine biosynthesis
- superpathway of anaerobic energy metabolism (invertebrates)
- lupanine biosynthesis
- superpathway of aromatic amino acid biosynthesis
- chorismate biosynthesis I
- superpathway of L-tyrosine biosynthesis
- superpathway of chorismate metabolism
- superpathway of L-tryptophan biosynthesis
- superpathway of tryptophan utilization
- indolmycin biosynthesis
- superpathway of indole-3-acetate conjugate biosynthesis
- L-arginine degradation IX (arginine:pyruvate transaminase pathway)
- L-tryptophan degradation I (via anthranilate)
- streptomycin biosynthesis
- superpathway of L-lysine degradation
- superpathway of ergotamine biosynthesis
- ergotamine biosynthesis
- tryptophan degradation III (eukaryotic)
- alanine degradation II (to D-lactate)
- Methanobacterium thermoautotrophicum biosynthetic metabolism
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis II (lysine-containing)
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing)
- ammonia assimilation cycle III
- L-glutamine biosynthesis I
- vitamin B6 degradation
- L-lysine degradation IX
- L-glutamate and L-glutamine biosynthesis
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- indole-3-acetate activation I
- superpathway of aromatic compound degradation via 3-oxoadipate
- anaerobic energy metabolism (invertebrates, cytosol)
- peptidoglycan biosynthesis I (meso-diaminopimelate containing)
- peptidoglycan biosynthesis II (staphylococci)
- phosphinothricin tripeptide biosynthesis
- C4 photosynthetic carbon assimilation cycle, NAD-ME type
- 3-dehydroquinate biosynthesis I
- fumiquinazoline D biosynthesis
- coelimycin P1 biosynthesis
- γ-coniciene and coniine biosynthesis
- tRNA charging
PlantCyc(5)
代谢反应
1420 个相关的代谢反应过程信息。
Reactome(262)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tryptophan catabolism:
L-KYN + PYR ⟶ AP-DOBu + L-Ala
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + L-Asn ⟶ L-Asp + ammonia
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
CARN + SAM ⟶ Anserine + SAH
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tryptophan catabolism:
L-KYN + PYR ⟶ AP-DOBu + L-Ala
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Amino acid synthesis and interconversion (transamination):
ATP + H2O + L-Asp + L-Gln ⟶ AMP + L-Asn + L-Glu + PPi
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
ATP + L-His + b-Ala ⟶ ADP + CARN + Pi
- Phenylalanine and tyrosine catabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Amino acid synthesis and interconversion (transamination):
H2O + NAA ⟶ CH3COO- + L-Asp
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine catabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-KYN + PYR ⟶ AP-DOBu + L-Ala
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Tryptophan catabolism:
L-Trp + Oxygen ⟶ NFK
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
2OG + L-Tyr ⟶ HPPYRA + L-Glu
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine metabolism:
L-Phe + PYR ⟶ 3IN-PYRA + L-Ala
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine and tyrosine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Phenylalanine metabolism:
H2O + L-Phe + Oxygen ⟶ H2O2 + ammonia + kPPV
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
ATP + MOCS2 + MOCS3-S-S(1-):Zn2+ ⟶ AMP + MOCS3:Zn2+ (ox.) + O22827 + PPi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
ATP + MOCS3-S-S(1-):Zn2+ + Q6Z2X3 ⟶ AMP + MOCS3:Zn2+ (ox.) + PPi + Q6Z2X3
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of water-soluble vitamins and cofactors:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Metabolism of amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Amine-derived hormones:
Iodine + L-Tyr ⟶ HI + MIT
- Thyroxine biosynthesis:
Iodine + L-Tyr ⟶ HI + MIT
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX1L (red.) + L-Cys ⟶ FDX1L (ox.) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX1L (red.) + L-Cys ⟶ FDX1L (ox.) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Mitochondrial iron-sulfur cluster biogenesis:
2 Iron:FXN:NFS1:ISD11:ISCU + FDX1 (red.) + L-Cys ⟶ FDX1 (ox.) + FXN:NFS1:ISD11:ISCU:2Fe-2S Cluster + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
H2O + SeMet ⟶ 2OBUTA + MeSeH + ammonia
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
ATP + H2O + H2Se ⟶ AMP + H+ + Pi + SELP
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Selenoamino acid metabolism:
Sec ⟶ H2Se + L-Ala
- Metabolism of ingested SeMet, Sec, MeSec into H2Se:
Sec ⟶ H2Se + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Glutamate and glutamine metabolism:
L-Gln + PYR ⟶ 2OGA + L-Ala
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
ATP + H2O + MPT + MoO4(2-) ⟶ AMP + MoCo + PPi
BioCyc(42)
- fumiquinazoline D biosynthesis:
ATP + ala + fumiquinazoline F-indoline-2',3'-diol ⟶ AMP + H+ + H2O + diphosphate + fumiquinazoline A
- 3-hydroxy-4-methyl-anthranilate biosynthesis II:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- tRNA charging:
ATP + thr ⟶ AMP + diphosphate
- tRNA charging:
ATP + ala ⟶ AMP + diphosphate
- phosalacine biosynthesis:
N-acetylphosphinothricyl-L-alanyl-L-leucine + H2O ⟶ acetate + phosalacine
- phosphinothricin tripeptide biosynthesis:
2-hydroxyethylphosphonate + NAD+ ⟶ H+ + NADH + phosphonoacetaldehyde
- 5-N-acetylardeemin biosynthesis:
DMAPP + ardeemin FQ ⟶ ardeemin + diphosphate
- 3-hydroxy-4-methyl-anthranilate biosynthesis I:
N-Formyl-L-kynurenine + H2O ⟶ H+ + L-kynurenine + formate
- coelimycin P1 biosynthesis:
(2E,5S,6E,8E,10E)-1-aminododeca-2,6,8,10-tetraen-5-ol + pyruvate ⟶ (2E,5S,6E,8E,10E)-5-hydroxydodeca-2,6,8,10-tetraenal + ala
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing):
ATP + D-glt + UDP-N-acetyl-α-D-muramoyl-L-alanine ⟶ ADP + H+ + UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate + phosphate
- indole-3-acetate activation I:
H2O + IAA-Leu ⟶ (indol-3-yl)acetate + leu
- peptidoglycan biosynthesis I (meso-diaminopimelate containing):
ATP + D-glt + UDP-N-acetyl-α-D-muramoyl-L-alanine ⟶ ADP + H+ + UDP-N-acetyl-α-D-muramoyl-L-alanyl-D-glutamate + phosphate
- peptidoglycan biosynthesis I (meso-diaminopimelate containing):
ATP + UDP-N-acetyl-α-D-muramate + ala ⟶ ADP + H+ + UDP-N-acetyl-α-D-muramoyl-L-alanine + phosphate
- UDP-N-acetylmuramoyl-pentapeptide biosynthesis I (meso-diaminopimelate containing):
ATP + UDP-N-acetyl-α-D-muramate + ala ⟶ ADP + H+ + UDP-N-acetyl-α-D-muramoyl-L-alanine + phosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ ala + indole-3-acetate
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
2-oxoglutarate + 4-aminobutanoate ⟶ glu + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-hydroxybutanoate + NAD(P)+ ⟶ H+ + NAD(P)H + succinate semialdehyde
- 4-aminobutyrate degradation IV:
4-aminobutyrate + pyruvate ⟶ ala + succinate semialdehyde
- glutamate degradation IV:
4-aminobutyrate + pyruvate ⟶ ala + succinate semialdehyde
- glutamate degradation IV:
4-aminobutyrate + pyruvate ⟶ ala + succinate semialdehyde
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- L-alanine degradation IV:
H2O + NAD+ + ala ⟶ H+ + NADH + ammonium + pyruvate
- tRNA charging pathway:
ATP + H+ + ala ⟶ AMP + diphosphate
- tRNA charging pathway:
ATP + H+ + ala ⟶ AMP + diphosphate
- tRNA charging pathway:
ATP + ala ⟶ AMP + diphosphate
- tRNA charging pathway:
ATP + ala ⟶ AMP + diphosphate
- γ-coniciene and coniine biosynthesis:
5-oxooctanal + ala ⟶ 8-aminooctan-4-one + pyruvate
WikiPathways(0)
Plant Reactome(616)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
2OG + L-Val ⟶ Glu + KIV
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
H2O + L-Asn ⟶ L-Asp + ammonia
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid metabolism:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Amino acid catabolism:
CoA + KIV + NAD ⟶ ISB-CoA + NADH + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid metabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
L-Ala + pimeloyl-CoA ⟶ 7-keto-8-aminopelargonate + CoA-SH + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
L-Ala + pimeloyl-CoA ⟶ 7-keto-8-aminopelargonate + CoA-SH + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Biotin biosynthesis II:
9-mercaptodethiobiotin ⟶ Btn
- Pyridoxamine anabolism:
PXA + PYR ⟶ L-Ala + PXL
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
3-oxo-2-(cis-2'-pentenyl)-cyclopentane-1-octanoate + Oxygen ⟶ CH3COO- + jasmonic acid
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Hormone signaling, transport, and metabolism:
(-)-jasmonate + ATP + L-Ile ⟶ AMP + Jasmonyl-isoleucine + PPi(3-)
- IAA deconjugation:
H2O + indole-3-acetyl-ala ⟶ IAA + L-Ala
- Amino acid metabolism:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Amino acid catabolism:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- Ehrlich pathway:
L-Phe + PYR ⟶ L-Ala + phenylpyruvate
- GABA shunt:
GABA + PYR ⟶ L-Ala + SUCCSA
- Carbohydrate metabolism:
Suc ⟶ 1-kestose + beta-D-glucose
- Peptidoglycan biosynthesis I:
ATP + L-Ala + UDP-N-acetylmuramate ⟶ ADP + Pi + UDP-N-acetylmuramoyl-L-alanine
INOH(0)
PlantCyc(500)
- hypoglycin biosynthesis:
glutathione + hypoglycin A ⟶ L-cysteinylglycine + hypoglycin B
- lupanine biosynthesis:
cadaverine + pyruvate ⟶ 17-oxosparteine + H+ + H2O + ala
- lupanine biosynthesis:
cadaverine + pyruvate ⟶ 17-oxosparteine + H+ + H2O + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + asp ⟶ AMP + H+ + IAA-Asp + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Leu ⟶ (indol-3-yl)acetate + leu
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + val ⟶ AMP + H+ + IAA-Val + diphosphate
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- indole-3-acetate activation I:
H2O + IAA-Leu ⟶ (indol-3-yl)acetate + leu
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + phe ⟶ AMP + H+ + IAA-Phe + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- superpathway of indole-3-acetate conjugate biosynthesis:
1-O-(indol-3-ylacetyl)-β-D-glucose + myo-inositol ⟶ 1D-1-O-(indol-3-yl)acetyl-myo-inositol + D-glucopyranose
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate activation I:
H2O + IAA-Ala ⟶ (indol-3-yl)acetate + ala
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + ala ⟶ AMP + H+ + IAA-Ala + diphosphate
- superpathway of indole-3-acetate conjugate biosynthesis:
(indol-3-yl)acetate + ATP + gln ⟶ AMP + H+ + IAA-Gln + diphosphate
- indole-3-acetate activation I:
H2O + IAA-Leu ⟶ (indol-3-yl)acetate + leu
- indole-3-acetate inactivation VIII:
(indol-3-yl)acetate + ATP + gln ⟶ AMP + H+ + IAA-Gln + diphosphate
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
2-oxoglutarate + 4-aminobutanoate ⟶ glu + succinate semialdehyde
- 4-aminobutanoate degradation IV:
H2O + NAD+ + succinate semialdehyde ⟶ H+ + NADH + succinate
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- L-glutamate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
- 4-aminobutanoate degradation IV:
4-aminobutanoate + pyruvate ⟶ ala + succinate semialdehyde
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Ahmed H Abdelazim, Sherif Ramzy. Spectrophotometric quantitative analysis of remdesivir using acid dye reagent selected by computational calculations.
Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.
2022 Aug; 276(?):121188. doi:
10.1016/j.saa.2022.121188
. [PMID: 35395463] - Tahrima Kayes, Harry Crane, Allison Symonds, Julie Dumond, Mackenzie Cottrell, Julia Di Girolamo, Sicha Manandhar, Tien Huey Lim, Edward Gane, Angela Kashuba, Miriam T Levy. Plasma and breast milk pharmacokinetics of tenofovir alafenamide in mothers with chronic hepatitis B infection.
Alimentary pharmacology & therapeutics.
2022 Aug; 56(3):510-518. doi:
10.1111/apt.17040
. [PMID: 35599363] - Mei-Hsuan Lee. Plasma and breast milk pharmacokinetics of tenofovir alafenamide in mothers with chronic hepatitis B infection.
Alimentary pharmacology & therapeutics.
2022 Aug; 56(3):546-547. doi:
10.1111/apt.17079
. [PMID: 35804473] - Lucio Boglione, Valentina Dodaro, Giulia Meli, Roberto Rostagno, Federica Poletti, Roberta Moglia, Bianca Bianchi, Maria Esposito, Silvio Borrè. Remdesivir treatment in hospitalized patients affected by COVID-19 pneumonia: A case-control study.
Journal of medical virology.
2022 Aug; 94(8):3653-3660. doi:
10.1002/jmv.27768
. [PMID: 35411627] - Marko Lucijanic, Tomislav Cikara, Petra Bistrovic, Ivan Papic, Maja Ortner Hadziabdic, Nikolina Busic, Marina Lackovic, Natalia Cesar, Valentina Koscak, Josko Mitrovic, Bruno Barsic, Tomo Lucijanic. Remdesivir use in COVID-19 patients might predispose bacteremia, matched case-control analysis.
The Journal of infection.
2022 Aug; 85(2):174-211. doi:
10.1016/j.jinf.2022.04.045
. [PMID: 35513188] - Katja Merches, Leonie Breunig, Julia Fender, Theresa Brand, Vanessa Bätz, Svenja Idel, Laxmikanth Kollipara, Yvonne Reinders, Albert Sickmann, Angela Mally, Kristina Lorenz. The potential of remdesivir to affect function, metabolism and proliferation of cardiac and kidney cells in vitro.
Archives of toxicology.
2022 08; 96(8):2341-2360. doi:
10.1007/s00204-022-03306-1
. [PMID: 35579693] - Yusuke Marikawa, Vernadeth B Alarcon. Remdesivir impairs mouse preimplantation embryo development at therapeutic concentrations.
Reproductive toxicology (Elmsford, N.Y.).
2022 08; 111(?):135-147. doi:
10.1016/j.reprotox.2022.05.012
. [PMID: 35605700] - Marta Colaneri, Nicolò Amarasinghe, Leonardo Rezzonico, Teresa Chiara Pieri, Emilio Segalini, Margherita Sambo, Silvia Roda, Federica Meloni, Marilena Gregorini, Teresa Rampino, Stefano Pelenghi, Alessandra Ricciardi, Raffaele Bruno. Early remdesivir to prevent severe COVID-19 in recipients of solid organ transplant: a real-life study from Northern Italy.
International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.
2022 Aug; 121(?):157-160. doi:
10.1016/j.ijid.2022.05.001
. [PMID: 35533831] - Manjit Kaur, Deepika Tiwari, Vishal Sidana, Kanya Mukhopadhyay. Remdesivir-Induced Liver Injury in a COVID-Positive Newborn.
Indian journal of pediatrics.
2022 Aug; 89(8):826. doi:
10.1007/s12098-022-04237-6
. [PMID: 35583631] - Mohsen Sedighi, Alireza Amanollahi, Omid Moradi Moghaddam, Hamed Basir Ghafouri, Seyede Elham Hoseini, Nader Tavakoli. Linear mixed model analysis to evaluate correlations between remdesivir adverse effects with age and gender of patients with mild Covid-19 pneumonia.
Journal of medical virology.
2022 Aug; 94(8):3783-3790. doi:
10.1002/jmv.27800
. [PMID: 35491957] - Natalia Krisanova, Natalia Pozdnyakova, Artem Pastukhov, Marina Dudarenko, Oleg Shatursky, Olena Gnatyuk, Uliana Afonina, Kyrylo Pyrshev, Galina Dovbeshko, Semen Yesylevskyy, Tatiana Borisova. Amphiphilic anti-SARS-CoV-2 drug remdesivir incorporates into the lipid bilayer and nerve terminal membranes influencing excitatory and inhibitory neurotransmission.
Biochimica et biophysica acta. Biomembranes.
2022 08; 1864(8):183945. doi:
10.1016/j.bbamem.2022.183945
. [PMID: 35461828] - Miriam T Levy, Angela Kashuba, Edward Gane. Plasma and breast milk pharmacokinetics of tenofovir alafenamide of mothers with chronic hepatitis B infection-Authors' reply.
Alimentary pharmacology & therapeutics.
2022 Aug; 56(3):548-549. doi:
10.1111/apt.17102
. [PMID: 35804469] - Issa Haddad, Priyal Agarwal, Mohamed Hassanein. Remdesivir use in COVID-19 patients with end-stage kidney disease on intermittent hemodialysis: An absolute contraindication?.
Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy.
2022 Aug; 26(4):850-851. doi:
10.1111/1744-9987.13833
. [PMID: 35261170] - Liva Checkmahomed, Julie Carbonneau, Venice Du Pont, Nicholas C Riola, Jason K Perry, Jiani Li, Bastien Paré, Shawn M Simpson, Martin A Smith, Danielle P Porter, Guy Boivin. In Vitro Selection of Remdesivir-Resistant SARS-CoV-2 Demonstrates High Barrier to Resistance.
Antimicrobial agents and chemotherapy.
2022 Jul; 66(7):e0019822. doi:
10.1128/aac.00198-22
. [PMID: 35708323] - Qianqian Zhang, Youmei Peng, Jiao Hou, Yanhong Chen, Bingjie Liu, Pinghu Zhang, Wenquan Yu, Junbiao Chang. An O-Benzyl Phosphonamidate Prodrug of Tenofovir for the Treatment of Hepatitis B Virus Infection.
Journal of medicinal chemistry.
2022 07; 65(13):9493-9505. doi:
10.1021/acs.jmedchem.2c00869
. [PMID: 35776695] - Jonathan Fintzi, Tyler Bonnett, Daniel A Sweeney, Nikhil A Huprikar, Anuradha Ganesan, Maria G Frank, Susan L F McLellan, Lori E Dodd, Pablo Tebas, Aneesh K Mehta. Deconstructing the Treatment Effect of Remdesivir in the Adaptive Coronavirus Disease 2019 (COVID-19) Treatment Trial-1: Implications for Critical Care Resource Utilization.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2022 Jul; 74(12):2209-2217. doi:
10.1093/cid/ciab712
. [PMID: 34409989] - Markus Fischer, Peter Müller, Holger A Scheidt, Meike Luck. Drug-Membrane Interactions: Effects of Virus-Specific RNA-Dependent RNA Polymerase Inhibitors Remdesivir and Favipiravir on the Structure of Lipid Bilayers.
Biochemistry.
2022 Jul; 61(13):1392-1403. doi:
10.1021/acs.biochem.2c00042
. [PMID: 35731976] - Justin G Julander, Elaine Bunyan, Robert Jordan, Danielle P Porter. Remdesivir efficacy against yellow fever in a hamster model.
Antiviral research.
2022 07; 203(?):105331. doi:
10.1016/j.antiviral.2022.105331
. [PMID: 35533777] - Sushmita Khadka, Karen Williams, Shantanu Solanki. Remdesivir-Associated Pancreatitis.
American journal of therapeutics.
2022 Jul; 29(4):e444-e446. doi:
10.1097/mjt.0000000000001266
. [PMID: 33590992] - Andrea Giacomelli, Alessandro Cozzi-Lepri, Giacomo Casalini, Letizia Oreni, Anna Lisa Ridolfo, Spinello Antinori. Estimating the effectiveness of remdesivir on risk of COVID-19 mortality: The role of observational data.
Pharmacological research.
2022 07; 181(?):106268. doi:
10.1016/j.phrs.2022.106268
. [PMID: 35605811] - Ling Yang, I-Hsin Lin, Lie-Chwen Lin, Jeffrey W Dalley, Tung-Hu Tsai. Biotransformation and transplacental transfer of the anti-viral remdesivir and predominant metabolite, GS-441524 in pregnant rats.
EBioMedicine.
2022 Jul; 81(?):104095. doi:
10.1016/j.ebiom.2022.104095
. [PMID: 35671622] - Tamer Z Attia, John M Boushra, Ahmed F Abdel Hakiem, Adel S Lashien, Deena A M Noureldeen. Spectrofluorimetric determination of the anti-Covid 19 agent, remdesivir, in vials and spiked human plasma.
Luminescence : the journal of biological and chemical luminescence.
2022 Jul; 37(7):1192-1199. doi:
10.1002/bio.4274
. [PMID: 35548893] - Petra Bistrovic, Sime Manola, Marko Lucijanic. Bradycardia during remdesivir treatment might be associated with improved survival in patients with COVID-19: a retrospective cohort study on 473 patients from a tertiary centre.
Postgraduate medical journal.
2022 07; 98(1161):501-502. doi:
10.1136/postgradmedj-2021-141079
. [PMID: 34876485] - Carlos K H Wong, Ivan C H Au, Wing Yiu Cheng, Kenneth K C Man, Kristy T K Lau, Lung Yi Mak, Sing Leung Lui, Matthew S H Chung, Xi Xiong, Eric H Y Lau, Benjamin J Cowling. Remdesivir use and risks of acute kidney injury and acute liver injury among patients hospitalised with COVID-19: a self-controlled case series study.
Alimentary pharmacology & therapeutics.
2022 07; 56(1):121-130. doi:
10.1111/apt.16894
. [PMID: 35318694] - Andrea Tumminia, Raffaella Romano, Giuseppe Brugaletta, Roberto Scicali, Giuseppina Biondi, Rosario Oliveri, Marcello Romano, Paola Magnano San Lio. The impact of obesity and dyslipidemia on Remdesivir effectiveness in hospitalized patients with SARS-CoV-2-related pneumonia: An observational study.
Nutrition, metabolism, and cardiovascular diseases : NMCD.
2022 07; 32(7):1635-1641. doi:
10.1016/j.numecd.2022.04.005
. [PMID: 35508458] - Jihye Lim, Won-Mook Choi, Ju Hyun Shim, Danbi Lee, Kang Mo Kim, Young-Suk Lim, Han Chu Lee, Jonggi Choi. Efficacy and safety of tenofovir alafenamide versus tenofovir disoproxil fumarate in treatment-naïve chronic hepatitis B.
Liver international : official journal of the International Association for the Study of the Liver.
2022 07; 42(7):1517-1527. doi:
10.1111/liv.15261
. [PMID: 35343041] - Meng Yuan, Wenjuan Hu, Yingying Feng, Yue Tong, Xin Wang, Bo Tan, Hui Xu, Jia Liu. Development and validation of an LC-MS/MS method for simultaneous determination of remdesivir and its hydrolyzed metabolite and nucleoside, and its application in a pharmacokinetic study of normal and diabetic nephropathy mice.
Biomedical chromatography : BMC.
2022 Jul; 36(7):e5380. doi:
10.1002/bmc.5380
. [PMID: 35373846] - Takashi Ichiyama, Masamichi Komatsu, Yosuke Wada, Masayuki Hanaoka. Report of a combination of remdesivir, intravenous methylprednisolone pulse, and tocilizumab for severe coronavirus disease: 20-case series at a single institution.
Respiratory investigation.
2022 Jul; 60(4):604-606. doi:
10.1016/j.resinv.2022.04.001
. [PMID: 35501265] - Wooseon Choi, Juhae Kim, Je Won Ko, Alee Choi, Young Hye Kwon. Effects of maternal branched-chain amino acid and alanine supplementation on growth and biomarkers of protein metabolism in dams fed a low-protein diet and their offspring.
Amino acids.
2022 Jul; 54(7):977-988. doi:
10.1007/s00726-022-03157-1
. [PMID: 35353249] - E Leegwater, D J A R Moes, L B E Bosma, T H Ottens, I M van der Meer, C van Nieuwkoop, E B Wilms. Population Pharmacokinetics of Remdesivir and GS-441524 in Hospitalized COVID-19 Patients.
Antimicrobial agents and chemotherapy.
2022 06; 66(6):e0025422. doi:
10.1128/aac.00254-22
. [PMID: 35647646] - Johannes Jungwirth, Clio Häring, Sarah König, Liane Giebeler, Heena Doshi, Christian Brandt, Stefanie Deinhardt-Emmer, Bettina Löffler, Christina Ehrhardt. D,L-Lysine-Acetylsalicylate + Glycine (LASAG) Reduces SARS-CoV-2 Replication and Shows an Additive Effect with Remdesivir.
International journal of molecular sciences.
2022 Jun; 23(13):. doi:
10.3390/ijms23136880
. [PMID: 35805887] - Jared Pitts, Jiani Li, Jason K Perry, Venice Du Pont, Nicholas Riola, Lauren Rodriguez, Xianghan Lu, Chaitanya Kurhade, Xuping Xie, Gregory Camus, Savrina Manhas, Ross Martin, Pei-Yong Shi, Tomas Cihlar, Danielle P Porter, Hongmei Mo, Evguenia Maiorova, John P Bilello. Remdesivir and GS-441524 Retain Antiviral Activity against Delta, Omicron, and Other Emergent SARS-CoV-2 Variants.
Antimicrobial agents and chemotherapy.
2022 06; 66(6):e0022222. doi:
10.1128/aac.00222-22
. [PMID: 35532238] - He Li, Minhong Ren, Quanyang Li. 1H NMR-Based Metabolomics Reveals the Intrinsic Interaction of Age, Plasma Signature Metabolites, and Nutrient Intake in the Longevity Population in Guangxi, China.
Nutrients.
2022 Jun; 14(12):. doi:
10.3390/nu14122539
. [PMID: 35745269] - Xi Zhang, Binbin Xia, Hong Zheng, Jie Ning, Yinjie Zhu, Xiaoguang Shao, Binrui Liu, Baijun Dong, Hongchang Gao. Identification of characteristic metabolic panels for different stages of prostate cancer by 1H NMR-based metabolomics analysis.
Journal of translational medicine.
2022 06; 20(1):275. doi:
10.1186/s12967-022-03478-5
. [PMID: 35715864] - Junjie Chen, Longqi Chen, Fang Zeng, Shuizhu Wu. Aminopeptidase N Activatable Nanoprobe for Tracking Lymphatic Metastasis and Guiding Tumor Resection Surgery via Optoacoustic/NIR-II Fluorescence Dual-Mode Imaging.
Analytical chemistry.
2022 06; 94(23):8449-8457. doi:
10.1021/acs.analchem.2c01241
. [PMID: 35657647] - NULL. COVID-19 update: remdesivir (Veklury) FDA-approved for children <12 years old.
The Medical letter on drugs and therapeutics.
2022 06; 64(1652):e1. doi:
NULL
. [PMID: 35657368] - Rachel Beckerman, Andrea Gori, Sushanth Jeyakumar, Jakob J Malin, Roger Paredes, Pedro Póvoa, Nathaniel J Smith, Armando Teixeira-Pinto. Remdesivir for the treatment of patients hospitalized with COVID-19 receiving supplemental oxygen: a targeted literature review and meta-analysis.
Scientific reports.
2022 Jun; 12(1):9622. doi:
10.1038/s41598-022-13680-6
. [PMID: 35688854] - Shan Wang, Christy Huynh, Shahidul Islam, Brian Malone, Naveed Masani, D'Andrea Joseph. Assessment of Safety of Remdesivir in Covid - 19 Patients with Estimated Glomerular Filtration Rate (eGFR) < 30 ml/min per 1.73 m^2.
Journal of intensive care medicine.
2022 Jun; 37(6):764-768. doi:
10.1177/08850666211070521
. [PMID: 34967255] - Irina Rajakumar, Debra L Isaac, Nowell M Fine, Brian Clarke, Linda P Ward, Rebecca J Malott, Kanti Pabbaraju, Kara Gill, Byron M Berenger, Yi-Chan Lin, David H Evans, John M Conly. Extensive environmental contamination and prolonged severe acute respiratory coronavirus-2 (SARS CoV-2) viability in immunosuppressed recent heart transplant recipients with clinical and virologic benefit with remdesivir.
Infection control and hospital epidemiology.
2022 06; 43(6):817-819. doi:
10.1017/ice.2021.89
. [PMID: 33706819] - M D Gil-Sierra, M P Briceño-Casado, E J Alegre-Del Rey, M Sánchez-Hidalgo. Efficacy of early use of remdesivir: a systematic review of subgroup analysis.
Revista espanola de quimioterapia : publicacion oficial de la Sociedad Espanola de Quimioterapia.
2022 Jun; 35(3):249-259. doi:
10.37201/req/154.2021
. [PMID: 35294145] - Mikael Kajova, Eliisa Kekäläinen, Veli-Jukka Anttila, Juuso Paajanen. Successful treatment with a short course of remdesivir in a case of prolonged COVID-19 in a lymphoma patient.
Infectious diseases (London, England).
2022 06; 54(6):455-459. doi:
10.1080/23744235.2022.2028896
. [PMID: 35086417] - María Paz Guerrero-Molina, Montserrat Morales-Conejo, Aitor Delmiro, María Morán, Cristina Domínguez-González, Elena Arranz-Canales, Ana Ramos-González, Joaquín Arenas, Miguel A Martín, Jesús González de la Aleja. Elevated glutamate and decreased glutamine levels in the cerebrospinal fluid of patients with MELAS syndrome.
Journal of neurology.
2022 Jun; 269(6):3238-3248. doi:
10.1007/s00415-021-10942-7
. [PMID: 35088140] - Juliana C Ferreira, Samar Fadl, Wael M Rabeh. Key dimer interface residues impact the catalytic activity of 3CLpro, the main protease of SARS-CoV-2.
The Journal of biological chemistry.
2022 06; 298(6):102023. doi:
10.1016/j.jbc.2022.102023
. [PMID: 35568197] - Peter Dovjak, Hans Jürgen Heppner. Title Not Available.
MMW Fortschritte der Medizin.
2022 06; 164(11):28. doi:
10.1007/s15006-022-1234-z
. [PMID: 35650486] - Siew Hwei Yap, Cheng Siang Lee, Aogu Furusho, Chiharu Ishii, Syahirah Shaharudin, Nurul Syuhada Zulhaimi, Adeeba Kamarulzaman, Shahrul Bahyah Kamaruzzaman, Masashi Mita, Kok Hoong Leong, Kenji Hamase, Reena Rajasuriar. Plasma d-amino acids are associated with markers of immune activation and organ dysfunction in people with HIV.
AIDS (London, England).
2022 Jun; 36(7):911-921. doi:
10.1097/qad.0000000000003207
. [PMID: 35212669] - Nohara Goto, Hiroyuki Suzuki, Tomohiro Tanaka, Teizo Asano, Mika K Kaneko, Yukinari Kato. Epitope Mapping of an Anti-Chinese/Golden Hamster Podoplanin Monoclonal Antibody.
Monoclonal antibodies in immunodiagnosis and immunotherapy.
2022 Jun; 41(3):163-169. doi:
10.1089/mab.2022.0014
. [PMID: 35666546] - Shireesha Vuppalanchi, Raj Vuppalanchi. Editorial: liver and kidney injury from remdesivir-an issue not as much as its purpose.
Alimentary pharmacology & therapeutics.
2022 06; 55(11):1456. doi:
10.1111/apt.16921
. [PMID: 35538355] - Steve McDonald, Simon Turner, Matthew J Page, Tari Turner. Most published systematic reviews of remdesivir for COVID-19 were redundant and lacked currency.
Journal of clinical epidemiology.
2022 Jun; 146(?):22-31. doi:
10.1016/j.jclinepi.2022.02.006
. [PMID: 35192923] - Susanne Rüfenacht, Pascal Gantenbein, Katia Boggian, Domenica Flury, Lukas Kern, Günter Dollenmaier, Philipp Kohler, Werner C Albrich. Remdesivir in Coronavirus Disease 2019 patients treated with anti-CD20 monoclonal antibodies: a case series.
Infection.
2022 Jun; 50(3):783-790. doi:
10.1007/s15010-022-01821-y
. [PMID: 35426564] - Yasunori Iwata, Yusuke Nakade, Shinji Kitajima, Shiori Yoneda-Nakagawa, Megumi Oshima, Norihiko Sakai, Hisayuki Ogura, Koichi Sato, Tadashi Toyama, Yuta Yamamura, Taro Miyagawa, Hiroka Yamazaki, Akinori Hara, Miho Shimizu, Kengo Furuichi, Masashi Mita, Kenji Hamase, Tomohiro Tanaka, Motohiro Nishida, Wataru Muramatsu, Hisashi Yamamoto, Shigeyuki Shichino, Satoshi Ueha, Kouji Matsushima, Takashi Wada. Protective effect of d-alanine against acute kidney injury.
American journal of physiology. Renal physiology.
2022 06; 322(6):F667-F679. doi:
10.1152/ajprenal.00198.2021
. [PMID: 35435002] - Florence Ader, Maude Bouscambert-Duchamp, Maya Hites, Nathan Peiffer-Smadja, France Mentré, Charles Burdet. Final results of the DisCoVeRy trial of remdesivir for patients admitted to hospital with COVID-19.
The Lancet. Infectious diseases.
2022 06; 22(6):764-765. doi:
10.1016/s1473-3099(22)00295-x
. [PMID: 35643099] - Carlos K H Wong, Ivan C H Au, Wing Yiu Cheng, Kenneth K C Man, Kristy T K Lau, Lung Yi Mak, Sing Leung Lui, Matthew S H Chung, Xi Xiong, Eric H Y Lau, Benjamin J Cowling. Editorial: liver and kidney injury from remdesivir-an issue not as much as its purpose. Authors' reply.
Alimentary pharmacology & therapeutics.
2022 06; 55(11):1457-1458. doi:
10.1111/apt.16932
. [PMID: 35538354] - Jin Gu Yoon, Jin Sae Yoo, Jungmin Lee, Hak-Jun Hyun, Hye Seong, Ji Yun Noh, Hee Jin Cheong, Woo Joo Kim, Young Rong Kim, Jung Yeon Heo, Joon-Yong Bae, Chunguang Cui, Sohyun Lee, Man-Seong Park, Joon Young Song. Viable SARS-CoV-2 shedding under remdesivir and dexamethasone treatment.
The Journal of infection.
2022 06; 84(6):834-872. doi:
10.1016/j.jinf.2022.03.022
. [PMID: 35351541] - Pierluigi Russo, Evelina Tacconelli, Pier Paolo Olimpieri, Simone Celant, Antonietta Colatrella, Luca Tomassini, Giorgio Palù. Mortality in SARS-CoV-2 Hospitalized Patients Treated with Remdesivir: A Nationwide, Registry-Based Study in Italy.
Viruses.
2022 05; 14(6):. doi:
10.3390/v14061197
. [PMID: 35746668] - George A Diaz, Alyssa B Christensen, Tobias Pusch, Delaney Goulet, Shu-Ching Chang, Gary L Grunkemeier, Paul A McKelvey, Ari Robicsek, Tom French, Guilford T Parsons, Glenn Doherty, Charles Laurenson, Ryan Roper, Jennifer Hadlock, Cameron J Cover, Brent Footer, Philip Robinson, Mary Micikas, Jennifer E Marfori, Charlotte Cronenweth, Yogavedya Mukkamala, Jamie Mackiewicz, Ekra Rai, Martha Dickinson Matson, Jodie Davila, Justin Rueda, Reda Tipton, Heather Algren, Brittney C Ward, Stephen Malkoski, Tyler Gluckman, Gregory B Tallman, Henry Arguinchona, Terese C Hammond, Steven Standaert, Joshua Christensen, Jose F Echaiz, Robert Choi, Daniel McClung, Albert Pacifico, Martin Fee, Farjad Sarafian, William R Berrington, Jason D Goldman. Remdesivir and Mortality in Patients With Coronavirus Disease 2019.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2022 05; 74(10):1812-1820. doi:
10.1093/cid/ciab698
. [PMID: 34409431] - Lajos Szente, Tibor Renkecz, Dávid Sirok, János Stáhl, Gábor Hirka, István Puskás, Tamás Sohajda, Éva Fenyvesi. Comparative bioavailability study following a single dose intravenous and buccal administration of remdesivir in rabbits.
International journal of pharmaceutics.
2022 May; 620(?):121739. doi:
10.1016/j.ijpharm.2022.121739
. [PMID: 35421532] - NULL. Title Not Available.
CMAJ : Canadian Medical Association journal = journal de l'Association medicale canadienne.
2022 05; 194(20):E713-E723. doi:
10.1503/cmaj.211698-f
. [PMID: 35609913] - Sehr Naseem-Khan, Madison B Berger, Emmett M Leddin, Yazdan Maghsoud, G Andrés Cisneros. Impact of Remdesivir Incorporation along the Primer Strand on SARS-CoV-2 RNA-Dependent RNA Polymerase.
Journal of chemical information and modeling.
2022 05; 62(10):2456-2465. doi:
10.1021/acs.jcim.2c00201
. [PMID: 35435671] - . Remdesivir and three other drugs for hospitalised patients with COVID-19: final results of the WHO Solidarity randomised trial and updated meta-analyses.
Lancet (London, England).
2022 05; 399(10339):1941-1953. doi:
10.1016/s0140-6736(22)00519-0
. [PMID: 35512728] - Meng-Li Wu, Feng-Liang Liu, Jing Sun, Xin Li, Jian-Ru Qin, Qi-Hong Yan, Xia Jin, Xin-Wen Chen, Yong-Tang Zheng, Jin-Cun Zhao, Jian-Hua Wang. Combinational benefit of antihistamines and remdesivir for reducing SARS-CoV-2 replication and alleviating inflammation-induced lung injury in mice.
Zoological research.
2022 May; 43(3):457-468. doi:
10.24272/j.issn.2095-8137.2021.469
. [PMID: 35503561] - Weiwei He, Tine Vrist Dam, Rebekka Thøgersen, Mette Hansen, Hanne Christine Bertram. Fluctuations in Metabolites and Bone Markers Across the Menstrual Cycle in Eumenorrheic Women and Oral Contraceptive Users.
The Journal of clinical endocrinology and metabolism.
2022 05; 107(6):1577-1588. doi:
10.1210/clinem/dgac112
. [PMID: 35213728] - Elisabeth Mahase. Covid-19: Remdesivir has 'small effect' against death or progression to ventilation, WHO trial finds.
BMJ (Clinical research ed.).
2022 05; 377(?):o1118. doi:
10.1136/bmj.o1118
. [PMID: 35508315] - Alexandra Schäfer, David R Martinez, John J Won, Rita M Meganck, Fernando R Moreira, Ariane J Brown, Kendra L Gully, Mark R Zweigart, William S Conrad, Samantha R May, Stephanie Dong, Rao Kalla, Kwon Chun, Venice Du Pont, Darius Babusis, Jennifer Tang, Eisuke Murakami, Raju Subramanian, Kimberly T Barrett, Blake J Bleier, Roy Bannister, Joy Y Feng, John P Bilello, Tomas Cihlar, Richard L Mackman, Stephanie A Montgomery, Ralph S Baric, Timothy P Sheahan. Therapeutic treatment with an oral prodrug of the remdesivir parental nucleoside is protective against SARS-CoV-2 pathogenesis in mice.
Science translational medicine.
2022 05; 14(643):eabm3410. doi:
10.1126/scitranslmed.abm3410
. [PMID: 35315683] - Sabrina Wimmer, Sarai M Keestra. Public Risk-Taking and Rewards During the COVID-19 Pandemic - A Case Study of Remdesivir in the Context of Global Health Equity.
International journal of health policy and management.
2022 05; 11(5):567-578. doi:
10.34172/ijhpm.2020.166
. [PMID: 32945638] - Chan-Young Jung, Hyung Woo Kim, Sang Hoon Ahn, Seung Up Kim, Beom Seok Kim. Higher risk of kidney function decline with entecavir than tenofovir alafenamide in patients with chronic hepatitis B.
Liver international : official journal of the International Association for the Study of the Liver.
2022 05; 42(5):1017-1026. doi:
10.1111/liv.15208
. [PMID: 35220649] - Kasha P Singh, Steven Y C Tong. In adults hospitalized with COVID-19, adding remdesivir to standard care did not reduce in-hospital mortality.
Annals of internal medicine.
2022 05; 175(5):JC51. doi:
10.7326/j22-0025
. [PMID: 35500262] - Jennifer Lagoutte-Renosi, Mylène Flammang, Didier Ducloux, Jamal Bamoulid, Pierre-Yves Royer, Quentin Lepiller, Anne-Laure Clairet, Siamak Davani, Patrice Muret. Bictegravir/emtricitabine/tenofovir alafenamide combination in the management of kidney transplant patients with HIV receiving immunosuppressants.
Journal of chemotherapy (Florence, Italy).
2022 May; 34(3):199-202. doi:
10.1080/1120009x.2021.1940436
. [PMID: 34180378] - Arkadiy Finn, Atin Jindal, Sarah B Andrea, Vijairam Selvaraj, Kwame Dapaah-Afriyie. Association of Treatment with Remdesivir and 30-day Hospital Readmissions in Patients Hospitalized with COVID-19.
The American journal of the medical sciences.
2022 05; 363(5):403-410. doi:
10.1016/j.amjms.2022.01.021
. [PMID: 35151637] - Florin Elec, Jesper Magnusson, Alina Elec, Adriana Muntean, Oana Antal, Tudor Moisoiu, Cristina Cismaru, Mihaela Lupse, Mihai Oltean. COVID-19 and kidney transplantation: the impact of remdesivir on renal function and outcome - a retrospective cohort study.
International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.
2022 May; 118(?):247-253. doi:
10.1016/j.ijid.2022.03.015
. [PMID: 35301103] - Annalucia Biancofiore, Antonio Mirijello, Maria A Puteo, Maria P Di Viesti, Maria Labonia, Massimiliano Copetti, Salvatore De Cosmo, Renato Lombardi. Remdesivir significantly reduces SARS-CoV-2 viral load on nasopharyngeal swabs in hospitalized patients with COVID-19: A retrospective case-control study.
Journal of medical virology.
2022 05; 94(5):2284-2289. doi:
10.1002/jmv.27598
. [PMID: 35043405] - Jagpreet Chhatwal, Anirban Basu. Cost-Effectiveness of Remdesivir for COVID-19 Treatment: What Are We Missing?.
Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research.
2022 05; 25(5):697-698. doi:
10.1016/j.jval.2022.02.002
. [PMID: 35315330] - Mette M Berger, Pierre-Alain Binz, Clothilde Roux, Mélanie Charrière, Corinne Scaletta, Wassim Raffoul, Lee Ann Applegate, Olivier Pantet. Exudative glutamine losses contribute to high needs after burn injury.
JPEN. Journal of parenteral and enteral nutrition.
2022 05; 46(4):782-788. doi:
10.1002/jpen.2227
. [PMID: 34288001] - Yuka Sano Wada, Jumpei Saito, Yuko Hashii, Tomomi Kishi, Masayuki Kobayashi, Taro Kamiya, Katsumi Mizuno. Remdesivir and Human Milk: A Case Study.
Journal of human lactation : official journal of International Lactation Consultant Association.
2022 05; 38(2):248-251. doi:
10.1177/08903344221076539
. [PMID: 35189734] - Tristan Foucault, Lynda Handala, Gilles Paintaud, Catherine Gaudy-Graffin, Julien Marlet. Treatment of chronic hepatitis B: virological and pharmacological aspects.
Virologie (Montrouge, France).
2022 05; 26(3):228-239. doi:
10.1684/vir.2022.0927
. [PMID: 35792839] - Anjum S Kaka, Roderick MacDonald, Eric J Linskens, Lisa Langsetmo, Kathryn Vela, Wei Duan-Porter, Timothy J Wilt. Major Update 2: Remdesivir for Adults With COVID-19: A Living Systematic Review and Meta-analysis for the American College of Physicians Practice Points.
Annals of internal medicine.
2022 05; 175(5):701-709. doi:
10.7326/m21-4784
. [PMID: 35226522] - Mohammed A Sarhan, Maria Casalino, Pongsatorn Paopongsawan, David Gryn, Tapas Kulkarni, Ari Bitnun, Estelle B Gauda. SARS-CoV-2 Associated Respiratory Failure in a Preterm Infant and the Outcome after Remdesivir Treatment.
The Pediatric infectious disease journal.
2022 05; 41(5):e233-e234. doi:
10.1097/inf.0000000000003504
. [PMID: 35213865] - Shinya Tsuzuki, Kayoko Hayakawa, Yukari Uemura, Tomohiro Shinozaki, Nobuaki Matsunaga, Mari Terada, Setsuko Suzuki, Yusuke Asai, Koji Kitajima, Sho Saito, Gen Yamada, Taro Shibata, Masashi Kondo, Kazuo Izumi, Masayuki Hojo, Tetsuya Mizoue, Kazuhisa Yokota, Fukumi Nakamura-Uchiyama, Fumitake Saito, Wataru Sugiura, Norio Ohmagari. Effectiveness of remdesivir in hospitalized nonsevere patients with COVID-19 in Japan: A large observational study using the COVID-19 Registry Japan.
International journal of infectious diseases : IJID : official publication of the International Society for Infectious Diseases.
2022 May; 118(?):119-125. doi:
10.1016/j.ijid.2022.02.039
. [PMID: 35192953] - Amir Qaseem, Jennifer Yost, Itziar Etxeandia-Ikobaltzeta, George M Abraham, Janet A Jokela, Mary Ann Forciea, Matthew C Miller, Linda L Humphrey. Should Remdesivir Be Used for the Treatment of Patients With COVID-19? Rapid, Living Practice Points From the American College of Physicians (Version 2, Update Alert 3).
Annals of internal medicine.
2022 05; 175(5):W55-W57. doi:
10.7326/m21-4810
. [PMID: 35226518] - Omar Mourad, Zain Chagla. In high-risk outpatients with COVID-19, remdesivir reduced COVID-19-related hospitalization or all-cause death at 28 d.
Annals of internal medicine.
2022 05; 175(5):JC50. doi:
10.7326/j22-0026
. [PMID: 35500263] - Melanie D Whittington, Steven D Pearson, David M Rind, Jonathan D Campbell. The Cost-Effectiveness of Remdesivir for Hospitalized Patients With COVID-19.
Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research.
2022 05; 25(5):744-750. doi:
10.1016/j.jval.2021.11.1378
. [PMID: 35190252] - Sinziana Stanescu, Amaya Belanger-Quintana, Borja Manuel Fernandez-Felix, Pedro Ruiz-Sala, Mercedes Del Valle, Fernando Garcia, Francisco Arrieta, Mercedes Martinez-Pardo. Interorgan amino acid interchange in propionic acidemia: the missing key to understanding its physiopathology.
Amino acids.
2022 May; 54(5):777-786. doi:
10.1007/s00726-022-03128-6
. [PMID: 35098378] - Rachid Rafia, Marrissa Martyn-St James, Sue Harnan, Andrew Metry, Jean Hamilton, Allan Wailoo. A Cost-Effectiveness Analysis of Remdesivir for the Treatment of Hospitalized Patients With COVID-19 in England and Wales.
Value in health : the journal of the International Society for Pharmacoeconomics and Outcomes Research.
2022 05; 25(5):761-769. doi:
10.1016/j.jval.2021.12.015
. [PMID: 35197225] - Yuto Yasuda, Yutaka Hirayama, Kiyoshi Uemasu, Soichi Arasawa, Daisuke Iwashima, Ken-Ichi Takahashi. Efficacy of the combination of baricitinib, remdesivir, and dexamethasone in hypoxic adults with COVID-19: A retrospective study.
Respiratory medicine and research.
2022 May; 81(?):100903. doi:
10.1016/j.resmer.2022.100903
. [PMID: 35316675] - Megan A Dunay, Sarah L McClain, Rick L Holloway, Sarah L W Norris, Talie Bendixsen Randall, Caitlin E Mohr, Brent H Sasaki, Joseph A Coones, Nicholas J Vietri. Pre-Hospital Administration of Remdesivir During a Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Outbreak in a Skilled Nursing Facility.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2022 04; 74(8):1476-1479. doi:
10.1093/cid/ciab715
. [PMID: 34410348] - Carlos K H Wong, Kristy T K Lau, Ivan C H Au, Xi Xiong, Eric H Y Lau, Benjamin J Cowling. Clinical Improvement, Outcomes, Antiviral Activity, and Costs Associated With Early Treatment With Remdesivir for Patients With Coronavirus Disease 2019 (COVID-19).
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2022 04; 74(8):1450-1458. doi:
10.1093/cid/ciab631
. [PMID: 34265054] - Guillaume Lingas, Nadège Néant, Alexandre Gaymard, Drifa Belhadi, Gilles Peytavin, Maya Hites, Thérèse Staub, Richard Greil, Jose-Artur Paiva, Julien Poissy, Nathan Peiffer-Smadja, Dominique Costagliola, Yazdan Yazdanpanah, Florent Wallet, Amandine Gagneux-Brunon, France Mentré, Florence Ader, Charles Burdet, Jérémie Guedj, Maude Bouscambert-Duchamp. Effect of remdesivir on viral dynamics in COVID-19 hospitalized patients: a modelling analysis of the randomized, controlled, open-label DisCoVeRy trial.
The Journal of antimicrobial chemotherapy.
2022 04; 77(5):1404-1412. doi:
10.1093/jac/dkac048
. [PMID: 35233617] - Sohila M Elonsy, Miranda F Kamal, Mohamed M A Hamdy, Mona M Abdel Moneim. Comparative Greenness Metric Estimates for Content Uniformity Testing of Anti-Cov-2, GS-5734 in Commercial Vials: Validated Micellar Electrokinetic Chromatographic Assay.
Journal of AOAC International.
2022 Apr; 105(3):739-747. doi:
10.1093/jaoacint/qsac001
. [PMID: 35015848] - Iart Luca Shytaj, Mohamed Fares, Lara Gallucci, Bojana Lucic, Mahmoud M Tolba, Liv Zimmermann, Julia M Adler, Na Xing, Judith Bushe, Achim D Gruber, Ina Ambiel, Ahmed Taha Ayoub, Mirko Cortese, Christopher J Neufeldt, Bettina Stolp, Mohamed Hossam Sobhy, Moustafa Fathy, Min Zhao, Vibor Laketa, Ricardo Sobhie Diaz, Richard E Sutton, Petr Chlanda, Steeve Boulant, Ralf Bartenschlager, Megan L Stanifer, Oliver T Fackler, Jakob Trimpert, Andrea Savarino, Marina Lusic. The FDA-Approved Drug Cobicistat Synergizes with Remdesivir To Inhibit SARS-CoV-2 Replication In Vitro and Decreases Viral Titers and Disease Progression in Syrian Hamsters.
mBio.
2022 04; 13(2):e0370521. doi:
10.1128/mbio.03705-21
. [PMID: 35229634] - Zhendong Li, John Z H Zhang. Mutational Effect of Some Major COVID-19 Variants on Binding of the S Protein to ACE2.
Biomolecules.
2022 04; 12(4):. doi:
10.3390/biom12040572
. [PMID: 35454161] - Catharine I Paules, Shannon K Gallagher, Rekha R Rapaka, Richard T Davey, Sarah B Doernberg, Robert Grossberg, Noreen A Hynes, Philip O Ponce, William R Short, Jocelyn Voell, Jing Wang, Otto O Yang, Cameron R Wolfe, David C Lye, Lori E Dodd, Constance A Benson. Remdesivir for the Prevention of Invasive Mechanical Ventilation or Death in Coronavirus Disease 2019 (COVID-19): A Post Hoc Analysis of the Adaptive COVID-19 Treatment Trial-1 Cohort Data.
Clinical infectious diseases : an official publication of the Infectious Diseases Society of America.
2022 04; 74(7):1260-1264. doi:
10.1093/cid/ciab695
. [PMID: 34379740] - Eiichi Ogawa, Makoto Nakamuta, Toshimasa Koyanagi, Aritsune Ooho, Norihiro Furusyo, Eiji Kajiwara, Kazufumi Dohmen, Akira Kawano, Takeaki Satoh, Kazuhiro Takahashi, Koichi Azuma, Nobuyuki Yamashita, Naoki Yamashita, Rie Sugimoto, Hiromasa Amagase, Masami Kuniyoshi, Yasunori Ichiki, Chie Morita, Masaki Kato, Shinji Shimoda, Hideyuki Nomura, Jun Hayashi. Sequential HBV treatment with tenofovir alafenamide for patients with chronic hepatitis B: week 96 results from a real-world, multicenter cohort study.
Hepatology international.
2022 Apr; 16(2):282-293. doi:
10.1007/s12072-021-10295-3
. [PMID: 35075593] - Debasish Das, Prabuddha Mukhopadhyay, Debtanu Banerjee. Mortality comparision in patients receiving either Remdesivir or Remdesivir plus Baricitinib combination in case of moderate to severe COVID-19 Pneumonia: A retrospective study.
The Journal of the Association of Physicians of India.
2022 Apr; 70(4):11-12. doi:
NULL
. [PMID: 35443520] - Zhenhong Ye, Chunmei Zhang, Siyu Wang, Yurong Zhang, Rong Li, Yue Zhao, Jie Qiao. Amino acid signatures in relation to polycystic ovary syndrome and increased risk of different metabolic disturbances.
Reproductive biomedicine online.
2022 04; 44(4):737-746. doi:
10.1016/j.rbmo.2021.11.012
. [PMID: 35131170] - Matteo Ruggeri, Alessandro Signorini, Silvia Caravaggio, João Rua, Nuno Luís, Sandra Braz, Filipa Aragão. Estimation Model for Healthcare Costs and Intensive Care Units Access for Covid-19 Patients and Evaluation of the Effects of Remdesivir in the Portuguese Context: Hypothetical Study.
Clinical drug investigation.
2022 Apr; 42(4):345-354. doi:
10.1007/s40261-022-01128-8
. [PMID: 35298832] - David C Schultz, Robert M Johnson, Kasirajan Ayyanathan, Jesse Miller, Kanupriya Whig, Brinda Kamalia, Mark Dittmar, Stuart Weston, Holly L Hammond, Carly Dillen, Jeremy Ardanuy, Louis Taylor, Jae Seung Lee, Minghua Li, Emily Lee, Clarissa Shoffler, Christopher Petucci, Samuel Constant, Marc Ferrer, Christoph A Thaiss, Matthew B Frieman, Sara Cherry. Pyrimidine inhibitors synergize with nucleoside analogues to block SARS-CoV-2.
Nature.
2022 04; 604(7904):134-140. doi:
10.1038/s41586-022-04482-x
. [PMID: 35130559] - Zoran Sabljić, Nikolina Bašić-Jukić. Toxic myopathy and liver damage caused by concomitant therapy with remdesivir, atorvastatin, ezetimibe, and tacrolimus in a renal transplant patient with recently treated SARS-CoV-2 induced pneumonia: A case report.
Therapeutic apheresis and dialysis : official peer-reviewed journal of the International Society for Apheresis, the Japanese Society for Apheresis, the Japanese Society for Dialysis Therapy.
2022 04; 26(2):478-479. doi:
10.1111/1744-9987.13748
. [PMID: 34676979] - Marko Lucijanic, Petra Bistrovic. Remdesivir-associated bradycardia might be a sign of good prognosis in COVID-19 patients.
Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases.
2022 04; 28(4):619. doi:
10.1016/j.cmi.2021.12.017
. [PMID: 34999175] - Zhengdong Yang, Deqing Xiao, Kah Hiing John Ling, Thomas Tarnowski, Rita Humeniuk, Bryan Parmentier, Yu-Hui Ann Fu, Eric Johnson, Marsha L Luna, Habibi Goudarzi, Quan Cheng. The determination of Sulfobutylether β-Cyclodextrin Sodium (SBECD) by LC-MS/MS and its application in remdesivir pharmacokinetics study for pediatric patients.
Journal of pharmaceutical and biomedical analysis.
2022 Apr; 212(?):114646. doi:
10.1016/j.jpba.2022.114646
. [PMID: 35180564] - Elena Rensen, Stefano Pietropaoli, Florian Mueller, Christian Weber, Sylvie Souquere, Sina Sommer, Pierre Isnard, Marion Rabant, Jean-Baptiste Gibier, Fabiola Terzi, Etienne Simon-Loriere, Marie-Anne Rameix-Welti, Gérard Pierron, Giovanna Barba-Spaeth, Christophe Zimmer. Sensitive visualization of SARS-CoV-2 RNA with CoronaFISH.
Life science alliance.
2022 04; 5(4):. doi:
10.26508/lsa.202101124
. [PMID: 34996842]