5,10-Methylenetetrahydrofolate(2-) (BioDeep_00000848311)
代谢物信息卡片
化学式: C20H21N7O6-2 (455.1553)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1C2CN(CN2C3=C(N1)N=C(NC3=O)N)C4=CC=C(C=C4)C(=O)NC(CCC(=O)[O-])C(=O)[O-]
InChI: InChI=1S/C20H23N7O6/c21-20-24-16-15(18(31)25-20)27-9-26(8-12(27)7-22-16)11-3-1-10(2-4-11)17(30)23-13(19(32)33)5-6-14(28)29/h1-4,12-13H,5-9H2,(H,23,30)(H,28,29)(H,32,33)(H4,21,22,24,25,31)/p-2/t12?,13-/m0/s1
相关代谢途径
Reactome(7)
BioCyc(0)
PlantCyc(0)
代谢反应
425 个相关的代谢反应过程信息。
Reactome(107)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Q0VCN9 ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of folate and pterines:
A0A5F4C041 + FOLA ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + folr ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + FOLR2_HUMAN ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Folr2 ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of water-soluble vitamins and cofactors:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of folate and pterines:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
D4A4S5 + FOLA ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Amino acid and derivative metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
A0A5G2QLX9 + FOLA ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + Homologues of FOLR2 ⟶ FOLR2:FOLA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of folate and pterines:
FOLA + H+ + TPNH ⟶ DHF + TPN
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Glyoxylate metabolism and glycine degradation:
L-Ala + glyoxylate ⟶ Gly + PYR
- Glycine degradation:
GCSH:SAMDLL + THF ⟶ 5,10-methylene-THF + GCSH:DHLL + ammonia
BioCyc(0)
WikiPathways(0)
Plant Reactome(318)
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
glycolate ⟶ glyoxylate
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
L-Glu + imidazole acetol-phosphate ⟶ 2OG + L-histidinol-phosphate
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
FAD + PROP-CoA ⟶ FADH2 + acryloyl-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Metabolism and regulation:
CoA + NAD + methylmalonate-semialdehyde ⟶ NADH + PROP-CoA + carbon dioxide
- PCO cycle:
Gly + NAD + THF ⟶ 5,10-methylene-THF + NADH + ammonia + carbon dioxide
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + L-Glu + a tetrahydrofolate polyglutamate ⟶ ADP + Pi + a tetrahydrofolate polyglutamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
9-mercaptodethiobiotin ⟶ Btn
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + L-Glu + a tetrahydrofolate polyglutamate ⟶ ADP + Pi + a tetrahydrofolate polyglutamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + L-Glu + a tetrahydrofolate polyglutamate ⟶ ADP + Pi + a tetrahydrofolate polyglutamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + L-Glu + a tetrahydrofolate polyglutamate ⟶ ADP + Pi + a tetrahydrofolate polyglutamate
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
5,10-methylene-THF + H2O + KIV ⟶ 2-dehydropantoate + THF
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Folate polyglutamylation I:
ATP + HCOOH + THF ⟶ 10-formyl-THF + ADP + Pi
INOH(0)
PlantCyc(0)
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
亚细胞结构定位 | 关联基因列表 |
---|
文献列表
- Helena Taflin, Elisabeth Odin, Göran Carlsson, Roger Tell, Bengt Gustavsson, Yvonne Wettergren. Plasma deoxyuridine as a surrogate marker for toxicity and early clinical response in patients with metastatic colorectal cancer after 5-FU-based therapy in combination with arfolitixorin.
Cancer chemotherapy and pharmacology.
2021 01; 87(1):31-41. doi:
10.1007/s00280-020-04173-2
. [PMID: 33099678] - Aamod S Dekhne, Changwen Ning, Md Junayed Nayeen, Khushbu Shah, Hasini Kalpage, Josephine Frühauf, Adrianne Wallace-Povirk, Carrie O'Connor, Zhanjun Hou, Seongho Kim, Maik Hüttemann, Aleem Gangjee, Larry H Matherly. Cellular Pharmacodynamics of a Novel Pyrrolo[3,2-d]pyrimidine Inhibitor Targeting Mitochondrial and Cytosolic One-Carbon Metabolism.
Molecular pharmacology.
2020 01; 97(1):9-22. doi:
10.1124/mol.119.117937
. [PMID: 31707355] - Mehmet Serdar Kutuk, Asli Subasioglu, Semih Uludag, Nazife Tascioglu, Mahmut Tuncay Ozgun, Munis Dundar. The effect of parental 5,10-methylenetetrahydrofolate reductase 677C/T and 1298A/C gene polymorphisms on response to single-dose methotrexate in tubal ectopic pregnancy.
The journal of maternal-fetal & neonatal medicine : the official journal of the European Association of Perinatal Medicine, the Federation of Asia and Oceania Perinatal Societies, the International Society of Perinatal Obstetricians.
2017 May; 30(10):1232-1237. doi:
10.1080/14767058.2016.1209652
. [PMID: 27379466] - Natario L Couser, Julie McClure, Michael W Evans, Nathan R Haines, Susan K Burden, Joseph Muenzer. Homocysteinemia due to MTHFR deficiency in a young adult presenting with bilateral lens subluxations.
Ophthalmic genetics.
2017 Jan; 38(1):91-94. doi:
10.3109/13816810.2016.1143017
. [PMID: 27046515] - José F Cascalheira, Mónica Gonçalves, Madalena Barroso, Rita Castro, Manuela Palmeira, André Serpa, Ana C Dias-Cabral, Fernanda C Domingues, Sofia Almeida. Association of the transcobalamin II gene 776C → G polymorphism with Alzheimer's type dementia: dependence on the 5, 10-methylenetetrahydrofolate reductase 1298A → C polymorphism genotype.
Annals of clinical biochemistry.
2015 Jul; 52(Pt 4):448-55. doi:
10.1177/0004563214561770
. [PMID: 25395544] - Azita Hekmatdoost, Farhad Vahid, Zahra Yari, Mohammadreza Sadeghi, Hassan Eini-Zinab, Niknam Lakpour, Soheila Arefi. Methyltetrahydrofolate vs Folic Acid Supplementation in Idiopathic Recurrent Miscarriage with Respect to Methylenetetrahydrofolate Reductase C677T and A1298C Polymorphisms: A Randomized Controlled Trial.
PloS one.
2015; 10(12):e0143569. doi:
10.1371/journal.pone.0143569
. [PMID: 26630680] - Yvonne Wettergren, Helena Taflin, Elisabeth Odin, Karl Kodeda, Kristoffer Derwinger. A pharmacokinetic and pharmacodynamic investigation of Modufolin® compared to Isovorin® after single dose intravenous administration to patients with colon cancer: a randomized study.
Cancer chemotherapy and pharmacology.
2015 Jan; 75(1):37-47. doi:
10.1007/s00280-014-2611-9
. [PMID: 25342290] - Bridget Wilcken. Leukoencephalopathies associated with disorders of cobalamin and folate metabolism.
Seminars in neurology.
2012 Feb; 32(1):68-74. doi:
10.1055/s-0032-1306389
. [PMID: 22422209] - Grazyna Kurzawińska, Agnieszka Seremak-Mrozikiewicz, Krzysztof Drews, Magdalena Barlik, Przemysław M Mrozikiewicz. [Genetic conditioned changes in activity of 5,10-methylenetetrahydrofolate reductase (MTHFR) and recurrent miscarriages].
Ginekologia polska.
2009 Oct; 80(10):762-7. doi:
. [PMID: 19943541]
- José F Cascalheira, Sara S João, Sandra S Pinhanços, Rita Castro, Manuela Palmeira, Sofia Almeida, Maria C Faria, Fernanda C Domingues. Serum homocysteine: interplay with other circulating and genetic factors in association to Alzheimer's type dementia.
Clinical biochemistry.
2009 Jun; 42(9):783-90. doi:
10.1016/j.clinbiochem.2009.02.006
. [PMID: 19232336] - Yvonne Lamers, Jerry Williamson, Maria Ralat, Eoin P Quinlivan, Lesa R Gilbert, Christine Keeling, Robert D Stevens, Christopher B Newgard, Per M Ueland, Klaus Meyer, Ase Fredriksen, Peter W Stacpoole, Jesse F Gregory. Moderate dietary vitamin B-6 restriction raises plasma glycine and cystathionine concentrations while minimally affecting the rates of glycine turnover and glycine cleavage in healthy men and women.
The Journal of nutrition.
2009 Mar; 139(3):452-60. doi:
10.3945/jn.108.099184
. [PMID: 19158217] - V T Ramaekers, J Weis, J M Sequeira, E V Quadros, N Blau. Mitochondrial complex I encephalomyopathy and cerebral 5-methyltetrahydrofolate deficiency.
Neuropediatrics.
2007 Aug; 38(4):184-7. doi:
10.1055/s-2007-991150
. [PMID: 18058625] - H Ashktorab, R Begum, A Akhgar, D T Smoot, M Elbedawi, M Daremipouran, A Zhao, B Momen, F M Giardiello. Folate status and risk of colorectal polyps in African Americans.
Digestive diseases and sciences.
2007 Jun; 52(6):1462-70. doi:
10.1007/s10620-006-9236-8
. [PMID: 17372834] - Ken D Stark, Robert J Pawlosky, Robert J Sokol, John H Hannigan, Norman Salem. Maternal smoking is associated with decreased 5-methyltetrahydrofolate in cord plasma.
The American journal of clinical nutrition.
2007 Mar; 85(3):796-802. doi:
10.1093/ajcn/85.3.796
. [PMID: 17344502] - L Flicker, R N Martins, J Thomas, J Acres, K Taddei, P Norman, K Jamrozik, O P Almeida. Homocysteine, Alzheimer genes and proteins, and measures of cognition and depression in older men.
Journal of Alzheimer's disease : JAD.
2004 Jun; 6(3):329-36. doi:
10.3233/jad-2004-6313
. [PMID: 15201487] - Kristina Pentieva, Helene McNulty, Rebecca Reichert, Mary Ward, J J Strain, Derek J McKillop, Joseph M McPartlin, Edel Connolly, Anne Molloy, Klaus Krämer, John M Scott. The short-term bioavailabilities of [6S]-5-methyltetrahydrofolate and folic acid are equivalent in men.
The Journal of nutrition.
2004 Mar; 134(3):580-5. doi:
10.1093/jn/134.3.580
. [PMID: 14988450] - K S Song, J W Song, J R Choi, H K Kim, J S Shin, J H Kim. Homozygous VN (677C to T) and d/D (2756G to A) variants in the methylenetetrahydrofolate and methionine synthase genes in a case of hyperhomocysteinemia with stroke at young age.
Experimental & molecular medicine.
2001 Jun; 33(2):106-9. doi:
10.1038/emm.2001.19
. [PMID: 11460881] - H R Thompson, G M Jones, M R Narkewicz. Ontogeny of hepatic enzymes involved in serine- and folate-dependent one-carbon metabolism in rabbits.
American journal of physiology. Gastrointestinal and liver physiology.
2001 May; 280(5):G873-8. doi:
10.1152/ajpgi.2001.280.5.g873
. [PMID: 11292595] - B Fowler. The folate cycle and disease in humans.
Kidney international. Supplement.
2001 Feb; 78(?):S221-9. doi:
10.1046/j.1523-1755.2001.59780221.x
. [PMID: 11169015] - H J Blom. Genetic determinants of hyperhomocysteinaemia: the roles of cystathionine beta-synthase and 5,10-methylenetetrahydrofolate reductase.
European journal of pediatrics.
2000 Dec; 159 Suppl 3(?):S208-12. doi:
10.1007/pl00014405
. [PMID: 11216902] - E Odin, G Carlsson, R Frösing, B Gustavsson, C P Spears, P A Larsson. Chemical stability and human plasma pharmacokinetics of reduced folates.
Cancer investigation.
1998; 16(7):447-55. doi:
10.3109/07357909809011698
. [PMID: 9774951] - J E Wright, M Pardo, A Tretyakov, W L Alperin, D Trites, A Rosowsky. Pharmacokinetics, antifolate activity and tissue distribution of PT523 in SCC VII tumor-bearing mice.
Cancer chemotherapy and pharmacology.
1998; 42(4):300-6. doi:
10.1007/s002800050821
. [PMID: 9744775] - J Ma, M J Stampfer, E Giovannucci, C Artigas, D J Hunter, C Fuchs, W C Willett, J Selhub, C H Hennekens, R Rozen. Methylenetetrahydrofolate reductase polymorphism, dietary interactions, and risk of colorectal cancer.
Cancer research.
1997 Mar; 57(6):1098-102. doi:
. [PMID: 9067278]
- G J Cowin, D A Willgoss, J Bartley, Z H Endre. Serine isotopmer analysis by 13C-NMR defines glycine-serine interconversion in situ in the renal proximal tubule.
Biochimica et biophysica acta.
1996 Jan; 1310(1):32-40. doi:
10.1016/0167-4889(95)00142-5
. [PMID: 9244172] - G J Cowin, D A Willgoss, Z H Endre. Modulation of glycine-serine interconversion by TCA and glycolytic intermediates in normoxic and hypoxic proximal tubules.
Biochimica et biophysica acta.
1996 Jan; 1310(1):41-7. doi:
10.1016/0167-4889(95)00141-7
. [PMID: 9244173] - R C Wood. Involvement of folic acid in the synthesis of membrane-associated nucleotide sugars by normal and transformed mouse fibroblasts.
Cancer letters.
1995 Sep; 96(2):233-7. doi:
10.1016/0304-3835(95)03937-r
. [PMID: 7585462] - H C Shin, F Takakuwa, M Shimoda, E Kokue. Enterohepatic circulation kinetics of bile-active folate derivatives and folate homeostasis in rats.
The American journal of physiology.
1995 Aug; 269(2 Pt 2):R421-5. doi:
10.1152/ajpregu.1995.269.2.r421
. [PMID: 7653665] - P Goyette, P Frosst, D S Rosenblatt, R Rozen. Seven novel mutations in the methylenetetrahydrofolate reductase gene and genotype/phenotype correlations in severe methylenetetrahydrofolate reductase deficiency.
American journal of human genetics.
1995 May; 56(5):1052-9. doi:
. [PMID: 7726158]
- J C Schmitz, R K Stuart, D G Priest. Disposition of folic acid and its metabolites: a comparison with leucovorin.
Clinical pharmacology and therapeutics.
1994 May; 55(5):501-8. doi:
10.1038/clpt.1994.63
. [PMID: 8181194] - Z G Zhang, Y M Rustum. Pharmacologic rationale for fluoropyrimidine-leucovorin combination: biochemical mechanisms.
Seminars in oncology.
1992 Apr; 19(2 Suppl 4):46-50. doi:
. [PMID: 1532459]
- D G Priest, J C Schmitz, M A Bunni, R K Stuart. Pharmacokinetics of leucovorin metabolites in human plasma as a function of dose administered orally and intravenously.
Journal of the National Cancer Institute.
1991 Dec; 83(24):1806-12. doi:
10.1093/jnci/83.24.1806
. [PMID: 1744924] - J A Houghton, L G Williams, P J Cheshire, I W Wainer, P Jadaud, P J Houghton. Influence of dose of [6RS]leucovorin on reduced folate pools and 5-fluorouracil-mediated thymidylate synthase inhibition in human colon adenocarcinoma xenografts.
Cancer research.
1990 Jul; 50(13):3940-6. doi:
. [PMID: 2354443]
- J A Houghton, L G Williams, S S de Graaf, P J Cheshire, J H Rodman, D C Maneval, I W Wainer, P Jadaud, P J Houghton. Relationship between dose rate of [6RS]Leucovorin administration, plasma concentrations of reduced folates, and pools of 5,10-methylenetetrahydrofolates and tetrahydrofolates in human colon adenocarcinoma xenografts.
Cancer research.
1990 Jun; 50(12):3493-502. doi:
. [PMID: 2140289]
- P Sur, M T Doig, D G Priest. Response of methylenetetrahydrofolate levels to methotrexate in Krebs ascites cells.
The Biochemical journal.
1983 Nov; 216(2):295-8. doi:
10.1042/bj2160295
. [PMID: 6661197] - D G Priest, C D Veronee, M Mangum, J M Bednarek, M T Doig. Comparison of folylpolyglutamate hydrolases of mouse liver, kidney, muscle and brain.
Molecular and cellular biochemistry.
1982 Mar; 43(2):81-7. doi:
10.1007/bf00423095
. [PMID: 6178012]