Ferroprotoporphyrin IX (BioDeep_00000910928)
代谢物信息卡片
化学式: C34H32FeN4O4-2 (616.1772821999999)
中文名称:
谱图信息:
最多检出来源 Homo sapiens(blood) 83.33%
分子结构信息
SMILES: CC1=C(C2=CC3=NC(=CC4=C(C(=C([N-]4)C=C5C(=C(C(=N5)C=C1[N-]2)C=C)C)C=C)C)C(=C3CCC(=O)O)C)CCC(=O)O.[Fe]
InChI: /p-2
相关代谢途径
Reactome(47)
- Metabolism
- Metabolism of vitamins and cofactors
- Disease
- Amino acid and derivative metabolism
- Metabolism of cofactors
- Histidine, lysine, phenylalanine, tyrosine, proline and tryptophan catabolism
- Transport of small molecules
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Metabolism of water-soluble vitamins and cofactors
- Tryptophan catabolism
- Metabolism of nitric oxide: NOS3 activation and regulation
- eNOS activation and regulation
- eNOS activation
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- RHO GTPases Activate NADPH Oxidases
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Latent infection of Homo sapiens with Mycobacterium tuberculosis
- Latent infection - Other responses of Mtb to phagocytosis
- Tolerance of reactive oxygen produced by macrophages
- Infection with Mycobacterium tuberculosis
- Cellular response to chemical stress
- Cytoprotection by HMOX1
- Bacterial Infection Pathways
- Selenoamino acid metabolism
- Metabolism of ingested SeMet, Sec, MeSec into H2Se
- Iron uptake and transport
- Heme synthesis
- Sulfur amino acid metabolism
- Cysteine formation from homocysteine
- Tolerance by Mtb to nitric oxide produced by macrophages
- Viral Infection Pathways
- Porphyrin metabolism
- Heme biosynthesis
- VEGFR2 mediated vascular permeability
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Heme degradation
BioCyc(25)
- superpathway of b heme biosynthesis from glycine
- superpathway of tryptophan utilization
- heme b biosynthesis I (aerobic)
- heme degradation IV
- heme degradation VI
- hydrogen to dimethyl sulfoxide electron transfer
- formate to dimethyl sulfoxide electron transfer
- superpathay of heme b biosynthesis from glutamate
- heme degradation V
- trans-lycopene biosynthesis II (oxygenic phototrophs and green sulfur bacteria)
- NADH to cytochrome bo oxidase electron transfer I
- NADH to cytochrome bd oxidase electron transfer I
- superoxide radicals degradation
- heme biosynthesis from uroporphyrinogen-III II
- superpathway of heme b biosynthesis from uroporphyrinogen-III
- nitrate reduction III (dissimilatory)
- succinate to cytochrome bo oxidase electron transfer
- NADH to cytochrome bo oxidase electron transfer II
- D-lactate to cytochrome bo oxidase electron transfer
- glycerol-3-phosphate to cytochrome bo oxidase electron transfer
- proline to cytochrome bo oxidase electron transfer
- pyruvate to cytochrome bo oxidase electron transfer
- citrulline-nitric oxide cycle
- NADH to cytochrome bd oxidase electron transfer II
- succinate to cytochrome bd oxidase electron transfer
代谢反应
479 个相关的代谢反应过程信息。
Reactome(340)
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
BV + TPNH ⟶ BIL + TPN
- Cellular responses to stress:
BV + TPNH ⟶ BIL + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BV + TPNH ⟶ BIL + TPN
- Cytoprotection by HMOX1:
BV + TPNH ⟶ BIL + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cytoprotection by HMOX1:
BIL:ALB + O2.- ⟶ ALB + BV
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Transport of small molecules:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Iron uptake and transport:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme degradation:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Porphyrin metabolism:
BV + TPNH ⟶ BIL + TPN
- Heme degradation:
BV + TPNH ⟶ BIL + TPN
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Iron uptake and transport:
CIT ⟶ ISCIT
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cytoprotection by HMOX1:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Heme signaling:
FeHM + LDL ⟶ heme + oxidized LDL
- Heme signaling:
H2O2 + ferrohemoglobin ⟶ MetHb + hydroxide + hydroxyl
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Heme signaling:
FeHM + LDL ⟶ heme + oxidized LDL
- Heme signaling:
H2O2 + ferrohemoglobin ⟶ MetHb + hydroxide + hydroxyl
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Heme signaling:
FeHM + LDL,HDL ⟶ heme + oxidized LDL,HDL
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Vitamin C (ascorbate) metabolism:
CYB5A:heme + SHAS ⟶ CYB5A:ferriheme + VitC
- Metabolism of nitric oxide: NOS3 activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
GTP + H2O ⟶ DHNTP + HCOOH
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSTRIN mediated eNOS trafficking:
eNOS:Caveolin-1:NOSTRIN:Dynamin-2 + wasla ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASp + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
Nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
H2O + cAMP ⟶ AMP
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
Nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by Receptor Tyrosine Kinases:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFR2 mediated vascular permeability:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Metabolism of nitric oxide: NOS3 activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by VEGF:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFA-VEGFR2 Pathway:
Oxygen + TPNH ⟶ H+ + O2.- + TPN
- VEGFR2 mediated vascular permeability:
PAK1,2,3 dimer + p-VAV family:PIP3:RAC1:GTP ⟶ 2 x p-VAV family:PIP3:RAC1:GTP:PAK 1-3
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- NOSIP mediated eNOS trafficking:
nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
NOSTRIN homotrimer + eNOS:Caveolin-1 ⟶ eNOS:Caveolin-1:NOSTRIN complex
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- NOSIP mediated eNOS trafficking:
nosip + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
Homologues of N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- NOSTRIN mediated eNOS trafficking:
N-WASP + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- NOSIP mediated eNOS trafficking:
NOSIP + palmitoylated, myristoylated eNOS dimer ⟶ eNOS:NOSIP
- NOSTRIN mediated eNOS trafficking:
WASL + eNOS:Caveolin-1:NOSTRIN:Dynamin-2 ⟶ eNOS:Caveolin-1:NOSTRIN:dynamin-2:N-WASP
- eNOS activation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Latent infection of Homo sapiens with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Latent infection - Other responses of Mtb to phagocytosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Tolerance by Mtb to nitric oxide produced by macrophages:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Metabolism of nitric oxide:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation and regulation:
ADMA + H2O ⟶ DMA + L-Cit
- eNOS activation:
ADMA + H2O ⟶ DMA + L-Cit
- Metabolism of nitric oxide: NOS3 activation and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- eNOS activation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Infection with Mycobacterium tuberculosis:
H+ + MSH + NADH + nitrosomycothiol ⟶ H2O + MSSM + NAD + ammonia
- Bacterial Infection Pathways:
H+ + NADH + dlaT(ox.) ⟶ NAD + dlaT
- Porphyrin metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Heme biosynthesis:
H2O + PBG ⟶ HMBL + ammonia
- Heme synthesis:
H2O + PBG ⟶ HMBL + ammonia
- Porphyrin metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Heme biosynthesis:
H2O + PBG ⟶ HMBL + ammonia
- Heme biosynthesis:
H2O + PBG ⟶ HMBL + ammonia
- Signaling Pathways:
AMP + p-AMPK heterotrimer ⟶ p-AMPK heterotrimer:AMP
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by VEGF:
ATP + H0Z2U9 ⟶ ADP + phospho-p-S,2T-MAPKAPK3
- VEGFA-VEGFR2 Pathway:
ATP + H0Z2U9 ⟶ ADP + phospho-p-S,2T-MAPKAPK3
- Signaling by Rho GTPases:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPase Effectors:
2OG + Oxygen + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12, Me3K-10-H3:KDM4C ⟶ CH2O + Homologues of KDM4C + SUCCA + carbon dioxide + p-T774-PKN1:AR:Androgen:KLK2,3 Gene:Nucleosome with p-T12-Me2K-10-H3
- RHO GTPases Activate NADPH Oxidases:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
BIL ⟶ BIL:GSTA1, FABP1
- Heme biosynthesis:
Fe2+ + protoporphyrin ⟶ H+ + heme
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
BIL + Homologues of GSTA1 ⟶ BIL:GSTA1, FABP1
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
BIL + GST ⟶ BIL:GSTA1, FABP1
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
BIL + UDP-GlcA ⟶ BMG + UDP
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Porphyrin metabolism:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- Metabolism:
H2O + PBG ⟶ HMBL + ammonia
- Heme synthesis:
H2O + PBG ⟶ HMBL + ammonia
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Innate Immune System:
TLR4:TLR6 + oxLDL:CD36 ⟶ TLR4:TLR6:CD36:oxLDL
- ROS and RNS production in phagocytes:
H+ + O2.- ⟶ H2O2
- Heme biosynthesis:
Oxygen + coproporphyrinogen III ⟶ H2O2 + carbon dioxide + protoporphyrinogen
- O2/CO2 exchange in erythrocytes:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Erythrocytes take up carbon dioxide and release oxygen:
H2O + carbon dioxide ⟶ H+ + HCO3-
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Mitochondrial ABC transporters:
ATP + H2O + heme ⟶ ADP + Pi + heme
- Transport of small molecules:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Mitochondrial ABC transporters:
ATP + H2O + heme ⟶ ADP + Pi + heme
- ABC-family proteins mediated transport:
ATP + CHOL + H2O ⟶ ADP + CHOL + Pi
- Mitochondrial ABC transporters:
ATP + H2O + heme ⟶ ADP + Pi + heme
BioCyc(22)
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- heme degradation IV:
A + H+ + O2 + ferroheme b + hydrogen peroxide ⟶ A(H2) + CO + Fe3+ + hematinate + tripyrrole
- heme degradation III:
A(H2) + H+ + O2 + ferroheme b ⟶ A + CO + Fe2+ + H2O + biliverdin-IX δ
- heme degradation II:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- phycoerythrobilin biosynthesis II:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phycoviolobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phycoerythrobilin biosynthesis I:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phycourobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phycocyanobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + ferroheme b ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- heme degradation VI:
A(H2) + H+ + O2 + ferroheme b ⟶ β-staphylobilin + A + Fe2+ + H2O + formaldehyde
- heme degradation VI:
A(H2) + H+ + O2 + ferroheme b ⟶ δ-staphylobilin + A + Fe2+ + H2O + formaldehyde
- heme biosynthesis:
O2 + protoporphyrinogen IX ⟶ hydrogen peroxide + protoporphyrin IX
- heme biosynthesis from uroporphyrinogen-III II:
H+ + uroporphyrinogen-III ⟶ CO2 + coproporphyrinogen III
- heme degradation V:
δ-anaerubin + NADP+ ⟶ H+ + NADPH + anaerobilin
- heme degradation VII:
A(H2) + H+ + O2 + ferroheme b ⟶ A + Fe2+ + H2O + mycobilin b
- heme degradation VII:
A(H2) + H+ + O2 + ferroheme b ⟶ A + Fe2+ + H2O + mycobilin b
- heme b biosynthesis IV (Gram-positive bacteria):
H+ + harderoheme III + hydrogen peroxide ⟶ CO2 + H2O + ferroheme b
- heme b biosynthesis IV (Gram-positive bacteria):
H+ + coproheme III + hydrogen peroxide ⟶ CO2 + H2O + harderoheme III
- heme b biosynthesis III (from siroheme):
12,18-didecarboxysiroheme + A(H2) + SAM ⟶ 5'-deoxyadenosine + A + H+ + acetate + coproheme III + met
- heme biosynthesis III (from siroheme):
12,18-didecarboxysiroheme + A(H2) + SAM ⟶ 5'-deoxyadenosine + A + Fe-coproporphyrin III + H+ + acetate + met
Plant Reactome(0)
INOH(0)
PlantCyc(116)
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- heme degradation I:
H+ + O2 + a reduced [NADPH-hemoprotein reductase] + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized [NADPH-hemoprotein reductase]
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- phytochromobilin biosynthesis:
H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster + protoheme ⟶ (Z,Z)-biliverdin-IX α + CO + Fe2+ + H2O + an oxidized ferredoxin [iron-sulfur] cluster
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Suriya Palamae, Wattana Temdee, Jirakrit Saetang, Umesh Patil, Watcharapol Suyapoh, Mingkwan Yingkajorn, Xinru Fan, Bin Zhang, Soottawat Benjakul. Impact of high-pressure processing on hemolymph, color, lipid globular structure and oxidation of the edible portion of blood clams.
Food chemistry.
2024 Jul; 447(?):138948. doi:
10.1016/j.foodchem.2024.138948
. [PMID: 38513490] - Mohd Junaid Wani, Amin Arif, Khushtar Anwar Salman, Riaz Mahmood. Glycated LDL generates reactive species that damage cell components, oxidize hemoglobin and alter surface morphology in human erythrocytes.
International journal of biological macromolecules.
2024 Jun; 269(Pt 2):132257. doi:
10.1016/j.ijbiomac.2024.132257
. [PMID: 38729492] - Ana Beatriz Walter-Nuno, Mabel Taracena-Agarwal, Matheus P Oliveira, Marcus F Oliveira, Pedro L Oliveira, Gabriela O Paiva-Silva. Export of heme by the feline leukemia virus C receptor regulates mitochondrial biogenesis and redox balance in the hematophagous insect Rhodnius prolixus.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2024 May; 38(10):e23691. doi:
10.1096/fj.202301671rr
. [PMID: 38780525] - Yogesh Dubey, Shabnam Mansuri, Sriram Kanvah. Detecting labile heme and ferroptosis through 'turn-on' fluorescence and lipid droplet localization post Fe2+ sensing.
Journal of materials chemistry. B.
2024 May; 12(20):4962-4974. doi:
10.1039/d4tb00353e
. [PMID: 38687117] - Nicolas Grosjean, Estella F Yee, Desigan Kumaran, Kriti Chopra, Macon Abernathy, Sandeep Biswas, James Byrnes, Dale F Kreitler, Jan-Fang Cheng, Agnidipta Ghosh, Steven C Almo, Masakazu Iwai, Krishna K Niyogi, Himadri B Pakrasi, Ritimukta Sarangi, Hubertus van Dam, Lin Yang, Ian K Blaby, Crysten E Blaby-Haas. A hemoprotein with a zinc-mirror heme site ties heme availability to carbon metabolism in cyanobacteria.
Nature communications.
2024 Apr; 15(1):3167. doi:
10.1038/s41467-024-47486-z
. [PMID: 38609367] - Cleverson D T Freitas, José H Costa, Thais A Germano, Raquel de O Rocha, Márcio V Ramos, Leandro P Bezerra. Class III plant peroxidases: From classification to physiological functions.
International journal of biological macromolecules.
2024 Apr; 263(Pt 1):130306. doi:
10.1016/j.ijbiomac.2024.130306
. [PMID: 38387641] - Min Cui, Hao Wu, Hanmo Zhang, Liping Wei, Xin Qi. Associations of dietary iron intake with cardiovascular disease risk and dyslipidemia among Chinese adults.
Lipids in health and disease.
2024 Mar; 23(1):67. doi:
10.1186/s12944-024-02058-4
. [PMID: 38431652] - William W Parson, Jingcheng Huang, Martin Kulke, Josh V Vermaas, David M Kramer. Electron transfer in a crystalline cytochrome with four hemes.
The Journal of chemical physics.
2024 Feb; 160(6):. doi:
10.1063/5.0186958
. [PMID: 38341797] - Yunzhi Liu, Junrong Xu, Xuefang Lu, Mengxiao Huang, Yuanzhi Mao, Chuanghao Li, Wenjin Yu, Changxia Li. Carbon monoxide is involved in melatonin-enhanced drought resistance in tomato seedlings by enhancing chlorophyll synthesis pathway.
BMC plant biology.
2024 Feb; 24(1):97. doi:
10.1186/s12870-024-04793-3
. [PMID: 38331770] - Chen-Song Dong, Wei-Lun Zhang, Xiao-Ying Wang, Xiao Wang, Jia Wang, Mingzhu Wang, Ying Fang, Lin Liu. Crystallographic and functional studies of a plant temperature-induced lipocalin.
Biochimica et biophysica acta. General subjects.
2024 Feb; 1868(2):130540. doi:
10.1016/j.bbagen.2023.130540
. [PMID: 38103756] - Marta Manco, Giorgia Ammirata, Sara Petrillo, Francesco De Giorgio, Simona Fontana, Chiara Riganti, Paolo Provero, Sharmila Fagoonee, Fiorella Altruda, Emanuela Tolosano. FLVCR1a Controls Cellular Cholesterol Levels through the Regulation of Heme Biosynthesis and Tricarboxylic Acid Cycle Flux in Endothelial Cells.
Biomolecules.
2024 Jan; 14(2):. doi:
10.3390/biom14020149
. [PMID: 38397386] - Yang Gu, Ziying Li, Han Li, Xiaoling Yi, Xun Liu, Yan Zhang, Shu Gong, Tao Yu, Li Li. Exploring the efficacious constituents and underlying mechanisms of sini decoction for sepsis treatment through network pharmacology and multi-omics.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2024 Jan; 123(?):155212. doi:
10.1016/j.phymed.2023.155212
. [PMID: 38029626] - Kristen S Hill, Erin E Schuler, Sally R Ellingson, Jill M Kolesar. Artesunate acts through cytochrome c to inhibit growth of pediatric AML cells.
Scientific reports.
2023 12; 13(1):22383. doi:
10.1038/s41598-023-49928-y
. [PMID: 38104159] - Huihui Liu, Qing Wang, Jingru Guo, Kai Feng, Yiling Ruan, Zhihao Zhang, Xin Ji, Jigang Wang, Tao Zhang, Xiaolian Sun. Prodrug-based strategy with a two-in-one liposome for Cerenkov-induced photodynamic therapy and chemotherapy.
Journal of controlled release : official journal of the Controlled Release Society.
2023 12; 364(?):206-215. doi:
10.1016/j.jconrel.2023.10.036
. [PMID: 37884209] - Dipun Nirmal Perera, Chathurangi Lakshika Palliyaguruge, Dasuni Dilkini Eapasinghe, Dilmi Maleesha Liyanage, R A C Haily Seneviratne, S M D Demini, J A S M Jayasinghe, Mishal Faizan, Umapriyatharshini Rajagopalan, B Prasanna Galhena, Hasi Hays, Kanishka Senathilake, Kamani H Tennekoon, Sameera R Samarakoon. Factors affecting iron absorption and the role of fortification in enhancing iron levels.
Nutrition bulletin.
2023 Nov; ?(?):. doi:
10.1111/nbu.12643
. [PMID: 37965925] - Pauline Puylaert, Lynn Roth, Melissa Van Praet, Isabel Pintelon, Catalina Dumitrascu, Alexander van Nuijs, Greta Klejborowska, Pieter-Jan Guns, Tom Vanden Berghe, Koen Augustyns, Guido R Y De Meyer, Wim Martinet. Effect of erythrophagocytosis-induced ferroptosis during angiogenesis in atherosclerotic plaques.
Angiogenesis.
2023 11; 26(4):505-522. doi:
10.1007/s10456-023-09877-6
. [PMID: 37120604] - Qianwen Guo, Ziyue Yin, Junfei Cheng, Xiaojing Zhang, Rong Wang, Wenbin Li. Protective effect of heme chloride on hypoxia-induced tissue injury in mice.
Zhong nan da xue xue bao. Yi xue ban = Journal of Central South University. Medical sciences.
2023 Oct; 48(10):1437-1444. doi:
10.11817/j.issn.1672-7347.2023.230204
. [PMID: 38432874] - Agris Pentjuss, Emils Bolmanis, Anastasija Suleiko, Elina Didrihsone, Arturs Suleiko, Konstantins Dubencovs, Janis Liepins, Andris Kazaks, Juris Vanags. Pichia pastoris growth-coupled heme biosynthesis analysis using metabolic modelling.
Scientific reports.
2023 09; 13(1):15816. doi:
10.1038/s41598-023-42865-w
. [PMID: 37739976] - Sandra Rayego-Mateos, José Luis Morgado-Pascual, Cristina García-Caballero, Iolanda Lazaro, Aleix Sala-Vila, Lucas Opazo-Rios, Sebastian Mas-Fontao, Jesús Egido, Marta Ruiz-Ortega, Juan Antonio Moreno. Intravascular hemolysis triggers NAFLD characterized by a deregulation of lipid metabolism and lipophagy blockade.
The Journal of pathology.
2023 Aug; ?(?):. doi:
10.1002/path.6161
. [PMID: 37555366] - Li Feng, Lijuan Wei, Yayu Liu, Jiaxuan Ren, Weibiao Liao. Carbon monoxide/heme oxygenase system in plant: Roles in abiotic stress response and crosstalk with other signals molecules.
Nitric oxide : biology and chemistry.
2023 Jun; 138-139(?):51-63. doi:
10.1016/j.niox.2023.06.005
. [PMID: 37364740] - G P Coló, K Schweitzer, G M Oresti, E G Alonso, L Fernández Chávez, M Mascaró, G Giorgi, A C Curino, M M Facchinetti. Proteomic analysis of the effect of hemin in breast cancer.
Scientific reports.
2023 06; 13(1):10091. doi:
10.1038/s41598-023-35125-4
. [PMID: 37344532] - Zarmin Iqbal, Ruhul Quds, Riaz Mahmood. Vanillin attenuates CdCl2-induced cytotoxicity in isolated human erythrocytes.
Toxicology in vitro : an international journal published in association with BIBRA.
2023 Jun; ?(?):105633. doi:
10.1016/j.tiv.2023.105633
. [PMID: 37336463] - Kazuya Ishikawa, Xiaonan Xie, Yasuhide Osaki, Atsushi Miyawaki, Keiji Numata, Yutaka Kodama. Bilirubin is produced nonenzymatically in plants to maintain chloroplast redox status.
Science advances.
2023 06; 9(23):eadh4787. doi:
10.1126/sciadv.adh4787
. [PMID: 37285441] - Chinmay Dey, Madhuparna Roy, Abhishek Dey, Somdatta Ghosh Dey. Heme-Aβ in SDS micellar environment: Active site environment and reactivity.
Journal of inorganic biochemistry.
2023 Jun; 246(?):112271. doi:
10.1016/j.jinorgbio.2023.112271
. [PMID: 37301164] - Peng Lv, Feng Liu. Heme-deficient primitive red blood cells induce HSPC ferroptosis by altering iron homeostasis during zebrafish embryogenesis.
Development (Cambridge, England).
2023 May; ?(?):. doi:
10.1242/dev.201690
. [PMID: 37227070] - Andrés Álvarez-Armenta, David O Corona-Martínez, Ramón Pacheco-Aguilar, Alonso A López-Zavala, Rogerio R Sotelo-Mundo, Guillermina García-Sánchez, Juan Carlos Ramírez-Suárez. Sulfmyoglobin production by free cysteine during thermal treatment: Involvement of heme iron in the production of free radicals.
Food chemistry.
2023 May; 408(?):135165. doi:
10.1016/j.foodchem.2022.135165
. [PMID: 36527926] - Tingting Fan, Lena Roling, Boris Hedtke, Bernhard Grimm. FC2 stabilizes POR and suppresses ALA formation in the tetrapyrrole biosynthesis pathway.
The New phytologist.
2023 May; ?(?):. doi:
10.1111/nph.18952
. [PMID: 37161708] - Cengiz Kaya, Muhammed Ashraf, Mohammed Nasser Alyemeni, Jörg Rinklebe, Parvaiz Ahmad. Alleviation of arsenic toxicity in pepper plants by aminolevulinic acid and heme through modulating its sequestration and distribution within cell organelles.
Environmental pollution (Barking, Essex : 1987).
2023 May; ?(?):121747. doi:
10.1016/j.envpol.2023.121747
. [PMID: 37146870] - Bixia Zhang, Jacob A Lewis, Wilfred Vermerris, Scott E Sattler, ChulHee Kang. A sorghum ascorbate peroxidase with four binding sites has activity against ascorbate and phenylpropanoids.
Plant physiology.
2023 05; 192(1):102-118. doi:
10.1093/plphys/kiac604
. [PMID: 36575825] - November Sankey, Haley Merrick, Padam Singh, Janet Rogers, Amit Reddi, Steven D Hartson, Avishek Mitra. Role of the Mycobacterium tuberculosis ESX-4 Secretion System in Heme Iron Utilization and Pore Formation by PPE Proteins.
mSphere.
2023 04; 8(2):e0057322. doi:
10.1128/msphere.00573-22
. [PMID: 36749044] - David Stucki, Philipp Westhoff, Dominik Brilhaus, Andreas P M Weber, Peter Brenneisen, Wilhelm Stahl. Carbon monoxide exposure activates ULK1 via AMPK phosphorylation in murine embryonic fibroblasts.
International journal for vitamin and nutrition research. Internationale Zeitschrift fur Vitamin- und Ernahrungsforschung. Journal international de vitaminologie et de nutrition.
2023 Apr; 93(2):122-131. doi:
10.1024/0300-9831/a000714
. [PMID: 34074127] - Minghao Ma, Ruixia Wang, Ming Xu. Thorium(IV) triggers ferroptosis through disrupting iron homeostasis and heme metabolism in the liver following oral ingestion.
Journal of hazardous materials.
2023 Mar; 452(?):131217. doi:
10.1016/j.jhazmat.2023.131217
. [PMID: 36940529] - Weiyu Chen, Sergey Tumanov, Christopher P Stanley, Stephanie M Y Kong, James Nadel, Niv Vigder, Darren Newington, Xiaosuo Wang, Louise L Dunn, Roland Stocker. Destabilization of Atherosclerotic Plaque by Bilirubin Deficiency.
Circulation research.
2023 Mar; ?(?):. doi:
10.1161/circresaha.122.322418
. [PMID: 36876485] - Lu Liu, Zongshan Zhang, Hui Liu, Shengnan Zhu, Taoxun Zhou, Chunqun Wang, Min Hu. Identification and characterisation of the haemozoin of Haemonchus contortus.
Parasites & vectors.
2023 Mar; 16(1):88. doi:
10.1186/s13071-023-05714-3
. [PMID: 36879311] - Sherif Elsabbagh, Marius Landau, Harald Gross, Anita Schultz, Joachim E Schultz. Heme b inhibits class III adenylyl cyclases.
Cellular signalling.
2023 Mar; 103(?):110568. doi:
10.1016/j.cellsig.2022.110568
. [PMID: 36565898] - Joo-Yeun Oh, Marisa B Marques, Xin Xu, Jindong Li, Kristopher R Genschmer, Edward Phillips, Melissa F Chimento, James Mobley, Amit Gaggar, Rakesh P Patel. Different-sized extracellular vesicles derived from stored red blood cells package diverse cargoes and cause distinct cellular effects.
Transfusion.
2023 03; 63(3):586-600. doi:
10.1111/trf.17271
. [PMID: 36752125] - Zhenzhao Li, Minh Ha, Damian Frank, Melindee Hastie, Robyn D Warner. Muscle fibre type composition influences the formation of odour-active volatiles in beef.
Food research international (Ottawa, Ont.).
2023 03; 165(?):112468. doi:
10.1016/j.foodres.2023.112468
. [PMID: 36869481] - Jenny U Tran, Breann L Brown. The yeast ALA synthase C-terminus positively controls enzyme structure and function.
Protein science : a publication of the Protein Society.
2023 Feb; ?(?):e4600. doi:
10.1002/pro.4600
. [PMID: 36807942] - Robert H Calderon, Catherine de Vitry, Francis-André Wollman, Krishna K Niyogi. Rubredoxin 1 promotes the proper folding of D1 and is not required for heme b559 assembly in Chlamydomonas photosystem II.
The Journal of biological chemistry.
2023 Feb; ?(?):102968. doi:
10.1016/j.jbc.2023.102968
. [PMID: 36736898] - Andreas S Richter, Thomas Nägele, Bernhard Grimm, Kerstin Kaufmann, Michael Schroda, Dario Leister, Tatjana Kleine. Retrograde signaling in plants: A critical review focusing on the GUN pathway and beyond.
Plant communications.
2023 01; 4(1):100511. doi:
10.1016/j.xplc.2022.100511
. [PMID: 36575799] - R Luong, R V Ribeiro, A Rangan, V Naganathan, F Blyth, L M Waite, D J Handelsman, D G Le Couteur, M J Seibel, V Hirani. Haem Iron Intake Is Associated with Increased Major Adverse Cardiovascular Events, All-Cause Mortality, Congestive Cardiac Failure, and Coronary Revascularisation in Older Men: The Concord Health and Ageing in Men Project.
The journal of nutrition, health & aging.
2023; 27(7):559-570. doi:
10.1007/s12603-023-1945-6
. [PMID: 37498103] - Diana Humer, Julian Ebner. The Purification of Heme Peroxidases from Escherichia coli Inclusion Bodies: A Success Story Shown by the Example of Horseradish Peroxidase.
Methods in molecular biology (Clifton, N.J.).
2023; 2617(?):227-237. doi:
10.1007/978-1-0716-2930-7_16
. [PMID: 36656528] - Ryoya Kohata, HyunSeok Lim, Yuki Kanamoto, Akio Murakami, Yuichi Fujita, Ayumi Tanaka, Wesley Swingley, Hisashi Ito, Ryouichi Tanaka. Heterologous complementation systems verify the mosaic distribution of three distinct protoporphyrinogen IX oxidase in the cyanobacterial phylum.
Journal of plant research.
2023 Jan; 136(1):107-115. doi:
10.1007/s10265-022-01423-7
. [PMID: 36357749] - Shengjie Liao, Mi Huang, Yanli Liao, Chao Yuan. HMOX1 Promotes Ferroptosis Induced by Erastin in Lens Epithelial Cell through Modulates Fe2+ Production.
Current eye research.
2023 01; 48(1):25-33. doi:
10.1080/02713683.2022.2138450
. [PMID: 36300537] - Jinjing Xu, Kuiyang Zhu, Yali Wang, Jing Chen. The dual role and mutual dependence of heme/HO-1/Bach1 axis in the carcinogenic and anti-carcinogenic intersection.
Journal of cancer research and clinical oncology.
2023 Jan; 149(1):483-501. doi:
10.1007/s00432-022-04447-7
. [PMID: 36310300] - Eerappa Rajakumara, Dubey Saniya, Priyanka Bajaj, Rajanna Rajeshwari, Jyotsnendu Giri, Mehdi D Davari. Hijacking Chemical Reactions of P450 Enzymes for Altered Chemical Reactions and Asymmetric Synthesis.
International journal of molecular sciences.
2022 Dec; 24(1):. doi:
10.3390/ijms24010214
. [PMID: 36613657] - Mengyang Liu, Wei Ma, Xiangjie Su, Xiaomeng Zhang, Yin Lu, Shaowei Zhang, Jinghui Yan, Daling Feng, Lisong Ma, Aoife Taylor, Yunjia Ge, Qi Cheng, Kedong Xu, Yanhua Wang, Na Li, Aixia Gu, Ju Zhang, Shuangxia Luo, Shuxin Xuan, Xueping Chen, Nigel S Scrutton, Chengwei Li, Jianjun Zhao, Shuxing Shen. Mutation in a chlorophyll-binding motif of Brassica ferrochelatase enhances both heme and chlorophyll biosynthesis.
Cell reports.
2022 12; 41(10):111758. doi:
10.1016/j.celrep.2022.111758
. [PMID: 36476857] - Dan Dang, Zhaoli Meng, Chuan Zhang, Zhenyu Li, Jiaqi Wei, Hui Wu. Heme induces intestinal epithelial cell ferroptosis via mitochondrial dysfunction in transfusion-associated necrotizing enterocolitis.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2022 12; 36(12):e22649. doi:
10.1096/fj.202200853rrr
. [PMID: 36383399] - Xiaojing Qian, Huifang Chen, Jiaying Chen. Preventing heme-induced nephropathy in children with glucose 6 phosphate dehydrogenase deficiency: is there a role for acetazolamide?.
Pediatric nephrology (Berlin, Germany).
2022 12; 37(12):3249. doi:
10.1007/s00467-022-05642-x
. [PMID: 35678880] - Debakshi Mullick, Katya Rechav, Leslie Leiserowitz, Neta Regev-Rudzki, Ron Dzikowski, Michael Elbaum. Diffraction contrast in cryo-scanning transmission electron tomography reveals the boundary of hemozoin crystals in situ.
Faraday discussions.
2022 11; 240(0):127-141. doi:
10.1039/d2fd00088a
. [PMID: 35938388] - Pedro G Vásquez-Ocmín, Jean-François Gallard, Anne-Cécile Van Baelen, Karine Leblanc, Sandrine Cojean, Elisabeth Mouray, Philippe Grellier, Carlos A Amasifuén Guerra, Mehdi A Beniddir, Laurent Evanno, Bruno Figadère, Alexandre Maciuk. Biodereplication of Antiplasmodial Extracts: Application of the Amazonian Medicinal Plant Piper coruscans Kunth.
Molecules (Basel, Switzerland).
2022 Nov; 27(21):. doi:
10.3390/molecules27217638
. [PMID: 36364460] - Ko Abe, Masataka Ikeda, Tomomi Ide, Tomonori Tadokoro, Hiroko Deguchi Miyamoto, Shun Furusawa, Yoshitomo Tsutsui, Ryo Miyake, Kosei Ishimaru, Masatsugu Watanabe, Shouji Matsushima, Tomoko Koumura, Ken-Ichi Yamada, Hirotaka Imai, Hiroyuki Tsutsui. Doxorubicin causes ferroptosis and cardiotoxicity by intercalating into mitochondrial DNA and disrupting Alas1-dependent heme synthesis.
Science signaling.
2022 11; 15(758):eabn8017. doi:
10.1126/scisignal.abn8017
. [PMID: 36318618] - Samrat Rakshit, Nisha Sahu, Satendra Kumar Nirala, Monika Bhadauria. Protective activity of purpurin against d-galactosamine and lipopolysaccharide-induced hepatorenal injury by upregulation of heme oxygenase-1 in the RBC degradation cycle.
Journal of biochemical and molecular toxicology.
2022 Oct; 36(10):e23168. doi:
10.1002/jbt.23168
. [PMID: 35838105] - Saray Santamaría-Hernando, Lieselotte De Bruyne, Monica Höfte, María-Isabel Ramos-González. Improvement of fitness and biocontrol properties of Pseudomonas putida via an extracellular heme peroxidase.
Microbial biotechnology.
2022 10; 15(10):2652-2666. doi:
10.1111/1751-7915.14123
. [PMID: 35986900] - Zhigang Ke, Yiwen Bai, Hao Zhu, Xingwei Xiang, Shulai Liu, Xuxia Zhou, Yuting Ding. Characteristics of myoglobin degradation by cold plasma and its pro-oxidative activity on lipid in washed fish muscle.
Food chemistry.
2022 Sep; 389(?):132972. doi:
10.1016/j.foodchem.2022.132972
. [PMID: 35500412] - Naoufal Lakhssassi, Dounya Knizia, Abdelhalim El Baze, Aicha Lakhssassi, Jonas Meksem, Khalid Meksem. Proteomic, Transcriptomic, Mutational, and Functional Assays Reveal the Involvement of Both THF and PLP Sites at the GmSHMT08 in Resistance to Soybean Cyst Nematode.
International journal of molecular sciences.
2022 Sep; 23(19):. doi:
10.3390/ijms231911278
. [PMID: 36232579] - Nishikant Wase, José María Gutiérrez, Alexandra Rucavado, Jay W Fox. Longitudinal Metabolomics and Lipidomics Analyses Reveal Alterations Associated with Envenoming by Bothrops asper and Daboia russelii in an Experimental Murine Model.
Toxins.
2022 Sep; 14(10):. doi:
10.3390/toxins14100657
. [PMID: 36287926] - Christian Bailly, Jean-Pierre Hénichart. Advocacy for the Medicinal Plant Artabotrys hexapetalus (Yingzhao) and Antimalarial Yingzhaosu Endoperoxides.
Molecules (Basel, Switzerland).
2022 Sep; 27(19):. doi:
10.3390/molecules27196192
. [PMID: 36234725] - Yong-Seok Song, Andrew J Annalora, Craig B Marcus, Colin R Jefcoate, Christine M Sorenson, Nader Sheibani. Cytochrome P450 1B1: A Key Regulator of Ocular Iron Homeostasis and Oxidative Stress.
Cells.
2022 09; 11(19):. doi:
10.3390/cells11192930
. [PMID: 36230892] - Dmitri Konorev, Lihua Yao, Robert J Turesky. Multi-DNA Adduct and Abasic Site Quantitation In Vivo by Nano-Liquid Chromatography/High-Resolution Orbitrap Tandem Mass Spectrometry: Methodology for Biomonitoring Colorectal DNA Damage.
Chemical research in toxicology.
2022 09; 35(9):1519-1532. doi:
10.1021/acs.chemrestox.2c00177
. [PMID: 36066083] - Zhiheng Lin, Weisen Fan, Xiao Yu, Jinxing Liu, Pengfei Liu. Research into the mechanism of intervention of SanQi in endometriosis based on network pharmacology and molecular docking technology.
Medicine.
2022 Sep; 101(37):e30021. doi:
10.1097/md.0000000000030021
. [PMID: 36123943] - Fengbin Wang, Chi Ho Chan, Victor Suciu, Khawla Mustafa, Madeline Ammend, Dong Si, Allon I Hochbaum, Edward H Egelman, Daniel R Bond. Structure of Geobacter OmcZ filaments suggests extracellular cytochrome polymers evolved independently multiple times.
eLife.
2022 09; 11(?):. doi:
10.7554/elife.81551
. [PMID: 36062910] - Manish B Shah. Inhibition of CYP2C8 by Acyl Glucuronides of Gemfibrozil and Clopidogrel: Pharmacological Significance, Progress and Challenges.
Biomolecules.
2022 09; 12(9):. doi:
10.3390/biom12091218
. [PMID: 36139056] - Siva Sankari, Vignesh M P Babu, Ke Bian, Areej Alhhazmi, Mary C Andorfer, Dante M Avalos, Tyler A Smith, Kwan Yoon, Catherine L Drennan, Michael B Yaffe, Sebastian Lourido, Graham C Walker. A haem-sequestering plant peptide promotes iron uptake in symbiotic bacteria.
Nature microbiology.
2022 09; 7(9):1453-1465. doi:
10.1038/s41564-022-01192-y
. [PMID: 35953657] - Jia Wang, Xiaoyi Li, Jing-Wen Chang, Tong Ye, Ying Mao, Xiao Wang, Lin Liu. Enzymological and structural characterization of Arabidopsis thaliana heme oxygenase-1.
FEBS open bio.
2022 09; 12(9):1677-1687. doi:
10.1002/2211-5463.13453
. [PMID: 35689519] - Elshymaa A Abdel-Hakeem, Sara Mohamed Naguib Abdel Hafez, Bothina A Kamel, Heba A Abdel-Hamid. Angiotensin 1-7 mitigates rhabdomyolysis induced renal injury in rats via modulation of TLR-4/NF-kB/iNOS and Nrf-2/heme‑oxygenase-1 signaling pathways.
Life sciences.
2022 Aug; 303(?):120678. doi:
10.1016/j.lfs.2022.120678
. [PMID: 35654118] - Peng Wang, Shuiling Ji, Bernhard Grimm. Post-translational regulation of metabolic checkpoints in plant tetrapyrrole biosynthesis.
Journal of experimental botany.
2022 08; 73(14):4624-4636. doi:
10.1093/jxb/erac203
. [PMID: 35536687] - Naidu Babu Ommi, Maaged Abdullah, Lalitha Guruprasad, Phanithi Prakash Babu. Docosahexaenoic acid is potent against the growth of mature stages of Plasmodium falciparum; inhibition of hematin polymerization a possible target.
Parasitology international.
2022 Aug; 89(?):102581. doi:
10.1016/j.parint.2022.102581
. [PMID: 35395394] - Stefan J Kaliszuk, Natasha I Morgan, Taylor N Ayers, Courtney E Sparacino-Watkins, Anthony W DeMartino, Kaitlin Bocian, Venkata Ragireddy, Qin Tong, Jesús Tejero. Regulation of nitrite reductase and lipid binding properties of cytoglobin by surface and distal histidine mutations.
Nitric oxide : biology and chemistry.
2022 08; 125-126(?):12-22. doi:
10.1016/j.niox.2022.06.001
. [PMID: 35667547] - Fengbin Wang, Khawla Mustafa, Victor Suciu, Komal Joshi, Chi H Chan, Sol Choi, Zhangli Su, Dong Si, Allon I Hochbaum, Edward H Egelman, Daniel R Bond. Cryo-EM structure of an extracellular Geobacter OmcE cytochrome filament reveals tetrahaem packing.
Nature microbiology.
2022 08; 7(8):1291-1300. doi:
10.1038/s41564-022-01159-z
. [PMID: 35798889] - Haizhou Wu, Jie Yin, Shulan Xiao, Jianhao Zhang, Mark P Richards. Quercetin as an inhibitor of hemoglobin-mediated lipid oxidation: Mechanisms of action and use of molecular docking.
Food chemistry.
2022 Aug; 384(?):132473. doi:
10.1016/j.foodchem.2022.132473
. [PMID: 35219235] - Yafei Zhang, Xiaojing Tian, Yuzhen Jiao, Yang Wang, Juan Dong, Ning Yang, Qinghua Yang, Wei Qu, Wenhang Wang. Free iron rather than heme iron mainly induces oxidation of lipids and proteins in meat cooking.
Food chemistry.
2022 Jul; 382(?):132345. doi:
10.1016/j.foodchem.2022.132345
. [PMID: 35149466] - Dandan Zhong, Jie Cai, Cheng Hu, Jingshuo Chen, Rumeng Zhang, Chenyu Fan, Shanshan Li, Hongxing Zhang, Zhou Xu, Zhanjun Jia, Dong Guo, Ying Sun. Inhibition of mPGES-2 ameliorates NASH by activating NR1D1 via heme.
Hepatology (Baltimore, Md.).
2022 Jul; ?(?):. doi:
10.1002/hep.32671
. [PMID: 35839302] - Manjunatha Chandana, Aditya Anand, Sourav Ghosh, Rahul Das, Subhashree Beura, Sarita Jena, Amol Ratnakar Suryawanshi, Govindarajan Padmanaban, Viswanathan Arun Nagaraj. Malaria parasite heme biosynthesis promotes and griseofulvin protects against cerebral malaria in mice.
Nature communications.
2022 07; 13(1):4028. doi:
10.1038/s41467-022-31431-z
. [PMID: 35821013] - Yue Wu, Jing Li, Junwen Wang, Mohammed Mujitaba Dawuda, Weibiao Liao, Xin Meng, Hong Yuan, Jianming Xie, Zhongqi Tang, Jian Lyu, Jihua Yu. Heme is involved in the exogenous ALA-promoted growth and antioxidant defense system of cucumber seedlings under salt stress.
BMC plant biology.
2022 Jul; 22(1):329. doi:
10.1186/s12870-022-03717-3
. [PMID: 35804328] - Diego Vera-Yunca, Karol M Córdoba, Zinnia P Parra-Guillen, Daniel Jericó, Antonio Fontanellas, Iñaki F Trocóniz. Mechanistic modelling of enzyme-restoration effects of new recombinant liver-targeted proteins in acute intermittent porphyria.
British journal of pharmacology.
2022 07; 179(14):3815-3830. doi:
10.1111/bph.15821
. [PMID: 35170015] - Kaylin D Didier, Shane M Hammer, Andrew M Alexander, Korynne S Rollins, Thomas J Barstow. The acute effects of passive heating on endothelial function, muscle microvascular oxygen delivery, and expression of serum HSP90α.
Microvascular research.
2022 07; 142(?):104356. doi:
10.1016/j.mvr.2022.104356
. [PMID: 35276210] - María L Boutet, Lina Youssef, Lena Erlandsson, Eva Hansson, Dolors Manau, Fátima Crispi, Gemma Casals, Stefan R Hansson. Maternal and fetal haemopexin and α1-microglobulin concentrations in pre-eclamptic IVF pregnancies according to presence of corpus luteum at embryo transfer.
Reproductive biomedicine online.
2022 07; 45(1):135-145. doi:
10.1016/j.rbmo.2022.01.005
. [PMID: 35461763] - Haibo Huo, Le Zong, Yao Liu, Wenfeng Chen, Juan Chen, Gehong Wei. Rhizobial HmuSpSym as a heme-binding factor is required for optimal symbiosis between Mesorhizobium amorphae CCNWGS0123 and Robinia pseudoacacia.
Plant, cell & environment.
2022 07; 45(7):2191-2210. doi:
10.1111/pce.14335
. [PMID: 35419804] - Zhiqing Wang, Peng Zeng, Bing Zhou. Identification and characterization of a heme exporter from the MRP family in Drosophila melanogaster.
BMC biology.
2022 06; 20(1):126. doi:
10.1186/s12915-022-01332-0
. [PMID: 35655259] - Xiaoming Fan, Xiaolu Zhang, Lijun C Liu, Annes Y Kim, Sean P Curley, Xiaohuan Chen, Lance D Dworkin, Christopher J Cooper, Rajesh Gupta. Interleukin-10 attenuates renal injury after myocardial infarction in diabetes.
Journal of investigative medicine : the official publication of the American Federation for Clinical Research.
2022 06; 70(5):1233-1242. doi:
10.1136/jim-2021-002008
. [PMID: 35140126] - Romy Kronstein-Wiedemann, Marlena Stadtmüller, Sofia Traikov, Mandy Georgi, Madeleine Teichert, Hesham Yosef, Jan Wallenborn, Andreas Karl, Karin Schütze, Michael Wagner, Ali El-Armouche, Torsten Tonn. SARS-CoV-2 Infects Red Blood Cell Progenitors and Dysregulates Hemoglobin and Iron Metabolism.
Stem cell reviews and reports.
2022 06; 18(5):1809-1821. doi:
10.1007/s12015-021-10322-8
. [PMID: 35181867] - Frank A D T G Wagener, Nicole C A J van de Kar, Lambert P van den Heuvel. Protective mechanisms harnessing against injurious heme and preventing kidney damage in STEC-HUS: toward new therapies?.
Kidney international.
2022 06; 101(6):1107-1109. doi:
10.1016/j.kint.2022.02.026
. [PMID: 35597589] - Qianru Xu, Chaoxi Luo, Yanping Fu, Fuxing Zhu. Risk and molecular mechanisms for boscalid resistance in Penicillium digitatum.
Pesticide biochemistry and physiology.
2022 Jun; 184(?):105130. doi:
10.1016/j.pestbp.2022.105130
. [PMID: 35715068] - Wiebke Pirschel, Antonio N Mestekemper, Bianka Wissuwa, Nadine Krieg, Sarah Kröller, Christoph Daniel, Florian Gunzer, Emanuela Tolosano, Michael Bauer, Kerstin Amann, Stefan H Heinemann, Sina M Coldewey. Divergent roles of haptoglobin and hemopexin deficiency for disease progression of Shiga-toxin-induced hemolytic-uremic syndrome in mice.
Kidney international.
2022 06; 101(6):1171-1185. doi:
10.1016/j.kint.2021.12.024
. [PMID: 35031328] - Koya Ono, Tohru Fujiwara, Kei Saito, Hironari Nishizawa, Noriyuki Takahashi, Chie Suzuki, Tetsuro Ochi, Hiroki Kato, Yusho Ishii, Koichi Onodera, Satoshi Ichikawa, Noriko Fukuhara, Yasushi Onishi, Hisayuki Yokoyama, Rie Yamada, Yukio Nakamura, Kazuhiko Igarashi, Hideo Harigae. Congenital sideroblastic anemia model due to ALAS2 mutation is susceptible to ferroptosis.
Scientific reports.
2022 05; 12(1):9024. doi:
10.1038/s41598-022-12940-9
. [PMID: 35637209] - Rita V Chertkova, Alexander M Firsov, Nadezda A Brazhe, Evelina I Nikelshparg, Zhanna V Bochkova, Tatyana V Bryantseva, Marina A Semenova, Adil A Baizhumanov, Elena A Kotova, Mikhail P Kirpichnikov, Georgy V Maksimov, Yuriy N Antonenko, Dmitry A Dolgikh. Multiple Mutations in the Non-Ordered Red Ω-Loop Enhance the Membrane-Permeabilizing and Peroxidase-like Activity of Cytochrome c.
Biomolecules.
2022 05; 12(5):. doi:
10.3390/biom12050665
. [PMID: 35625593] - Indrila Saha, Shrestha Chakraborty, Shubhangi Agarwal, Peeali Mukherjee, Biplab Ghosh, Jhimli Dasgupta. Mechanistic insights of ABC importer HutCD involved in heme internalization by Vibrio cholerae.
Scientific reports.
2022 05; 12(1):7152. doi:
10.1038/s41598-022-11213-9
. [PMID: 35504999] - Kristine Griffett, Matthew E Hayes, Michael P Boeckman, Thomas P Burris. The role of REV-ERB in NASH.
Acta pharmacologica Sinica.
2022 May; 43(5):1133-1140. doi:
10.1038/s41401-022-00883-w
. [PMID: 35217816] - Zhirui Yang, Zhenzhen Wang, Jiangling Li, Jianglan Long, Cheng Peng, Dan Yan. Network pharmacology-based dissection of the underlying mechanisms of dyspnoea induced by zedoary turmeric oil.
Basic & clinical pharmacology & toxicology.
2022 May; 130(5):606-617. doi:
10.1111/bcpt.13722
. [PMID: 35318816] - Hideyuki Negoro, Christos Chatziantonio, Mohammed S Razzaque. Therapeutic potential of 5-aminolevulinic acid and sodium-ferrous citrate for viral insults: relevance to the COVID-19 crisis.
Expert review of anti-infective therapy.
2022 05; 20(5):657-661. doi:
10.1080/14787210.2022.2020097
. [PMID: 34927515] - Ekaterina N Gorshkova, Maxime Lecerf, Irina V Astrakhantseva, Ekaterina A Vasilenko, Olga V Starkina, Natalya A Ilyukina, Petya A Dimitrova, Jordan D Dimitrov, Tchavdar L Vassilev. Induced antigen-binding polyreactivity in human serum IgA.
Immunobiology.
2022 05; 227(3):152213. doi:
10.1016/j.imbio.2022.152213
. [PMID: 35429697] - Dipayan Bose, Shantanu Aggarwal, Debashree Das, Chandrabhas Narayana, Abhijit Chakrabarti. Erythroid spectrin binding modulates peroxidase and catalase activity of heme proteins.
IUBMB life.
2022 05; 74(5):474-487. doi:
10.1002/iub.2607
. [PMID: 35184374] - Ronald S Flannagan, Jeremy R Brozyna, Brijesh Kumar, Lea A Adolf, Jeffrey John Power, Simon Heilbronner, David E Heinrichs. In vivo growth of Staphylococcus lugdunensis is facilitated by the concerted function of heme and non-heme iron acquisition mechanisms.
The Journal of biological chemistry.
2022 05; 298(5):101823. doi:
10.1016/j.jbc.2022.101823
. [PMID: 35283192] - Biplab K Maiti. Cross-talk Between (Hydrogen)Sulfite and Metalloproteins: Impact on Human Health.
Chemistry (Weinheim an der Bergstrasse, Germany).
2022 Apr; 28(23):e202104342. doi:
10.1002/chem.202104342
. [PMID: 35080290] - Emilie Orillard, Kylie J Watts. Leptospira interrogans Aer2: an Unusual Membrane-Bound PAS-Heme Oxygen Sensor.
Journal of bacteriology.
2022 04; 204(4):e0056721. doi:
10.1128/jb.00567-21
. [PMID: 35311542] - Michael T Wilson, Brandon J Reeder. The peroxidatic activities of Myoglobin and Hemoglobin, their pathological consequences and possible medical interventions.
Molecular aspects of medicine.
2022 04; 84(?):101045. doi:
10.1016/j.mam.2021.101045
. [PMID: 34654576] - Dominique Lederer, Markus A Weigand, Jan Larmann. [Anesthesia in patients with acute porphyria].
Der Anaesthesist.
2022 04; 71(4):321-330. doi:
10.1007/s00101-022-01107-w
. [PMID: 35352131] - Guilherme C Lechuga, Paloma Napoleão-Pêgo, Carlos M Morel, David W Provance, Salvatore G De-Simone. New Insights into Hemopexin-Binding to Hemin and Hemoglobin.
International journal of molecular sciences.
2022 Mar; 23(7):. doi:
10.3390/ijms23073789
. [PMID: 35409149]