Guanosine 5-triphosphate (BioDeep_00000840667)
代谢物信息卡片
化学式: C10H12N5O14P3-4 (518.9593642)
中文名称:
谱图信息:
最多检出来源 () 0%
分子结构信息
SMILES: C1=NC2=C(N1C3C(C(C(O3)COP(=O)([O-])OP(=O)([O-])OP(=O)([O-])[O-])O)O)N=C(NC2=O)N
InChI: InChI=1S/C10H16N5O14P3/c11-10-13-7-4(8(18)14-10)12-2-15(7)9-6(17)5(16)3(27-9)1-26-31(22,23)29-32(24,25)28-30(19,20)21/h2-3,5-6,9,16-17H,1H2,(H,22,23)(H,24,25)(H2,19,20,21)(H3,11,13,14,18)/p-4/t3-,5-,6-,9-/m1/s1
相关代谢途径
Reactome(102)
- Metabolism
- Metabolism of vitamins and cofactors
- Visual phototransduction
- Sensory Perception
- Metabolism of proteins
- Post-translational protein modification
- Disease
- Amino acid and derivative metabolism
- Diseases of signal transduction by growth factor receptors and second messengers
- FLT3 signaling in disease
- Asparagine N-linked glycosylation
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein
- Synthesis of substrates in N-glycan biosythesis
- GDP-fucose biosynthesis
- Metabolism of lipids
- Metabolism of steroids
- Metabolism of cofactors
- Transport of small molecules
- SLC-mediated transmembrane transport
- Aquaporin-mediated transport
- Developmental Biology
- Signaling Pathways
- Signaling by Rho GTPases
- RHO GTPase Effectors
- RHO GTPases activate PKNs
- Cell Cycle
- Cell Cycle, Mitotic
- M Phase
- Mitotic Prophase
- Signaling by Rho GTPases, Miro GTPases and RHOBTB3
- Immune System
- Innate Immune System
- ROS and RNS production in phagocytes
- Purine metabolism
- Nucleotide metabolism
- Metabolism of water-soluble vitamins and cofactors
- Signaling by Receptor Tyrosine Kinases
- Signaling by VEGF
- VEGFA-VEGFR2 Pathway
- RHO GTPases Activate NADPH Oxidases
- Cellular responses to stimuli
- Cellular responses to stress
- Detoxification of Reactive Oxygen Species
- Infectious disease
- Gene expression (Transcription)
- RNA Polymerase II Transcription
- Generic Transcription Pathway
- Transcriptional Regulation by TP53
- Adaptive Immune System
- Class I MHC mediated antigen processing & presentation
- Infection with Mycobacterium tuberculosis
- Leishmania infection
- Killing mechanisms
- WNT5:FZD7-mediated leishmania damping
- Cellular response to chemical stress
- Bacterial Infection Pathways
- Parasitic Infection Pathways
- Selenoamino acid metabolism
- The tricarboxylic acid cycle
- Carbohydrate metabolism
- Glucose metabolism
- The citric acid (TCA) cycle and respiratory electron transport
- Pyruvate metabolism and Citric Acid (TCA) cycle
- Citric acid cycle (TCA cycle)
- Integration of energy metabolism
- Lysine catabolism
- Neuronal System
- Transmission across Chemical Synapses
- HIV Infection
- Host Interactions of HIV factors
- Metabolism of RNA
- tRNA processing
- tRNA modification in the nucleus and cytosol
- Viral Infection Pathways
- Signaling by GPCR
- GPCR downstream signalling
- G alpha (i) signalling events
- Olfactory Signaling Pathway
- Hemostasis
- Cell surface interactions at the vascular wall
- Gluconeogenesis
- Opioid Signalling
- Intracellular signaling by second messengers
- PI3K/AKT Signaling
- Transport to the Golgi and subsequent modification
- Signaling by ERBB2 in Cancer
- Platelet homeostasis
- Nitric oxide stimulates guanylate cyclase
- VEGFR2 mediated vascular permeability
- Signaling by Nuclear Receptors
- ESR-mediated signaling
- Muscle contraction
- Smooth Muscle Contraction
- Extra-nuclear estrogen signaling
- Death Receptor Signaling
- p75 NTR receptor-mediated signalling
- Cytokine Signaling in Immune system
- Signaling by CSF1 (M-CSF) in myeloid cells
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation
- Glutamate and glutamine metabolism
- Signaling by PDGFR in disease
- Signaling by KIT in disease
BioCyc(0)
PlantCyc(0)
代谢反应
1064 个相关的代谢反应过程信息。
Reactome(926)
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSSG + H+ + TPNH ⟶ GSH + TPN
- Cellular responses to stimuli:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stress:
GSH + H2O2 ⟶ GSSG + H2O
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular responses to stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Cellular responses to stress:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Detoxification of Reactive Oxygen Species:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular responses to stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular responses to stimuli:
BV + TPNH ⟶ BIL + TPN
- Cellular responses to stress:
BV + TPNH ⟶ BIL + TPN
- Detoxification of Reactive Oxygen Species:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular response to chemical stress:
GSH + H2O2 ⟶ GSSG + H2O
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BV + TPNH ⟶ BIL + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
Oxygen + TPNH + heme ⟶ BV + CO + Fe2+ + H2O + TPN
- Cellular response to chemical stress:
BIL:ALB + O2.- ⟶ ALB + BV
- Cellular response to chemical stress:
H2O2 + P4HB ⟶ H2O + Q8I2V9
- Signaling Pathways:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
Ade-Rib + AdoR ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA2A,B + Ade-Rib ⟶ ADORA2A,B:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (q) signalling events:
Heterotrimeric G-protein Gq/11 (inactive) + Ligand:GPCR complexes that activate Gq/11 ⟶ Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive)
- Olfactory Signaling Pathway:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- Sensory Perception:
GTP + odorant:Olfactory Receptor:GNAL:GDP:GNB1:GNG13 ⟶ GDP + odorant:Olfactory Receptor:GNAL:GTP:GNB1:GNG13
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Nitric oxide stimulates guanylate cyclase:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Muscle contraction:
Guanylate cyclase, soluble + NO ⟶ Guanylate cyclase:NO
- Smooth Muscle Contraction:
Guanylate cyclase, soluble + NO ⟶ Guanylate cyclase:NO
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- Synthesis of GDP-mannose:
GTP + Man1P ⟶ GDP-Man + PPi
- G alpha (i) signalling events:
ATP ⟶ PPi + cAMP
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
TBXA2R + thromboxane A2 ⟶ TBXA2R:TXA2
- Thromboxane signalling through TP receptor:
TBXA2R + thromboxane A2 ⟶ TBXA2R:TXA2
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thromboxane signalling through TP receptor:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- Hemostasis:
3AG + H2O ⟶ AA + Glycerol + H+
- Platelet activation, signaling and aggregation:
3AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- Thromboxane signalling through TP receptor:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thromboxane signalling through TP receptor:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thromboxane signalling through TP receptor:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thromboxane signalling through TP receptor:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
tbxa2r + thromboxane A2 ⟶ TBXA2R:TXA2
- Thromboxane signalling through TP receptor:
tbxa2r + thromboxane A2 ⟶ TBXA2R:TXA2
- Thromboxane signalling through TP receptor:
Heterotrimeric G-protein Gq/11 (inactive) + TBXA2R:TXA2 ⟶ TP receptor:Thromboxane A2:G-protein Gq (inactive)
- G alpha (12/13) signalling events:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
3AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
GTP + TP receptor:Thromboxane A2:G-protein Gq (inactive) ⟶ GDP + TP receptor:Thromboxane A2:G-protein Gq (active)
- G alpha (12/13) signalling events:
G-protein G12/G13 (inactive) + Ligand:GPCR complexes that activate G12/13 ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thromboxane signalling through TP receptor:
GTP + TP receptor:Thromboxane A2:G-protein Gq (inactive) ⟶ GDP + TP receptor:Thromboxane A2:G-protein Gq (active)
- G alpha (12/13) signalling events:
G-protein G12/G13 (inactive) + Ligand:GPCR complexes that activate G12/13 ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- G alpha (12/13) signalling events:
G-protein G12/G13 (inactive) + Ligand:GPCR complexes that activate G12/13 ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- G alpha (12/13) signalling events:
G-protein G12/G13 (inactive) + Ligand:GPCR complexes that activate G12/13 ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- G alpha (12/13) signalling events:
G-protein G12/G13 (inactive) + Ligand:GPCR complexes that activate G12/13 ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- Hemostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Platelet activation, signaling and aggregation:
2AG + H2O ⟶ AA + Glycerol + H+
- Signal amplification:
Tbxa2r + thromboxane A2 ⟶ TBXA2R:TXA2
- Thromboxane signalling through TP receptor:
Tbxa2r + thromboxane A2 ⟶ TBXA2R:TXA2
- G alpha (12/13) signalling events:
Heterotrimeric G-protein G12 (inactive) + Ligand:GPCR complexes that activate G12/13 ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
ADORA1,3 + Ade-Rib ⟶ ADORA1,3:Ade-Rib
- GPCR downstream signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (12/13) signalling events:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Thromboxane signalling through TP receptor:
GTP + TP receptor:Thromboxane A2:G-protein Gq (inactive) ⟶ GDP + TP receptor:Thromboxane A2:G-protein Gq (active)
- G alpha (q) signalling events:
GTP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (inactive) ⟶ GDP + Ligand:GPCR complexes that activate Gq/11:Heterotrimeric G-protein Gq (active)
- Disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Infectious disease:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- SARS-CoV Infections:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- SARS-CoV-1 Infection:
H2O + N-glycan Spike ⟶ beta-D-glucose + trimmed unfolded N-glycan Spike
- SARS-CoV-1 Genome Replication and Transcription:
GTP + H2O + S-adenosyl-L-methionine + SARS-CoV-1 genomic RNA complement (minus strand):RTC ⟶ PPi + Pi + S-adenosyl-L-homocysteine + m7GpppA-capped SARS-CoV-1 genomic RNA complement (minus strand):RTC
- Replication of the SARS-CoV-1 genome:
GTP + H2O + S-adenosyl-L-methionine + SARS-CoV-1 genomic RNA complement (minus strand):RTC ⟶ PPi + Pi + S-adenosyl-L-homocysteine + m7GpppA-capped SARS-CoV-1 genomic RNA complement (minus strand):RTC
- Transcription of SARS-CoV-1 sgRNAs:
GTP + H2O + S-adenosyl-L-methionine + SARS-CoV-1 plus strand subgenomic mRNAs:RTC ⟶ PPi + Pi + S-adenosyl-L-homocysteine + m7GpppA-SARS-CoV-1 plus strand subgenomic mRNAs:RTC
- SARS-CoV-2 Infection:
14-sugar N-glycan unfolded Spike + H2O ⟶ Man(9) N-glycan unfolded Spike + beta-D-glucose
- SARS-CoV-2 Genome Replication and Transcription:
GTP + H2O + S-adenosyl-L-methionine + SARS-CoV-2 genomic RNA complement (minus strand):RTC ⟶ PPi + Pi + S-adenosyl-L-homocysteine + m7GpppA-capped SARS-CoV-2 genomic RNA complement (minus strand):RTC
- Replication of the SARS-CoV-2 genome:
GTP + H2O + S-adenosyl-L-methionine + SARS-CoV-2 genomic RNA complement (minus strand):RTC ⟶ PPi + Pi + S-adenosyl-L-homocysteine + m7GpppA-capped SARS-CoV-2 genomic RNA complement (minus strand):RTC
- Early SARS-CoV-2 Infection Events:
GTP + nsp7 ⟶ N6GMPLys-nsp7 + PPi
- Viral Infection Pathways:
NAD + p-S177-N ⟶ ADPr-p-S177-N + H+ + NAM
- Respiratory Syncytial Virus Infection Pathway:
GTP + H2O + S-adenosyl-L-methionine + hRSV A nascent mRNAs:RdRP:p-M2-1 ⟶ PPi + Pi + RSV m7GpppG-mRNAs:RdRP:p-M2-1 + S-adenosyl-L-homocysteine
- Respiratory syncytial virus (RSV) genome replication, transcription and translation:
GTP + H2O + S-adenosyl-L-methionine + hRSV A nascent mRNAs:RdRP:p-M2-1 ⟶ PPi + Pi + RSV m7GpppG-mRNAs:RdRP:p-M2-1 + S-adenosyl-L-homocysteine
- Respiratory syncytial virus genome transcription:
GTP + H2O + S-adenosyl-L-methionine + hRSV A nascent mRNAs:RdRP:p-M2-1 ⟶ PPi + Pi + RSV m7GpppG-mRNAs:RdRP:p-M2-1 + S-adenosyl-L-homocysteine
- Signaling by Receptor Tyrosine Kinases:
H2O + cAMP ⟶ AMP
- Signaling by NTRKs:
A0A3Q1M614 + ATP ⟶ A0A3Q1M614 + ADP
- Signaling by NTRK1 (TRKA):
A0A3Q1M614 + ATP ⟶ A0A3Q1M614 + ADP
- Signalling to ERKs:
A0A3Q1M614 + ATP ⟶ A0A3Q1M614 + ADP
- Prolonged ERK activation events:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Frs2-mediated activation:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by NTRKs:
ATP ⟶ ADP
- Signaling by NTRK1 (TRKA):
ATP ⟶ ADP
- Signalling to ERKs:
ATP ⟶ ADP
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by NTRKs:
ATP + P49071 ⟶ ADP + p-S272,T222,T334-MAPKAPK2
- Signaling by NTRK1 (TRKA):
ATP + P49071 ⟶ ADP + p-S272,T222,T334-MAPKAPK2
- Signalling to ERKs:
ATP + P49071 ⟶ ADP + p-S272,T222,T334-MAPKAPK2
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by NTRKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signaling by NTRK1 (TRKA):
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signalling to ERKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Prolonged ERK activation events:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Frs2-mediated activation:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by NTRKs:
ADORA2A + Ade-Rib + NTRK1,2 ⟶ Ade-Rib:ADORA2A:NTRK1,2
- Signaling by NTRK1 (TRKA):
ADORA2A + Ade-Rib + NTRK1,2 ⟶ Ade-Rib:ADORA2A:NTRK1,2
- Signalling to ERKs:
ATP + MAP kinase p38 (Mg2+ cofactor) ⟶ ADP + Phospho-MAP kinase p38 (Mg2+ cofactor)
- Signalling to p38 via RIT and RIN:
Active Trk receptor complex:RIT/RIN-GTP + B-RAF ⟶ Active Trk receptor complex:RIT/RIN-GTP:B-RAF
- Prolonged ERK activation events:
BRAF dimer complex + RAP1:GTP ⟶ RAP1:GTP:B-Raf complex
- Frs2-mediated activation:
BRAF dimer complex + RAP1:GTP ⟶ RAP1:GTP:B-Raf complex
- ARMS-mediated activation:
BRAF complex + Rap1-GTP complex ⟶ Rap1-GTP complex:BRAF complex
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by NTRKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signaling by NTRK1 (TRKA):
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signalling to ERKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Prolonged ERK activation events:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Frs2-mediated activation:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by NTRKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signaling by NTRK1 (TRKA):
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signalling to ERKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Prolonged ERK activation events:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Frs2-mediated activation:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Signaling by Receptor Tyrosine Kinases:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by NTRKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signaling by NTRK1 (TRKA):
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Signalling to ERKs:
ATP + MAPKAP kinase ⟶ ADP + Active MAPKAP kinase
- Prolonged ERK activation events:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Frs2-mediated activation:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Prolonged ERK activation events:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Frs2-mediated activation:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Prolonged ERK activation events:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- Frs2-mediated activation:
ATP + RAP1:GTP:B-Raf complex ⟶ ADP + RAP1:GTP:activated BRAF dimer
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- G alpha (i) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin:prostacyclin receptor:G-protein Gs (active) ⟶ G-protein beta-gamma complex + Gs:GTP + PTGIR + Prostacyclin
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Platelet homeostasis:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin + Ptgir ⟶ PTGIR:PGI2
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Platelet homeostasis:
H2O + PAF ⟶ CH3COO- + lyso-PAF
- Prostacyclin signalling through prostacyclin receptor:
Prostacyclin + ptgir ⟶ PTGIR:PGI2
- Prostacyclin signalling through prostacyclin receptor:
PTGIR + Prostacyclin ⟶ PTGIR:PGI2
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
5PHL + H2O ⟶ 2AMAS + Pi + ammonia
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Amino acid and derivative metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Lysine catabolism:
Oxygen + PPCA ⟶ H2O2 + P6C
- Developmental Biology:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Axon guidance:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- EPH-Ephrin signaling:
GTP + RHOA:GDP ⟶ GDP + RHOA:GTP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
H2O + PALM-C3,4-GAP43 ⟶ GAP43 + PALM
- Axon guidance:
H2O + PALM-C3,4-GAP43 ⟶ GAP43 + PALM
- EPH-Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- EPHB-mediated forward signaling:
EFNBs:p-EPHBs:SFKs:Glu:p-NMDAR:Gly + TIAM1 ⟶ EFNBs:p-EPHBs:SFKs:Glu:p-NMDAR:Gly:TIAM1
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Axon guidance:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- EPH-Ephrin signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- EPHB-mediated forward signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
CEBPE gene:RARA:RXRA + atRA ⟶ CEBPE gene:RXRA:RARA:atRA
- Axon guidance:
H2O + igl ⟶ PALM + igl
- EPH-Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- EPHB-mediated forward signaling:
EFNBs:p-EPHBs:SFKs:Glu:p-NMDAR:Gly + sif ⟶ EFNBs:p-EPHBs:SFKs:Glu:p-NMDAR:Gly:TIAM1
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
CEBPE gene:RARA:RXRA + atRA ⟶ CEBPE gene:RXRA:RARA:atRA
- Axon guidance:
A0A1D5NTK5 + H2O ⟶ A0A1D5NTK5 + PALM
- EPH-Ephrin signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- EPHB-mediated forward signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
Early cornified envelope + Lamellar body ⟶ Cornified envelope
- Axon guidance:
H2O + NEUM_HUMAN ⟶ NEUM_HUMAN + PALM
- EPH-Ephrin signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- EPHB-mediated forward signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- HIV Infection:
APOBEC3G:RTC with minus sssDNA:tRNA primer:RNA template + H2O ⟶ APOBEC3G:RTC with deaminated minus sssDNA:tRNA primer:RNA template + ammonia
- HIV Life Cycle:
GTP + Ran-GDP ⟶ GDP + RAN:GTP
- Late Phase of HIV Life Cycle:
GTP + Ran-GDP ⟶ GDP + RAN:GTP
- Rev-mediated nuclear export of HIV RNA:
GTP + Ran-GDP ⟶ GDP + RAN:GTP
- Host Interactions of HIV factors:
APOBEC3G:RTC with minus sssDNA:tRNA primer:RNA template + H2O ⟶ APOBEC3G:RTC with deaminated minus sssDNA:tRNA primer:RNA template + ammonia
- Interactions of Rev with host cellular proteins:
GTP + Ran-GDP ⟶ GDP + RAN:GTP
- Nuclear import of Rev protein:
GTP + Ran-GDP ⟶ GDP + RAN:GTP
- Developmental Biology:
Early cornified envelope + Lamellar body ⟶ Cornified envelope
- Axon guidance:
H2O + PALM-C3,4-GAP43 ⟶ Gap43 + PALM
- EPH-Ephrin signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- EPHB-mediated forward signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
Early cornified envelope + Lamellar body ⟶ Cornified envelope
- Axon guidance:
H2O + PALM-C3,4-GAP43 ⟶ Gap43 + PALM
- EPH-Ephrin signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- EPHB-mediated forward signaling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
Early cornified envelope + Lamellar body ⟶ Cornified envelope
- Axon guidance:
A0A5G2R7G3 + H2O ⟶ A0A5G2R7G3 + PALM
- EPH-Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Developmental Biology:
CEBPE gene:RARA:RXRA + atRA ⟶ CEBPE gene:RXRA:RARA:atRA
- Axon guidance:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- EPH-Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Ephrin signaling:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Nervous system development:
H2O + PALM-C3,4-GAP43 ⟶ GAP43 + PALM
- Nervous system development:
EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7 + GTP + RAC1:GDP ⟶ EPHBs:p-3Y-EFNBs:SRC,FYN:GRB4:p-GIT1:ARHGEF7:RAC1:GTP + GDP
- Nervous system development:
A0A5G2R7G3 + H2O ⟶ A0A5G2R7G3 + PALM
- Nervous system development:
A0A1D5NTK5 + H2O ⟶ A0A1D5NTK5 + PALM
- Nervous system development:
H2O + PALM-C3,4-GAP43 ⟶ Gap43 + PALM
- Nervous system development:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Nervous system development:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Nervous system development:
H2O + igl ⟶ PALM + igl
- Nervous system development:
H2O + PALM-C3,4-GAP43 ⟶ Gap43 + PALM
- Nervous system development:
H2O + NEUM_HUMAN ⟶ NEUM_HUMAN + PALM
- Metabolism of RNA:
H2O ⟶ 7MGMP
- mRNA Capping:
Capping complex (hydrolyzed) + GTP ⟶ Capping complex (intermediate) + GDP
- Metabolism of RNA:
Editosome (ADAR2) complex + H2O ⟶ A to I edited RNA:Editosome (ADAR2) complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ Q9DDT5 + RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors
- Metabolism of RNA:
Capping complex (with freed 5'- GMP) + SAM ⟶ Q54K42 + RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ Q54K42 + RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors
- Metabolism of RNA:
Editosome (ADAR2) complex + H2O ⟶ A to I edited RNA:Editosome (ADAR2) complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ Q9V460 + RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors
- Metabolism of RNA:
Editosome (ADAR1) complex + H2O ⟶ A to I edited RNA:Editosome (ADAR1) complex + ammonia
- mRNA Capping:
Capping complex (hydrolyzed) + GTP ⟶ Capping complex (intermediate) + GDP
- Vesicle-mediated transport:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Membrane Trafficking:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Translocation of SLC2A4 (GLUT4) to the plasma membrane:
GGC-RAB8A,10,13,14:GDP + GTP ⟶ GDP + GGC-RAB8A,10,13,14:GTP
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + SUPT5H + TFIIH + mRNA capping factors
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- Metabolism of RNA:
Deadenylated mRNA:Lsm1-7 Complex + H2O ⟶ 7-MeGDP + Decapped mRNA:LSM1-7 Complex
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ E9PTB2 + RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors
- Metabolism of RNA:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- Metabolism of RNA:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- mRNA Capping:
Capping complex (with freed 5'- GMP) + SAM ⟶ RNA Polymerase II (phosphorylated):TFIIF:capped pre-mRNA + SAH + TFIIH + mRNA capping factors + p-SUPT5H
- Metabolism of RNA:
Editosome for C to U editing + H2O ⟶ C to U edited ApoB RNA:Editosome complex + ammonia
- mRNA Capping:
Capping complex (hydrolyzed) + GTP ⟶ Capping complex (intermediate) + GDP
- mRNA Capping:
Capping complex (hydrolyzed) + GTP ⟶ Capping complex (intermediate) + GDP
- ADP signalling through P2Y purinoceptor 12:
ADP:P2RY12:G-protein Gi (inactive) + GTP ⟶ ADP:P2RY12:G-protein Gi (active) + GDP
- Thrombin signalling through proteinase activated receptors (PARs):
PAR3, 4 ⟶ PAR N-teminal fragments + Thrombin-activated PARs
- Semaphorin interactions:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Sema4D in semaphorin signaling:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Sema4D mediated inhibition of cell attachment and migration:
E1B801 + SEMA4D:MET:p-Y-PLXNB1:RND1:GTP ⟶ SEMA4D:MET:p-Y-PLXNB1:RND1:GTP:ARHGAP35
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Integration of energy metabolism:
A0A3Q1LHN3 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
A0A3Q1LHN3 + cAMP ⟶ RAPGEF3:cAMP complex
- Free fatty acids regulate insulin secretion:
ATP + CoA-SH + PALM ⟶ AMP + PALM-CoA + PPi
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:GDP:G-beta:G-gamma + GTP ⟶ G-alpha(q)11,14,15,Q:G-beta:G-gamma + GDP
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
A0A3Q1LHN3 + cAMP ⟶ RAPGEF3:cAMP complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
Kainate Receptors + L-Glu ⟶ Kainate receptor-glutamate complex
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Opioid Signalling:
ATP ⟶ PPi + cAMP
- G-protein mediated events:
ATP ⟶ PPi + cAMP
- G alpha (z) signalling events:
GTP + Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive) ⟶ ADRA2A-C:Catecholamine:Heterotrimeric G-protein Gz (active) + GDP
- Death Receptor Signaling:
TNF(1-233) trimer ⟶ TNF(1-76) trimer + TNF- trimer, soluble form
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Neuronal System:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Transmission across Chemical Synapses:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Thrombin signalling through proteinase activated receptors (PARs):
F2RL3 + Heterotrimeric G-protein Gq/11 (inactive) ⟶ Thrombin-activated PARs:Gq (inactive)
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (z) signalling events:
GTP + Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive) ⟶ ADRA2A-C:Catecholamine:Heterotrimeric G-protein Gz (active) + GDP
- G alpha (12/13) signalling events:
ADRA1A,B,D:ADR,NAd + G-protein G12/G13 (inactive) ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Integration of energy metabolism:
cAMP + epac-1 ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
cAMP + epac-1 ⟶ RAPGEF3:cAMP complex
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
cAMP + epac-1 ⟶ RAPGEF3:cAMP complex
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA:GTP
- ADP signalling through P2Y purinoceptor 12:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thrombin signalling through proteinase activated receptors (PARs):
Heterotrimeric G-protein Gq/11 (inactive) + Thrombin-activated PARs ⟶ Thrombin-activated PARs:Gq (inactive)
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (z) signalling events:
ADRA2A,B,C:ADR,NAd + Heterotrimeric G-protein Gz (inactive) ⟶ Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive)
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Integration of energy metabolism:
F1PW07 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
F1PW07 + cAMP ⟶ RAPGEF3:cAMP complex
- Free fatty acids regulate insulin secretion:
ATP + CoA-SH + PALM ⟶ AMP + PALM-CoA + PPi
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:GDP:G-beta:G-gamma + GTP ⟶ G-alpha(q)11,14,15,Q:G-beta:G-gamma + GDP
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
F1PW07 + cAMP ⟶ RAPGEF3:cAMP complex
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (z) signalling events:
ADRA2A,B,C:ADR,NAd + Heterotrimeric G-protein Gz (inactive) ⟶ Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive)
- G alpha (12/13) signalling events:
ADRA1A,B,D:ADR,NAd + G-protein G12/G13 (inactive) ⟶ Ligand:GPCR complexes that activate G12/13:Heterotrimeric G-protein G12/13 (inactive).
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Integration of energy metabolism:
E7FDC9 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
E7FDC9 + cAMP ⟶ RAPGEF3:cAMP complex
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:GDP:G-beta:G-gamma + GTP ⟶ G-alpha(q)11,14,15,Q:G-beta:G-gamma + GDP
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
E7FDC9 + cAMP ⟶ RAPGEF3:cAMP complex
- Developmental Biology:
CEBPE gene:RARA:RXRA + atRA ⟶ CEBPE gene:RXRA:RARA:atRA
- Axon guidance:
H2O + Q6DG93 ⟶ PALM + Q6DG93
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Integration of energy metabolism:
Homologues of RAPGEF3 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
Homologues of RAPGEF3 + cAMP ⟶ RAPGEF3:cAMP complex
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
Homologues of RAPGEF3 + cAMP ⟶ RAPGEF3:cAMP complex
- Signaling Pathways:
AcK685- p-Y705,S727-STAT3 dimer + H2O ⟶ CH3COO- + p-Y705,S727-STAT3 dimer
- Signaling by GPCR:
H2O + cAMP ⟶ AMP
- GPCR downstream signalling:
H2O + cAMP ⟶ AMP
- G alpha (i) signalling events:
ATP ⟶ PPi + cAMP
- Opioid Signalling:
ATP ⟶ PPi + cAMP
- G-protein mediated events:
ATP ⟶ PPi + cAMP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (q) signalling events:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (12/13) signalling events:
G-protein alpha (12/13):GTP ⟶ G-protein alpha (12/13):GDP
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Neuronal System:
3MT + H2O + Oxygen ⟶ H2O2 + HVA + ammonia
- Transmission across Chemical Synapses:
3MT + H2O + Oxygen ⟶ H2O2 + HVA + ammonia
- Neurotransmitter receptors and postsynaptic signal transmission:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (i) signalling events:
Heterotrimeric G-protein Gi (inactive) + Ligand:GPCR complexes that activate Gi ⟶ Ligand:GPCR complexes that activate Gi:Heterotrimeric G-protein Gi (inactive)
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Neuronal System:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Transmission across Chemical Synapses:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Semaphorin interactions:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA:GTP
- Sema4D in semaphorin signaling:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA:GTP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA:GTP
- Integration of energy metabolism:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
Epac + cAMP ⟶ RAPGEF3:cAMP complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Integration of energy metabolism:
A0A3Q2UAA9 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
A0A3Q2UAA9 + cAMP ⟶ RAPGEF3:cAMP complex
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
A0A3Q2UAA9 + cAMP ⟶ RAPGEF3:cAMP complex
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (z) signalling events:
ADRA2A,B,C:ADR,NAd + Heterotrimeric G-protein Gz (inactive) ⟶ Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive)
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Semaphorin interactions:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Sema4D in semaphorin signaling:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Thrombin signalling through proteinase activated receptors (PARs):
Heterotrimeric G-protein Gq/11 (inactive) + Thrombin-activated PARs ⟶ Thrombin-activated PARs:Gq (inactive)
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- SEMA3A-Plexin repulsion signaling by inhibiting Integrin adhesion:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- ADP signalling through P2Y purinoceptor 12:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- ADP signalling through P2Y purinoceptor 1:
Heterotrimeric G-protein Gq/11 (inactive) + P2RY1:ADP ⟶ ADP:P2RY1:G-protein Gq/11 (inactive)
- Thrombin signalling through proteinase activated receptors (PARs):
Heterotrimeric G-protein Gq/11 (inactive) + Thrombin-activated PARs ⟶ Thrombin-activated PARs:Gq (inactive)
- Integration of energy metabolism:
PKA:AKAP79:IQGAP1 Complex + cAMP ⟶ PRKACA,PRKACB,PRKACG + cAMP:PKA:AKAP79:IQGAP1 Complex
- Regulation of insulin secretion:
PKA:AKAP79:IQGAP1 Complex + cAMP ⟶ PRKACA,PRKACB,PRKACG + cAMP:PKA:AKAP79:IQGAP1 Complex
- Acetylcholine regulates insulin secretion:
AcCho + Muscarinic Acetylcholine Receptor M3 ⟶ Muscarinic Acetylcholine Receptor M3:Acetylcholine Complex
- Free fatty acids regulate insulin secretion:
ATP + CoA-SH + PALM ⟶ AMP + PALM-CoA + PPi
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:GDP:G-beta:G-gamma + GTP ⟶ G-alpha(q)11,14,15,Q:G-beta:G-gamma + GDP
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
PKA:AKAP79:IQGAP1 Complex + cAMP ⟶ PRKACA,PRKACB,PRKACG + cAMP:PKA:AKAP79:IQGAP1 Complex
- Signaling by VEGF:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- VEGFA-VEGFR2 Pathway:
L-Arg + Oxygen + TPNH ⟶ L-Cit + NO + TPN
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (z) signalling events:
ATP ⟶ PPi + cAMP
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Integration of energy metabolism:
Q8VCC8 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
Q8VCC8 + cAMP ⟶ RAPGEF3:cAMP complex
- Free fatty acids regulate insulin secretion:
ATP + CoA-SH + PALM ⟶ AMP + PALM-CoA + PPi
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:GDP:G-beta:G-gamma + GTP ⟶ G-alpha(q)11,14,15,Q:G-beta:G-gamma + GDP
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
Q8VCC8 + cAMP ⟶ RAPGEF3:cAMP complex
- ADP signalling through P2Y purinoceptor 12:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thrombin signalling through proteinase activated receptors (PARs):
Heterotrimeric G-protein Gq/11 (inactive) + Thrombin-activated PARs ⟶ Thrombin-activated PARs:Gq (inactive)
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RhoA,B,C:GTP
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (z) signalling events:
ADRA2A,B,C:ADR,NAd + Heterotrimeric G-protein Gz (inactive) ⟶ Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive)
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Integration of energy metabolism:
Q9Z1C8 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
Q9Z1C8 + cAMP ⟶ RAPGEF3:cAMP complex
- Free fatty acids regulate insulin secretion:
ATP + CoA-SH + PALM ⟶ AMP + PALM-CoA + PPi
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:GDP:G-beta:G-gamma + GTP ⟶ G-alpha(q)11,14,15,Q:G-beta:G-gamma + GDP
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
Q9Z1C8 + cAMP ⟶ RAPGEF3:cAMP complex
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (i) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (z) signalling events:
GTP + Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive) ⟶ ADRA2A-C:Catecholamine:Heterotrimeric G-protein Gz (active) + GDP
- G alpha (12/13) signalling events:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by GPCR:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GPCR downstream signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (q) signalling events:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (12/13) signalling events:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Integration of energy metabolism:
PKA tetramer:4xcAMP ⟶ cAMP:PKA regulatory subunit
- Regulation of insulin secretion:
ATP + CoA-SH + PALM ⟶ AMP + PALM-CoA + PPi
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
GTP + RAP1A:GDP ⟶ GDP + RAP1:GTP
- Signaling Pathways:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Signaling by GPCR:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GPCR downstream signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (q) signalling events:
2AG + H2O ⟶ AA + Glycerol + H+
- G alpha (12/13) signalling events:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Integration of energy metabolism:
I3L7Z0 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
I3L7Z0 + cAMP ⟶ RAPGEF3:cAMP complex
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
I3L7Z0 + cAMP ⟶ RAPGEF3:cAMP complex
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Opioid Signalling:
ATP ⟶ PPi + cAMP
- G-protein mediated events:
ATP ⟶ PPi + cAMP
- Adenylate cyclase inhibitory pathway:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- G alpha (z) signalling events:
ADRA2A,B,C:ADR,NAd + Heterotrimeric G-protein Gz (inactive) ⟶ Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive)
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- ADP signalling through P2Y purinoceptor 12:
Heterotrimeric G-protein Gi (inactive) + P2RY12:ADP ⟶ ADP:P2RY12:G-protein Gi (inactive)
- Thrombin signalling through proteinase activated receptors (PARs):
Heterotrimeric G-protein Gq/11 (inactive) + Thrombin-activated PARs ⟶ Thrombin-activated PARs:Gq (inactive)
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
Edited Kainate receptors + L-Glu ⟶ Edited Kainate Receptor-glutamate complex
- GABA receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- GABA B receptor activation:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- Activation of GABAB receptors:
(Gi alpha1:GDP:Adenylate cyclase):(G alpha-olf:GDP) ⟶ Adenylate cyclase (Mg2+ cofactor) + G alpha-olf:GDP complex + G-protein alpha (i):GDP
- ADP signalling through P2Y purinoceptor 12:
ADP:P2RY12:G-protein Gi (inactive) + GTP ⟶ ADP:P2RY12:G-protein Gi (active) + GDP
- Thrombin signalling through proteinase activated receptors (PARs):
PAR3, 4 ⟶ PAR N-teminal fragments + Thrombin-activated PARs
- Neuronal System:
DA + SAM ⟶ 3MT + SAH
- Transmission across Chemical Synapses:
DA + SAM ⟶ 3MT + SAH
- Neurotransmitter receptors and postsynaptic signal transmission:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- GABA receptor activation:
GABA + GABBR1:GABBR2 ⟶ GABBR1:GABBR2:GABA
- GABA B receptor activation:
GABA + GABBR1:GABBR2 ⟶ GABBR1:GABBR2:GABA
- Activation of GABAB receptors:
GABA B receptor G-protein beta-gamma complex + Kir heterotetramers ⟶ GABA B receptor G-protein beta-gamma and Kir3 channel complex
- Adenylate cyclase inhibitory pathway:
G alpha-olf:GTP + G-protein alpha (i):GTP:Adenylate cyclase ⟶ (Gi alpha1:GTP:Adenylate cyclase):(G alpha-olf:GTP)
- Integration of energy metabolism:
F6PS10 + cAMP ⟶ RAPGEF3:cAMP complex
- Regulation of insulin secretion:
F6PS10 + cAMP ⟶ RAPGEF3:cAMP complex
- Fatty Acids bound to GPR40 (FFAR1) regulate insulin secretion:
G-alpha(q)11,14,15,Q:GDP:G-beta:G-gamma + GTP ⟶ G-alpha(q)11,14,15,Q:G-beta:G-gamma + GDP
- Glucagon-like Peptide-1 (GLP1) regulates insulin secretion:
F6PS10 + cAMP ⟶ RAPGEF3:cAMP complex
- Semaphorin interactions:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D in semaphorin signaling:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Sema4D induced cell migration and growth-cone collapse:
GTP + RhoA,B,C:GDP ⟶ GDP + RHOA/B/C:GTP
- Opioid Signalling:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G-protein mediated events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (z) signalling events:
GTP + Ligand:GPCR complexes that activate Gz:Heterotrimeric G-protein Gz (inactive) ⟶ ADRA2A-C:Catecholamine:Heterotrimeric G-protein Gz (active) + GDP
- Death Receptor Signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- p75 NTR receptor-mediated signalling:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Cell death signalling via NRAGE, NRIF and NADE:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- NRAGE signals death through JNK:
GTP + RAC1:GDP ⟶ GDP + RAC1:GTP
- Sema4D mediated inhibition of cell attachment and migration:
R-Ras-GTP ⟶ Pi + R-Ras-GDP
- Nervous system development:
H2O + Q6DG93 ⟶ PALM + Q6DG93
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen Presentation: Folding, assembly and peptide loading of class I MHC:
SAR1B:GTP + SEC23:SEC24 ⟶ SAR1B:GTP:SEC23:SEC24
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen Presentation: Folding, assembly and peptide loading of class I MHC:
SAR1B:GTP + SEC23:SEC24 ⟶ SAR1B:GTP:SEC23:SEC24
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen Presentation: Folding, assembly and peptide loading of class I MHC:
COPII vesicle with MHC class I + GDP + H2O ⟶ A0A1L1RNL7 + Antigen peptide bound class I MHC + GTP + SAR1B:GDP + SEC23A + SEC24 + SEC31A
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen Presentation: Folding, assembly and peptide loading of class I MHC:
COPII vesicle with MHC class I + GDP + H2O ⟶ Antigen peptide bound class I MHC + GTP + SAR1B:GDP + SC13_HUMAN + SEC23A + SEC24 + SEC31A
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen Presentation: Folding, assembly and peptide loading of class I MHC:
COPII vesicle with MHC class I + GDP + H2O ⟶ Antigen peptide bound class I MHC + GTP + Q9D1M0 + SAR1B:GDP + SEC24 + Sec23a + Sec31a
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen Presentation: Folding, assembly and peptide loading of class I MHC:
COPII vesicle with MHC class I + GDP + H2O ⟶ Antigen peptide bound class I MHC + GTP + Q5XFW8 + SAR1B:GDP + SEC24 + Sec23a + Sec31a
- Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Adaptive Immune System:
Rap1 cAMP-GEFs + cAMP ⟶ Rap1 cAMP-GEFs:cAMP
- Class I MHC mediated antigen processing & presentation:
TPNH + dioxygen ⟶ H+ + O2.- + TPN
- Antigen Presentation: Folding, assembly and peptide loading of class I MHC:
COPII vesicle with MHC class I + GDP + H2O ⟶ A0A5G2R7E5 + Antigen peptide bound class I MHC + GTP + SAR1B:GDP + SEC23A + SEC24 + SEC31A
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
GTP + H2O ⟶ DHNTP + HCOOH
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Tetrahydrobiopterin (BH4) synthesis, recycling, salvage and regulation:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Sensory perception of taste:
GTP + TAS2R:ligand:GNAT3:GDP:GNB1,3:GNG13 ⟶ GDP + TAS2R:ligand:GNAT3:GTP:GNB1,3:GNG13
- Sensory perception of sweet, bitter, and umami (glutamate) taste:
GTP + TAS2R:ligand:GNAT3:GDP:GNB1,3:GNG13 ⟶ GDP + TAS2R:ligand:GNAT3:GTP:GNB1,3:GNG13
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- GDP-fucose biosynthesis:
GDP-KDGal + H+ + TPNH ⟶ GDP-Fuc + TPN
- Metabolism of proteins:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Post-translational protein modification:
NAD + SPM ⟶ 1,3-diaminopropane + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- GDP-fucose biosynthesis:
GDP-KDGal + H+ + TPNH ⟶ GDP-Fuc + TPN
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- GDP-fucose biosynthesis:
alpha-Fuc ⟶ beta-Fuc
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- GDP-fucose biosynthesis:
GDP-KDGal + H+ + TPNH ⟶ GDP-Fuc + TPN
- Metabolism of proteins:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Post-translational protein modification:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- GDP-fucose biosynthesis:
GDP-KDGal + H+ + TPNH ⟶ GDP-Fuc + TPN
- GDP-fucose biosynthesis:
alpha-Fuc ⟶ beta-Fuc
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- GDP-fucose biosynthesis:
alpha-Fuc ⟶ beta-Fuc
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- GDP-fucose biosynthesis:
alpha-Fuc ⟶ beta-Fuc
- Metabolism of proteins:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Post-translational protein modification:
EIF5A + NAD + SPM ⟶ 1,3-diaminopropane + EIF5A(Dhp) + H+ + NADH
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
GlcNGc-6-P + H2O ⟶ CCA + GlcN6P
- GDP-fucose biosynthesis:
alpha-Fuc ⟶ beta-Fuc
- Metabolism of proteins:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Post-translational protein modification:
NAD + SPM + eif5a ⟶ 1,3-diaminopropane + H+ + NADH + eif5a
- Asparagine N-linked glycosylation:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Biosynthesis of the N-glycan precursor (dolichol lipid-linked oligosaccharide, LLO) and transfer to a nascent protein:
DOLP + UDP-GlcNAc ⟶ GlcNAcDOLDP + UMP
- Synthesis of substrates in N-glycan biosythesis:
ATP + MVA5PP ⟶ ADP + IPPP + Pi + carbon dioxide
- GDP-fucose biosynthesis:
GDP-KDGal + H+ + TPNH ⟶ GDP-Fuc + TPN
- Vesicle-mediated transport:
ARF1:GTP + TRIP11:cargo ⟶ ARF1:GTP:TRIP11:cargo
- Membrane Trafficking:
ARF1:GTP + TRIP11:cargo ⟶ ARF1:GTP:TRIP11:cargo
- Clathrin-mediated endocytosis:
DNM:GTP + PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers ⟶ PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP
- Vesicle-mediated transport:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Membrane Trafficking:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Clathrin-mediated endocytosis:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Clathrin-mediated endocytosis:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Vesicle-mediated transport:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Membrane Trafficking:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Clathrin-mediated endocytosis:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Vesicle-mediated transport:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Membrane Trafficking:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Clathrin-mediated endocytosis:
DAB2,LDLRAP1 + LDL:LDLR complex ⟶ DAB2,LDLRAP1:LDLR:LDL
- Vesicle-mediated transport:
ARF1:GTP + TRIP11:cargo ⟶ ARF1:GTP:TRIP11:cargo
- Membrane Trafficking:
ARF1:GTP + TRIP11:cargo ⟶ ARF1:GTP:TRIP11:cargo
- Clathrin-mediated endocytosis:
DNM:GTP + PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers ⟶ PI(4,5)P2:p-T156 AP-2:clathrin:ITSNs:EPS15:REPS1:SGIP1:NECAPs:AAK1:CLASP proteins:cargo:F-BAR proteins:BAR domain proteins:ARP2/3 complex:WASL:f-actin:HIP dimers:DNM:GTP
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
ATP + CTP + GTP + Integrator + LEC + RPAP2:RPRD1A,B:RPRD2:RNA polymerase II (phosphoserine-5,7):Initiation factors:snRNA gene + UTP ⟶ RNA polymerase II (phosphoserine-5,7):RPRD1A,B:RPRD2:RPAP2:Integrator:LEC:pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
Cap Binding Complex (CBC) + PHAX + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene + SRRT ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- RNA Polymerase II Transcription:
Cytochrome c (reduced) + H+ + Oxygen ⟶ Cytochrome c (oxidised) + H+ + H2O
- RNA polymerase II transcribes snRNA genes:
Cap Binding Complex (CBC) + Homologues of PHAX + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene + SRRT ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene ⟶ CBCAP:capped snRNA U1,U2,U4,U4atac,U5,U11,U12 + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:Initiation factors:snRNA gene
- Gene expression (Transcription):
H2O2 + Homologues of TXN ⟶ H2O + Homologues of 2xHC-TXN
- RNA Polymerase II Transcription:
H2O2 + Homologues of TXN ⟶ H2O + Homologues of 2xHC-TXN
- RNA polymerase II transcribes snRNA genes:
ATP + CTP + GTP + RNA polymerase II (phosphoserine-5,7):RPRD1A,B:RPRD2:RPAP2:Integrator:LEC:pre-snRNA:Initiation factors:snRNA gene + UTP ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
Cap Binding Complex (CBC) + Phax + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene + SRRT ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene ⟶ CBCAP:capped snRNA U1,U2,U4,U4atac,U5,U11,U12 + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
Cap Binding Complex (CBC) + PHAX + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene + SRRT ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
Cap Binding Complex (CBC) + Phax + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene + Srrt ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene ⟶ CBCAP:capped snRNA U1,U2,U4,U4atac,U5,U11,U12 + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
Cap Binding Complex (CBC) + PHAX + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene + SRRT ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene
- Gene expression (Transcription):
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA Polymerase II Transcription:
Ac-K94,K171-RUNX3:CBFB:BRD2:CCND1:HDAC4 + H2O ⟶ BRD2 homodimer + CH3COO- + RUNX3:CBFB:CCND1:HDAC4
- RNA polymerase II transcribes snRNA genes:
Cap Binding Complex (CBC) + RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:capped pre-snRNA:Initiation factors:snRNA gene + phax + srrt ⟶ RNA polymerase II (phosphoserine-2,7):RPAP2:Integrator:LEC:CBCAP:capped pre-snRNA:Initiation factors:snRNA gene
- Leishmania infection:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Leishmania parasite growth and survival:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Anti-inflammatory response favouring Leishmania parasite infection:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- ADORA2B mediated anti-inflammatory cytokines production:
ADORA2B + Ade-Rib ⟶ ADORA2B:Ade-Rib
- Parasitic Infection Pathways:
Adenylate cyclase (Mg2+ cofactor) + Gs:GTP ⟶ Gs-activated adenylate cyclase
- G alpha (s) signalling events:
H2O + cAMP ⟶ AMP
- G alpha (s) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (s) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (s) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (s) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (s) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- G alpha (s) signalling events:
H2O + cAMP ⟶ AMP
- G alpha (s) signalling events:
PKA tetramer + cAMP ⟶ PKA tetramer:4xcAMP
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Metabolism of water-soluble vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Molybdenum cofactor biosynthesis:
L-Cys + MOCS3:Zn2+ (red.) ⟶ L-Ala + MOCS3-S-S(1-):Zn2+
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The phototransduction cascade:
GTP ⟶ PPi + cGMP
- Inactivation, recovery and regulation of the phototransduction cascade:
GTP ⟶ PPi + cGMP
- Visual phototransduction:
H+ + RBP2:atRAL + TPNH ⟶ RBP2:atROL + TPN
- The phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
GNAT1 ⟶ GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
GNAT1 ⟶ GNAT1 (Met removed) + L-Met
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Homologues of GNAT1 ⟶ Homologues of GNAT1 (Met removed) + L-Met
- Visual phototransduction:
RLBP1:11cROL + TPN ⟶ H+ + RLBP1:11cRAL + TPNH
- The phototransduction cascade:
Galphai ⟶ Galphai + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Galphai ⟶ Galphai + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
Transducin alpha-1 chain ⟶ GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Transducin alpha-1 chain ⟶ GNAT1 (Met removed) + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
Gnat1 ⟶ GNAT1 (Met removed) + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
Gnat1 ⟶ GNAT1 (Met removed) + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
D3ZSS5 ⟶ D3ZSS5 + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
D3ZSS5 ⟶ D3ZSS5 + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
A0A287BRP2 ⟶ A0A287BRP2 + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
A0A287BRP2 ⟶ A0A287BRP2 + L-Met
- Visual phototransduction:
atREs + nascent CM ⟶ nascent CM:atREs
- The phototransduction cascade:
A4IHG6 ⟶ A4IHG6 + L-Met
- Inactivation, recovery and regulation of the phototransduction cascade:
A4IHG6 ⟶ A4IHG6 + L-Met
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
H2O + RPALM ⟶ PALM + atROL
- Sensory Perception:
Q54YX3 + atROL ⟶ RLBP1:atROL
- Sensory Perception:
atREs + nascent CM ⟶ nascent CM:atREs
BioCyc(0)
WikiPathways(3)
- NO/cGMP/PKG mediated neuroprotection:
cAMP ⟶ AMP
- Phosphodiesterases in neuronal function:
AMP ⟶ Cyclic AMP
- Cardiomyocyte signaling pathways converging on Titin:
ATP ⟶ 3',5'-cyclic AMP
Plant Reactome(6)
- Metabolism and regulation:
ATP + CoA + propionate ⟶ AMP + PPi + PROP-CoA
- Cofactor biosyntheses:
2OG + L-Val ⟶ KIV + L-Glu
- Ascorbate biosynthesis:
L-galactono-1,4-lactone + an oxidized cytochrome c ⟶ VitC + a reduced cytochrome c
- Flavin biosynthesis:
2,5-diamino-4-hydroxy-6-(5-phosphoribosylamino)pyrimidine + H2O ⟶ 5-amino-6-(5'-phosphoribosylamino)uracil + ammonia
- Responses to stimuli: biotic stimuli and stresses:
H+ + O2.- ⟶ H2O2 + Oxygen
- Cell Death and immunity:
H+ + O2.- ⟶ H2O2 + Oxygen
INOH(0)
PlantCyc(129)
- pyrimidine salvage pathway:
H2O + UMP ⟶ phosphate + uridine
- pyrimidine salvage pathway:
H2O + UMP ⟶ phosphate + uridine
- pyrimidine salvage pathway:
H2O + UMP ⟶ phosphate + uridine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
A(H2) + GTP + SAM ⟶ (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate + 5'-deoxyadenosine + A + H+ + met
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
A(H2) + GTP + SAM ⟶ (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate + 5'-deoxyadenosine + A + H+ + met
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
A(H2) + GTP + SAM ⟶ (8S)-3',8-cyclo-7,8-dihydroguanosine 5'-triphosphate + 5'-deoxyadenosine + A + H+ + met
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
- molybdenum cofactor biosynthesis:
an [L-cysteine desulfurase]-L-cysteine + cys ⟶ ala + an [L-cysteine desulfurase]-S-sulfanyl-L-cysteine
COVID-19 Disease Map(0)
PathBank(0)
PharmGKB(0)
0 个相关的物种来源信息
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Sapna I, A Jayadeep. Enzyme-treated red rice (Oryza sativa L.) bran extracts mitigate inflammatory markers in RAW 264.7 macrophage cells and exhibit anti-inflammatory efficacy greater/comparable to ferulic acid, catechin, γ-tocopherol, and γ-oryzanol.
Journal of ethnopharmacology.
2024 Apr; 323(?):117616. doi:
10.1016/j.jep.2023.117616
. [PMID: 38142877] - Lijun Shi, Chenguang Yang, Mingyuan Zhang, Kangning Li, Keying Wang, Li Jiao, Ruming Liu, Yunyun Wang, Ming Li, Yong Wang, Lu Ma, Shuxin Hu, Xin Bian. Dissecting the mechanism of atlastin-mediated homotypic membrane fusion at the single-molecule level.
Nature communications.
2024 Mar; 15(1):2488. doi:
10.1038/s41467-024-46919-z
. [PMID: 38509071] - Mengjie Zhu, Nan Wu, Jiayi Zhong, Chen Chen, Wenwen Liu, Yingdang Ren, Xifeng Wang, Huaibing Jin. N6-methyladenosine modification of the mRNA for a key gene in purine nucleotide metabolism regulates virus proliferation in an insect vector.
Cell reports.
2024 Feb; 43(2):113821. doi:
10.1016/j.celrep.2024.113821
. [PMID: 38368611] - Cody Aplin, Richard A Cerione. Probing the mechanism by which the retinal G protein transducin activates its biological effector PDE6.
The Journal of biological chemistry.
2023 Dec; 300(2):105608. doi:
10.1016/j.jbc.2023.105608
. [PMID: 38159849] - Huayin Bao, Wei Wang, Haibo Sun, Jianzhong Chen. Probing mutation-induced conformational transformation of the GTP/M-RAS complex through Gaussian accelerated molecular dynamics simulations.
Journal of enzyme inhibition and medicinal chemistry.
2023 Dec; 38(1):2195995. doi:
10.1080/14756366.2023.2195995
. [PMID: 37057639] - Man Zhang, Wenshuang Wang, Kaixin Liu, Chao Jia, Yuanyuan Hou, Gang Bai. Astragaloside IV protects against lung injury and pulmonary fibrosis in COPD by targeting GTP-GDP domain of RAS and downregulating the RAS/RAF/FoxO signaling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2023 Nov; 120(?):155066. doi:
10.1016/j.phymed.2023.155066
. [PMID: 37690229] - Cecilia Rodriguez-Furlan, Ariana Emami, Jaimie M Van Norman. Distinct ADP-ribosylation factor-GTP exchange factors govern the opposite polarity of two receptor kinases.
Plant physiology.
2023 Oct; ?(?):. doi:
10.1093/plphys/kiad519
. [PMID: 37787604] - Junying Li, Xueling Chang, Xiangming Chen, Ruiyu Ma, Renrong Qi, Wei Liu, Yan Li, Yi Wan, Qinqin Qiu, Qiance Shao, Aiqiao Liu, Kai Zhan. Effects of green tea powder on production performance, egg quality, and blood biochemical parameters in laying hens.
Poultry science.
2023 Oct; 102(10):102924. doi:
10.1016/j.psj.2023.102924
. [PMID: 37542941] - Heng Shi, Xinhai Zhao, Peng Qin, Xianling Zhou, Sisi Liu, Chuanchuan Sun, Qiuyu Cao, Shiping Zhu, Shengyun Sun. Green tea polyphenols alleviate kidney injury induced by di(2-ethylhexyl) phthalate in mice.
American journal of nephrology.
2023 Sep; ?(?):. doi:
10.1159/000534106
. [PMID: 37734331] - Yanan Wang, Kun Liu, Meishan Lu, Jiachen Shi, Yong-Jiang Xu, Yuanfa Liu. Comparative evaluation of static and dynamic simulated digestion models.
Journal of the science of food and agriculture.
2023 Sep; 103(12):5893-5903. doi:
10.1002/jsfa.12692
. [PMID: 37144349] - Jahanvi Ganotra, Bhawana Sharma, Brijesh Biswal, Deepak Bhardwaj, Narendra Tuteja. Emerging role of small GTPases and their interactome in plants to combat abiotic and biotic stress.
Protoplasma.
2023 Jul; 260(4):1007-1029. doi:
10.1007/s00709-022-01830-6
. [PMID: 36525153] - Tian-Tian Jiang, Cong-Lan Ji, Li-Jun Yu, Meng-Ke Song, Yan Li, Qiang Liao, Tuo Wei, Opeyemi Joshua Olatunji, Jian Zuo, Jun Han. Resveratrol-induced SIRT1 activation inhibits glycolysis-fueled angiogenesis under rheumatoid arthritis conditions independent of HIF-1α.
Inflammation research : official journal of the European Histamine Research Society ... [et al.].
2023 Apr; ?(?):. doi:
10.1007/s00011-023-01728-w
. [PMID: 37016140] - Katie J Porter, Lingyan Cao, Katherine W Osteryoung. Dynamics of the Synechococcus elongatus cytoskeletal GTPase FtsZ yields mechanistic and evolutionary insight into cyanobacterial and chloroplast FtsZs.
The Journal of biological chemistry.
2023 03; 299(3):102917. doi:
10.1016/j.jbc.2023.102917
. [PMID: 36657643] - Ian R Fleming, Jonathan P Hannan, George Hayden Swisher, Corey D Tesdahl, Justin G Martyr, Nicholas J Cordaro, Annette H Erbse, Joseph J Falke. Binding of active Ras and its mutants to the Ras binding domain of PI-3-kinase: A quantitative approach to KD measurements.
Analytical biochemistry.
2023 02; 663(?):115019. doi:
10.1016/j.ab.2022.115019
. [PMID: 36526022] - Yongshun Zhou, Fanze Meng, Kai Han, Kaiyue Zhang, Jianfeng Gao, Fulong Chen. Screening and validating of endogenous reference genes in Chlorella sp. TLD 6B under abiotic stress.
Scientific reports.
2023 01; 13(1):1555. doi:
10.1038/s41598-023-28311-x
. [PMID: 36707665] - Yingjie Guo, Huan Zhang, Chen Yan, Birong Shen, Yue Zhang, Xiangyang Guo, Sha Sun, Fan Yu, Jiayun Yan, Ronghe Liu, Qianping Zhang, Di Zhang, Haiyang Liu, Yang Liu, Yaoyao Zhang, Wenlei Li, Jiangyu Qin, He Lv, Zhaoxia Wang, Yun Yuan, Jie-Feng Yang, Ya-Ting Zhong, Song Gao, Bing Zhou, Lei Liu, Deling Kong, Xiaojiang Hao, Junjie Hu, Quan Chen. Small molecule agonist of mitochondrial fusion repairs mitochondrial dysfunction.
Nature chemical biology.
2023 Jan; ?(?):. doi:
10.1038/s41589-022-01224-y
. [PMID: 36635564] - H Y Bao, W Wang, H B Sun, J Z Chen. Binding modes of GDP, GTP and GNP to NRAS deciphered by using Gaussian accelerated molecular dynamics simulations.
SAR and QSAR in environmental research.
2023 Jan; 34(1):65-89. doi:
10.1080/1062936x.2023.2165542
. [PMID: 36762439] - Qian-Zhi Ni, Bing Zhu, Yan Ji, Qian-Wen Zheng, Xin Liang, Ning Ma, Hao Jiang, Feng-Kun Zhang, Yu-Rong Shang, Yi-Kang Wang, Sheng Xu, Er-Bin Zhang, Yan-Mei Yuan, Tian-Wei Chen, Fen-Fen Yin, Hui-Jun Cao, Jing-Yi Huang, Ji Xia, Xu-Fen Ding, Xiao-Song Qiu, Kai Ding, Chao Song, Wen-Tao Zhou, Meng Wu, Kang Wang, Rui Lui, Qiu Lin, Wei Chen, Zhi-Gang Li, Shu-Qun Cheng, Xiao-Fan Wang, Dong Xie, Jing-Jing Li. PPDPF Promotes the Development of Mutant KRAS-Driven Pancreatic Ductal Adenocarcinoma by Regulating the GEF Activity of SOS1.
Advanced science (Weinheim, Baden-Wurttemberg, Germany).
2023 01; 10(2):e2202448. doi:
10.1002/advs.202202448
. [PMID: 36453576] - Gianfranco Paccione, Miguel Á Robles-Ramos, Carlos Alfonso, Marta Sobrinos-Sanguino, William Margolin, Silvia Zorrilla, Begoña Monterroso, Germán Rivas. Lipid Surfaces and Glutamate Anions Enhance Formation of Dynamic Biomolecular Condensates Containing Bacterial Cell Division Protein FtsZ and Its DNA-Bound Regulator SlmA.
Biochemistry.
2022 11; 61(22):2482-2489. doi:
10.1021/acs.biochem.2c00424
. [PMID: 36315857] - Di Zhang, Bei Jing, Zhenni Chen, Xin Li, Huimei Shi, Yachun Zheng, Shiquan Chang, Guoping Zhao. Ferulic acid alleviates sciatica by inhibiting peripheral sensitization through the RhoA/p38MAPK signalling pathway.
Phytomedicine : international journal of phytotherapy and phytopharmacology.
2022 Nov; 106(?):154420. doi:
10.1016/j.phymed.2022.154420
. [PMID: 36115115] - Wei Liu, Chunxia G Cronin, Ziming Cao, Chengliang Wang, Jianbin Ruan, Sunitha Pulikkot, Alexxus Hall, Hao Sun, Alex Groisman, Yunfeng Chen, Anthony T Vella, Liang Hu, Bruce T Liang, Zhichao Fan. Nexinhib20 Inhibits Neutrophil Adhesion and β2 Integrin Activation by Antagonizing Rac-1-Guanosine 5'-Triphosphate Interaction.
Journal of immunology (Baltimore, Md. : 1950).
2022 10; 209(8):1574-1585. doi:
10.4049/jimmunol.2101112
. [PMID: 36165184] - Huiling Guo, Juan Wang, Su Ren, Lang-Fan Zheng, Yi-Xuan Zhuang, Dong-Lin Li, Hui-Hui Sun, Li-Ying Liu, Changchuan Xie, Ya-Ying Wu, Hong-Rui Wang, Xianming Deng, Peng Li, Tong-Jin Zhao. Targeting EGFR-dependent tumors by disrupting an ARF6-mediated sorting system.
Nature communications.
2022 10; 13(1):6004. doi:
10.1038/s41467-022-33788-7
. [PMID: 36224181] - Van A Ngo, Angel E Garcia. Millisecond molecular dynamics simulations of KRas-dimer formation and interfaces.
Biophysical journal.
2022 10; 121(19):3730-3744. doi:
10.1016/j.bpj.2022.04.026
. [PMID: 35462078] - Adriana Trutzenberg, Stefan Engelhardt, Lukas Weiß, Ralph Hückelhoven. Barley guanine nucleotide exchange factor HvGEF14 is an activator of the susceptibility factor HvRACB and supports host cell entry by Blumeria graminis f. sp. hordei.
Molecular plant pathology.
2022 10; 23(10):1524-1537. doi:
10.1111/mpp.13246
. [PMID: 35849420] - Wudtichai Wisuitiprot, Kornkanok Ingkaninan, Sirada Jones, Neti Waranuch. Effect of green tea extract loaded chitosan microparticles on facial skin: A split-face, double-blind, randomized placebo-controlled study.
Journal of cosmetic dermatology.
2022 Sep; 21(9):4001-4008. doi:
10.1111/jocd.14707
. [PMID: 34965006] - Guohua Lv, Myung Soo Ko, Tapojyoti Das, David Eliezer. Molecular and functional interactions of alpha-synuclein with Rab3a.
The Journal of biological chemistry.
2022 09; 298(9):102239. doi:
10.1016/j.jbc.2022.102239
. [PMID: 35809645] - Dustin E Bosch, William R Jeck, David P Siderovski. Self-activating G protein α subunits engage seven-transmembrane regulator of G protein signaling (RGS) proteins and a Rho guanine nucleotide exchange factor effector in the amoeba Naegleria fowleri.
The Journal of biological chemistry.
2022 08; 298(8):102167. doi:
10.1016/j.jbc.2022.102167
. [PMID: 35738399] - Kazuhiro Ito, Doshun Ito, Mina Goto, Sae Suzuki, Shinji Masuda, Koh Iba, Kensuke Kusumi. Regulation of ppGpp Synthesis and Its Impact on Chloroplast Biogenesis during Early Leaf Development in Rice.
Plant & cell physiology.
2022 Jul; 63(7):919-931. doi:
10.1093/pcp/pcac053
. [PMID: 35428891] - T Wang, M J Jin, L K Li. [The GTP-Bound form of Rab3D Promotes Lipid Droplet Growth in Adipocyte].
Molekuliarnaia biologiia.
2022 Jul; 56(4):564-573. doi:
10.31857/s0026898422040140
. [PMID: 35964313] - Negar Shahsavari, Boyuan Wang, Yu Imai, Miho Mori, Sangkeun Son, Libang Liang, Nils Böhringer, Sylvie Manuse, Michael F Gates, Madeleine Morrissette, Rachel Corsetti, Josh L Espinoza, Chris L Dupont, Michael T Laub, Kim Lewis. A Silent Operon of Photorhabdus luminescens Encodes a Prodrug Mimic of GTP.
mBio.
2022 06; 13(3):e0070022. doi:
10.1128/mbio.00700-22
. [PMID: 35575547] - Giang Pham, Dong-Min Shin, Yoon Kim, Soo-Hwan Kim. Ran-GTP/-GDP-dependent nuclear accumulation of NONEXPRESSOR OF PATHOGENESIS-RELATED GENES1 and TGACG-BINDING FACTOR2 controls salicylic acid-induced leaf senescence.
Plant physiology.
2022 06; 189(3):1774-1793. doi:
10.1093/plphys/kiac164
. [PMID: 35417014] - Bikram D Pant, Seonghee Lee, Hee-Kyung Lee, Nick Krom, Pooja Pant, YoonJeong Jang, Kirankumar S Mysore. Overexpression of Arabidopsis nucleolar GTP-binding 1 (NOG1) proteins confers drought tolerance in rice.
Plant physiology.
2022 06; 189(2):988-1004. doi:
10.1093/plphys/kiac078
. [PMID: 35260897] - Chen Ling, Xingyong Chen, Weihuang Lin, Zhaoyu Geng. Green tea powder inclusion promoted hatchability through increased yolk antioxidant activity.
Poultry science.
2022 May; 101(5):101804. doi:
10.1016/j.psj.2022.101804
. [PMID: 35325830] - Kiran S Toti, John R Jimah, Veronica Salmaso, Jenny E Hinshaw, Kenneth A Jacobson. Synthesis and Effect of Conformationally Locked Carbocyclic Guanine Nucleotides on Dynamin.
Biomolecules.
2022 04; 12(4):. doi:
10.3390/biom12040584
. [PMID: 35454173] - Kunpeng Liu, Dongbo Qiu, Xue Liang, Yingqi Huang, Yao Wang, Xin Jia, Kun Li, Jingyuan Zhao, Cong Du, Xiusheng Qiu, Jun Cui, Zhendong Xiao, Yunfei Qin, Qi Zhang. Lipotoxicity-induced STING1 activation stimulates MTORC1 and restricts hepatic lipophagy.
Autophagy.
2022 04; 18(4):860-876. doi:
10.1080/15548627.2021.1961072
. [PMID: 34382907] - Yachana Jha, Budheswar Dehury, S P Jeevan Kumar, Anurag Chaurasia, Udai B Singh, Manoj Kumar Yadav, U B Angadi, Rajiv Ranjan, Minaketan Tripathy, R B Subramanian, Sunil Kumar, Jesus Simal-Gandara. Delineation of molecular interactions of plant growth promoting bacteria induced β-1,3-glucanases and guanosine triphosphate ligand for antifungal response in rice: a molecular dynamics approach.
Molecular biology reports.
2022 Apr; 49(4):2579-2589. doi:
10.1007/s11033-021-07059-5
. [PMID: 34914086] - Natsumi Maruta, Yuri Trusov, Alan M Jones, Jose R Botella. Heterotrimeric G Proteins in Plants: Canonical and Atypical Gα Subunits.
International journal of molecular sciences.
2021 Oct; 22(21):. doi:
10.3390/ijms222111841
. [PMID: 34769272] - Johannes Kattan, Anne Doerr, Marileen Dogterom, Christophe Danelon. Shaping Liposomes by Cell-Free Expressed Bacterial Microtubules.
ACS synthetic biology.
2021 10; 10(10):2447-2455. doi:
10.1021/acssynbio.1c00278
. [PMID: 34585918] - Ying Liu, Xiaoyun Wang, Danhui Dong, Luqin Guo, Xiaonan Dong, Jing Leng, Bing Zhao, Yang-Dong Guo, Na Zhang. Research Advances in Heterotrimeric G-Protein α Subunits and Uncanonical G-Protein Coupled Receptors in Plants.
International journal of molecular sciences.
2021 Aug; 22(16):. doi:
10.3390/ijms22168678
. [PMID: 34445383] - Jianzhong Chen, Lifei Wang, Wei Wang, Haibo Sun, Laixue Pang, Huayin Bao. Conformational transformation of switch domains in GDP/K-Ras induced by G13 mutants: An investigation through Gaussian accelerated molecular dynamics simulations and principal component analysis.
Computers in biology and medicine.
2021 08; 135(?):104639. doi:
10.1016/j.compbiomed.2021.104639
. [PMID: 34247129] - Krishnakanth Baratam, Kirtika Jha, Anand Srivastava. Flexible pivoting of dynamin pleckstrin homology domain catalyzes fission: insights into molecular degrees of freedom.
Molecular biology of the cell.
2021 07; 32(14):1306-1319. doi:
10.1091/mbc.e20-12-0794
. [PMID: 33979205] - Linda Sistemich, Lyubomir Dimitrov Stanchev, Miriam Kutsch, Aurélien Roux, Thomas Günther Pomorski, Christian Herrmann. Structural requirements for membrane binding of human guanylate-binding protein 1.
The FEBS journal.
2021 07; 288(13):4098-4114. doi:
10.1111/febs.15703
. [PMID: 33405388] - Natsumi Maruta, Yuri Trusov, Daisuke Urano, David Chakravorty, Sarah M Assmann, Alan M Jones, Jose R Botella. GTP binding by Arabidopsis extra-large G protein 2 is not essential for its functions.
Plant physiology.
2021 06; 186(2):1240-1253. doi:
10.1093/plphys/kiab119
. [PMID: 33729516] - Wenbin Zhou, Bangjie Zhu, Fang Kou, Shenglan Qi, Chunming Lv, Yu Cheng, Hai Wei. Targeted Metabolic Profiling and PRM Analysis of Proteins Revealed Impaired Polyunsaturated Fatty Acid Metabolism and GTP Metabolism in the Brainstem of Spontaneously Hypertensive Rats.
Journal of proteome research.
2021 06; 20(6):3305-3314. doi:
10.1021/acs.jproteome.1c00208
. [PMID: 33999640] - Diego A Ramirez-Diaz, Adrián Merino-Salomón, Fabian Meyer, Michael Heymann, Germán Rivas, Marc Bramkamp, Petra Schwille. FtsZ induces membrane deformations via torsional stress upon GTP hydrolysis.
Nature communications.
2021 06; 12(1):3310. doi:
10.1038/s41467-021-23387-3
. [PMID: 34083531] - X Zhou, K Shafique, M Sajid, Q Ali, E Khalili, M A Javed, M S Haider, G Zhou, G Zhu. Era-like GTP protein gene expression in rice.
Brazilian journal of biology = Revista brasleira de biologia.
2021; 82(?):e250700. doi:
10.1590/1519-6984.250700
. [PMID: 34259718] - Soumen Bera, Mubasher Rashid, Alexander B Medvinsky, Gui-Quan Sun, Bai-Lian Li, Claudia Acquisti, Adnan Sljoka, Amit Chakraborty. Allosteric regulation of glutamate dehydrogenase deamination activity.
Scientific reports.
2020 10; 10(1):16523. doi:
10.1038/s41598-020-73743-4
. [PMID: 33020580] - Takuma Kishimoto, Nario Tomishige, Motohide Murate, Reiko Ishitsuka, Hubert Schaller, Yves Mély, Kazumitsu Ueda, Toshihide Kobayashi. Cholesterol asymmetry at the tip of filopodia during cell adhesion.
FASEB journal : official publication of the Federation of American Societies for Experimental Biology.
2020 05; 34(5):6185-6197. doi:
10.1096/fj.201900065rr
. [PMID: 32162745] - Honghong Sun, Mei Lin, Ali Zamani, Jason R Goldsmith, Amanda E Boggs, Mingyue Li, Chin-Nien Lee, Xu Chen, Xinyuan Li, Ting Li, Brigid L Dorrity, Ning Li, Yunwei Lou, Songlin Shi, Wei Wang, Youhai H Chen. The TIPE Molecular Pilot That Directs Lymphocyte Migration in Health and Inflammation.
Scientific reports.
2020 04; 10(1):6617. doi:
10.1038/s41598-020-63629-w
. [PMID: 32313148] - Linda Sistemich, Miriam Kutsch, Benjamin Hämisch, Ping Zhang, Sergii Shydlovskyi, Nathalie Britzen-Laurent, Michael Stürzl, Klaus Huber, Christian Herrmann. The Molecular Mechanism of Polymer Formation of Farnesylated Human Guanylate-binding Protein 1.
Journal of molecular biology.
2020 03; 432(7):2164-2185. doi:
10.1016/j.jmb.2020.02.009
. [PMID: 32087202] - Yifan Ge, Xiaojun Shi, Sivakumar Boopathy, Julie McDonald, Adam W Smith, Luke H Chao. Two forms of Opa1 cooperate to complete fusion of the mitochondrial inner-membrane.
eLife.
2020 01; 9(?):. doi:
10.7554/elife.50973
. [PMID: 31922487] - Liselot Dewachter, Babette Deckers, Ella Martin, Pauline Herpels, Sotirios Gkekas, Wim Versées, Natalie Verstraeten, Maarten Fauvart, Jan Michiels. GTP Binding is Necessary for the Activation of a Toxic Mutant Isoform of the Essential GTPase ObgE.
International journal of molecular sciences.
2019 Dec; 21(1):. doi:
10.3390/ijms21010016
. [PMID: 31861427] - Selma Yilmaz Dejgaard, John F Presley. Rab18 regulates lipolysis via Arf/GBF1 and adipose triglyceride lipase.
Biochemical and biophysical research communications.
2019 12; 520(3):526-531. doi:
10.1016/j.bbrc.2019.10.069
. [PMID: 31610914] - Sophia Karouzaki, Charoula Peta, Emmanouella Tsirimonaki, Dimitra Mangoura. PKCε-dependent H-Ras activation encompasses the recruitment of the RasGEF SOS1 and of the RasGAP neurofibromin in the lipid rafts of embryonic neurons.
Neurochemistry international.
2019 12; 131(?):104582. doi:
10.1016/j.neuint.2019.104582
. [PMID: 31629778] - Hong-Miao Xia, Jin Wang, Xiao-Jie Xie, Li-Juan Xu, Shi-Qi Tang. Green tea polyphenols attenuate hepatic steatosis, and reduce insulin resistance and inflammation in high-fat diet-induced rats.
International journal of molecular medicine.
2019 Oct; 44(4):1523-1530. doi:
10.3892/ijmm.2019.4285
. [PMID: 31364723] - Ileana Márquez, Gabriel Díaz-Haro, Marisela Vélez. Surface Orientation and Binding Strength Modulate Shape of FtsZ on Lipid Surfaces.
International journal of molecular sciences.
2019 May; 20(10):. doi:
10.3390/ijms20102545
. [PMID: 31137602] - Zhihua Wang, Unchol Kim, Yanting Jiao, Chaowen Li, Yingying Guo, Xiaoyao Ma, Min Jiang, Zhihong Jiang, Yuanyuan Hou, Gang Bai. Quantitative Proteomics Combined with Affinity MS Revealed the Molecular Mechanism of Ginsenoside Antitumor Effects.
Journal of proteome research.
2019 05; 18(5):2100-2108. doi:
10.1021/acs.jproteome.8b00972
. [PMID: 30860844] - Malgorzata M Kopacz, André S G Lorenzoni, Carlos R Polaquini, Luis O Regasini, Dirk-Jan Scheffers. Purification and characterization of FtsZ from the citrus canker pathogen Xanthomonas citri subsp. citri.
MicrobiologyOpen.
2019 05; 8(5):e00706. doi:
10.1002/mbo3.706
. [PMID: 30085414] - Ron Orbach, Jonathon Howard. The dynamic and structural properties of axonemal tubulins support the high length stability of cilia.
Nature communications.
2019 04; 10(1):1838. doi:
10.1038/s41467-019-09779-6
. [PMID: 31015426] - Lu Cheng, Xin Zhang, Xiaojie Zheng, Zufang Wu, Peifang Weng. RNA-seq transcriptomic analysis of green tea polyphenols regulation of differently expressed genes in Saccharomyces cerevisiae under ethanol stress.
World journal of microbiology & biotechnology.
2019 Mar; 35(4):59. doi:
10.1007/s11274-019-2639-4
. [PMID: 30915597] - Benjamin Auxier, Jaclyn Dee, Mary L Berbee, Michelle Momany. Diversity of opisthokont septin proteins reveals structural constraints and conserved motifs.
BMC evolutionary biology.
2019 01; 19(1):4. doi:
10.1186/s12862-018-1297-8
. [PMID: 30616529] - Zhengxiao Zhao, Baojun Liu, Jing Sun, Linwei Lu, Lumei Liu, Jian Qiu, Qiuping Li, Chen Yan, Shan Jiang, Nabijan Mohammadtursun, Wenjuan Ma, Mihui Li, Jingcheng Dong, Weiyi Gong. Scutellaria Flavonoids Effectively Inhibit the Malignant Phenotypes of Non-small Cell Lung Cancer in an Id1-dependent Manner.
International journal of biological sciences.
2019; 15(7):1500-1513. doi:
10.7150/ijbs.33146
. [PMID: 31337979] - Miguel A Betancourt-Solis, Tanvi Desai, James A McNew. The atlastin membrane anchor forms an intramembrane hairpin that does not span the phospholipid bilayer.
The Journal of biological chemistry.
2018 11; 293(48):18514-18524. doi:
10.1074/jbc.ra118.003812
. [PMID: 30287684] - Kelsey N Maxwell, Yong Zhou, John F Hancock. Rac1 Nanoscale Organization on the Plasma Membrane Is Driven by Lipid Binding Specificity Encoded in the Membrane Anchor.
Molecular and cellular biology.
2018 09; 38(18):. doi:
10.1128/mcb.00186-18
. [PMID: 29967243] - Dan Dan Xu, Chong Bing Xu, Hon Ming Lam, Fuk-Ling Wong, Albert Wing Nang Leung, Merrin Man Long Leong, William Chi Shing Cho, Robin Hoeven, Qingtao Lv, Rong Rong. Proteomic analysis reveals that pheophorbide a-mediated photodynamic treatment inhibits prostate cancer growth by hampering GDP-GTP exchange of ras-family proteins.
Photodiagnosis and photodynamic therapy.
2018 Sep; 23(?):35-39. doi:
10.1016/j.pdpdt.2018.05.014
. [PMID: 29800714] - Leopold Kong, Kem A Sochacki, Huaibin Wang, Shunming Fang, Bertram Canagarajah, Andrew D Kehr, William J Rice, Marie-Paule Strub, Justin W Taraska, Jenny E Hinshaw. Cryo-EM of the dynamin polymer assembled on lipid membrane.
Nature.
2018 08; 560(7717):258-262. doi:
10.1038/s41586-018-0378-6
. [PMID: 30069048] - Lynn G L Richardson, Eliana L Small, Hitoshi Inoue, Danny J Schnell. Molecular Topology of the Transit Peptide during Chloroplast Protein Import.
The Plant cell.
2018 Aug; 30(8):1789-1806. doi:
10.1105/tpc.18.00172
. [PMID: 29991536] - Marcin Krupka, Marta Sobrinos-Sanguino, Mercedes Jiménez, Germán Rivas, William Margolin. Escherichia coli ZipA Organizes FtsZ Polymers into Dynamic Ring-Like Protofilament Structures.
mBio.
2018 06; 9(3):. doi:
10.1128/mbio.01008-18
. [PMID: 29921670] - Weipeng Liu, Zeying He, Feng Gao, Jinyuan Yan, Xiaowei Huang. Sensor kinase KinB and its pathway-associated key factors sense the signal of nutrition starvation in sporulation of Bacillus subtilis.
MicrobiologyOpen.
2018 06; 7(3):e00566. doi:
10.1002/mbo3.566
. [PMID: 29314743] - Norikazu Ohnishi, Lingang Zhang, Wataru Sakamoto. VIPP1 Involved in Chloroplast Membrane Integrity Has GTPase Activity in Vitro.
Plant physiology.
2018 05; 177(1):328-338. doi:
10.1104/pp.18.00145
. [PMID: 29622686] - Takumi Furusato, Fumihiro Horie, Hideaki T Matsubayashi, Kazuaki Amikura, Yutetsu Kuruma, Takuya Ueda. De Novo Synthesis of Basal Bacterial Cell Division Proteins FtsZ, FtsA, and ZipA Inside Giant Vesicles.
ACS synthetic biology.
2018 04; 7(4):953-961. doi:
10.1021/acssynbio.7b00350
. [PMID: 29510621] - Begoña Ugarte-Uribe, Coline Prévost, Kushal Kumar Das, Patricia Bassereau, Ana J García-Sáez. Drp1 polymerization stabilizes curved tubular membranes similar to those of constricted mitochondria.
Journal of cell science.
2018 04; 132(4):. doi:
10.1242/jcs.208603
. [PMID: 29361534] - Xifeng Li, Chong Cai, Zhe Wang, Baofang Fan, Cheng Zhu, Zhixiang Chen. Plastid Translation Elongation Factor Tu Is Prone to Heat-Induced Aggregation Despite Its Critical Role in Plant Heat Tolerance.
Plant physiology.
2018 04; 176(4):3027-3045. doi:
10.1104/pp.17.01672
. [PMID: 29444814] - Rahamthulla S Shaik, Min Woo Sung, Stanislav Vitha, Andreas Holzenburg. Chloroplast division protein ARC3 acts on FtsZ2 by preventing filament bundling and enhancing GTPase activity.
The Biochemical journal.
2018 01; 475(1):99-115. doi:
10.1042/bcj20170697
. [PMID: 29138260] - Christin Hanke-Gogokhia, Jeanne M Frederick, Houbin Zhang, Wolfgang Baehr. Binary Function of ARL3-GTP Revealed by Gene Knockouts.
Advances in experimental medicine and biology.
2018; 1074(?):317-325. doi:
10.1007/978-3-319-75402-4_39
. [PMID: 29721959] - Atsuko Honda, Hiroshi Usui, Kenji Sakimura, Michihiro Igarashi. Rufy3 is an adapter protein for small GTPases that activates a Rac guanine nucleotide exchange factor to control neuronal polarity.
The Journal of biological chemistry.
2017 12; 292(51):20936-20946. doi:
10.1074/jbc.m117.809541
. [PMID: 29089386] - Motoki Inoshita, Joji Mima. Human Rab small GTPase- and class V myosin-mediated membrane tethering in a chemically defined reconstitution system.
The Journal of biological chemistry.
2017 11; 292(45):18500-18517. doi:
10.1074/jbc.m117.811356
. [PMID: 28939769] - Marta Sobrinos-Sanguino, Silvia Zorrilla, Begoña Monterroso, Allen P Minton, Germán Rivas. Nucleotide and receptor density modulate binding of bacterial division FtsZ protein to ZipA containing lipid-coated microbeads.
Scientific reports.
2017 10; 7(1):13707. doi:
10.1038/s41598-017-14160-y
. [PMID: 29057931] - Mads E Nielsen, Gerd Jürgens, Hans Thordal-Christensen. VPS9a Activates the Rab5 GTPase ARA7 to Confer Distinct Pre- and Postinvasive Plant Innate Immunity.
The Plant cell.
2017 Aug; 29(8):1927-1937. doi:
10.1105/tpc.16.00859
. [PMID: 28808134] - Sergii Shydlovskyi, Anke Y Zienert, Semra Ince, Christine Dovengerds, Annika Hohendahl, Julia M Dargazanli, Ailisa Blum, Saskia D Günther, Nikolay Kladt, Michael Stürzl, Astrid C Schauss, Miriam Kutsch, Aurélien Roux, Gerrit J K Praefcke, Christian Herrmann. Nucleotide-dependent farnesyl switch orchestrates polymerization and membrane binding of human guanylate-binding protein 1.
Proceedings of the National Academy of Sciences of the United States of America.
2017 07; 114(28):E5559-E5568. doi:
10.1073/pnas.1620959114
. [PMID: 28645896] - Bing Li, Luping Liu, Ying Li, Xin Dong, Haifeng Zhang, Huaigu Chen, Xiaobo Zheng, Zhengguang Zhang. The FgVps39-FgVam7-FgSso1 Complex Mediates Vesicle Trafficking and Is Important for the Development and Virulence of Fusarium graminearum.
Molecular plant-microbe interactions : MPMI.
2017 05; 30(5):410-422. doi:
10.1094/mpmi-11-16-0242-r
. [PMID: 28437167] - Yaodong Chen, Katie Porter, Masaki Osawa, Anne Marie Augustus, Sara L Milam, Chandra Joshi, Katherine W Osteryoung, Harold P Erickson. The Chloroplast Tubulin Homologs FtsZA and FtsZB from the Red Alga Galdieria sulphuraria Co-assemble into Dynamic Filaments.
The Journal of biological chemistry.
2017 03; 292(13):5207-5215. doi:
10.1074/jbc.m116.767715
. [PMID: 28174299] - Yongheng Rong, Kun Wang, Renxing Shi, Xiaomin Hou, Chun-Hai Dong. Expression, purification and characterization of ROP66-178 GTPase from Arabidopsis thaliana.
Protein expression and purification.
2017 03; 131(?):1-6. doi:
10.1016/j.pep.2016.10.009
. [PMID: 27789389] - André A Pulschen, Diego E Sastre, Federico Machinandiarena, Agostina Crotta Asis, Daniela Albanesi, Diego de Mendoza, Frederico J Gueiros-Filho. The stringent response plays a key role in Bacillus subtilis survival of fatty acid starvation.
Molecular microbiology.
2017 02; 103(4):698-712. doi:
10.1111/mmi.13582
. [PMID: 27875634] - Huanyao Gao, Wei Sun, Zhiquan Song, Yanbao Yu, Li Wang, Xian Chen, Qisheng Zhang. A Method to Generate and Analyze Modified Myristoylated Proteins.
Chembiochem : a European journal of chemical biology.
2017 02; 18(3):324-330. doi:
10.1002/cbic.201600608
. [PMID: 27925692] - Siri C van Keulen, Ursula Rothlisberger. Effect of N-Terminal Myristoylation on the Active Conformation of Gαi1-GTP.
Biochemistry.
2017 Jan; 56(1):271-280. doi:
10.1021/acs.biochem.6b00388
. [PMID: 27936598] - N Baranova, M Loose. Single-molecule measurements to study polymerization dynamics of FtsZ-FtsA copolymers.
Methods in cell biology.
2017; 137(?):355-370. doi:
10.1016/bs.mcb.2016.03.036
. [PMID: 28065316] - Claudius Marondedze, Aloysius Wong, Ludivine Thomas, Helen Irving, Chris Gehring. Cyclic Nucleotide Monophosphates in Plants and Plant Signaling.
Handbook of experimental pharmacology.
2017; 238(?):87-103. doi:
10.1007/164_2015_35
. [PMID: 26721677] - Jason E Lee, Laura M Westrate, Haoxi Wu, Cynthia Page, Gia K Voeltz. Multiple dynamin family members collaborate to drive mitochondrial division.
Nature.
2016 12; 540(7631):139-143. doi:
10.1038/nature20555
. [PMID: 27798601] - Hui-Li Lu, Shih-Shun Chen, Wen-Tung Hsu, Yao-Cheng Lu, Chuan-Chun Lee, Tian-Shung Wu, Meng-Liang Lin. Suppression of phospho-p85α-GTP-Rac1 lipid raft interaction by bichalcone analog attenuates cancer cell invasion.
Molecular carcinogenesis.
2016 12; 55(12):2106-2120. doi:
10.1002/mc.22455
. [PMID: 26756739] - Mark P V Begieneman, Ellis N Ter Horst, Liza Rijvers, Elisa Meinster, René Leen, Jeannette E Pankras, Jan Fritz, Bela Kubat, René J P Musters, André B P van Kuilenburg, Jan Stap, Hans W M Niessen, Paul A J Krijnen. Dopamine induces lipid accumulation, NADPH oxidase-related oxidative stress, and a proinflammatory status of the plasma membrane in H9c2 cells.
American journal of physiology. Heart and circulatory physiology.
2016 11; 311(5):H1097-H1107. doi:
10.1152/ajpheart.00633.2015
. [PMID: 27521422] - Louise A Stephen, Shehab Ismail. Shuttling and sorting lipid-modified cargo into the cilia.
Biochemical Society transactions.
2016 10; 44(5):1273-1280. doi:
10.1042/bst20160122
. [PMID: 27911709] - Begoña Monterroso, Silvia Zorrilla, Marta Sobrinos-Sanguino, Christine D Keating, Germán Rivas. Microenvironments created by liquid-liquid phase transition control the dynamic distribution of bacterial division FtsZ protein.
Scientific reports.
2016 10; 6(?):35140. doi:
10.1038/srep35140
. [PMID: 27725777] - Koh Takeuchi, Miki Senda, Yu-Hua Lo, Satoshi Kofuji, Yoshiki Ikeda, Atsuo T Sasaki, Toshiya Senda. Structural reverse genetics study of the PI5P4Kβ-nucleotide complexes reveals the presence of the GTP bioenergetic system in mammalian cells.
The FEBS journal.
2016 10; 283(19):3556-3562. doi:
10.1111/febs.13739
. [PMID: 27090388] - Shun Zhao, Lin Liu. Expression and crystallographic studies of the Arabidopsis thaliana GDP-D-mannose pyrophosphorylase VTC1.
Acta crystallographica. Section F, Structural biology communications.
2016 10; 72(Pt 10):795-798. doi:
10.1107/s2053230x16013406
. [PMID: 27710946] - Mo Zhou, Heidi Wiener, Wenjuan Su, Yong Zhou, Caroline Liot, Ian Ahearn, John F Hancock, Mark R Philips. VPS35 binds farnesylated N-Ras in the cytosol to regulate N-Ras trafficking.
The Journal of cell biology.
2016 08; 214(4):445-58. doi:
10.1083/jcb.201604061
. [PMID: 27502489] - Zhiyong Xu, Kai Cheng, Xin Li, Jun Yang, Shilei Xu, Xiangling Cao, Xiaohe Hu, Wei Xie, Ling Yuan, Mike Ambrose, Genyun Chen, Hualing Mi, Da Luo. Transcriptional and Post-transcriptional Modulation of SQU and KEW Activities in the Control of Dorsal-Ventral Asymmetric Flower Development in Lotus japonicus.
Molecular plant.
2016 05; 9(5):722-736. doi:
10.1016/j.molp.2016.01.013
. [PMID: 26854849] - Yi Gao, Lingling Tan, Chun-Hai Dong, Xiaomin Hou. Expression, purification and guanine nucleotide binding characterization of Arabidopsis RabE1d13-185 GTPase.
Protein expression and purification.
2016 Mar; 119(?):57-62. doi:
10.1016/j.pep.2015.11.013
. [PMID: 26611608] - Haruko Ueda, Etsuo Yokota, Keiko Kuwata, Natsumaro Kutsuna, Shoji Mano, Tomoo Shimada, Kentaro Tamura, Giovanni Stefano, Yoichiro Fukao, Federica Brandizzi, Teruo Shimmen, Mikio Nishimura, Ikuko Hara-Nishimura. Phosphorylation of the C Terminus of RHD3 Has a Critical Role in Homotypic ER Membrane Fusion in Arabidopsis.
Plant physiology.
2016 Feb; 170(2):867-80. doi:
10.1104/pp.15.01172
. [PMID: 26684656]