Classification Term: 168788

Pyridine alkaloids (ontology term: b7868b6b60df05a6fe2b555a8a7d4e18)

found 223 associated metabolites at sub_class metabolite taxonomy ontology rank level.

Ancestor: Nicotinic acid alkaloids

Child Taxonomies: There is no child term of current ontology term.

Nicotine

(S)-(-)-NICOTINE; 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1156924)


Nicotine is an alkaloid found in the nightshade family of plants (Solanaceae), predominantly in tobacco and in lower quantities in tomato, potato, eggplant (aubergine), and green pepper. Nicotine alkaloids are also found in the leaves of the coca plant. Nicotine constitutes 0.3 to 5\\\% of the tobacco plant by dry weight, with biosynthesis taking place in the root and accumulation in the leaves. It is a potent neurotoxin with particular specificity to insects; therefore nicotine was widely used as an insecticide in the past and nicotine derivatives such as imidacloprid continue to be widely used. It has been noted that the majority of people diagnosed with schizophrenia smoke tobacco. Estimates for the number of schizophrenics that smoke range from 75\\\% to 90\\\%. It was recently argued that the increased level of smoking in schizophrenia may be due to a desire to self-medicate with nicotine. More recent research has found the reverse: it is a risk factor without long-term benefit, used only for its short-term effects. However, research on nicotine as administered through a patch or gum is ongoing. As nicotine enters the body, it is distributed quickly through the bloodstream and can cross the blood-brain barrier. On average, it takes about seven seconds for the substance to reach the brain. The half-life of nicotine in the body is around 2 hours. The amount of nicotine inhaled with tobacco smoke is a fraction of the amount contained in the tobacco leaves (most of the substance is destroyed by the heat). The amount of nicotine absorbed by the body from smoking depends on many factors, including the type of tobacco, whether the smoke is inhaled, and whether a filter is used. For chewing tobacco, often called dip, snuff, or sinus, which is held in the mouth between the lip and gum, the amount released into the body tends to be much greater than smoked tobacco. The currently available literature indicates that nicotine, on its own, does not promote the development of cancer in healthy tissue and has no mutagenic properties. Its teratogenic properties have not yet been adequately researched, and while the likelihood of birth defects caused by nicotine is believed to be very small or nonexistent, nicotine replacement product manufacturers recommend consultation with a physician before using a nicotine patch or nicotine gum while pregnant or nursing. However, nicotine and the increased acetylcholinic activity it causes have been shown to impede apoptosis, which is one of the methods by which the body destroys unwanted cells (programmed cell death). Since apoptosis helps to remove mutated or damaged cells that may eventually become cancerous, the inhibitory actions of nicotine create a more favourable environment for cancer to develop. Thus, nicotine plays an indirect role in carcinogenesis. It is also important to note that its addictive properties are often the primary motivating factor for tobacco smoking, contributing to the proliferation of cancer. Nicotine is a highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a hygroscopic, oily liquid that is miscible with water in its base form. As a nitrogenous base, nicotine forms salts with acids that are usually solid and water soluble. Nicotine easily penetrates the skin. As shown by the physical data, free base nicotine will burn at a temperature below its boiling point, and its vapours will combust at 95 °C in the air despite a low vapour pressure. Because of this, most nicotine is burned when a cigarette is smoked; however, enough is inhaled to provide the desired effects. Nicotine is a stimulant drug that acts as an agonist at nicotinic acetylcholine receptors. These are ionotropic receptors composed of five homomeric or heteromeric subunits. In the brain, nicotine binds to nic... Nicotine appears as a colorless to light yellow or brown liquid. Combustible. Toxic by inhalation and by skin absorption. Produces toxic oxides of nitrogen during combustion. (S)-nicotine is a 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum. It has a role as a phytogenic insecticide, a teratogenic agent, a neurotoxin, an anxiolytic drug, a nicotinic acetylcholine receptor agonist, a biomarker, an immunomodulator, a mitogen, a peripheral nervous system drug, a psychotropic drug, a plant metabolite and a xenobiotic. It is a conjugate base of a (S)-nicotinium(1+). It is an enantiomer of a (R)-nicotine. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. Nicotine is a Cholinergic Nicotinic Agonist. Nicotine is a natural alkyloid that is a major component of cigarettes and is used therapeutically to help with smoking cessation. Nicotine has not been associated with liver test abnormalities or with clinically apparent hepatotoxicity. Nicotine is a natural product found in Cyphanthera tasmanica, Nicotiana cavicola, and other organisms with data available. Nicotine is a plant alkaloid, found in the tobacco plant, and addictive central nervous system (CNS) stimulant that causes either ganglionic stimulation in low doses or ganglionic blockage in high doses. Nicotine acts as an agonist at the nicotinic cholinergic receptors in the autonomic ganglia, at neuromuscular junctions, and in the adrenal medulla and the brain. Nicotines CNS-stimulating activities may be mediated through the release of several neurotransmitters, including acetylcholine, beta-endorphin, dopamine, norepinephrine, serotonin, and ACTH. As a result, peripheral vasoconstriction, tachycardia, and elevated blood pressure may be observed with nicotine intake. This agent may also stimulate the chemoreceptor trigger zone, thereby inducing nausea and vomiting. Nicotine is highly toxic alkaloid. It is the prototypical agonist at nicotinic cholinergic receptors where it dramatically stimulates neurons and ultimately blocks synaptic transmission. Nicotine is also important medically because of its presence in tobacco smoke. See also: Tobacco Leaf (part of); Nicotine Polacrilex (related); Menthol; nicotine (component of) ... View More ... Alkaloid from Nicotiana tabacum and other Nicotiana subspecies, Asclepias syriaca, Lycopodium subspecies, and other subspecies (Solanaceae, Asclepiadaceae, Crassulaceae). Rare spread of occurrence between angiosperms and cryptogametes (CCD) A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has S-configuration. The naturally occurring and most active enantiomer of nicotine, isolated from Nicotiana tabacum.

   

Niacinamide

pyridine-3-carboxamide

C6H6N2O (122.0480106)


Nicotinamide is a white powder. (NTP, 1992) Nicotinamide is a pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. It has a role as an EC 2.4.2.30 (NAD(+) ADP-ribosyltransferase) inhibitor, a metabolite, a cofactor, an antioxidant, a neuroprotective agent, an EC 3.5.1.98 (histone deacetylase) inhibitor, an anti-inflammatory agent, a Sir2 inhibitor, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a geroprotector. It is a vitamin B3, a pyridinecarboxamide and a pyridine alkaloid. It is functionally related to a nicotinic acid. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Nicotinamide is a natural product found in Mus musculus, Euonymus grandiflorus, and other organisms with data available. Niacinamide is the active form of vitamin B3 and a component of the coenzyme nicotinamide adenine dinucleotide (NAD). Niacinamide acts as a chemo- and radio-sensitizing agent by enhancing tumor blood flow, thereby reducing tumor hypoxia. This agent also inhibits poly(ADP-ribose) polymerases, enzymes involved in the rejoining of DNA strand breaks induced by radiation or chemotherapy. Nicotinamide is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. Niacinamide or vitamin B3 is an important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. Niacinamide is used to increase the effect of radiation therapy on tumor cells. Niacin (nicotinic acid) and niacinamide, while both labeled as vitamin B3 also have different applications. Niacinamide is useful in arthritis and early-onset type I diabetes while niacin is an effective reducer of high cholesterol levels. Niacinamide is a metabolite found in or produced by Saccharomyces cerevisiae. An important compound functioning as a component of the coenzyme NAD. Its primary significance is in the prevention and/or cure of blacktongue and PELLAGRA. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. See also: Adenosine; Niacinamide (component of); Dapsone; niacinamide (component of); Adenosine; Niacinamide; Titanium Dioxide (component of) ... View More ... Niacinamide, also known as nicotinamide (NAM), is a form of vitamin B3 found in food and used as a dietary supplement and medication. Niacinamide belongs to the class of organic compounds known as nicotinamides. These are heterocyclic aromatic compounds containing a pyridine ring substituted at position 3 by a carboxamide group. Its primary significance is in the prevention and/or cure of blacktongue and pellagra. The structure of nicotinamide consists of a pyridine ring to which a primary amide group is attached in the meta position. It is an amide of nicotinic acid. As an aromatic compound, it undergoes electrophilic substitution reactions and transformations of its two functional groups. Niacinamide and phosphoribosyl pyrophosphate can be converted into nicotinic acid mononucleotide and phosphate by the enzyme nicotinamide phosphoribosyltransferase. In humans, niacinamide is involved in the metabolic disorder called the nad+ signalling pathway (cancer). Niacinamide is an odorless tasting compound. Outside of the human body, niacinamide is found, on average, in the highest concentration within a few different foods, such as common sages, cow milk, and cocoa beans and in a lower concentration in common pea. Niacinamide has also been detected, but not quantified in several different foods, such as yardlong beans, roselles, apples, oyster mushrooms, and swiss chards. Niacinamide occurs in trace amounts mainly in meat, fish, nuts, and mushrooms, as well as to a lesser extent in some vegetables. It is commonly added to cereals and other foods. Many multivitamins contain 20–30 mg of vitamin B3 and it is also available in higher doses. Most animals cannot manufacture this compound in amounts sufficient to prevent nutritional deficiency and it therefore must be supplemented through dietary intake. COVID info from COVID-19 Disease Map, WikiPathways, PDB, Protein Data Bank, clinicaltrial, clinicaltrials, clinical trial, clinical trials A pyridinecarboxamide that is pyridine in which the hydrogen at position 3 is replaced by a carboxamide group. Widespread in plants, e.g. rice, yeast and fungi. Dietary supplement, may be used in infant formulas Nicotinamide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=98-92-0 (retrieved 2024-07-01) (CAS RN: 98-92-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   

Nicotinic acid

pyridine-3-carboxylic acid

C6H5NO2 (123.032027)


Nicotinic acid is an odorless white crystalline powder with a feebly acid taste. pH (saturated aqueous solution) 2.7. pH (1.3\\\\\% solution) 3-3.5. (NTP, 1992) Nicotinic acid is a pyridinemonocarboxylic acid that is pyridine in which the hydrogen at position 3 is replaced by a carboxy group. It has a role as an antidote, an antilipemic drug, a vasodilator agent, a metabolite, an EC 3.5.1.19 (nicotinamidase) inhibitor, an Escherichia coli metabolite, a mouse metabolite, a human urinary metabolite and a plant metabolite. It is a vitamin B3, a pyridinemonocarboxylic acid and a pyridine alkaloid. It is a conjugate acid of a nicotinate. Niacin is a B vitamin used to treat vitamin deficiencies as well as hyperlipidemia, dyslipidemia, hypertriglyceridemia, and to reduce the risk of myocardial infarctions. Nicotinic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Niacin is a Nicotinic Acid. Niacin, also known as nicotinic acid and vitamin B3, is a water soluble, essential B vitamin that, when given in high doses, is effective in lowering low density lipoprotein (LDL) cholesterol and raising high density lipoprotein (HDL) cholesterol, which makes this agent of unique value in the therapy of dyslipidemia. Niacin can cause mild-to-moderate serum aminotransferase elevations and high doses and certain formulations of niacin have been linked to clinically apparent, acute liver injury which can be severe as well as fatal. Niacin is a water-soluble vitamin belonging to the vitamin B family, which occurs in many animal and plant tissues, with antihyperlipidemic activity. Niacin is converted to its active form niacinamide, which is a component of the coenzymes nicotinamide adenine dinucleotide (NAD) and its phosphate form, NADP. These coenzymes play an important role in tissue respiration and in glycogen, lipid, amino acid, protein, and purine metabolism. Although the exact mechanism of action by which niacin lowers cholesterol is not fully understood, it may act by inhibiting the synthesis of very low density lipoproteins (VLDL), inhibiting the release of free fatty acids from adipose tissue, increasing lipoprotein lipase activity, and reducing the hepatic synthesis of VLDL-C and LDL-C. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan (see below), but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. A water-soluble vitamin of the B complex occurring in various animal and plant tissues. It is required by the body for the formation of coenzymes NAD and NADP. It has PELLAGRA-curative, vasodilating, and antilipemic properties. Nicotinic acid, also known as niacin or vitamin B3, is a water-soluble vitamin whose derivatives such as NADH, NAD, NAD+, and NADP play essential roles in energy metabolism in the living cell and DNA repair. The designation vitamin B3 also includes the amide form, nicotinamide or niacinamide. Severe lack of niacin causes the deficiency disease pellagra, whereas a mild deficiency slows down the metabolism decreasing cold tolerance. The recommended daily allowance of niacin is 2-12 mg a day for children, 14 mg a day for women, 16 mg a day for men, and 18 mg a day for pregnant or breast-feeding women. It is found in various animal and plant tissues and has pellagra-curative, vasodilating, and antilipemic properties. The liver can synthesize niacin from the essential amino acid tryptophan, but the synthesis is extremely slow and requires vitamin B6; 60 mg of tryptophan are required to make one milligram of niacin. Bacteria in the gut may also perform the conversion but are inefficient. Nicotinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-67-6 (retrieved 2024-06-29) (CAS RN: 59-67-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

Milrinone

1,6-Dihydro-2-methyl-6-oxo-(3,4 inverted exclamation mark -bipyridine)-5-carbonitrile

C12H9N3O (211.07455839999997)


Milrinone is a member of the class of bipyridines that is 2-pyridone which is substituted at positions 3, 5, and 6 by cyano, pyrid-4-yl, and methyl groups, respectively. It is used (particularly intravenously, as the lactate) for the short-term management of severe heart failure. It has a role as an EC 3.1.4.17 (3,5-cyclic-nucleotide phosphodiesterase) inhibitor, a platelet aggregation inhibitor, a vasodilator agent and a cardiotonic drug. It is a pyridone, a nitrile and a member of bipyridines. Heart failure is a multifactorial condition that affects roughly 1-2\\% of the adult population. Often the result of long-term myocardial ischemia, cardiomyopathy, or other cardiac insults, heart failure results from an inability of the heart to perfuse peripheral tissues with sufficient oxygen and metabolites, resulting in complex systemic pathologies. Heart failure is underpinned by numerous physiological changes, including alteration in β-adrenergic signalling and cyclic adenosine monophosphate (cAMP) production, which affects the hearts contractile function and cardiac output. Milrinone is a second-generation bipyridine phosphodiesterase (PDE) inhibitor created through chemical modification of [amrinone]. As a PDE-III inhibitor, milrinone results in increased cAMP levels and improves cardiac function and peripheral vasodilation in acute decongested heart failure. Milrinone was originally synthesized at the Sterling Winthrop Research Institute in the 1980s. It was approved by the FDA on December 31, 1987, and was marketed under the trademark PRIMACOR® by Sanofi-Aventis US before being discontinued. Milrinone is a Phosphodiesterase 3 Inhibitor. The mechanism of action of milrinone is as a Phosphodiesterase 3 Inhibitor. Milrinone is a cardiovascular bipyridine agent and phosphodiesterase (PDE) III inhibitor, with positive inotropic and vasodilator activities. Upon administration, milrinone selectively inhibits PDE-mediated degradation of cyclic adenosine monophosphate (cAMP) in the heart and vascular muscles, thereby increasing cAMP and activates protein kinase A (PKA). This leads to phosphorylation of calcium ion channels and improve myocardium contractile force. Milrinone also causes vasodilation in arteriolar and venous vascular smooth muscle. A positive inotropic cardiotonic agent with vasodilator properties. It inhibits cAMP phosphodiesterase type 3 activity in myocardium and vascular smooth muscle. Milrinone is a derivative of amrinone and has 20-30 times the inotropic potency of amrinone. See also: Milrinone Lactate (active moiety of). Milrinone is only found in individuals that have used or taken this drug. It is a positive inotropic cardiotonic agent with vasodilator properties. Milrinone inhibits erythrocyte phosphodiesterase, resulting in an increase in erythrocyte cAMP activity. Subsequently, the erythrocyte membrane becomes more resistant to deformity. Along with erythrocyte activity, Milrinone also decreases blood viscosity by reducing plasma fibrinogen concentrations and increasing fibrinolytic activity. It also inhibits cAMP phosphodiesterase activity in myocardium and vascular smooth muscle. Milrinone is a derivative of amrinone and has 20-30 times the ionotropic potency of amrinone. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CE - Phosphodiesterase inhibitors D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058987 - Phosphodiesterase 3 Inhibitors C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor D020011 - Protective Agents > D002316 - Cardiotonic Agents KEIO_ID M037; [MS2] KO009062 KEIO_ID M037

   

Gentianine

NICOTINIC ACID, 4-(2-HYDROXYETHYL)-5-VINYL-, .DELTA.-LACTONE

C10H9NO2 (175.0633254)


Gentianine, also known as 4-(2-hydroxyethyl)-5-vinylnicotinate g-lactone, is a member of the class of compounds known as pyranopyridines. Pyranopyridines are polycyclic aromatic compounds containing a pyran ring fused to a pyridine ring. Gentianine is soluble (in water) and a strong basic compound (based on its pKa). Gentianine is a bitter tasting compound found in fenugreek, which makes gentianine a potential biomarker for the consumption of this food product. Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).

   

Ricinine

3-Pyridinecarbonitrile, 1,2-dihydro-4-methoxy-1-methyl-2-oxo-

C8H8N2O2 (164.0585748)


Ricinine belongs to the family of Alkyl Aryl Ethers. These are organic compounds containing the alkyl aryl ether functional group with formula R-O-R , where R is an alkyl group and R is an aryl group. Ricinine is a pyridine alkaloid, a pyridone and a nitrile. Ricinine is a natural product found in Ricinus communis with data available.

   

Isonicotinic acid

Pyridine-4-carboxylic Acid; Nicotinic Acid Imp. E (EP); Isonicotinic Acid; Isoniazid Impurity A; Nicotinic Acid Impurity E

C6H5NO2 (123.032027)


Isonicotinic acid is a pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. It has a role as a human metabolite and an algal metabolite. It is a conjugate acid of an isonicotinate. Isonicotinic acid is a natural product found in Aloe africana, Chlamydomonas reinhardtii, and other organisms with data available. Heterocyclic acids that are derivatives of 4-pyridinecarboxylic acid (isonicotinic acid). Isonicotinic acid is a metabolite of isoniazid. Isonicotinic acid is an organic compound with a carboxyl group on a pyridine ring. It is an isomer of nicotinic acid. The carboxyl group for isonicotinic acid is on the 4-position instead of the 3-position for nicotinic acid (Wikipedia). A pyridinemonocarboxylic acid in which the carboxy group is at position 4 of the pyridine ring. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID I017 Isonicotinic acid is a metabolite of Isoniazid. Isoniazid is converted to Isonicotinic acid by hydrazinolysis, with the Isoniazid to Isonicotinic acid biotransformation also to be catalyzed by cytochrome P450 (CYP) enzymes, e.g., CYP2C[1].

   

Trigonelline (N'-methylnicotinate)

Pyridinium, 3-carboxy-1-methyl-, hydroxide, inner salt

C7H7NO2 (137.0476762)


Trigonelline, also known as caffearin or gynesine, belongs to the class of organic compounds known as alkaloids and derivatives. These are naturally occurring chemical compounds that contain mostly basic nitrogen atoms. This group also includes some related compounds with neutral and even weakly acidic properties. Also some synthetic compounds of similar structure are attributed to alkaloids. In addition to carbon, hydrogen and nitrogen, alkaloids may also contain oxygen, sulfur and more rarely other elements such as chlorine, bromine, and phosphorus. It is also found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. High amounts of trigonelline have been found in arabica coffee, fenugreeks, and common peas. Another foods such as yellow bell peppers, orange bellpeppers and muskmelons also contain trigonelline but in lower concentrations. Trigonelline has also been detected but not quantified in several different foods, such as rices, triticales, alfalfa, cereals and cereal products, and ryes. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. Alkaloid from fenugreek (Trigonella foenum-graecum) (Leguminosae), and very many other subspecies; also present in coffee beans and many animals. Trigonelline is an alkaloid with chemical formula C7H7NO2 and CAS number 535-83-1. It is found in coffee, where it may help to prevent dental caries by preventing the bacteria Streptococcus mutans from adhering to teeth.; Trigonelline is an alkaloid with chemical formula C7H7NO2. It is an inner salt formed by the addition of a methyl group to the nitrogen atom of niacin. Trigonelline is a product of the metabolism of niacin (vitamin B3) which is excreted in the urine. Trigonelline in the urine is a biomarker for the consumption of coffee, legumes and soy products. N-methylnicotinate is an iminium betaine that is the conjugate base of N-methylnicotinic acid, arising from deprotonation of the carboxy group. It has a role as a plant metabolite, a food component and a human urinary metabolite. It is an iminium betaine and an alkaloid. It is functionally related to a nicotinate. It is a conjugate base of a N-methylnicotinic acid. Trigonelline is a natural product found in Hypoestes phyllostachya, Schumanniophyton magnificum, and other organisms with data available. See also: Fenugreek seed (part of). Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; ML_ID 52 KEIO_ID T060 Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

Pyridoxate

3-hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxylic acid

C8H9NO4 (183.0531554)


4-Pyridoxic acid is a member of the class of compounds known as methylpyridines. More specifically it is a 2-methylpyridine derivative substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) and is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced even further in persons with a riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via the enzyme known as 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four-electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide (NAD) as a cofactor. 4-Pyridoxic acid is the catabolic product of vitamin B6 (also known as pyridoxine, pyridoxal and pyradoxamine) which is excreted in the urine. Urinary levels of 4-pyridoxic acid are lower in females than in males and will be reduced in persons with riboflavin deficiency. 4-Pyridoxic acid is formed by the action of aldehyde oxidase I (an endogenous enzyme) and by microbial enzymes (pyridoxal 4-dehydrogenase), an NAD-dependent aldehyde dehydrogenase. 4-pyridoxic acid can be further broken down by the gut microflora via 4-pyridoxic acid dehydrogenase. This enzyme catalyzes the four electron oxidation of 4-pyridoxic acid to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate, using nicotinamide adenine dinucleotide as a cofactor. [HMDB] Vitamin B6 is one of the B vitamins, and thus an essential nutrient.[1][2][3][4] The term refers to a group of six chemically similar compounds, i.e., "vitamers", which can be interconverted in biological systems. Its active form, pyridoxal 5′-phosphate, serves as a coenzyme in more than 140 enzyme reactions in amino acid, glucose, and lipid metabolism.[1][2][3] Plants synthesize pyridoxine as a means of protection from the UV-B radiation found in sunlight[5] and for the role it plays in the synthesis of chlorophyll.[6] Animals cannot synthesize any of the various forms of the vitamin, and hence must obtain it via diet, either of plants, or of other animals. There is some absorption of the vitamin produced by intestinal bacteria, but this is not sufficient to meet dietary needs. For adult humans, recommendations from various countries' food regulatory agencies are in the range of 1.0 to 2.0 milligrams (mg) per day. These same agencies also recognize ill effects from intakes that are too high, and so set safe upper limits, ranging from as low as 25 mg/day to as high as 100 mg/day depending on the country. Beef, pork, fowl and fish are generally good sources; dairy, eggs, mollusks and crustaceans also contain vitamin B6, but at lower levels. There is enough in a wide variety of plant foods so that a vegetarian or vegan diet does not put consumers at risk for deficiency.[7] Dietary deficiency is rare. Classic clinical symptoms include rash and inflammation around the mouth and eyes, plus neurological effects that include drowsiness and peripheral neuropathy affecting sensory and motor nerves in the hands and feet. In addition to dietary shortfall, deficiency can be the result of anti-vitamin drugs. There are also rare genetic defects that can trigger vitamin B6 deficiency-dependent epileptic seizures in infants. These are responsive to pyridoxal 5'-phosphate therapy.[8] 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

6-Hydroxynicotinic acid

1,6-dihydro-6-oxo-3-Pyridinecarboxylic acid

C6H5NO3 (139.02694200000002)


6-Hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells (PMID:3926801, 15759292). 6-hydroxynicotinic acid can also be found in Achromobacter and Serratia. 6-hydroxynicotinic acid (6-OHNA) is exploited in the use of NMR spectroscopy or gas chromatography--mass spectrometry for the diagnosis of Pseudomonas aeruginosa in urinary tract infection. Among the common bacteria causing urinary infection, only P. aeruginosa produces 6-hydroxynicotinic acid from nicotinic acid. Pseudomonas aeruginosa infection has been reported to be the third leading cause of urinary infection, accounting for 11\\\% of such infections, the first and second being Escherichia coli and Klebsiella pneumonia, respectively. Analyses of the NMR spectra of the bacterial media with variable cell count of P. aeruginosa, shows that the intensity of the signals of the 6-hydroxynicotinic acid increases with increasing number of bacterial cells. (PMID: 3926801, 15759292) [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H015 6-Hydroxynicotinic acid is an endogenous metabolite.

   

3-Succinoylpyridine

4-OXO-4-(PYRIDIN-3-YL)BUTANOIC ACID

C9H9NO3 (179.05824040000002)


3-succinoylpyridine is the byproduct of tobacco-specific N-nitrosamines generated by the enzyme cytochrome P 450 which catalyzes methylnitrosaminopyridylbutanone hydroxylation. (PMID: 11368333). This nicotine metabolite is commonly found in the urine of smokers. (PMID: 14581070). 3-succinoylpyridine is the byproduct of tobacco-specific N-nitrosamines generated by the enzyme cytochrome P 450 which catalyzes methylnitrosaminopyridylbutanone hydroxylation. (PMID: 11368333)

   

Nicotinuric acid

2-[(pyridin-3-yl)formamido]acetic acid

C8H8N2O3 (180.0534898)


Nicotinuric acid is an acylglycine. Acylglycines are normally minor metabolites of fatty acids. However, the excretion of certain acylglycines is increased in several inborn errors of metabolism. In certain cases, the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acylglycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction acyl-CoA + glycine <-> CoA + N-acylglycine. Nicotinuric acid is the major detoxification product of nicotinic acid. It may serve as a simple quantitative index of hepatic biotransformation of nicotinic acid (PMID:3243933). Nicotinuric acid is an acyl glycine. Acyl glycines are normally minor metabolites of fatty acids. However, the excretion of certain acyl glycines is increased in several inborn errors of metabolism. In certain cases the measurement of these metabolites in body fluids can be used to diagnose disorders associated with mitochondrial fatty acid beta-oxidation. Acyl glycines are produced through the action of glycine N-acyltransferase (EC 2.3.1.13) which is an enzyme that catalyzes the chemical reaction: Nicotinuric acid is an acyl glycine. Nicotinuric acid is a metabolite of nicotinic acid.

   

Picolinic acid

5-Aminopyridine-2-carboxylic acid

C6H5NO2 (123.032027)


Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. Children with acrodermatitis enteropathica (AE) are treated with oral zinc dipicolinate (zinc-PA). The concentration of picolinic acid in the plasma of asymptomatic children with AE was significantly less than that of normal children. However, oral treatment with PA alone is ineffective. The results support the hypothesis that the genetic defect in AE is in the tryptophan pathway, although the role of PA in zinc metabolism remains to be defined. (PMID:15206716, 8473748, 1701787, 6694049). Picolinic acid is a metabolite of the tryptophan catabolism. Picolinic acid is produced under inflammatory conditions and a costimulus with interferon-gamma (IFNgamma) of macrophage (Mphi) effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two chemokines/cytokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. IFNgamma and picolinic acid have reciprocal effects on the production of MIPs chemokines and the expression of their receptor. The concerted action of IFNgamma and picolinic acid on MIP-1alpha/beta chemokine/receptor system is likely to be of pathophysiological significance and to represent an important regulatory mechanism for leukocyte recruitment and distribution into damaged tissues during inflammatory responses. Picolinic acid has an effect on the production of L-arginine-derived reactive nitrogen intermediates in macrophages, by augmenting IFN-gamma-induced NO2- production, and acts synergistically with IFN-gamma in activating macrophages. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents [Raw Data] CBA16_Picolinic-acid_pos_10eV_1-8_01_816.txt [Raw Data] CBA16_Picolinic-acid_pos_20eV_1-8_01_817.txt KEIO_ID P045 Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.

   

Pyridoxal

3-Hydroxy-5-(hydroxymethyl)-2-methylpyridine-4-carboxaldehyde

C8H9NO3 (167.0582404)


Pyridoxal is a pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. Pyridoxal, also known as pyridoxaldehyde, belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2, 3, 4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal is one form of vitamin B6. Pyridoxal exists in all living species, ranging from bacteria to humans. In humans, pyridoxal is involved in glycine and serine metabolism. Pyridoxal has been detected, but not quantified in several different foods, such as sourdoughs, lichee, arctic blackberries, watercress, and cottonseeds. Some medically relevant bacteria, such as those in the genera Granulicatella and Abiotrophia, require pyridoxal for growth. This nutritional requirement can lead to the culture phenomenon of satellite growth. In in vitro culture, these pyridoxal-dependent bacteria may only grow in areas surrounding colonies of bacteria from other genera ("satellitism") that are capable of producing pyridoxal. Pridoxal has a role as a cofactor, a human metabolite, a Saccharomyces cerevisiae metabolite, an Escherichia coli metabolite and a mouse metabolite.

   

Pyridoxamine

4-(AMINOMETHYL)-5-(hydroxymethyl)-2-methylpyridin-3-ol

C8H12N2O2 (168.0898732)


Pyridoxamine is one form of vitamin B6. Chemically it is based on a pyridine ring structure, with hydroxyl, methyl, aminomethyl, and hydroxymethyl substituents. It differs from pyridoxine by the substituent at the 4-position. The hydroxyl at position 3 and aminomethyl group at position 4 of its ring endow pyridoxamine with a variety of chemical properties, including the scavenging of free radical species and carbonyl species formed in sugar and lipid degradation and chelation of metal ions that catalyze Amadori reactions. Pyridoxamine, also known as PM, belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Within humans, pyridoxamine participates in a number of enzymatic reactions. In particular, pyridoxamine can be converted into pyridoxal; which is mediated by the enzyme pyridoxine-5-phosphate oxidase. In addition, pyridoxamine can be converted into pyridoxamine 5-phosphate; which is catalyzed by the enzyme pyridoxal kinase. Pyridoxamine also inhibits the formation of advanced lipoxidation endproducts during lipid peroxidation reactions by reaction with dicarbonyl intermediates. In humans, pyridoxamine is involved in vitamin B6 metabolism. Outside of the human body, pyridoxamine has been detected, but not quantified in several different foods, such as nutmegs, sparkleberries, fennels, turmerics, and swiss chards. Pyridoxamine inhibits the Maillard reaction and can block the formation of advanced glycation endproducts, which are associated with medical complications of diabetes. Pyridoxamine is hypothesized to trap intermediates in the formation of Amadori products released from glycated proteins, possibly preventing the breakdown of glycated proteins by disrupting the catalysis of this process through disruptive interactions with the metal ions crucial to the redox reaction. One research study found that pyridoxamine specifically reacts with the carbonyl group in Amadori products, but inhibition of post-Amadori reactions (that can lead to advanced glycation endproducts) is due in much greater part to the metal chelation effects of pyridoxamine. The 4-aminomethyl form of vitamin B6. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate. -- Pubchem; Pyridoxamine is one of the compounds that can be called vitamin B6, along with Pyridoxal and Pyridoxine. -- Wikipedia [HMDB]. Pyridoxamine is found in many foods, some of which are cucumber, fox grape, millet, and teff. Acquisition and generation of the data is financially supported in part by CREST/JST. D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P116 Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

Pyridoxamine 5'-phosphate

{[4-(aminomethyl)-5-hydroxy-6-methylpyridin-3-yl]methoxy}phosphonic acid

C8H13N2O5P (248.05620580000001)


Pyridoxamine 5-phosphate belongs to the class of organic compounds known as pyridoxamine 5-phosphates. These are heterocyclic aromatic compounds containing a pyridoxamine that carries a phosphate group at the 5-position. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. Vitamin B6 is a water-soluble vitamin. The three major forms of vitamin B6 are pyridoxine (also known as pyridoxol), pyridoxal, and pyridoxamine, which are all converted in the liver to pyridoxal 5-phosphate (PLP) a cofactor in many reactions of amino acid metabolism. PLP also is necessary for the enzymatic reaction governing the release of glucose from glycogen. Vitamin B6 is a water-soluble compound that was discovered in 1930s during nutrition studies on rats. The vitamin was named pyridoxine to indicate its structural homology to pyridine. Later it was shown that vitamin B6 could exist in two other, slightly different, chemical forms, termed pyridoxal and pyridoxamine. All three forms of vitamin B6 are precursors of an activated compound known as pyridoxal 5-phosphate (PLP), which plays a vital role as the cofactor of a large number of essential enzymes in the human body. KEIO_ID P113; [MS3] KO009146 KEIO_ID P113; [MS2] KO009143 KEIO_ID P113

   

Pyridoxine

3-Hydroxy-4,5-bis(hydroxymethyl)-2-methylpyridine

C8H11NO3 (169.0738896)


Pyridoxine, also known vitamin B6, is commonly found in food and is used as a dietary supplement. Pyridoxine is an essential nutrient, meaning the body cannot synthesize it, and it must be obtained from the diet. Sources in the diet include fruit, vegetables, and grain. Although pyridoxine and vitamin B6 are still frequently used as synonyms, especially by medical researchers, this practice is sometimes misleading (PMID: 2192605). Technically, pyridoxine is one of the compounds that can be called vitamin B6 or it is a member of the family of B6 vitamins. Healthy human blood levels of pyridoxine are 2.1 - 21.7 ng/mL. Pyridoxine is readily converted to pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids and aminolevulinic acid. Pyridoxine assists in the balancing of sodium and potassium as well as promoting red blood cell production. Therefore pyridoxine is required by the body to make amino acids, carbohydrates, and lipids. It is linked to cancer immunity and helps fight the formation of homocysteine. It has been suggested that pyridoxine might help children with learning difficulties, and may also prevent dandruff, eczema, and psoriasis. In addition, pyridoxine can help balance hormonal changes in women and aid in immune system. Lack of pyridoxine may cause anemia, nerve damage, seizures, skin problems, and sores in the mouth (Wikipedia). Deficiency of pyridoxine, though rare because of widespread distribution in foods, leads to the development of peripheral neuritis in adults and affects the central nervous system in children (DOSE - 3rd edition). As a supplement pyridoxine is used to treat and prevent pyridoxine deficiency, sideroblastic anaemia, pyridoxine-dependent epilepsy, certain metabolic disorders, problems from isoniazid, and certain types of mushroom poisoning. Pyridoxine in combination with doxylamine is used as a treatment for morning sickness in pregnant women. Found in rice husks, cane molasses, yeast, wheat germ and cod liver oils. Vitamin, dietary supplement, nutrient. Pyridoxine is one of the compounds that can be called vitamin B6, along with pyridoxal and pyridoxamine. It differs from pyridoxamine by the substituent at the 4 position. It is often used as pyridoxine hydrochloride. Pyridoxine in the urine is a biomarker for the consumption of soy products. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map KEIO_ID P053 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

Flonicamid

Pesticide4_Flonicamid_C9H6F3N3O_N-(Cyanomethyl)-4-(trifluoromethyl)nicotinamide

C9H6F3N3O (229.04629419999998)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals CONFIDENCE standard compound; EAWAG_UCHEM_ID 2943 EAWAG_UCHEM_ID 2943; CONFIDENCE standard compound

   

Isoniazid

Acid vanillylidenehydrazide, isonicotinic

C6H7N3O (137.0589092)


Isoniazid (also called isonicotinyl hydrazine or INH; sold as Laniazid, Nydrazid) is an organic compound that is the first-line antituberculosis medication in prevention and treatment. First discovered in 1912 as an inhibitor of the MAO enzyme, it was first used as an antidepressant, but discontinued due to side effects. In 1951, it was later discovered that isoniazid was effective against TB. Isoniazid is never used on its own to treat active tuberculosis because resistance quickly develops.; Isoniazid is a bactericidal agent active against organisms of the genus Mycobacterium, specifically M. tuberculosis, M. bovis and M. kansasii. It is a highly specific agent, ineffective against other microorganisms. Isoniazid is bactericidal to rapidly-dividing mycobacteria, but is bacteriostatic if the mycobacterium is slow-growing.; Isoniazid is a prodrug and must be activated by bacterial catalase. It is activated by catalase-peroxidase enzyme KatG which couples the isonicotinic acyl with NADH to form isonicotinic acyl-NADH complex. This complex binds tightly to ketoenoylreductase known as InhA, thereby blocking the natural enoyl-AcpM substrate and the action of fatty acid synthase. This process inhibits the synthesis of mycolic acid required for the mycobacterial cell wall. A range of radicals are produced by KatG activation of Isoniazid, including nitric oxide, that has also been shown to be important in the action of another antimycobacterial prodrug PA824. [HMDB] Isoniazid is only found in individuals that have used or taken this drug. It is an antibacterial agent used primarily as a tuberculostatic. It remains the treatment of choice for tuberculosis. [PubChem]Isoniazid is a prodrug and must be activated by bacterial catalase. Specficially, activation is associated with reduction of the mycobacterial ferric KatG catalase-peroxidase by hydrazine and reaction with oxygen to form an oxyferrous enzyme complex. Once activated, isoniazid inhibits the synthesis of mycoloic acids, an essential component of the bacterial cell wall. At therapeutic levels isoniazid is bacteriocidal against actively growing intracellular and extracellular Mycobacterium tuberculosis organisms. Specifically isoniazid inhibits InhA, the enoyl reductase from Mycobacterium tuberculosis, by forming a covalent adduct with the NAD cofactor. It is the INH-NAD adduct that acts as a slow, tight-binding competitive inhibitor of InhA. J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AC - Hydrazides D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites KEIO_ID I066

   

Quinolinic acid

Pyridine-2,3-dicarboxylic acid

C7H5NO4 (167.021857)


Quinolinic acid, also known as quinolinate, belongs to the class of organic compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. It is also classified as a pyridine-2,3-dicarboxylic acid, which is a dicarboxylic acid with a pyridine backbone. Quinolinic acid is a colorless solid. In plants, it is the biosynthetic precursor to nicotine. Quinolinic acid is found in all organisms, from microbes to plants to animals. Quinolinic acid can be biosynthesized via aspartic acid in plants. Oxidation of aspartate by the enzyme aspartate oxidase gives iminosuccinate, containing the two carboxylic acid groups that are found in quinolinic acid. Condensation of iminosuccinate with glyceraldehyde-3-phosphate, mediated by quinolinate synthase, affords quinolinic acid Quinolinic acid is also a downstream product of the kynurenine pathway, which metabolizes the amino acid tryptophan ((PMID: 22678511). The kynurenine/tryptophan degradation pathway is important for its production of the coenzyme nicotinamide adenine dinucleotide (NAD+) and produces several neuroactive intermediates including quinolinic acid, kynurenine (KYN), kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), and 3-hydroxyanthranilic acid (3-HANA). In animals quinolinic acid acts as an NMDA receptor agonist and has a possible role in neurodegenerative disorders (PMID: 22678511). It also acts as a neurotoxin, gliotoxin, proinflammatory mediator, and pro-oxidant molecule (PMID: 22248144). Quinolinic acid can act as an endogenous brain excitotoxin when released by activated macrophages (PMID: 15013955). Within the brain, quinolinic acid is only produced by activated microglia and macrophages. Quinolinic acid is unable to pass through the blood-brain barrier (BBB) and must be produced within the brain by microglial cells or macrophages that have passed the BBB (PMID: 22248144). While quinolinic acid cannot pass through the BBB, kynurenic acid, tryptophan and 3-hydroxykynurenine can and can subsequently act as precursors to the production of quinolinic acid in the brain (PMID: 22248144). Quinolinic acid has potent neurotoxic effects. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders and neurodegenerative diseases in the brain including ALS, Alzheimer’s disease, brain ischemia, Parkinson’s disease, Huntington’s disease and AIDS-dementia. Elevated CSF levels of quinolinic acid are correlated with the severity of neuropsychological deficits in patients who have AIDS. Indeed, levels of quinolinic acid in the CSF of AIDS patients suffering from AIDS-dementia can be up to twenty times higher than normal (PMID: 10936623). Quinolinic acid levels are increased in the brains of children infected with a range of bacterial infections of the central nervous system (CNS), of poliovirus patients, and of Lyme disease with CNS involvement patients. In addition, raised quinolinic acid levels have been found in traumatic CNS injury patients, patients suffering from cognitive decline with ageing, hyperammonaemia patients, hypoglycaemia patients, and systemic lupus erythematosus patients. Quinolinic acid has also been detected, but not quantified in, several different foods, such as Ceylon cinnamons, pitanga, Oregon yampahs, red bell peppers, and durians. This could make quinolinic acid a potential biomarker for the consumption of these foods. Quinolinic acid, also known as pyridine-2,3-dicarboxylate or 2,3-pyridinedicarboxylic acid, is a member of the class of compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. Quinolinic acid is slightly soluble (in water) and an extremely strong acidic compound (based on its pKa). Quinolinic acid can be found in a number of food items such as coconut, pistachio, chinese chives, and common bean, which makes quinolinic acid a potential biomarker for the consumption of these food products. Quinolinic acid can be found primarily in blood, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Quinolinic acid exists in all living species, ranging from bacteria to humans. In humans, quinolinic acid is involved in a couple of metabolic pathways, which include nicotinate and nicotinamide metabolism and tryptophan metabolism. Moreover, quinolinic acid is found to be associated with malaria, anemia, cNS tumors, and aIDS. Quinolinic acid has a potent neurotoxic effect. Studies have demonstrated that quinolinic acid may be involved in many psychiatric disorders, neurodegenerative processes in the brain, as well as other disorders. Within the brain, quinolinic acid is only produced by activated microglia and macrophages . Quinolinic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=89-00-9 (retrieved 2024-07-09) (CAS RN: 89-00-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2]. Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].

   

Pyridoxal 5'-phosphate

Phosphoric acid mono-(4-formyl-5-hydroxy-6-methyl-pyridin-3-ylmethyl) ester

C8H10NO6P (247.024573)


Pyridoxal phosphate, also known as PLP, pyridoxal 5-phosphate or P5P, is the active form of vitamin B6. It is a coenzyme in a variety of enzymatic reactions. Pyridoxal 5-phosphate belongs to the class of organic compounds known as pyridoxals and derivatives. Pyridoxals and derivatives are compounds containing a pyridoxal moiety, which consists of a pyridine ring substituted at positions 2,3,4, and 5 by a methyl group, a hydroxyl group, a carbaldehyde group, and a hydroxymethyl group, respectively. Pyridoxal 5-phosphate is a drug which is used for nutritional supplementation and for treating dietary shortage or imbalance. Pyridoxal 5-phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxal 5-phosphate is involved in glycine and serine metabolism. Outside of the human body, pyridoxal 5-phosphate is found, on average, in the highest concentration within cow milk. Pyridoxal 5-phosphate has also been detected, but not quantified in several different foods, such as soursops, italian sweet red peppers, muscadine grapes, european plums, and blackcurrants. Pyridoxal 5-phosphate, with regard to humans, has been found to be associated with several diseases such as epilepsy, early-onset, vitamin B6-dependent, odontohypophosphatasia, pyridoxamine 5-prime-phosphate oxidase deficiency, and hypophosphatasia. Pyridoxal 5-phosphate has also been linked to the inborn metabolic disorder celiac disease. This is the active form of vitamin B6 serving as a coenzyme for synthesis of amino acids, neurotransmitters (serotonin, norepinephrine), sphingolipids, aminolevulinic acid. During transamination of amino acids, pyridoxal phosphate is transiently converted into pyridoxamine phosphate (pyridoxamine). -- Pubchem; Pyridoxal-phosphate (PLP, pyridoxal-5-phosphate) is a cofactor of many enzymatic reactions. It is the active form of vitamin B6 which comprises three natural organic compounds, pyridoxal, pyridoxamine and pyridoxine. -- Wikipedia [HMDB]. Pyridoxal 5-phosphate is found in many foods, some of which are linden, kai-lan, nance, and rose hip. Acquisition and generation of the data is financially supported in part by CREST/JST. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins KEIO_ID P038 Pyridoxal phosphate is the active form of vitamin B6, acts as an inhibitor of reverse transcriptases, and is used for the treatment of tardive dyskinesia.

   

Nalidixic Acid

1-Ethyl-7-methyl-4-oxo-1,4-dihydro-[1,8]naphthyridine-3-carboxylic acid

C12H12N2O3 (232.0847882)


Nalidixic Acid is only found in individuals that have used or taken this drug. It is a synthetic 1,8-naphthyridine antimicrobial agent with a limited bacteriocidal spectrum. It is an inhibitor of the A subunit of bacterial DNA gyrase. [PubChem]Evidence exists for Nalidixic acid that its active metabolite, hydroxynalidixic acid, binds strongly, but reversibly, to DNA, interfering with synthesis of RNA and, consequently, with protein synthesis. CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3554; ORIGINAL_PRECURSOR_SCAN_NO 3553 CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7969; ORIGINAL_PRECURSOR_SCAN_NO 7967 CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3567; ORIGINAL_PRECURSOR_SCAN_NO 3565 CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8010; ORIGINAL_PRECURSOR_SCAN_NO 8008 CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7993; ORIGINAL_PRECURSOR_SCAN_NO 7988 CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7958; ORIGINAL_PRECURSOR_SCAN_NO 7956 CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8025; ORIGINAL_PRECURSOR_SCAN_NO 8023 CONFIDENCE standard compound; INTERNAL_ID 840; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8010; ORIGINAL_PRECURSOR_SCAN_NO 8009 J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents KEIO_ID N067; [MS2] KO009130 D004791 - Enzyme Inhibitors KEIO_ID N067 Nalidixic acid, a quinolone antibiotic, is effective against both gram-positive and gram-negative bacteria. Nalidixic acid acts in a bacteriostatic manner in lower concentrations and is bactericidal in higher concentrations. Nalidixic acid inhibits a subunit of DNA gyrase and topoisomerase IV and reversibly blocks DNA replication in susceptible bacteria[1]. Nalidixic acid, a quinolone antibiotic, is effective against both gram-positive and gram-negative bacteria. Nalidixic acid acts in a bacteriostatic manner in lower concentrations and is bactericidal in higher concentrations. Nalidixic acid inhibits a subunit of DNA gyrase and topoisomerase IV and reversibly blocks DNA replication in susceptible bacteria[1].

   

Brompheniramine

3-(4-Bromophenyl)-N,N-dimethyl-3-(2-pyridinyl)-1-propanamine

C16H19BrN2 (318.0731514)


Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. [HMDB] Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine; Brompheniramine (also known as Bromfed, Bromfenex, and Dimetane) is an antihistamine drug of the propylamine class. It is commonly available over the counter and is indicated for the treatment of the symptoms of the common cold and allergic rhinitis, such as runny nose, itchy eyes, watery eyes, and sneezing. It is a first-generation antihistamine. -- Wikipedia; Histamine H1 antagonist used in treatment of allergies, rhinitis, and urticaria. R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

Disopyramide

alpha-(2-(Diisopropylamino)ethyl)-alpha-phenyl-2-pyridineacetamide

C21H29N3O (339.2310504)


A class I anti-arrhythmic agent (one that interferes directly with the depolarization of the cardiac membrane and thus serves as a membrane-stabilizing agent) with a depressant action on the heart similar to that of guanidine. It also possesses some anticholinergic and local anesthetic properties. [PubChem] C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

Etoricoxib

5-Chloro-2-(6-methylpyridin-3-yl)-3-(4-(methylsulphonyl)phenyl)pyridine

C18H15ClN2O2S (358.054272)


Etoricoxib is a new COX-2 selective inhibitor. Current therapeutic indications are: treatment of rheumatoid arthritis, osteoarthritis, ankylosing spondylitis, chronic low back pain, acute pain and gout. Like any other COX-2 selective inhibitor, Etoricoxib selectively inhibits isoform 2 of cyclo-oxigenase enzyme (COX-2). This reduces the generation of prostaglandins (PGs) from arachidonic acid. M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents

   

Iproniazid

N-(propan-2-yl)pyridine-4-carbohydrazide

C9H13N3O (179.1058568)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

Nevirapine

2-cyclopropyl-7-methyl-2,4,9,15-tetraazatricyclo[9.4.0.0³,⁸]pentadeca-1(11),3,5,7,12,14-hexaen-10-one

C15H14N4O (266.1167554)


Nevirapine is only found in individuals that have used or taken this drug. It is a potent, non-nucleoside reverse transcriptase inhibitor used in combination with nucleoside analogues for treatment of HIV infection and AIDS. [PubChem]Nevirapine binds directly to reverse transcriptase (RT) and blocks the RNA-dependent and DNA-dependent DNA polymerase activities by causing a disruption of the enzymes catalytic site. The activity of nevirapine does not compete with template or nucleoside triphosphates. J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

Niflumic Acid

2-[[3-(trifluoromethyl)phenyl]amino]-3-pyridinecarboxylic acid

C13H9F3N2O2 (282.061609)


Niflumic Acid is only found in individuals that have used or taken this drug. It is an analgesic and anti-inflammatory agent used in the treatment of rheumatoid arthritis. [PubChem]Niflumic acid is able to inhibit both phospholipase A2 as well as COX-2, thereby acting as an antiinflamatory and pain reduction agent. M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics CONFIDENCE standard compound; EAWAG_UCHEM_ID 3691 CONFIDENCE standard compound; INTERNAL_ID 1154 D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

pymetrozine

Pesticide4_Pymetrozine_C10H11N5O_(E)-4,5-Dihydro-6-methyl-4-[(3-pyridinylmethylene)amino]-1,2,4-triazin-3(2H)-one

C10H11N5O (217.09635559999998)


CONFIDENCE standard compound; EAWAG_UCHEM_ID 2947 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2674; ORIGINAL_PRECURSOR_SCAN_NO 2673 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2682; ORIGINAL_PRECURSOR_SCAN_NO 2681 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2679; ORIGINAL_PRECURSOR_SCAN_NO 2677 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2664; ORIGINAL_PRECURSOR_SCAN_NO 2662 CONFIDENCE standard compound; INTERNAL_ID 257; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2667; ORIGINAL_PRECURSOR_SCAN_NO 2665

   

Nornicotine

Nornicotine tartrate, (S)-(R-(r*,r*))-isomer

C9H12N2 (148.1000432)


Nornicotine is an alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. An alkaloid extracted from tobacco and related to nicotine but having a lower toxicity: used as an agricultural and horticultural insecticide. [HMDB] CONFIDENCE standard compound; EAWAG_UCHEM_ID 3280 CONFIDENCE standard compound; INTERNAL_ID 2228 D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

Enoxacin

1-ethyl-6-fluoro-4-oxo-7-(piperazin-1-yl)-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid

C15H17FN4O3 (320.1284624)


Enoxacin is only found in individuals that have used or taken this drug. It is a broad-spectrum 6-fluoronaphthyridinone antibacterial agent (fluoroquinolones) structurally related to nalidixic acid. [PubChem]Enoxacin exerts its bactericidal action via the inhibition of the essential bacterial enzyme DNA gyrase (DNA Topoisomerase II). J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic CONFIDENCE standard compound; EAWAG_UCHEM_ID 3078

   

Guvacoline

3-Pyridinecarboxylic acid, 1,2,5,6-tetrahydro-, methyl ester

C7H11NO2 (141.0789746)


The methyl ester of guvacine.

   

Phenazopyridine

3-[(E)-2-phenyldiazen-1-yl]pyridine-2,6-diamine

C11H11N5 (213.1014406)


Phenazopyridine is only found in individuals that have used or taken this drug. It is a local anesthetic that has been used in urinary tract disorders. Its use is limited by problems with toxicity (primarily blood disorders) and potential carcinogenicity. [PubChem]Phenazopyridines mechanism of action is not well known, and only basic information on its interaction with the body is available. It is known that the chemical has a direct topical analgesic effect on the mucosa lining of the urinary tract. C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals KEIO_ID P036; [MS2] KO009187 KEIO_ID P036

   

Pyridostigmine

3-[(dimethylcarbamoyl)oxy]-1-methylpyridin-1-ium

C9H13N2O2+ (181.09769780000002)


Pyridostigmine is only found in individuals that have used or taken this drug. It is a cholinesterase inhibitor with a slightly longer duration of action than neostigmine. It is used in the treatment of myasthenia gravis and to reverse the actions of muscle relaxants. [PubChem]Pyridostigmine inhibits acetylcholinesterase in the synaptic cleft by competing with acetylcholine for attachment to acetylcholinesterase, thus slowing down the hydrolysis of acetylcholine, and thereby increases efficiency of cholinergic transmission in the neuromuscular junction and prolonges the effects of acetylcholine. N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors

   

Pyridine

Pyridine perbromate, 82BR-labeled

C5H5N (79.042197)


Pyridine is a clear liquid with an odor that is sour, putrid, and fish-like. It is a relatively simple heterocyclic aromatic organic compound that is structurally related to benzene, with one CH group in the six-membered ring replaced by a nitrogen atom. Pyridine is obtained from crude coal tar or is synthesized from acetaldehyde, formaldehyde and ammonia. Pyridine is often used as a denaturant for antifreeze mixtures, for ethyl alcohol, for fungicides, and as a dyeing aid for textiles. It is a harmful substance if inhaled, ingested or absorbed through the skin. In particular, it is known to reduce male fertility and is considered carcinogenic. Common symptoms of acute exposure to pyridine include: headache, coughing, asthmatic breathing, laryngitis, nausea and vomiting. -- Wikipedia. Flavouring ingredient. Pyridine is found in many foods, some of which are kohlrabi, red bell pepper, green bell pepper, and papaya. CONFIDENCE standard compound; INTERNAL_ID 8135 KEIO_ID P041

   

Clopyralid

3,6-Dichloro-2-pyridinecarboxylic acid

C6H3Cl2NO2 (190.95408380000003)


CONFIDENCE standard compound; INTERNAL_ID 167; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2378; ORIGINAL_PRECURSOR_SCAN_NO 2375 CONFIDENCE standard compound; INTERNAL_ID 167; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 2383; ORIGINAL_PRECURSOR_SCAN_NO 2379 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 8451 INTERNAL_ID 8451; CONFIDENCE Reference Standard (Level 1)

   

2-Hydroxypyridine

2-Hydroxypyridine sodium salt

C5H5NO (95.03711200000001)


This colourless crystalline solid is used in peptide synthesis. It is well known to form hydrogen bonded structures somewhat related to the base-pairing mechanism found in RNA and DNA. It is also a classic case of a molecule that exists as tautomers. Some publications only focus one of the two possible patterns, and neglect the influence of the other. For example, to calculation of the energy difference of the two tautomers in a non-polar solution will lead to a wrong result if a large quantity of the substance is on the side of the dimer in an equilibrium. The direct tautomerisation is not energetically favoured, but a dimerisation followed by a double proton transfer and dissociation of the dimer is a self catalytic path from one tautomer to the other. Protic solvents also mediate the proton transfer during the tautomerisation. Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H021 α-Pyridone is an endogenous metabolite.

   

Nicorandil

N-(2-Hydroxyethyl)nicotinamide nitric acid

C8H9N3O4 (211.0593034)


C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D018977 - Micronutrients > D014815 - Vitamins Same as: D01810 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

2-Cyanopyridine

2-Cyanopyridine

C6H4N2 (104.0374464)


KEIO_ID C089

   

Picolinamide

pyridine-2-carboximidic acid

C6H6N2O (122.0480106)


KEIO_ID P099

   

Nicotinic acid mononucleotide

3-carboxy-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1lambda5-pyridin-1-ylium

[C11H15NO9P]+ (336.048441)


Nicotinic acid mononucleotide, also known as nicotinate ribonucleotide, belongs to the class of organic compounds known as nicotinic acid nucleotides. These are pyridine nucleotides in which the pyridine base is nicotinic acid or a derivative thereof. Nicotinic acid mononucleotide is an extremely weak basic (essentially neutral) compound (based on its pKa). Nicotinic acid mononucleotide an intermediate in the cofactor biosynthesis and the nicotinate and nicotinamide metabolism pathways. It is a substrate for nicotinamide riboside kinase, ectonucleotide pyrophosphatase/phosphodiesterase, nicotinamide mononucleotide adenylyltransferase, 5-nucleotidase, nicotinate-nucleotide pyrophosphorylase, and 5(3)-deoxyribonucleotidase. Nicotinic acid mononucleotide is an intermediate in the metabolism of Nicotinate and nicotinamide. It is a substrate for Ectonucleotide pyrophosphatase/phosphodiesterase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 1, Nicotinamide mononucleotide adenylyltransferase 3, Cytosolic 5-nucleotidase IA, Cytosolic 5-nucleotidase IB, Nicotinate-nucleotide pyrophosphorylase, 5(3)-deoxyribonucleotidase (cytosolic type), Cytosolic purine 5-nucleotidase, Nicotinamide mononucleotide adenylyltransferase 2, Ectonucleotide pyrophosphatase/phosphodiesterase 3, 5-nucleotidase, 5(3)-deoxyribonucleotidase (mitochondrial) and Nicotinamide mononucleotide adenylyltransferase 1. [HMDB] NaMN is the most common mononucleotide intermediate (a hub) in NAD biogenesis. For example, in E. coli all three pyridine precursors are converted into NaMN (Table 1 and Figure 3(a)). Qa produced by the de novo Asp–DHAP pathway (genes nadB and nadA) is converted into NaMN by QAPRT (gene nadC). Salvage of both forms of niacin proceeds via NAPRT (gene pncB) either directly upon or after deamidation by NMDSE (gene pncA). Overall, more than 90\% of approximately 680 analyzed bacterial genomes contain at least one of the pathways leading to the formation of NaMN. Most of them (∼480 genomes) have the entire set of nadBAC genes for NaMN de novo synthesis from Asp that are often clustered on the chromosome and/or are co-regulated by the same transcription factors (see Section 7.08.3.1.2). Among the examples provided in Table 1, F. tularensis (Figure 4(c)) has all three genes of this de novo pathway forming a single operon-like cluster and supporting the growth of this organism in the absence of any pyridine precursors in the medium. More than half the genomes with the Asp–DHAP pathway also contain a deamidating niacin salvage pathway (genes pncAB) as do many representatives of the α-, β-, and γ-Proteobacteria, Actinobacteria, and Bacillus/Clostridium group. As already emphasized, the genomic reconstruction approach provides an assessment of the metabolic potential of an organism, which may or may not be realized under given conditions. For example, E. coli and B. subtilis can utilize both de novo and PncAB Nm salvage pathways under the same growth conditions, whereas in M. tuberculosis (having the same gene pattern) the latter pathway was considered nonfunctional, so that the entire NAD pool is generated by the de novo NadABC route. However, a recent study demonstrated the functional activity of the Nm salvage pathway in vivo, under hypoxic conditions in infected macrophages.221 This study also implicated the two downstream enzymes of NAD synthesis (NAMNAT and NADSYN) as attractive chemotherapeutic targets to treat acute and latent forms of tuberculosis. In approximately 100 species, including many Cyanobacteria (e.g., Synechococcus spp.), Bacteroidetes (e.g., Chlorobium spp.) and Proteobacteria (e.g., Caulobacter crescentus, Zymomonas mobilis, Desulfovibrio spp., and Shewanella spp. representing α-, β-, δ-, and γ-groups, respectively) the Asp–DHAP pathway is the only route to NAD biogenesis. Among them, nearly all Helicobacter spp. (except H. hepaticus), contain only the two genes nadA and nadC but lack the first gene of the pathway (nadB), which is a likely subject of nonorthologous gene replacement. One case of NadB (ASPOX) replacement by the ASPDH enzyme in T. maritima (and methanogenic archaea) was discussed in Section 7.08.2.1. However, no orthologues of the established ASPDH could be identified in Helicobacter spp. as well as in approximately 15 other diverse bacterial species that have the nadAC but lack the nadB gene (e.g., all analyzed Corynebacterium spp. except for C. diphtheriae). Therefore, the identity of the ASPOX or ASPDH enzyme in these species is still unknown, representing one of the few remaining cases of ‘locally missing genes’220 in the NAD subsystem. All other bacterial species contain either both the nadA and nadB genes (plus nadC) or none. In a limited number of bacteria (∼20 species), mostly in the two distant groups of Xanthomonadales (within γ-Proteobacteria) and Flavobacteriales (within Bacteroidetes), the Asp–DHAP pathway of Qa synthesis is replaced by the Kyn pathway. As described in Section 7.08.2.1.2, four out of five enzymes (TRDOX, KYNOX, KYNSE, and HADOX) in the bacterial version of this pathway are close homologues of the respective eukaryotic enzymes, whereas the KYNFA gene is a subject of multiple nonorthologous replacements. Although the identity of one alternative form of KYNFA (gene kynB) was established in a group of bacteria that have a partial Kyn pathway for Trp degradation to anthranilate (e.g., in P. aeruginosa or B. cereus57), none of the known KYNFA homologues are present in Xanthomonadales or Flavobacteriales. In a few species (e.g., Salinispora spp.) a complete gene set of the Kyn pathway genes co-occurs with a complete Asp–DHAP pathway. Further experiments would be required to establish to what extent and under what conditions these two pathways contribute to Qa formation. As discussed, the QAPRT enzyme is shared by both de novo pathways, and a respective gene, nadC is always found in the genomes containing one or the other pathway. Similarly, gene nadC always co-occurs with Qa de novo biosynthetic genes with one notable exception of two groups of Streptococci, S. pneumonaie and S. pyogenes. Although all other members of the Lactobacillales group also lack the Qa de novo biosynthetic machinery and rely entirely on niacin salvage, only these two human pathogens contain a nadC gene. The functional significance of this ‘out of context’ gene is unknown, but it is tempting to speculate that it may be involved in a yet-unknown pathway of Qa salvage from the human host. Among approximately 150 bacterial species that lack de novo biosynthesis genes and rely on deamidating salvage of niacin (via NAPRT), the majority (∼100) are from the group of Firmicutes. Such a functional variant (illustrated for Staphylococcus aureus in Figure 4(b)) is characteristic of many bacterial pathogens, both Gram-positive and Gram-negative (e.g., Brucella, Bordetella, and Campylobacter spp. from α-, β-, and δ-Proteobacteria, Borrelia, and Treponema spp. from Spirochaetes). Most of the genomes in this group contain both pncA and pncB genes that are often clustered on the chromosome and/or are co-regulated (see Section 7.08.3.1.2). In some cases (e.g., within Mollicutes and Spirochaetales), only the pncB, but not the pncA gene, can be reliably identified, suggesting that either of these species can utilize only the deamidated form of niacin (Na) or that some of them contain an alternative (yet-unknown) NMASE. Although the nondeamidating conversion of Nm into NMN (via NMPRT) appears to be present in approximately 50 bacterial species (mostly in β- and γ-Proteobacteria), it is hardly ever the only route of NAD biogenesis in these organisms. The only possible exception is observed in Mycoplasma genitalium and M. pneumoniae that contain the nadV gene as the only component of pyridine mononucleotide biosynthetic machinery. In some species (e.g., in Synechocystes spp.), the NMPRT–NMNAT route is committed primarily to the recycling of endogenous Nm. On the other hand, in F. tularensis (Figure 4(c)), NMPRT (gene nadV) together with NMNAT (of the nadM family) constitute the functional nondeamidating Nm salvage pathway as it supports the growth of the nadE′-mutant on Nm but not on Na (L. Sorci et al., unpublished). A similar nondeamidating Nm salvage pathway implemented by NMPRT and NMNAT (of the nadR family) is present in some (but not all) species of Pasteurellaceae in addition to (but never instead of) the RNm salvage pathway (see below), as initially demonstrated for H. ducreyi.128 A two-step conversion of NaMN into NAD via a NaAD intermediate (Route I in Figure 2) is present in the overwhelming majority of bacteria. The signature enzyme of Route I, NAMNAT of the NadD family is present in nearly all approximately 650 bacterial species that are expected to generate NaMN via de novo or salvage pathways (as illustrated by Figures 3(a) and 3(b)). All these species, without a single exception, also contain NADSYN (encoded by either a short or a long form of the nadE gene), which is required for this route. The species that lack the NadD/NadE signature represent several relatively rare functional variants, including: 1. Route I of NAD synthesis (NaMN → NaAD → NAD) variant via a bifunctional NAMNAT/NMNAT enzyme of the NadM family is common for archaea (see Section 7.08.3.2), but it appears to be present in only a handful of bacteria, such as Acinetobacter, Deinococcus, and Thermus groups. Another unusual feature of the latter two groups is the absence of the classical NADKIN, a likely subject of a nonorthologous replacement that remains to be elucidated. 2. Route II of NAD synthesis (NaMN → NMN → NAD). This route is implemented by a combination of the NMNAT of either the NadM family (as in F. tularensis) or the NadR family (as in M. succinoproducens and A. succinogenes) with NMNSYN of the NadE′ family. The case of F. tularensis described in Section 7.08.2.4 is illustrated in Figure 3(b). The rest of the NAD biosynthetic machinery in both species from the Pasteurellaceae group, beyond the shared Route II, is remarkably different from that in F. tularensis. Instead of de novo biosynthesis, they harbor a Na salvage pathway via NAPRT encoded by a pncB gene that is present in a chromosomal cluster with nadE′. Neither of these two genes are present in other Pasteurellaceae that lack the pyridine carboxylate amidation machinery (see below). 3. Salvage of RNm (RNm → NMN → NAD). A genomic signature of this pathway, a combination of the PnuC-like transporter and a bifunctional NMNAT/RNMKIN of the NadR family, is present in many Enterobacteriaceae and in several other diverse species (e.g., in M. tuberculosis). However, in H. influenzae (Figure 3(d)) and related members of Pasteurellaceae, it is the only route of NAD biogenesis. As shown in Table 1, H. influenzae as well as many other members of this group have lost nearly all components of the rich NAD biosynthetic machinery that are present in their close phylogenetic neighbors (such as E. coli and many other Enterobacteriaceae). This pathway is an ultimate route for utilization of the so called V-factors (NADP, NAD, NMN, or RNm) that are required to support growth of H. influenzae. It was established that all other V-factors are degraded to RNm by a combination of periplasmic- and membrane-associated hydrolytic enzymes.222 Although PnuC was initially considered an NMN transporter,223 its recent detailed analysis in both H. influenzae and Salmonella confirmed that its actual physiological function is in the uptake of RNm coupled with the phosphorylation of RNM to NMN by RNMKIN.17,148,224 As already mentioned, H. ducreyi and several other V-factor-independent members of the Pasteurellaceae group (H. somnus, Actinobacillus pleuropneumoniae, and Actinomycetemcomitans) harbor the NMNAT enzyme (NadV) that allows them to grow in the presence of Nm (but not Na) in the medium (Section 7.08.2.2). 4. Uptake of the intact NAD. Several groups of phylogenetically distant intracellular endosymbionts with extremely truncated genomes contain only a single enzyme, NADKIN, from the entire subsystem. Among them are all analyzed species of the Wolbachia, Rickettsia, and Blochmannia groups. These species are expected to uptake and utilize the intact NAD from their host while retaining the ability to convert it into NADP. Among all analyzed bacteria, only the group of Chlamydia does not have NADKIN and depends on the salvage of both NAD and NADP via a unique uptake system.157 A comprehensive genomic reconstruction of the metabolic potential (gene annotations and asserted pathways) across approximately 680 diverse bacterial genomes sets the stage for the accurate cross-genome projection and prediction of regulatory mechanisms that control the realization of this potential in a variety of species and growth conditions. In the next section, we summarize the recent accomplishments in the genomic reconstruction of NAD-related regulons in bacteria. Nicotinic acid mononucleotide. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=321-02-8 (retrieved 2024-06-29) (CAS RN: 321-02-8). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Nicotinamide ribotide

[(2R,3S,4R,5R)-5-(3-carbamoylpyridin-1-ium-1-yl)-3,4-dihydroxyoxolan-2-yl]methyl hydrogen phosphate

C11H15N2O8P (334.0566)


Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS β-nicotinamide mononucleotide (β-NM) is a product of the nicotinamide phosphoribosyltransferase (NAMPT) reaction and a key NAD+ intermediate. The pharmacological activities of β-nicotinamide mononucleotide include its role in cellular biochemical functions, cardioprotection, diabetes, Alzheimer's disease, and complications associated with obesity[1].

   

6-Hydroxypseudooxynicotine

1-(6-Hydroxypyridin-3-yl)-4-(methylamino)butan-1-one

C10H14N2O2 (194.1055224)


6-Hydroxypseudooxynicotine is a member of the class of compounds known as aryl alkyl ketones. Aryl alkyl ketones are ketones that have the generic structure RC(=O)R, where R = aryl group and R = alkyl group.

   

N1-Methyl-4-pyridone-3-carboxamide

1-methyl-4-oxo-1,4-dihydropyridine-3-carboxamide

C7H8N2O2 (152.0585748)


N1-Methyl-4-pyridone-3-carboxamide is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). Its concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300). N1-Methyl-4-pyridone-3-carboxamide has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). N1-Methyl-4-pyridone-5-carboxamide (4PY ) is a normal human metabolite (one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation). 4PY concentration in serum is elevated in non-dialyzed chronic renal failure (CRF) patients when compared with controls. (PMID 12694300) [HMDB]

   

Pyridoxine 5'-phosphate

5-Hydroxy-6-methyl-3,4-pyridinedimethanol alpha( 3)-(dihydrogen phosphate)

C8H12NO6P (249.0402222)


Pyridoxine phosphate, also known as pyridoxine 5-phosphoric acid or pyridoxine 5-(dihydrogen phosphate), is a member of the class of compounds known as pyridoxine-5-phosphates. Pyridoxine-5-phosphates are pyridoxines that carry a phosphate group at the 5-position. Pyridoxine phosphate is slightly soluble (in water) and a moderately acidic compound (based on its pKa). Pyridoxine phosphate can be found primarily in blood. Within the cell, pyridoxine phosphate is primarily located in the cytoplasm (predicted from logP). Pyridoxine phosphate exists in all living species, ranging from bacteria to humans. In humans, pyridoxine phosphate is involved in the vitamin B6 metabolism. Pyridoxine phosphate is also involved in hypophosphatasia, which is a metabolic disorder. Moreover, pyridoxine phosphate is found to be associated with obesity. Pyridoxine 5-phosphate is a substrate for Pyridoxine-5-phosphate oxidase and Pyridoxal kinase.

   
   

4-Pyridoxolactone

7-hydroxy-6-methyl-1H,3H-furo[3,4-c]pyridin-1-one

C8H7NO3 (165.0425912)


4-Pyridoxolactone is a bacterial oxidation metabolite of vitamin B6 (KEGG) [HMDB] 4-Pyridoxolactone is a bacterial oxidation metabolite of vitamin B6 (KEGG).

   

streptonigrin

5-amino-6-(7-amino-6-methoxy-5,8-dioxo-5,8-dihydroquinolin-2-yl)-4-(2-hydroxy-3,4-dimethoxyphenyl)-3-methylpyridine-2-carboxylic acid

C25H22N4O8 (506.1437572)


Nigrin b, also known as rufocromomycin or nigrin, is a member of the class of compounds known as bipyridines and oligopyridines. Bipyridines and oligopyridines are organic compounds containing two pyridine rings linked to each other. Nigrin b is practically insoluble (in water) and a moderately acidic compound (based on its pKa). Nigrin b can be found in black elderberry, which makes nigrin b a potential biomarker for the consumption of this food product. rRNA N-glycosylase (EC 3.2.2.22, ribosomal ribonucleate N-glycosidase, nigrin b, RNA N-glycosidase, rRNA N-glycosidase, ricin, momorcochin-S, Mirabilis antiviral protein, gelonin, saporins) is an enzyme with systematic name rRNA N-glycohydrolase. This enzyme catalyses the following chemical reaction Hydrolysis of the N-glycosylic bond at A-4324 in 28S rRNA from eukaryotic ribosomes . C274 - Antineoplastic Agent > C186664 - Cytotoxic Chemotherapeutic Agent > C259 - Antineoplastic Antibiotic D000970 - Antineoplastic Agents

   

N-Methylpyridinium

1-Methylpyridinium mu-iodotetraiododimercurate (1-)

C6H8N+ (94.06567079999999)


   

2,6-Dihydroxypyridine

2,6-Dihydroxypyridine

C5H5NO2 (111.032027)


   

Nicotinamide riboside

3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H15N2O5+ (255.098092)


Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside was originally identified as a nutrient in milk. It is a useful compound for the elevation of NAD+ levels in humans. Nicotinamide riboside has recently been discovered to be an NAD(+) precursor that is converted into nicotinamide mononucleotide by specific nicotinamide riboside kinases, Nrk1 and Nrk2. It has been shown that exogenous nicotinamide riboside promotes Sir2-dependent repression of recombination, improves gene silencing, and extends the lifespan of certain animal models without calorie restriction (PMID: 17482543). Supplementation in mammalian cells and mouse tissues increases NAD(+) levels and activates SIRT1 and SIRT3, culminating in enhanced oxidative metabolism and protection against high-fat diet-induced metabolic abnormalities (PMID: 22682224). Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role in the phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID: 15137942). Nicotinamide riboside is involved in nicotinate and nicotinamide metabolism. Nicotinamide riboside has been identified as a nutrient in milk. It is a useful compound for elevation of NAD+ levels in humans. Recent data suggest that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD+ synthesis (PMID: 18429699). Nicotinamide riboside kinase has an essential role for phosphorylation of nicotinamide riboside and the cancer drug tiazofurin (PMID 15137942). [HMDB] COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

3-Hydroxy-2-methylpyridine-4,5-dicarboxylate

3-Hydroxy-2-methylpyridine-4,5-dicarboxylic acid

C8H7NO5 (197.0324212)


3-Hydroxy-2-methylpyridine-4,5-dicarboxylate is an intermediate in vitamin B6 metabolism(KEGG ID C04604). It is the third to last step in the synthesis of succinate semialdehyde, which is an intermediate in butanoate metabolism. 3-Hydroxy-2-methylpyridine-4,5-dicarboxylate is generated from 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate and is then converted to 3-hydroxy-2-methylpyridine-5-carboxylate. [HMDB] 3-Hydroxy-2-methylpyridine-4,5-dicarboxylate is an intermediate in vitamin B6 metabolism(KEGG ID C04604). It is the third to last step in the synthesis of succinate semialdehyde, which is an intermediate in butanoate metabolism. 3-Hydroxy-2-methylpyridine-4,5-dicarboxylate is generated from 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate and is then converted to 3-hydroxy-2-methylpyridine-5-carboxylate.

   

Nudifloramide

1-methyl-6-oxo-1,6-dihydropyridine-3-carboxamide

C7H8N2O2 (152.0585748)


N-methyl-2-pyridone-5-carboxamide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Increased serum 2PY concentrations are observed in chronic renal failure (CRF) patients, which along with the deterioration of kidney function and its toxic properties (significant inhibition of PARP-1), suggests that 2PY is an uremic toxin. (PMID 12694300). 2PY has been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID: 22626821). N-methyl-2-pyridone-5-carboxamide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Increased serum 2PY concentrations are observed in chronic renal failure (CRF) patients, which along with the deterioration of kidney function and its toxic properties (significant inhibition of PARP-1), suggests that 2PY is an uremic toxin. (PMID 12694300) [HMDB] Nudifloramide (2PY) is one of the end products of nicotinamide-adenine dinucleotide (NAD) degradation. Nudifloramide significantly inhibits poly(ADP-ribose) polymerase (PARP-1) activity in vitro[1].

   

2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate

5-formyl-3-hydroxy-2-methylpyridine-4-carboxylic acid

C8H7NO4 (181.0375062)


2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate is an intermediate in vitamin B6 metabolism(KEGG ID C06050). It is the 4th to last step in the synthesis of succinate semialdehyde, which is an intermediate in butanoate metabolism. 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate is converted from 4-pyridoxate and is then converted to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate. [HMDB] 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate is an intermediate in vitamin B6 metabolism(KEGG ID C06050). It is the 4th to last step in the synthesis of succinate semialdehyde, which is an intermediate in butanoate metabolism. 2-Methyl-3-hydroxy-5-formylpyridine-4-carboxylate is converted from 4-pyridoxate and is then converted to 3-hydroxy-2-methylpyridine-4,5-dicarboxylate.

   

Isopyridoxal

5-Hydroxy-4-(hydroxymethyl)-6-methyl-3-pyridinecarboxaldehyde

C8H9NO3 (167.0582404)


Isopyridoxal is an active vitamer of the B6 complex in humans. (PMID 2208740). Vitamin B(6) is an essential component in human diet. (PMID 12686115). Vitamin B6 status (together with other vitamins from the B complex) is also related to Hyperhomocysteinemia, which has been linked to an increased risk for cardiovascular (CV) disease. (PMID 16407736). Isopyridoxal is an active vitamer of the B6 complex in humans. (PMID 2208740)

   

5-Pyridoxolactone

3-Carboxy-4-(hydroxymethyl)-5-hydroxy-6-methylpyridine lactone

C8H7NO3 (165.0425912)


5-Pyridoxolactone is a normal human metabolite of vitamin B6 metabolism. (PMIDs 9211301, 14995036) [HMDB] 5-Pyridoxolactone is a normal human metabolite of vitamin B6 metabolism. (PMIDs 9211301, 14995036).

   
   

Acetylisoniazid

N-(pyridine-4-carbonyl)ethanehydrazonic acid

C8H9N3O2 (179.06947340000002)


Acetylisoniazid belongs to the family of Pyridinecarboxamides. These are compounds containing a pyridine ring bearing a carboxamide.

   

Trovafloxacin

7-[(1R,5S)-6-amino-3-azabicyclo[3.1.0]hexan-3-yl]-1-(2,4-difluorophenyl)-6-fluoro-4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid

C20H15F3N4O3 (416.1096196)


Trovafloxacin (sold as Trovan by Pfizer) is a broad spectrum antibiotic that inhibits the uncoiling of supercoiled DNA in various bacteria by blocking the activity of DNA gyrase and topoisomerase IV. It was withdrawn from the market due to the risk of hepatotoxicity. It had better gram-positive bacterial coverage and less gram-negative coverage than the previous fluoroquinolones. [Wikipedia] J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

Cantleyine

(6S,7R)-6-hydroxy-7-methyl-6,7-dihydro-5H-cyclopenta[d]pyridine-4-carboxylic acid methyl ester

C11H13NO3 (207.0895388)


   
   
   

Nicotyrine

3-(1-Methyl-1H-pyrrol-2-yl)pyridine

C10H10N2 (158.084394)


   

Baptifoline

(1S,9R,10R,12S)-12-Hydroxy-7,15-diazatetracyclo[7.7.1.02,7.010,15]heptadeca-2,4-dien-6-one

C15H20N2O2 (260.15247)


Baptifoline is found in coffee and coffee products. Baptifoline is an alkaloid from Caulophyllum thalictroides (blue cohosh). Alkaloid from Caulophyllum thalictroides (blue cohosh). Baptifoline is found in coffee and coffee products.

   

2-Pyridyl hydroxymethane sulfonic acid

2-Pyridyl hydroxymethane sulfonic acid

C6H7NO4S (189.0095782)


   
   

Militarinone A

Militarinone A

C26H37NO6 (459.26207420000003)


A pyridine alkaloid that is 1,4-dihydroxypyridin-2(1H)-one substituted by a cis-1,4-dihydroxycyclohexyl group at position 5 and a (2E,4E,6E,8R,10R)-6,8,10-trimethyldodeca-2,4,6-trienoyl moiety at position 3. It is isolated from the mycelium of the entomogenous fungus, Paecilomyces militaris and has been found to induce pronounced neurite sprouting.

   

Pyricarbate

N-methyl[(6-{[(methyl-C-hydroxycarbonimidoyl)oxy]methyl}pyridin-2-yl)methoxy]carboximidic acid

C11H15N3O4 (253.106251)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

Benzyl nicotinate

Nicotinic acid benzyl ester, hexafluorosilicate (2-) (2:1)

C13H11NO2 (213.0789746)


C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent Same as: D01419

   

2,6-Dihydroxypseudooxynicotine

1-(2,6-Dihydroxypyridin-3-yl)-4-(methylamino)butan-1-one

C10H14N2O3 (210.1004374)


   

N'-nitrosonornicotine

3-(1-nitrosopyrrolidin-2-yl)pyridine

C9H11N3O (177.09020759999999)


N-nitrosonornicotine belongs to the family of Pyrrolidinylpyridines. These are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring. D009676 - Noxae > D002273 - Carcinogens

   

Chlorantraniliprole

Pesticide4_Chlorantraniliprole_C18H14BrCl2N5O2_3-Bromo-N-[4-chloro-2-methyl-6-(methylcarbamoyl)phenyl]-1-(3-chloropyridin-2-yl)-1H-pyrazole-5-carboxamide

C18H14BrCl2N5O2 (480.9707864)


D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals

   

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol

4-[Methyl(nitroso)amino]-1-(pyridin-3-yl)butan-1-ol

C10H15N3O2 (209.116421)


4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol belongs to the family of Pyridines and Derivatives. These are compounds containing a pyridine ring, which is a six-member aromatic heterocycle which consists of one nitrogen atom and five carbon atoms.

   

Nnal-N-oxide

3-{1-hydroxy-4-[methyl(nitroso)amino]butyl}-1lambda5-pyridin-1-one

C10H15N3O3 (225.111336)


Nnal-n-oxide belongs to the family of Pyridines and Derivatives. These are compounds containing a pyridine ring, which is a six-member aromatic heterocycle which consists of one nitrogen atom and five carbon atoms.

   

Pseudooxynicotine

4-(Methylamino)-1-(pyridin-3-yl)butan-1-one

C10H14N2O (178.1106074)


Nicorette is a branded over-the-counter palliative treatment which is used to ameliorate the withdrawal effects involved in quitting smoking. Originally available as a patch for topical application, it was later made available as a nicotine gum (composed of nicotine polacrilex)lozenge, inhaler, and nasal spray. All these products contain nicotine as the active ingredient and work by delivering this into the bloodstream. [HMDB] Nicorette is a branded over-the-counter palliative treatment which is used to ameliorate the withdrawal effects involved in quitting smoking. Originally available as a patch for topical application, it was later made available as a nicotine gum (composed of nicotine polacrilex)lozenge, inhaler, and nasal spray. All these products contain nicotine as the active ingredient and work by delivering this into the bloodstream.

   

Paraquat dichloride

1,1-Dimethyl-4,4-bipyridinium dichloride

C12H14Cl2N2 (256.0533984)


D010575 - Pesticides > D006540 - Herbicides D016573 - Agrochemicals

   

tropicamide

tropicamide

C17H20N2O2 (284.15247)


S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics

   

HLo7

[(Z)-[1-[(4-carbamoylpyridin-1-ium-1-yl)methoxymethyl]-2-[(Z)-hydroxyiminomethyl]-4-pyridylidene]methyl]-oxo-ammonium

C15H17I2N5O4 (584.9370021999999)


D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002801 - Cholinesterase Reactivators D004793 - Enzyme Reactivators

   

Morfamquat

morfamquat dichloride

C26H36N4O4. 2Cl (538.2113476000001)


   

Ginkgotoxin

5-Hydroxy-4-(methoxymethyl)-6-methyl-3-pyridinemethanol, 9CI

C9H13NO3 (183.0895388)


Ginkgotoxin is a member of pyridines. 5-(Hydroxymethyl)-4-(methoxymethyl)-2-methylpyridin-3-ol is a natural product found in Ginkgo biloba with data available. Ginkgotoxin is found in fats and oils. Ginkgotoxin is isolated from seeds of maidenhair tree Ginkgo bilob 4'-O-Methylpyridoxine, a natural compound, possesses antioxidant activity[1]. 4'-O-Methylpyridoxine, a natural compound, possesses antioxidant activity[1].

   

2-Aminonicotinic acid

2-aminopyridine-3-carboxylic acid

C6H6N2O2 (138.0429256)


2-Aminonicotinic acid belongs to the class of organic compounds known as pyridinecarboxylic acids. These are compounds containing a pyridine ring bearing a carboxylic acid group.

   

2-Hydroxynicotinic acid

1,2-Dihydro-2-oxo-3-pyridinecarboxylic acid

C6H5NO3 (139.02694200000002)


2-Hydroxynicotinic acid, also known as 2-hydroxypyridine-3-carboxylic acid, is a member of the class of compounds known as pyridinecarboxylic acids. Pyridinecarboxylic acids are compounds containing a pyridine ring bearing a carboxylic acid group. 2-Hydroxynicotinic acid is soluble (in water) and a weakly acidic compound (based on its pKa). 2-Hydroxynicotinic acid can be found in urine. 2-Hydroxynicotinic acid is a white to light yellow powder soluble in water. Its melting point is 258-261°C.

   

3-Pyridylacetic acid

alpha-(3-Pyridyl)acetic acid

C7H7NO2 (137.0476762)


3-Pyridylacetic acid is a breakdown product of nicotine (and other tobacco alkaloids) and is part of the nicotine degradation pathway. It is formed from 4-(3-pyridyl)-butanoate. One alkaloid in particular, myosmine, appears to be a major source for 3-pyridylacetic acid. The alkaloid myosmine is present not only in tobacco products but also in various foods. Myosmine is easily nitrosated, yielding 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and the esophageal tobacco carcinogen N-nitrosonornicotine. The two major metabolites of myosmine metabolism have been identified as 3-pyridylacetic acid (20-26\\\%) and 4-oxo-4-(3-pyridyl)butyric acid (50-60\\\%) (PMID: 16079272). 3-pyridylacetatic acid is an analog of nicotinic acid. (PMID 13898750) [HMDB] 3-Pyridylacetic acid is a breakdown product of nicotine (and other tobacco alkaloids) and is part of the nicotine degradation pathway. It is formed from 4-(3-pyridyl)-butanoate. One alkaloid in particular, myosmine, appears to be a major source for 3-pyridylacetic acid. The alkaloid myosmine is present not only in tobacco products but also in various foods. Myosmine is easily nitrosated, yielding 4-hydroxy-1-(3-pyridyl)-1-butanone (HPB) and the esophageal tobacco carcinogen N-nitrosonornicotine. The two major metabolites of myosmine metabolism have been identified as 3-pyridylacetic acid (20-26\\\%) and 4-oxo-4-(3-pyridyl)butyric acid (50-60\\\%) (PMID:16079272). 3-pyridylacetatic acid is an analog of nicotinic acid. (PMID 13898750). 3-Pyridineacetic acid is a higher homologue of nicotinic acid, a breakdown product of nicotine (and other tobacco alkaloids)[1][2].

   

(S)-Cotinine

1-methyl-5-(pyridin-3-yl)pyrrolidin-2-one

C10H12N2O (176.0949582)


Cotinine has an in vivo half life of approximately 20 hours, and is typically detectable for several days to up to one week after the use of tobacco. The level of cotinine in the blood is proportionate to the amount of exposure to tobacco smoke, so it is a valuable indicator of tobacco smoke exposure, including secondary (passive) smoke. People who smoke menthol cigarettes may retain cotinine in the blood for a longer period because menthol can compete with cotinine enzymatic metabolism. Genetic encoding of liver enzymes may also play a role, as African Americans routinely register higher blood cotinine levels than Caucasians. Several variable factors, such as menthol cigarette preference and puff size, suggest that the explanation for this difference may be more complex than gender or race.[citation needed]; Cotinine is a metabolite of nicotine. The word cotinine is an anagram of nicotine. It is used to measure the grade of tobacco smoking, but might also improve mental function.; Quantitatively, the most important metabolite of nicotine in most mammalian species is cotinine. In humans, about 70 to 80\\\\% of nicotine is converted to cotinine. This transformation involves two steps. The first is mediated by a cytochrome P450 system (mainly CYP2A6 and CYP2B6) to produce nicotine iminium ion. The second step is catalyzed by aldehyde oxidase (AOX). A number of cotinine metabolites have also been structurally characterized. Indeed, it appears that most of the reported urinary metabolites of nicotine are derived from cotinine. Cotinine is found in many foods, some of which are ceylon cinnamon, arrowhead, mountain yam, and rambutan. Cotinine is an alkaloid found in tobacco (Nicotiana tabacum). Cotinine belongs to the class of organic compounds known as pyrrolidinylpyridines. Pyrrolidinylpyridines are compounds containing a pyrrolidinylpyridine ring system, which consists of a pyrrolidine ring linked to a pyridine ring. It is also the predominant human metabolite of nicotine (when nicotine is inhaled or absorbed). In humans, about 70 to 80\\\\% of nicotine that is inhaled or absorbed is converted to cotinine. This transformation involves two steps. The first is mediated by a cytochrome P450 system (mainly CYP2A6 and CYP2B6) to produce nicotine iminium ion. The second step is catalyzed by aldehyde oxidase (AOX). A number of cotinine metabolites have also been structurally characterized. Indeed, it appears that most of the reported urinary metabolites of nicotine are derived from cotinine. Cotinine is widely used as a biomarker for exposure to tobacco smoke. Cotinine has an in vivo half-life of approximately 20 hours, and is typically detectable for several days (up to one week) after the use of tobacco. Similar to nicotine, cotinine binds to, activates, and desensitizes neuronal nicotinic acetylcholine receptors, though at much lower potency in comparison. It has demonstrated nootropic and antipsychotic-like effects in animal models. Cotinine treatment has also been shown to reduce depression, anxiety, and fear-related behavior as well as memory impairment in animal models of depression, PTSD, and Alzheimers disease. Cotinine ((-)-Cotinine), an alkaloid in tobacco and a major metabolite of nicotine, is used as a biological indicator to measure the composition of tobacco smoke[1]

   

Oxoamide

gamma-(3-Pyridyl)-gamma-oxo-N-methylbutyramide

C10H12N2O2 (192.0898732)


Oxoamide is a metabolite of Cotinine, which is a major metabolite of Nicotine. A metabolite of Cotinine, which is a major metabolite of Nicotine. [HMDB]

   

N-Methylnicotinamide

N-Methylnicotinamide monohydrochloride

C7H8N2O (136.06365979999998)


N-methylnicotinamide is a pyridinecarboxamide that is nicotinamide in which one of the amide hydrogens is substituted by a methyl group. N-methylnicotinamide is a metabolite of niacin (or nicotinamide) and is commonly found in human urine. However low levels of urinary excretion of N-methylnicotinamide indicates niacin deficiency. (PMID:16207585). In patients with liver cirrhosis nicotinamide methylation is increased leading to a rise in urinary N-methylnicotinamide. The hyperfunction of this methylating pathway might play a protective role against the toxic effect of intracellular accumulation of nicotinamide deriving from the catabolic state of cirrhosis. N-methylnicotinamide is known to inhibit choline transport and reduce choline clearance out of the brain. N-methylnicotinamide has been found to be a microbial metabolite. N-methylnicotinamide is a metabolite of niacin (or nicotinamide) and is commonly found in human urine. However low levels of urinary excretion of N-methylnicotinamide indicates niacin deficiency. (PMID: 16207585). In patients with liver cirrhosis nicotinamide methylation is increased leading to a rise in urinary N-methylnicotinamide. The hyperfunction of this methylating pathway might play a protective role against the toxic effect of intracellular accumulation of nicotinamide deriving from the catabolic state of cirrhosis. N-methylnicotinamide is known to inhibit choline transport and reduce choline clearance out of the brain. [HMDB] A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AB - Preparations for biliary tract therapy N-Methylnicotinamide is an endogenous metabolite. N-Methylnicotinamide is an endogenous metabolite.

   

Tropicamide

N-Ethyl-alpha-(hydroxymethyl)-N-(4-pyridinylmethyl)benzeneacetamide

C17H20N2O2 (284.15247)


Tropicamide is only found in individuals that have used or taken this drug. It is one of the muscarinic antagonists with pharmacologic action similar to atropine and used mainly as an ophthalmic parasympatholytic or mydriatic. [PubChem]Tropicamide binds to and blocks the receptors in the muscles of the eye (muscarinic receptor M4). Tropicamide acts by blocking the responses of the iris sphincter muscle to the iris and ciliary muscles to cholinergic stimulation, producing dilation of the pupil and paralysis of the ciliary muscle. S - Sensory organs > S01 - Ophthalmologicals > S01F - Mydriatics and cycloplegics > S01FA - Anticholinergics C78272 - Agent Affecting Nervous System > C66880 - Anticholinergic Agent > C29704 - Antimuscarinic Agent D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D009184 - Mydriatics

   

Pheniramine

dimethyl[3-phenyl-3-(pyridin-2-yl)propyl]amine

C16H20N2 (240.16264)


Pheniramine is only found in individuals that have used or taken this drug. It is one of the histamine H1 antagonists with little sedative action. It is used in treatment of hay fever, rhinitis, allergic dermatoses, and pruritus. [PubChem]Antihistamines such as pheniramine appear to compete with histamine for histamine H1- receptor sites on effector cells. The antihistamines antagonize those pharmacological effects of histamine which are mediated through activation of H1- receptor sites and thereby reduce the intensity of allergic reactions and tissue injury response involving histamine release. Antihistamines suppress the histamine-induced wheal (swelling) and flare (vasodilation) response by blocking the binding of histamine to its receptors on nerves, vascular smooth muscle, glandular cells, endothelium, and mast cells. They effectively exert competitive antagonism of histamine for H1-receptors. D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents

   
   

2,6-Pyridinedicarboxylic acid

Dipicolinic acid, dipotassium salt

C7H5NO4 (167.021857)


2,6-Pyridinedicarboxylic acid is used in sterilising solns. to control the growth of microorganisms in food products. It is used in sterilising solns. to control the growth of microorganisms in food products. D064449 - Sequestering Agents > D002614 - Chelating Agents D004791 - Enzyme Inhibitors

   

2,6-Dimethylpyridine

alpha,Alpha-dimethylpyridine

C7H9N (107.0734954)


2,6-dimethylpyridine, also known as 2,6-lutidine or alpha,alpha-lutidine, is a member of the class of compounds known as methylpyridines. Methylpyridines are organic compounds containing a pyridine ring substituted at one or more positions by a methyl group. 2,6-dimethylpyridine is soluble (in water) and a very strong basic compound (based on its pKa). 2,6-dimethylpyridine is an amine, bready, and cocoa tasting compound found in alcoholic beverages, cereals and cereal products, peppermint, and tea, which makes 2,6-dimethylpyridine a potential biomarker for the consumption of these food products. 2,6-dimethylpyridine can be found primarily in feces. 2,6-dimethylpyridine is a natural heterocyclic aromatic organic compound with the formula (CH3)2C5H3N. It is one of several dimethyl-substituted derivative of pyridine. It is a colorless liquid with mildly basic properties and a pungent, noxious odor . 2,6-Dimethylpyridine is found in alcoholic beverages. 2,6-Dimethylpyridine is present in bread, tea and whisky. 2,6-Dimethylpyridine is a flavouring agent 2,6-Lutidine is a natural heterocyclic aromatic organic compound. It has been isolated from the basic fraction of coal tar and from bone oil. It is a dimethyl substituted derivative of pyridine.

   

1-(beta-D-Ribofuranosyl)-1,4-dihydronicotinamide

1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-(hydroxymethyl)oxolan-2-yl]-1,4-dihydropyridine-3-carboxamide

C11H16N2O5 (256.1059166)


1-(beta-D-Ribofuranosyl)-1,4-dihydronicotinamide is the reduced form of nicotinamide riboside. Nicotinamide riboside or NR is a natural product found in milk. It can exist in both the oxidized and reduced form. Nicotinamide riboside is a newly discovered precursor to NAD ( nicotinamide adenine dinucleotide). Nicotinamide riboside kinases (Nrks) are essential for this NAD synthesis pathway. Nrks actually constitute a distinct pathway of NAD biosynthesis and it appears that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD synthesis (PMID: 18429699). NAD homeostasis is related to the free radical-mediated production of reactive oxygen species responsible for irreversible cellular damage in infectious disease, diabetes, inflammatory syndromes, neurodegeneration and cancer. (PMID: 18508649). Baseline requirements for NAD synthesis can be met either with dietary tryptophan or with less than 20 mg of daily niacin, which consists of nicotinic acid and/or nicotinamide. Reduced nicotinamide riboside is also known to be a substrate for ribosyldihydronicotinamide dehydrogenase (EC 1.10.99.2). It is also a substrate for purine-nucleoside phosphorylase (PNP) - (PMID: 9030766). Nicotinamide riboside or NR is a natural product found in milk. It can exist in both the oxidized and reduced form. Nicotinamide riboside is a newly discovered precursor to NAD ( nicotinamide adenine dinucleotide). Nicotinamide riboside kinases (Nrks) are essential for this NAD synthesis pathway. Nrks actually constitute a distinct pathway of NAD biosynthesis and it appears that nicotinamide riboside may be the only vitamin precursor that supports neuronal NAD synthesis (PMID: 18429699). NAD homeostasis is related to the free radical-mediated production of reactive oxygen species responsible for irreversible cellular damage in infectious disease, diabetes, inflammatory syndromes, neurodegeneration and cancer. (PMID: 18508649). Baseline requirements for NAD synthesis can be met either with dietary tryptophan or with less than 20 mg of daily niacin, which consists of nicotinic acid and/or nicotinamide. Reduced nicotinamide riboside is also known to be a substrate for ribosyldihydronicotinamide dehydrogenase (EC 1.10.99.2). It is also a substrate for purine-nucleoside phosphorylase (PNP) - (PMID: 9030766) [HMDB]

   

Homoarecoline

Ethyl 1-methyl-1,2,5,6-tetrahydropyridine-3-carboxylic acid

C9H15NO2 (169.110273)


Homoarecoline is found in nuts. Homoarecoline is isolated from betel nuts. Isolated from betel nuts. Homoarecoline is found in nuts.

   

Norcotinine

5-(pyridin-3-yl)pyrrolidin-2-one

C9H10N2O (162.079309)


Norcotinine is a metabolite of nicotine. It has been detected in smokers urine (about 1\\% of total nicotine and metabolites). Two pathways for its formation are possible, demethylation of cotinine or oxidative metabolism of nornicotine. Animal and human studies have demonstrated the existence of both of these pathways. [HMDB] Norcotinine is a metabolite of nicotine. It has been detected in smokers urine (about 1\\% of total nicotine and metabolites). Two pathways for its formation are possible, demethylation of cotinine or oxidative metabolism of nornicotine. Animal and human studies have demonstrated the existence of both of these pathways.

   

Ciclopirox

6-Cyclohexyl-1-hydroxy-4-methyl-2(1H)-pyridone ethanolamine salt

C12H17NO2 (207.12592220000002)


Ciclopirox is only found in individuals that have used or taken this drug. It is a synthetic antifungal agent for topical dermatologic use. [Wikipedia] Unlike antifungals such as itraconazole and terbinafine, which affect sterol synthesis, ciclopirox is thought to act through the chelation of polyvalent metal cations, such as Fe3+ and Al3+. These cations inhibit many enzymes, including cytochromes, thus disrupting cellular activities such as mitochondrial electron transport processes and energy production. Ciclopirox also appears to modify the plasma membrane of fungi, resulting in the disorganization of internal structures. The anti-inflammatory action of ciclopirox is most likely due to inhibition of 5-lipoxygenase and cyclooxygenase. Ciclopirox may exert its effect by disrupting DNA repair, cell division signals and structures (mitotic spindles) as well as some elements of intracellular transport. G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   

Nicotinamide N-oxide

1-oxo-1Λ⁵-pyridine-3-carboximidate

C6H6N2O2 (138.0429256)


Nicotinamide N-oxide is recognized as an in vivo metabolite of nicotinamide which is a precurser of nicotinamide-adenine dinucleotide (NAD+) in animals. The enzyme that catalyses the reduction of nicotinamide N-oxide to nicotinamide in liver is xanthine oxidase. [HMDB] Nicotinamide N-oxide is recognized as an in vivo metabolite of nicotinamide which is a precurser of nicotinamide-adenine dinucleotide (NAD+) in animals. The enzyme that catalyses the reduction of nicotinamide N-oxide to nicotinamide in liver is xanthine oxidase. Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor. Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor.

   

Desmosine

3,5-bis[(3S)-3-amino-3-carboxypropyl]-4-[(4S)-4-amino-4-carboxybutyl]-1-[(5S)-5-amino-5-carboxypentyl]pyridin-1-ium

C24H40N5O8+ (526.287674)


Desmosine is formed by condensation of four molecules of lysine into a pyridinium ring. Elastin molecules aggregate in the extracellular space where they are crosslinked by stable desmosine bridges. The resulting polymer is structurally organized as branched fibers and lamellae, which, in skin, are wider (a few microns) in the deep dermis and become progressively thinner (fraction of a micron) towards the papillary dermis. Several general and local factors seem to regulate elastin gene expression, deposition and degradation. (PMID: 9297692). Desmosines are crosslinking amino acids unique to mature elastin in humans. Owing to this unicity, they have been discussed as potentially indicators of connective tissue disorders whose clinical manifestations are mostly the result of elastin degradation. (PMID: 17390614). Emphysema (Pulmonary emphysema is a devastating disease for which there is no effective treatment) is associated with degradation of elastic fibers (PMID: 14704646). It has been shown that the urinary concentration of elastin specific crosslinks, desmosine correlates well with liver fibrosis score in biopsy specimens from patients with liver disease secondary to hepatitis C virus and alcohol. (PMID: 10996125). Degradation production of Elastin

   

4-Oxo-4-(3-pyridyl)-butanamide

4-oxo-4-(Pyridin-3-yl)butanimidate

C9H10N2O2 (178.07422400000002)


4-(3-pyridyl)-4-oxobutyramide (POBAM) is a metabolite of nicotine and cotinine degradation. (PMID: 9512938, 13872096) [HMDB] 4-(3-pyridyl)-4-oxobutyramide (POBAM) is a metabolite of nicotine and cotinine degradation. (PMID: 9512938, 13872096).

   

3-Hydroxypyridine sulfate

(pyridin-3-yl)oxidanesulfonic acid

C5H5NO4S (174.993929)


3-Hydroxypyridine sulfate belongs to the class of organic compounds known as arylsulfates. These are organic compounds containing a sulfate group that carries an aryl group through an ether group. 3-Hydroxypyridine sulfate is a potential urinary biomarker of whole grain intake (PMID: 27805021).

   
   

2,4,6-Trimethylpyridine

246-Trimethylpyridinium

C8H11N (121.0891446)


   

6-Chloronicotinic acid

6-Chloronicotinic acid

C6H4ClNO2 (156.9930554)


   

Homarine

1-Methylpyridin-1-ium-2-carboxylic acid

C7H7NO2 (137.0476762)


   

Nicotine-N-oxide

3-(1-methylpyrrolidin-2-yl)pyridin-1-ium-1-olate

C10H14N2O (178.1106074)


   

Pymetrozine

6-methyl-4-{[(pyridin-3-yl)methylidene]amino}-2,3,4,5-tetrahydro-1,2,4-triazin-3-one

C10H11N5O (217.09635559999998)


   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0531554)


4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

Cotinine

Cotinine

C10H12N2O (176.09495819999998)


Cotinine ((-)-Cotinine), an alkaloid in tobacco and a major metabolite of nicotine, is used as a biological indicator to measure the composition of tobacco smoke[1]

   

Nicotine

L-(-)-Nicotine

C10H14N2 (162.1156924)


N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials CONFIDENCE standard compound; EAWAG_UCHEM_ID 3008 D000077444 - Smoking Cessation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Cotinine

(5S)-1-methyl-5-pyridin-3-ylpyrrolidin-2-one

C10H12N2O (176.09495819999998)


(-)-cotinine is an N-alkylpyrrolidine that consists of N-methylpyrrolidinone bearing a pyridin-3-yl substituent at position C-5 (the 5S-enantiomer). It is an alkaloid commonly found in Nicotiana tabacum. It has a role as a biomarker, an antidepressant, a plant metabolite and a human xenobiotic metabolite. It is a N-alkylpyrrolidine, a member of pyridines, a pyrrolidine alkaloid and a member of pyrrolidin-2-ones. Cotinine is a natural product found in Haloxylon persicum and Nicotiana tabacum with data available. Cotinine is the major metabolite of nicotine. The N-glucuronide conjugate of cotinine is a major urinary metabolite of NICOTINE. It thus serves as a biomarker of exposure to tobacco SMOKING. It has CNS stimulating properties. An N-alkylpyrrolidine that consists of N-methylpyrrolidinone bearing a pyridin-3-yl substituent at position C-5 (the 5S-enantiomer). It is an alkaloid commonly found in Nicotiana tabacum. C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1258; ORIGINAL_PRECURSOR_SCAN_NO 1257 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1284; ORIGINAL_PRECURSOR_SCAN_NO 1280 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1276; ORIGINAL_PRECURSOR_SCAN_NO 1275 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1277; ORIGINAL_PRECURSOR_SCAN_NO 1275 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1282; ORIGINAL_PRECURSOR_SCAN_NO 1281 CONFIDENCE standard compound; INTERNAL_ID 511; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1264; ORIGINAL_PRECURSOR_SCAN_NO 1263 CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 68 CONFIDENCE standard compound; INTERNAL_ID 2283 CONFIDENCE standard compound; INTERNAL_ID 8694 CONFIDENCE standard compound; INTERNAL_ID 8184 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.270 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.268 CONFIDENCE standard compound; INTERNAL_ID 4130 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3282 Cotinine ((-)-Cotinine), an alkaloid in tobacco and a major metabolite of nicotine, is used as a biological indicator to measure the composition of tobacco smoke[1]

   

Methyl picolinate

Methyl picolinate

C7H7NO2 (137.0476762)


   

2,4,6-Trimethylpyridine

2,4,6-Trimethylpyridine

C8H11N (121.0891446)


CONFIDENCE standard compound; INTERNAL_ID 8066

   

Nicotine-N-oxide

Nicotine-N-oxide

C10H14N2O (178.1106074)


Annotation level-3

   

Anabasamine

Anabasamine

C16H19N3 (253.1578894)


Annotation level-1

   
   

PD173074

1-(Tert-Butyl)-3-(2-((4-(diethylamino)butyl)amino)-6-(3,5-dimethoxyphenyl)pyrido[2,3-d]pyrimidin-7-yl)urea

C28H41N7O3 (523.3270716000001)


   

Baptifoline

7,14-METHANO-2H,11H-DIPYRIDO(1,2-A:1,2-E)(1,5)DIAZOCIN-11-ONE, 1,3,4,6,7,13,14,14A-OCTAHYDRO-2-HYDROXY-, (2S-(2.ALPHA.,7.ALPHA.,14.ALPHA.,14A.BETA.))-

C15H20N2O2 (260.15247)


Unii-27F71M186X is a natural product found in Thermopsis chinensis, Thermopsis lanceolata, and other organisms with data available. See also: Caulophyllum thalictroides Root (part of).

   

pheniramine

PHE_241.1699_9.7

C16H20N2 (240.16264)


D - Dermatologicals > D04 - Antipruritics, incl. antihistamines, anesthetics, etc. > D04A - Antipruritics, incl. antihistamines, anesthetics, etc. > D04AA - Antihistamines for topical use R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D003879 - Dermatologic Agents > D000982 - Antipruritics D018926 - Anti-Allergic Agents CONFIDENCE Parent Substance with Reference Standard (Level 1); INTERNAL_ID 1500 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3005 EAWAG_UCHEM_ID 3005; CONFIDENCE standard compound

   

Thiazopyr

Thiazopyr

C16H17F5N2O2S (396.0930842)


Pre-emergence control herbicide, inhibitor of cell division. It is used on fruit trees, vines sugar cane, pineapples and citrus fruits CONFIDENCE standard compound; INTERNAL_ID 1070; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9520; ORIGINAL_PRECURSOR_SCAN_NO 9518 CONFIDENCE standard compound; INTERNAL_ID 1070; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9530; ORIGINAL_PRECURSOR_SCAN_NO 9527 CONFIDENCE standard compound; INTERNAL_ID 1070; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9534; ORIGINAL_PRECURSOR_SCAN_NO 9533 CONFIDENCE standard compound; INTERNAL_ID 1070; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9569; ORIGINAL_PRECURSOR_SCAN_NO 9568 CONFIDENCE standard compound; INTERNAL_ID 1070; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9593; ORIGINAL_PRECURSOR_SCAN_NO 9591 CONFIDENCE standard compound; INTERNAL_ID 1070; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 9579; ORIGINAL_PRECURSOR_SCAN_NO 9577 CONFIDENCE standard compound; EAWAG_UCHEM_ID 3052

   

Ricinine

Ricinine

C8H8N2O2 (164.0585748)


relative retention time with respect to 9-anthracene Carboxylic Acid is 0.377 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.369

   

Nicotine

(S)-(-)-NICOTINE, 3-[(2S)-1-METHYL-2-PYRROLIDINYL] PYRIDINE

C10H14N2 (162.1156924)


An N-alkylpyrrolidine that consists of N-methylpyrrolidine bearing a pyridin-3-yl substituent at position 2. It has been isolated from Nicotiana tabacum. N - Nervous system > N07 - Other nervous system drugs > N07B - Drugs used in addictive disorders > N07BA - Drugs used in nicotine dependence D018373 - Peripheral Nervous System Agents > D001337 - Autonomic Agents > D005731 - Ganglionic Stimulants C78272 - Agent Affecting Nervous System > C47796 - Cholinergic Agonist > C73579 - Nicotinic Agonist D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018679 - Cholinergic Agonists COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000077444 - Smoking Cessation Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2264 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

pyridoxal

Isopyridoxal

C8H9NO3 (167.0582404)


A pyridinecarbaldehyde that is pyridine-4-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 5 respectively. The 4-carboxyaldehyde form of vitamin B6, it is converted into pyridoxal phosphate, a coenzyme for the synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. D018977 - Micronutrients > D014815 - Vitamins relative retention time with respect to 9-anthracene Carboxylic Acid is 0.055 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.052 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.053

   

nevirapine

Nevirapine (Viramune)

C15H14N4O (266.1167554)


J - Antiinfectives for systemic use > J05 - Antivirals for systemic use > J05A - Direct acting antivirals > J05AG - Non-nucleoside reverse transcriptase inhibitors C471 - Enzyme Inhibitor > C1589 - Reverse Transcriptase Inhibitor > C97453 - Non-nucleoside Reverse Transcriptase Inhibitor D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D018894 - Reverse Transcriptase Inhibitors D000890 - Anti-Infective Agents > D000998 - Antiviral Agents > D044966 - Anti-Retroviral Agents D065693 - Cytochrome P-450 Enzyme Inducers > D065701 - Cytochrome P-450 CYP3A Inducers D004791 - Enzyme Inhibitors > D019384 - Nucleic Acid Synthesis Inhibitors C254 - Anti-Infective Agent > C281 - Antiviral Agent

   

NICORANDIL

Nicorandil (Ikorel)

C8H9N3O4 (211.0593034)


C - Cardiovascular system > C01 - Cardiac therapy > C01D - Vasodilators used in cardiac diseases COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D018977 - Micronutrients > D014815 - Vitamins Same as: D01810 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

Nalidixic acid

Nalidixic acid (NegGram)

C12H12N2O3 (232.0847882)


A monocarboxylic acid comprising 1,8-naphthyridin-4-one substituted by carboxylic acid, ethyl and methyl groups at positions 3, 1, and 7, respectively. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic C254 - Anti-Infective Agent > C255 - Urinary Anti-Infective Agent D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents D004791 - Enzyme Inhibitors Nalidixic acid, a quinolone antibiotic, is effective against both gram-positive and gram-negative bacteria. Nalidixic acid acts in a bacteriostatic manner in lower concentrations and is bactericidal in higher concentrations. Nalidixic acid inhibits a subunit of DNA gyrase and topoisomerase IV and reversibly blocks DNA replication in susceptible bacteria[1]. Nalidixic acid, a quinolone antibiotic, is effective against both gram-positive and gram-negative bacteria. Nalidixic acid acts in a bacteriostatic manner in lower concentrations and is bactericidal in higher concentrations. Nalidixic acid inhibits a subunit of DNA gyrase and topoisomerase IV and reversibly blocks DNA replication in susceptible bacteria[1].

   

niflumic acid

niflumic acid

C13H9F3N2O2 (282.061609)


M - Musculo-skeletal system > M02 - Topical products for joint and muscular pain > M02A - Topical products for joint and muscular pain > M02AA - Antiinflammatory preparations, non-steroids for topical use M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics D000893 - Anti-Inflammatory Agents D004791 - Enzyme Inhibitors

   

ANABASAMINE

NCGC00160193-01!ANABASAMINE

C16H19N3 (253.1578894)


   

Pyridoxine

4,5-bis(hydroxymethyl)-2-methylpyridin-3-ol

C8H11NO3 (169.0738896)


A hydroxymethylpyridine with hydroxymethyl groups at positions 4 and 5, a hydroxy group at position 3 and a methyl group at position 2. The 4-methanol form of vitamin B6, it is converted intoto pyridoxal phosphate which is a coenzyme for synthesis of amino acids, neurotransmitters, sphingolipids and aminolevulinic acid. A - Alimentary tract and metabolism > A11 - Vitamins D018977 - Micronutrients > D014815 - Vitamins COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway. Pyridoxine (Pyridoxol) is a pyridine derivative. Pyridoxine exerts antioxidant effects in cell model of Alzheimer's disease via the Nrf-2/HO-1 pathway.

   

pyridoxamine

Pyridoxylamine

C8H12N2O2 (168.0898732)


A monohydroxypyridine that is pyridine substituted by a hydroxy group at position 3, an aminomethyl group at position 4, a hydroxymethyl group at position 5 and a methyl group at position 2. The 4-aminomethyl form of vitamin B6, it is used (in the form of the hydrochloride salt) for treatment of diabetic nephropathy. D018977 - Micronutrients > D014815 - Vitamins Pyridoxylamine is an advanced glycation end production (AGEs) and lipoxidation end products (ALEs) inhibitor, to protect against diabetes-induced retinal vascular lesions.

   

Trigonelline

Trigonelline hydrochloride

C7H7NO2 (137.0476762)


MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WWNNZCOKKKDOPX-UHFFFAOYSA-N_STSL_0022_Trigonelline (chloride)_0125fmol_180416_S2_LC02_MS02_26; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis. Trigonelline is an alkaloid with potential antidiabetic activity that can be isolated from Trigonella foenum-graecum L or Leonurus artemisia. Trigonelline is a potent Nrf2 inhibitor that blocks Nrf2-dependent proteasome activity, thereby enhancing apoptosis in pancreatic cancer cells. Trigonelline also has anti-HSV-1, antibacterial, and antifungal activity and induces ferroptosis.

   

quinolinic acid

2,3-Pyridinedicarboxylic acid

C7H5NO4 (167.021857)


A pyridinedicarboxylic acid that is pyridine substituted by carboxy groups at positions 2 and 3. It is a metabolite of tryptophan. COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2]. Quinolinic acid is an endogenous N-methyl-D-aspartate (NMDA) receptor agonist synthesized from L-tryptophan via the kynurenine pathway and thereby has the potential of mediating N-methyl-D-aspartate neuronal damage and dysfunction[1][2].

   

Nicotinic acid

Nicotinic acid

C6H5NO2 (123.032027)


CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 706; ORIGINAL_PRECURSOR_SCAN_NO 705 C - Cardiovascular system > C10 - Lipid modifying agents > C10A - Lipid modifying agents, plain > C10AD - Nicotinic acid and derivatives C - Cardiovascular system > C04 - Peripheral vasodilators > C04A - Peripheral vasodilators > C04AC - Nicotinic acid and derivatives D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents D018977 - Micronutrients > D014815 - Vitamins D009676 - Noxae > D000963 - Antimetabolites COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 699; ORIGINAL_PRECURSOR_SCAN_NO 697 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 707; ORIGINAL_PRECURSOR_SCAN_NO 706 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1277; ORIGINAL_PRECURSOR_SCAN_NO 1275 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1271; ORIGINAL_PRECURSOR_SCAN_NO 1269 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1283; ORIGINAL_PRECURSOR_SCAN_NO 1281 CONFIDENCE standard compound; INTERNAL_ID 488; DATASET 20200303_ENTACT_RP_MIX506; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1265; ORIGINAL_PRECURSOR_SCAN_NO 1263 MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; PVNIIMVLHYAWGP_STSL_0169_Nicotinic acid_0125fmol_180506_S2_LC02_MS02_96; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2]. Niacin (Vitamin B3) is an orally active water-soluble B3 vitamin that is an essential nutrient for humans. Niacin (Vitamin B3) plays a key role in energy metabolism, cell signaling cascades regulating gene expression and apoptosis. Niacin (Vitamin B3) is also used in the study of cardiovascular diseases[1][2].

   

Isonicotinic acid

Isonicotinic acid

C6H5NO2 (123.032027)


Isonicotinic acid is a metabolite of Isoniazid. Isoniazid is converted to Isonicotinic acid by hydrazinolysis, with the Isoniazid to Isonicotinic acid biotransformation also to be catalyzed by cytochrome P450 (CYP) enzymes, e.g., CYP2C[1].

   

Isopyridoxal

Pyridoxal hydrochrolide

C8H9NO3 (167.0582404)


A pyridinecarbaldehyde that is pyridine-5-carbaldehyde bearing methyl, hydroxy and hydroxymethyl substituents at positions 2, 3 and 4 respectively.

   

6-Hydroxynicotinic Acid

6-Hydroxynicotinic Acid

C6H5NO3 (139.02694200000002)


A monohydroxypyridine that is the 6-hydroxy derivative of nicotinic acid. 6-Hydroxynicotinic acid is an endogenous metabolite.

   

Niacinamide

Nicotinamide

C6H6N2O (122.0480106)


Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4]. Nicotinamide is a form of vitamin B3 or niacin. Nicotinamide Hydrochloride inhibits SIRT2 activity (IC50: 2 μM). Nicotinamide also inhibits SIRT1. Nicotinamide increases cellular NAD+, ATP, ROS levels. Nicotinamide inhibits tumor growth and improves survival. Nicotinamide also has anti-HBV activity[1][2][3][4].

   
   

PYRIDINE

PYRIDINE

C5H5N (79.042197)


   

3-Pyridylacetic acid

3-pyridineacetic acid

C7H7NO2 (137.0476762)


A monocarboxylic acid that is acetic acid substituted by a (pyridin-3-yl) group. It is a metabolite of nicotine and other tobacco alkaloids. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; WGNUNYPERJMVRM-UHFFFAOYSA-N_STSL_0014_3-Pyridylacetic_acid_0250fmol_190413_S2_LC02MS02_067; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. 3-Pyridineacetic acid is a higher homologue of nicotinic acid, a breakdown product of nicotine (and other tobacco alkaloids)[1][2].

   

BROMPHENIRAMINE

BROMPHENIRAMINE

C16H19BrN2 (318.0731514)


R - Respiratory system > R06 - Antihistamines for systemic use > R06A - Antihistamines for systemic use > R06AB - Substituted alkylamines D018377 - Neurotransmitter Agents > D018494 - Histamine Agents > D006633 - Histamine Antagonists C308 - Immunotherapeutic Agent > C29578 - Histamine-1 Receptor Antagonist D018926 - Anti-Allergic Agents

   

picolinic acid

2-Pyridinecarboxylic acid

C6H5NO2 (123.032027)


A pyridinemonocarboxylic acid in which the carboxy group is located at position 2. It is an intermediate in the metabolism of tryptophan. D064449 - Sequestering Agents > D002614 - Chelating Agents > D007502 - Iron Chelating Agents Picolinic acid (PCL 016) is a topical antiviral agent, which inhibits adenovirus replication in rabbits.

   

Nicotinuric acid

N-nicotinoyl-Glycine

C8H8N2O3 (180.0534898)


Nicotinuric acid is an acyl glycine. Nicotinuric acid is a metabolite of nicotinic acid.

   

4-Pyridoxic acid

4-Pyridoxic acid

C8H9NO4 (183.0531554)


A methylpyridine that is 2-methylpyridine substituted by a hydroxy group at C-3, a carboxy group at C-4, and a hydroxymethyl group at C-5. It is the catabolic product of vitamin B6 and is excreted in the urine. 4-Pyridoxic acid is a catabolic product of vitamin B6 which is excreted in the urine.

   

Milrinone

Milrinone

C12H9N3O (211.07455839999997)


CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 869; ORIGINAL_PRECURSOR_SCAN_NO 865 C - Cardiovascular system > C01 - Cardiac therapy > C01C - Cardiac stimulants excl. cardiac glycosides > C01CE - Phosphodiesterase inhibitors D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058987 - Phosphodiesterase 3 Inhibitors C78274 - Agent Affecting Cardiovascular System > C78322 - Cardiotonic Agent D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents C471 - Enzyme Inhibitor > C744 - Phosphodiesterase Inhibitor D020011 - Protective Agents > D002316 - Cardiotonic Agents CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 859; ORIGINAL_PRECURSOR_SCAN_NO 857 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 857; ORIGINAL_PRECURSOR_SCAN_NO 854 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 861; ORIGINAL_PRECURSOR_SCAN_NO 858 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 861; ORIGINAL_PRECURSOR_SCAN_NO 859 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 863; ORIGINAL_PRECURSOR_SCAN_NO 859 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1584; ORIGINAL_PRECURSOR_SCAN_NO 1582 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1580; ORIGINAL_PRECURSOR_SCAN_NO 1578 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1589; ORIGINAL_PRECURSOR_SCAN_NO 1588 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1605; ORIGINAL_PRECURSOR_SCAN_NO 1603 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1600; ORIGINAL_PRECURSOR_SCAN_NO 1599 CONFIDENCE standard compound; INTERNAL_ID 1122; DATASET 20200303_ENTACT_RP_MIX503; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 1581; ORIGINAL_PRECURSOR_SCAN_NO 1580

   
   
   

disopyramide

disopyramide

C21H29N3O (339.2310504)


C - Cardiovascular system > C01 - Cardiac therapy > C01B - Antiarrhythmics, class i and iii > C01BA - Antiarrhythmics, class ia D002317 - Cardiovascular Agents > D026941 - Sodium Channel Blockers > D061567 - Voltage-Gated Sodium Channel Blockers C78274 - Agent Affecting Cardiovascular System > C47793 - Antiarrhythmic Agent D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D049990 - Membrane Transport Modulators C93038 - Cation Channel Blocker

   

iproniazid

N-propan-2-ylpyridine-4-carbohydrazide

C9H13N3O (179.1058568)


N - Nervous system > N06 - Psychoanaleptics > N06A - Antidepressants > N06AF - Monoamine oxidase inhibitors, non-selective D002491 - Central Nervous System Agents > D011619 - Psychotropic Drugs > D000928 - Antidepressive Agents D004791 - Enzyme Inhibitors > D008996 - Monoamine Oxidase Inhibitors C471 - Enzyme Inhibitor > C667 - Monoamine Oxidase Inhibitor

   

6-Chloronicotinic acid

6-Chloronicotinic acid

C6H4ClNO2 (156.9930554)


   

N-Methylnicotinamide

N-Methylnicotinamide

C7H8N2O (136.06365979999998)


A - Alimentary tract and metabolism > A05 - Bile and liver therapy > A05A - Bile therapy > A05AB - Preparations for biliary tract therapy A pyridinecarboxamide that is nicotinamide in which one of the amide hydrogens is substituted by a methyl group. MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; ZYVXHFWBYUDDBM-UHFFFAOYSA-N_STSL_0209_N-Methylnicotinamide_0031fmol_180831_S2_L02M02_80; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. N-Methylnicotinamide is an endogenous metabolite. N-Methylnicotinamide is an endogenous metabolite.

   

2,3-DIHYDROXYPYRIDINE

2,3-DIHYDROXYPYRIDINE

C5H5NO2 (111.032027)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GGOZGYRTNQBSSA-UHFFFAOYSA-N_STSL_0195_2,3-Dihydroxypyridine_2000fmol_180831_S2_L02M02_20; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

3-HYDROXYPYRIDINE

3-HYDROXYPYRIDINE

C5H5NO (95.03711200000001)


MS2 deconvoluted using MS2Dec from all ion fragmentation data, MetaboLights identifier MTBLS1040; GRFNBEZIAWKNCO-UHFFFAOYSA-N_STSL_0238_3-Hydroxypyridine_0016fmol_190403_S2_LC02MS02_062; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I. MS2 deconvoluted using CorrDec from all ion fragmentation data, MetaboLights identifier MTBLS1040; Spectrum acquired as described in Naz et al 2017 PMID 28641411. Preparation and submission to MassBank of North America by Chaleckis R. and Tada I.

   

phenazopyridine

3-(Phenylazo)-2,6-pyridinediamine

C11H11N5 (213.1014406)


C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic G - Genito urinary system and sex hormones > G04 - Urologicals > G04B - Urologicals CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7480; ORIGINAL_PRECURSOR_SCAN_NO 7478 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7493; ORIGINAL_PRECURSOR_SCAN_NO 7491 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7521; ORIGINAL_PRECURSOR_SCAN_NO 7518 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7529; ORIGINAL_PRECURSOR_SCAN_NO 7525 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7547; ORIGINAL_PRECURSOR_SCAN_NO 7544 CONFIDENCE standard compound; INTERNAL_ID 801; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 7531; ORIGINAL_PRECURSOR_SCAN_NO 7528

   

3-Hydroxypyridine sulfate

3-Hydroxypyridine sulfate

C5H5NO4S (174.993929)


   
   

2,6-DIHYDROXYPYRIDINE

"2,6-DIHYDROXYPYRIDINE"

C5H5NO2 (111.032027)


   
   

CICLOPIROX

CICLOPIROX

C12H17NO2 (207.12592220000002)


G - Genito urinary system and sex hormones > G01 - Gynecological antiinfectives and antiseptics > G01A - Antiinfectives and antiseptics, excl. combinations with corticosteroids D - Dermatologicals > D01 - Antifungals for dermatological use > D01A - Antifungals for topical use D000890 - Anti-Infective Agents > D000935 - Antifungal Agents C254 - Anti-Infective Agent > C514 - Antifungal Agent

   
   

Oxoamide

n-methyl-g-oxo-3-pyridinebutanamide

C10H12N2O2 (192.0898732)


   

pseudooxynicotine

pseudooxynicotine

C10H14N2O (178.1106074)


An aminoacylpyridine that is pyridine substituted at position 3 by a 4-(methylamino)butanoyl group.

   
   

norcotinine

5-pyridin-3-ylpyrrolidin-2-one

C9H10N2O (162.079309)


   

Morfamquat

morfamquat dichloride

C26H36Cl2N4O4 (538.2113476)


   

Ginkgotoxin

5-Hydroxy-4-(methoxymethyl)-6-methyl-3-pyridinemethanol, 9CI

C9H13NO3 (183.0895388)


4'-O-Methylpyridoxine, a natural compound, possesses antioxidant activity[1]. 4'-O-Methylpyridoxine, a natural compound, possesses antioxidant activity[1].

   

Homoarecoline

Nicotinic acid, 1,2,5,6-tetrahydro-1-methyl-, ethyl ester

C9H15NO2 (169.110273)


   

Olprinone hydrochloride

Olprinone (Hydrochloride)

C14H11ClN4O (286.0621346)


D004791 - Enzyme Inhibitors > D010726 - Phosphodiesterase Inhibitors > D058987 - Phosphodiesterase 3 Inhibitors D020011 - Protective Agents > D002316 - Cardiotonic Agents D002317 - Cardiovascular Agents

   

Homarine

Homarine-d3

C7H7NO2 (137.0476762)


   

Etoricoxib

Etoricoxib

C18H15ClN2O2S (358.054272)


M - Musculo-skeletal system > M01 - Antiinflammatory and antirheumatic products > M01A - Antiinflammatory and antirheumatic products, non-steroids > M01AH - Coxibs D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors D004791 - Enzyme Inhibitors > D016861 - Cyclooxygenase Inhibitors > D052246 - Cyclooxygenase 2 Inhibitors C78272 - Agent Affecting Nervous System > C241 - Analgesic Agent > C2198 - Nonnarcotic Analgesic D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C471 - Enzyme Inhibitor > C1323 - Cyclooxygenase Inhibitor D000893 - Anti-Inflammatory Agents

   

Benzyl nicotinate

Nicotinic acid benzyl ester

C13H11NO2 (213.0789746)


C78274 - Agent Affecting Cardiovascular System > C29707 - Vasodilating Agent Same as: D01419

   

Pyricarbate

Pyridinol carbamate

C11H15N3O4 (253.106251)


C78276 - Agent Affecting Digestive System or Metabolism > C29703 - Antilipidemic Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites Same as: D01396

   

Nicotinamide ribotide

3-carbamoyl-1-[(2R,3R,4S,5R)-3,4-dihydroxy-5-[(phosphonooxy)methyl]oxolan-2-yl]-1lambda5-pyridin-1-ylium

C11H16N2O8P+ (335.0644246)


Nicotinamide ribotide (NMN) (CAS: 1094-61-7) is an important intermediate metabolite in the nicotinate and nicotinamide metabolism pathway. Mammals predominantly use nicotinamide rather than nicotinic acid as a precursor for NAD biosynthesis. Instead of the deamidation into nicotinic acid, nicotinamide is directly converted into NMN by nicotinamide phosphoribosyltransferase (NAMPT, EC 2.4.2.12). The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1), which is a member of the nucleotidyltransferase alpha/beta-phosphodiesterase superfamily, catalyzes the reaction NMN + ATP <=> nicotinamide adenine dinucleotide (NAD) + PPi, representing the final step in the biosynthesis of NAD. NAD is a molecule that plays a fundamental role as a cofactor in cellular redox reactions. Thus NMN is an important metabolite for the maintenance of normal NAD biosynthesis. Circulating NMN levels may play an important role in regulating cell function in physiological and pathophysiological conditions (PMID: 15078171, 17983582). Nicotinamide ribotide (NMN) is an important intermediate metabolite in the nicotinate and nicotinamide metabolism pathway. Mammals predominantly use nicotinamide rather than nicotinic acid as a precursor for NAD biosynthesis. Instead of the deamidation to nicotinic acid, nicotinamide is directly converted to NMN by nicotinamide phosphoribosyltransferase (NAMPT, EC 2.4.2.12). The enzyme nicotinamide mononucleotide adenylyltransferase (NMNAT, EC 2.7.7.1), a member of the nucleotidyltransferase alpha/beta-phosphodiesterase superfamily, catalyzes the reaction NMN + ATP = Nicotinamide adenine dinucleotide (NAD) + PPi, representing the final step in the biosynthesis of NAD, a molecule playing a fundamental role as a cofactor in cellular redox reactions. Thus NMN is an important metabolite for the maintenance of normal NAD biosynthesis, and circulating NMN levels may play an important role in regulating cell function in physiological and pathophysiological conditions. (PMID: 15078171, 17983582) [HMDB]

   

Gentianine

NICOTINIC ACID, 4-(2-HYDROXYETHYL)-5-VINYL-, .DELTA.-LACTONE

C10H9NO2 (175.0633254)


Gentianine is a pyranopyridine, a lactone and a pyridine alkaloid. Gentianine is a natural product found in Strychnos angolensis, Strychnos xantha, and other organisms with data available. See also: Fenugreek seed (part of); Centaurium erythraea whole (part of).

   

boschniakine

(7R)-7-methyl-6,7-dihydro-5H-cyclopenta[d]pyridine-4-carboxaldehyde

C10H11NO (161.0840596)


   

Actinidine

(7S)-4,7-Dimethyl-6,7-dihydro-5H-cyclopenta[c]pyridine

C10H13N (147.1047938)


A member of the class of cyclopentapyridines that is 6,7-dihydrocyclopenta[c]pyridine bearing two methyl substituents at positions 4 and 7.

   

isoniazid

isoniazid

C6H7N3O (137.0589092)


J - Antiinfectives for systemic use > J04 - Antimycobacterials > J04A - Drugs for treatment of tuberculosis > J04AC - Hydrazides D000963 - Antimetabolites > D000960 - Hypolipidemic Agents > D054872 - Fatty Acid Synthesis Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D000995 - Antitubercular Agents C254 - Anti-Infective Agent > C52588 - Antibacterial Agent > C280 - Antitubercular Agent D057847 - Lipid Regulating Agents > D000960 - Hypolipidemic Agents D009676 - Noxae > D000963 - Antimetabolites

   

enoxacin

enoxacin

C15H17FN4O3 (320.1284624)


J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D004791 - Enzyme Inhibitors > D065607 - Cytochrome P-450 Enzyme Inhibitors > D065609 - Cytochrome P-450 CYP1A2 Inhibitors D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic

   

Trovafloxacin

Trovafloxacin

C20H15F3N4O3 (416.1096196)


A 1,8-naphthyridine derivative that is 4-oxo-1,4-dihydro-1,8-naphthyridine-3-carboxylic acid bearing additional 2,4-difluorophenyl, fluoro and 6-amino-3-azabicyclo[3.1.0]hex-3-yl substituents at positions 1, 6 and 7 respectively. A broad-spectrum antibiotic that was withdrawn from the market due to risk of liver failure. J - Antiinfectives for systemic use > J01 - Antibacterials for systemic use > J01M - Quinolone antibacterials > J01MA - Fluoroquinolones D000970 - Antineoplastic Agents > D059003 - Topoisomerase Inhibitors > D059005 - Topoisomerase II Inhibitors D000890 - Anti-Infective Agents > D000900 - Anti-Bacterial Agents > D024841 - Fluoroquinolones C254 - Anti-Infective Agent > C258 - Antibiotic > C795 - Quinolone Antibiotic D004791 - Enzyme Inhibitors

   

pyridostigmine

pyridostigmine

C9H13N2O2+ (181.09769780000002)


N - Nervous system > N07 - Other nervous system drugs > N07A - Parasympathomimetics > N07AA - Anticholinesterases D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D002800 - Cholinesterase Inhibitors C471 - Enzyme Inhibitor > C47792 - Acetylcholinesterase Inhibitor D004791 - Enzyme Inhibitors

   

Nicotinamide riboside

Nicotinamide riboside

C11H15N2O5+ (255.098092)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials, COVID-19 Disease Map C26170 - Protective Agent > C275 - Antioxidant Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS

   

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol

4-(Methylnitrosamino)-1-(3-pyridyl)-1-butanol

C10H15N3O2 (209.116421)


A member of the class of nitrosamines that is butan-1-ol substituted by a pyridin-3-yl group at position 1 and by a methyl(nitroso)amino group at position 4. It is a major metabolite of nitrosamine 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK), which is a carcinogen found in tobacco and responsible for inducing lung cancer in smokers.

   

Picolinamide

PYRIDINE-2-CARBOXAMIDE

C6H6N2O (122.0480106)


   

5-Pyridoxolactone

5-Pyridoxolactone

C8H7NO3 (165.0425912)


A furopyridine that is furo[3,4-c]pyridin-3(1H)-one substituted by a hydroxy group at position 7 and a methoxy group at position 6. It is a metabolite of vitamin B6.

   
   

4-Pyridoxolactone

4-Pyridoxolactone

C8H7NO3 (165.0425912)


   
   

6-Hydroxypseudooxynicotine

6-Hydroxypseudooxynicotine

C10H14N2O2 (194.1055224)


   

(S)-6-Hydroxynicotine

(S)-6-Hydroxynicotine

C10H14N2O (178.1106074)


   

Baptifoline

(1S,9R,10R,12S)-12-Hydroxy-7,15-diazatetracyclo[7.7.1.02,7.010,15]heptadeca-2,4-dien-6-one

C15H20N2O2 (260.15247)


   

Desmosine

2-amino-6-[4-(4-amino-4-carboxy-butyl)-3,5-bis(3-amino-3-carboxy-propyl)pyridin-1-yl]hexanoic acid

C24H40N5O8+ (526.287674)


   

2-Aminonicotinic acid

2-Aminonicotinic acid

C6H6N2O2 (138.0429256)


An aminonicotinic acid in which the amino group is situated at position 2 of the pyridine ring.

   

Nicotinamide N-oxide

Nicotinamide N-oxide

C6H6N2O2 (138.0429256)


Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor. Nicotinamide N-oxide, an in vivo nicotinamide metabolite, is a potent, and selective antagonist of the CXCR2 receptor.

   

Nicotyrine

3-(1-Methyl-1H-pyrrol-2-yl)pyridine

C10H10N2 (158.084394)


   

(R)-nicotine

(R)-nicotine

C10H14N2 (162.1156924)


A 3-(1-methylpyrrolidin-2-yl)pyridine in which the chiral centre has R-configuration.

   

2-Ethylisonicotinicacid

2-Ethylisonicotinicacid

C8H9NO2 (151.0633254)


   

4-Deoxypyridoxine 5'-phosphate

4-Deoxypyridoxine 5'-phosphate

C8H12NO5P (233.0453072)


   
   

Aminonicotinic acid

Aminonicotinic acid

C6H6N2O2 (138.0429256)


   
   

Chloronicotinic acid

Chloronicotinic acid

C6H4ClNO2 (156.9930554)


   

Cyanopyridine

Cyanopyridine

C6H4N2 (104.0374464)


   

Deoxy-pyridoxine phosphate

Deoxy-pyridoxine phosphate

C8H12NO5P (233.0453072)


   

Dihydroxypseudooxynicotine

Dihydroxypseudooxynicotine

C10H14N2O3 (210.1004374)


   

Dihydroxypyridine

Dihydroxypyridine

C5H5NO2 (111.032027)


   

Dimethylpyridine

Dimethylpyridine

C7H9N (107.0734954)


   

Ethylisonicotinicacid

Ethylisonicotinicacid

C8H9NO2 (151.0633254)


   

Hydroxymethylpyridinedicarboxylate

Hydroxymethylpyridinedicarboxylate

C8H7NO5 (197.0324212)


   
   

Hydroxypseudooxynicotine

Hydroxypseudooxynicotine

C10H14N2O2 (194.1055224)


   
   

Hydroxypyridine sulfate

Hydroxypyridine sulfate

C5H5NO4S (174.993929)


   

Methylhydroxyformylpyridinecarboxylate

Methylhydroxyformylpyridinecarboxylate

C8H7NO4 (181.0375062)


   

Methyl nicotinamide

Methyl nicotinamide

C7H9N2O (137.0714844)


   

Methylnitrosaminopyridylbutanol

Methylnitrosaminopyridylbutanol

C10H15N3O2 (209.116421)


   
   
   
   

Pyridinedicarboxylic acid

Pyridinedicarboxylic acid

C7H5NO4 (167.021857)


   
   

Pyridoxolactone

Pyridoxolactone

C8H7NO3 (165.0425912)


   

Pyridylacetic acid

Pyridylacetic acid

C7H7NO2 (137.0476762)


   

Pyridyl hydroxymethane sulfonic acid

Pyridyl hydroxymethane sulfonic acid

C6H7NO4S (189.0095782)


   

Ribosyl-dihydronicotinamide

Ribosyl-dihydronicotinamide

C11H16N2O5 (256.1059166)