NCBI Taxonomy: 167916

Duranta (ncbi_taxid: 167916)

found 431 associated metabolites at genus taxonomy rank level.

Ancestor: Duranteae

Child Taxonomies: Duranta erecta, Duranta sprucei, Duranta mutisii, Duranta coriacea, Duranta dombeyana, Duranta triacantha, Duranta fletcheriana, Duranta serratifolia, unclassified Duranta

Cinnamic acid

Cinnamic acid, United States Pharmacopeia (USP) Reference Standard

C9H8O2 (148.0524268)


Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID C016 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

Scoparone

6,7-dimethoxychromen-2-one

C11H10O4 (206.057906)


Scoparone is a member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. It has a role as a plant metabolite, an anti-inflammatory agent, an antilipemic drug, an immunosuppressive agent, an antihypertensive agent and an anti-allergic agent. It is a member of coumarins and an aromatic ether. It is functionally related to an esculetin. Scoparone is a natural product found in Haplophyllum ramosissimum, Haplophyllum thesioides, and other organisms with data available. A member of the class of coumarins that is esculetin in which the two hydroxy groups at positions 6 and 7 are replaced by methoxy groups. It is a major constituent of the Chinese herbal medicine Yin Chen Hao, and exhibits a variety of pharmacological activities such as anti-inflammatory, anti-allergic, and anti-tumor activities. D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics Scoparone is found in anise. Scoparone is found in several citrus oil D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Found in several citrus oils Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.0790344)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

Oleanolic acid

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

beta-Sitosterol 3-O-beta-D-galactopyranoside

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. beta-Sitosterol 3-O-beta-D-galactopyranoside is found in herbs and spices. beta-Sitosterol 3-O-beta-D-galactopyranoside is a constituent of Hibiscus sabdariffa (roselle) leaves. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

CleomiscosinA

9H-pyrano[2,3-f]-1,4-benzodioxin-9-one, 2,3-dihydro-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-, (2R,3R)-

C20H18O8 (386.10016279999996)


Cleomiscosin A is an organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. It has a role as a metabolite and an anti-inflammatory agent. It is a delta-lactone, an aromatic ether, an organic heterotricyclic compound, a member of phenols and a primary alcohol. Cleomiscosin A is a natural product found in Hibiscus syriacus, Artemisia minor, and other organisms with data available. An organic heterotricyclic compound that is 2,3-dihydro-9H-[1,4]dioxino[2,3-h]chromen-9-one substituted by 4-hydroxy-3-methoxy phenyl group at position 3, a hydroxymethyl group at position 2 and a methoxy group at position 5 (the 2R,3R stereoisomer). It exhibits anti-inflammatory activity. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2]. Cleomiscosin A is a coumarino-lignoid from branch of Macaranga adenantha. Cleomiscosin A is active against TNF-alpha secretion of the mouse peritoneal macrophages[1][2].

   

Glucose

(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 226 KEIO_ID G002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Scutellarein

6-hydroxyapigenin

C15H10O6 (286.047736)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Lamiide

methyl (1S,4aR,6S,7R,7aS)-4a,6,7-trihydroxy-7-methyl-1-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydropyran-2-yl]oxy-1,5,6,7a-tetrahydrocyclopenta[c]pyran-4-carboxylate

C17H26O12 (422.14241960000004)


Lamiide is a terpene glycoside. Lamiide is a natural product found in Lamium eriocephalum, Lantana viburnoides, and other organisms with data available.

   

Glucose

(2S,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


D-Galactose (CAS: 59-23-4) is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. D-Galactose is an energy-providing nutrient and also a necessary basic substrate for the biosynthesis of many macromolecules in the body. Metabolic pathways for D-galactose are important not only for the provision of these pathways but also for the prevention of D-galactose metabolite accumulation. The main source of D-galactose is lactose in the milk of mammals, but it can also be found in some fruits and vegetables. Utilization of D-galactose in all living cells is initiated by the phosphorylation of the hexose by the enzyme galactokinase (E.C. 2.7.1.6) (GALK) to form D-galactose-1-phosphate. In the presence of D-galactose-1-phosphate uridyltransferase (E.C. 2.7.7.12) (GALT) D-galactose-1-phosphate is exchanged with glucose-1-phosphate in UDP-glucose to form UDP-galactose. Glucose-1-phosphate will then enter the glycolytic pathway for energy production. Deficiency of the enzyme GALT in galactosemic patients leads to the accumulation of D-galactose-1-phosphate. Classic galactosemia, a term that denotes the presence of D-galactose in the blood, is the rare inborn error of D-galactose metabolism, diagnosed by the deficiency of the second enzyme of the D-galactose assimilation pathway, GALT, which, in turn, is caused by mutations at the GALT gene (PMID: 15256214, 11020650, 10408771). Galactose in the urine is a biomarker for the consumption of milk. Alpha-D-Pyranose-form of the compound Galactose [CCD]. alpha-D-Galactose is found in many foods, some of which are kelp, fig, spelt, and rape. Galactose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-23-4 (retrieved 2024-07-16) (CAS RN: 59-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Cinnamic acid

cinnamic acid, 14C-labeled cpd (E)-isomer

C9H8O2 (148.0524268)


Cinnamic acid, also known as (Z)-cinnamate or 3-phenyl-acrylate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Cinnamic acid can be obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is a weakly acidic compound (based on its pKa). It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Cinnamic acid exists in all living organisms, ranging from bacteria to plants to humans. Outside of the human body, cinnamic acid has been detected, but not quantified in, chinese cinnamons. In plants, cinnamic acid is a central intermediate in the biosynthesis of myriad natural products include lignols (precursors to lignin and lignocellulose), flavonoids, isoflavonoids, coumarins, aurones, stilbenes, catechin, and phenylpropanoids. CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3778; ORIGINAL_PRECURSOR_SCAN_NO 3776 CONFIDENCE standard compound; INTERNAL_ID 191; DATASET 20200303_ENTACT_RP_MIX501; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3783; ORIGINAL_PRECURSOR_SCAN_NO 3781 Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. cis-Cinnamic acid is found in chinese cinnamon. CONFIDENCE standard compound; INTERNAL_ID 183 Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

4-Methoxycinnamic acid

InChI=1/C10H10O3/c1-13-9-5-2-8(3-6-9)4-7-10(11)12/h2-7H,1H3,(H,11,12)/b7-4+

C10H10O3 (178.062991)


4-Methoxycinnamic acid, also known as para-methoxycinnamate or O-methyl-p-coumarate, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Outside of the human body, 4-Methoxycinnamic acid is found, on average, in the highest concentration within turmerics. 4-Methoxycinnamic acid has also been detected, but not quantified in cow milk and wild celeries. This could make 4-methoxycinnamic acid a potential biomarker for the consumption of these foods. 4-methoxycinnamic acid is a methoxycinnamic acid having a single methoxy substituent at the 4-position on the phenyl ring. It is functionally related to a cinnamic acid. 4-Methoxycinnamic acid is a natural product found in Balanophora tobiracola, Murraya euchrestifolia, and other organisms with data available. Esters of p-methoxycinnamic acid are among the popular UV-B screening compounds used in various cosmetic formulations in sunscreen products. trans-p-Methoxycinnamic acid is found in wild celery and turmeric. (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii.

   

Ergosterol peroxide

5-[(3E)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

C28H44O3 (428.3290274)


Ergosterol peroxide is found in fruits. Ergosterol peroxide is obtained from leaves of Ananas comosus (pineapple obtained from leaves of Ananas comosus (pineapple). Ergosterol peroxide is found in pineapple and fruits.

   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ustiloxin E is found in cereals and cereal products. Ustiloxin E is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Constituent of Carissa carandas (karanda). Carissic acid is found in beverages and fruits.

   

(Z)-p-Methoxycinnamic acid

3-(4-methoxyphenyl)prop-2-enoic acid

C10H10O3 (178.062991)


4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii.

   

Verbascoside

6-[2-(3,4-Dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-3-yl 3-(3,4-dihydroxyphenyl)prop-2-enoic acid

C29H36O15 (624.2054106)


   

Scutellarein

(2S)-2,3-dihydro-5,6,7-trihydroxy-2-(4-hydroxyphenyl)-4H-1-benzopyran-4-one

C15H10O6 (286.047736)


Scutellarein is flavone substituted with hydroxy groups at C-4, -5, -6 and -7. It has a role as a metabolite. It is functionally related to an apigenin. It is a conjugate acid of a scutellarein(1-). Scutellarein is a natural product found in Scoparia dulcis, Artemisia douglasiana, and other organisms with data available. Flavone substituted with hydroxy groups at C-4, -5, -6 and -7. Scutellarein, also known as 6-hydroxyapigenin or 4,5,6,7-tetrahydroxyflavanone, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, scutellarein is considered to be a flavonoid lipid molecule. Scutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Scutellarein can be synthesized from apigenin. Scutellarein is also a parent compound for other transformation products, including but not limited to, scutellarin, 4,6-dihydroxy-5,7-dimethoxyflavone, and 6-hydroxy-4,5,7-trimethoxyflavone. Scutellarein is a bitter tasting compound found in mexican oregano and sweet orange, which makes scutellarein a potential biomarker for the consumption of these food products. Scutellarein is a flavone that can be found in Scutellaria lateriflora and other members of the genus Scutellaria, as well as the fern Asplenium belangeri . Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

Verbascoside

[(2R,3R,4R,5R,6R)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-[(2S,3R,4R,5R,6S)-3,4,5-trihydroxy-6-methyl-tetrahydropyran-2-yl]oxy-tetrahydropyran-3-yl] (E)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


Acteoside is a glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. It has a role as a neuroprotective agent, an antileishmanial agent, an anti-inflammatory agent, a plant metabolite and an antibacterial agent. It is a cinnamate ester, a disaccharide derivative, a member of catechols, a polyphenol and a glycoside. It is functionally related to a hydroxytyrosol and a trans-caffeic acid. Acteoside is under investigation in clinical trial NCT02662283 (Validity and Security of Reh-acteoside Therapy for Patients of IgA Nephropathy). Acteoside is a natural product found in Orobanche amethystea, Barleria lupulina, and other organisms with data available. See also: Harpagophytum zeyheri root (part of). A glycoside that is the alpha-L-rhamnosyl-(1->3)-beta-D-glucoside of hydroxytyrosol in which the hydroxy group at position 4 of the glucopyranosyl moiety has undergone esterification by formal condensation with trans-caffeic acid. D007155 - Immunologic Factors > D007166 - Immunosuppressive Agents D064449 - Sequestering Agents > D002614 - Chelating Agents D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity. Verbascoside is isolated from Acanthus mollis, acts as an ATP-competitive inhibitor of PKC, with an IC50 of 25 μM, and has antitumor, anti-inflammatory and antineuropathic pain activity.

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.36032579999994)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Rosenonolactone

(10β)-10,18-Epoxyros-15-ene-7,18-dione

C20H28O3 (316.2038338)


   

Penduletin

5-Hydroxy-2- (4-hydroxyphenyl) -3,6,7-trimethoxy-4H-1-benzopyran-4-one

C18H16O7 (344.0895986)


   

Pectolinarigenin

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)-

C17H14O6 (314.0790344)


Pectolinarigenin is a dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. It has a role as a plant metabolite. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a scutellarein. Pectolinarigenin is a natural product found in Eupatorium cannabinum, Chromolaena odorata, and other organisms with data available. A dimethoxyflavone that is the 6,4-dimethyl ether derivative of scutellarein. Pectolinarigenin, also known as 5,7-dihydroxy-4,6-dimethoxyflavone or 4-methylcapillarisin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, pectolinarigenin is considered to be a flavonoid lipid molecule. Pectolinarigenin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Pectolinarigenin can be found in sunflower and tarragon, which makes pectolinarigenin a potential biomarker for the consumption of these food products. Pectolinarigenin is a Cirsium isolate with anti-inflammatory activity and belongs to the flavones . Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

Cinnamic Acid

trans-cinnamic acid

C9H8O2 (148.0524268)


Trans-cinnamic acid, also known as (2e)-3-phenyl-2-propenoic acid or (E)-cinnamate, is a member of the class of compounds known as cinnamic acids. Cinnamic acids are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. Trans-cinnamic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Trans-cinnamic acid is a sweet, balsam, and honey tasting compound and can be found in a number of food items such as maitake, mustard spinach, common wheat, and barley, which makes trans-cinnamic acid a potential biomarker for the consumption of these food products. Trans-cinnamic acid can be found primarily in saliva. Trans-cinnamic acid exists in all living species, ranging from bacteria to humans. Trans-cinnamic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Cinnamic acid is an organic compound with the formula C6H5CHCHCO2H. It is a white crystalline compound that is slightly soluble in water, and freely soluble in many organic solvents. Classified as an unsaturated carboxylic acid, it occurs naturally in a number of plants. It exists as both a cis and a trans isomer, although the latter is more common . Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

Glucose

alpha-D-Glucose

C6H12O6 (180.0633852)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Ergosterol peroxide

Ergosterol peroxide

C28H44O3 (428.3290274)


   

alpha,4-Dimethoxy-3-(2-hydroxy-3-methyl-3-butenyl)acetophenone

alpha,4-Dimethoxy-3-(2-hydroxy-3-methyl-3-butenyl)acetophenone

C15H20O4 (264.13615200000004)


   

Eupalitin

6,7-Dimethoxy-3,5,4-trihydroxyflavone

C17H14O7 (330.0739494)


   
   

Daucosterol

(2R,3R,4S,5S,6R)-2-(((3S,8S,9S,10R,13R,14S,17R)-17-((2R,5R)-5-Ethyl-6-methylheptan-2-yl)-10,13-dimethyl-2,3,4,7,8,9,10,11,12,13,14,15,16,17-tetradecahydro-1H-cyclopenta[a]phenanthren-3-yl)oxy)-6-(hydroxymethyl)tetrahydro-2H-pyran-3,4,5-triol

C35H60O6 (576.4389659999999)


Daucosterol is a steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. It has a role as a plant metabolite. It is a steroid saponin, a beta-D-glucoside and a monosaccharide derivative. It is functionally related to a sitosterol. It derives from a hydride of a stigmastane. Sitogluside is a natural product found in Ophiopogon intermedius, Ophiopogon jaburan, and other organisms with data available. A steroid saponin that is sitosterol attached to a beta-D-glucopyranosyl residue at position 3 via a glycosidic linkage. It has bee isolated from Panax japonicus var. major and Breynia fruticosa. C308 - Immunotherapeutic Agent Daucosterol is a natural sterol compound. Daucosterol is a natural sterol compound.

   

4-methoxycinnamic acid

(E)-3-(4-Methoxyphenyl)acrylic acid

C10H10O3 (178.062991)


Annotation level-1 CONFIDENCE standard compound; INTERNAL_ID 8214 (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii.

   

Scoparone

6,7-dimethoxycoumarin

C11H10O4 (206.057906)


Annotation level-1 D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

6,7,8-trimethoxychromen-2-one

NCGC00095436-04!6,7,8-trimethoxychromen-2-one

C12H12O5 (236.06847019999998)


   

D-Glucose

β-D-Glucopyranose

C6H12O6 (180.0633852)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Occurs free in fruits, honey and plant juices. Major component of many oligosaccharides and polysaccharides. Occurs in sucrose combined with fructose. Comly. available by the acid hydrol. of potato starch (Europe) and cornstarch (USA). Food additive: nutritive sweetener, humectant. D-Glucose is found in many foods, some of which are wheat bread, sour cherry, toffee, and other soy product.

   

5-[2-(furan-3-yl)ethyl]-8-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-[2-(furan-3-yl)ethyl]-8-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.19874880000003)


   

5-hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

5-hydroxy-3,6,7-trimethoxy-2-(4-methoxyphenyl)-4H-chromen-4-one

C19H18O7 (358.10524780000003)


   

Carissic acid

10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


   

ST 28:4;O3

5alpha,8alpha-Epidioxyergosta-6,9(11),22E-trien-3beta-ol

C28H42O3 (426.3133782)


   

D(+)-Glucose

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

Caryophyllin

(4aS,5S,6aS,6bR,8R,8aR,10S,12aR,12bR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-octadecahydro-2H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.

   

Urson

(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

maltodextrin

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

p-MCA

InChI=1\C10H10O3\c1-13-9-5-2-8(3-6-9)4-7-10(11)12\h2-7H,1H3,(H,11,12)\b7-4

C10H10O3 (178.062991)


(E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. (E)-3-(4-Methoxyphenyl)acrylic acid (compound 3) is isolated from Arachis hypogaea, Scrophularia buergeriana Miquel, Aquilegia vulgaris, Anigozanthos preissii and so on. (E)-3-(4-Methoxyphenyl)acrylic acid shows significant hepatoprotective activity, anti-amnesic, cognition-enhancing activity, antihyperglycemic, and neuroprotective activities[1]. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii. 4-Methoxycinnamic acid is detected as natural phenylpropanoid in A. preissii.

   

Scoparon

5-18-03-00204 (Beilstein Handbook Reference)

C11H10O4 (206.057906)


D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D002317 - Cardiovascular Agents > D000889 - Anti-Arrhythmia Agents D002317 - Cardiovascular Agents > D014665 - Vasodilator Agents Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1]. Scoparone is isolated from Artemisia capillaris Thunb., has anticoagulant, vasorelaxant antioxidant, anti-inflammatory activities[1].

   

Zimtsaeure

InChI=1\C9H8O2\c10-9(11)7-6-8-4-2-1-3-5-8\h1-7H,(H,10,11

C9H8O2 (148.0524268)


Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. Cinnamic acid has potential use in cancer intervention, with IC50s of 1-4.5 mM in glioblastoma, melanoma, prostate and lung carcinoma cells. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

Flavonoid

4H-1-Benzopyran-4-one, 5,6,7-trihydroxy-2-(4-hydroxyphenyl)-

C15H10O6 (286.047736)


Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.

   

520-12-7

4H-1-Benzopyran-4-one, 5,7-dihydroxy-6-methoxy-2-(4-methoxyphenyl)- (9CI)

C17H14O6 (314.0790344)


Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2]. Pectolinarigenin is a dual inhibitor of COX-2/5-LOX. Anti-inflammatory activity[1]. Pectolinarigenin has potent inhibitory activities on melanogenesis[2].

   

trans-Cinnamic acid

(2E)-3-Phenyl-2-propenoic acid

C9H8O2 (148.0524268)


trans-Cinnamic acid, also known as (e)-cinnamic acid or phenylacrylic acid, belongs to the class of organic compounds known as cinnamic acids. These are organic aromatic compounds containing a benzene and a carboxylic acid group forming 3-phenylprop-2-enoic acid. trans-Cinnamic acid exists in all living species, ranging from bacteria to humans. trans-Cinnamic acid is a sweet, balsam, and cinnamon tasting compound. Outside of the human body, trans-Cinnamic acid is found, on average, in the highest concentration within a few different foods, such as chinese cinnamons, olives, and lingonberries and in a lower concentration in redcurrants, red raspberries, and corianders. trans-Cinnamic acid has also been detected, but not quantified in several different foods, such as common oregano, pepper (spice), fennels, pomegranates, and european cranberries. This could make trans-cinnamic acid a potential biomarker for the consumption of these foods. Cinnamic acid has been shown to be a microbial metabolite; it can be found in Alcaligenes, Brevibacterium, Cellulomonas, and Pseudomonas (PMID:16349793). trans-Cinnamic acid is a potentially toxic compound. Cinnamic acid is a monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. It has a role as a plant metabolite. It is a member of styrenes and a member of cinnamic acids. It is a conjugate acid of a cinnamate. Cinnamic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Cinnamic acid is a natural product found in Marsypopetalum crassum, Aiouea brenesii, and other organisms with data available. Cinnamic acid has the formula C6H5CHCHCOOH and is an odorless white crystalline acid, which is slightly soluble in water. It has a melting point of 133 degree centigrade and a boiling point of 300 degree centigrade. Cinnamic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon (part of); Chinese Cinnamon (part of); Stevia rebaudiuna Leaf (part of) ... View More ... Cinnamic acid is a white crystalline hydroxycinnamic acid, which is slightly soluble in water. It is obtained from oil of cinnamon, or from balsams such as storax. Cinnamic acid is found in many foods, some of which are green bell pepper, olive, pepper (spice), and pear. A monocarboxylic acid that consists of acrylic acid bearing a phenyl substituent at the 3-position. It is found in Cinnamomum cassia. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1]. trans-Cinnamic acid is a natural antimicrobial, with minimal inhibitory concentration (MIC) of 250 μg/mL against fish pathogen A. sobria, SY-AS1[1].

   

1-(4-methoxyphenyl)-2-[2-(4-methoxyphenyl)ethenyl]propane-1,3-diol

1-(4-methoxyphenyl)-2-[2-(4-methoxyphenyl)ethenyl]propane-1,3-diol

C19H22O4 (314.1518012)


   

5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.19874880000003)


   

methyl 4a,7-dihydroxy-6-{[3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 4a,7-dihydroxy-6-{[3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C35H42O18 (750.2371032000001)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2z)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2z)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O13 (552.1842822)


   

3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-5-({3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3-hydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3-[(4-{[3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-5-({3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3-hydroxy-6-methyloxan-2-yl)oxy]-4,5-dihydroxyoxan-2-yl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C63H102O31 (1354.6404742)


   

5,7-dihydroxy-2-[3-(2-hydroxy-3-methylbut-3-en-1-yl)-4-methoxyphenyl]-3,6-dimethoxychromen-4-one

5,7-dihydroxy-2-[3-(2-hydroxy-3-methylbut-3-en-1-yl)-4-methoxyphenyl]-3,6-dimethoxychromen-4-one

C23H24O8 (428.1471104)


   

methyl (1s,4ar,6s,7r,7as)-7-(acetyloxy)-4a-hydroxy-7-methyl-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-7-(acetyloxy)-4a-hydroxy-7-methyl-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C36H42O18 (762.2371032000001)


   

1-{3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-2-methoxyethanone

1-{3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-2-methoxyethanone

C15H20O4 (264.13615200000004)


   

methyl 4a,7-dihydroxy-6-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 4a,7-dihydroxy-6-{[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O14 (568.1791972)


   

5,7-dihydroxy-2-{3-[(2s)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-3,6-dimethoxychromen-4-one

5,7-dihydroxy-2-{3-[(2s)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-3,6-dimethoxychromen-4-one

C23H24O8 (428.1471104)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C27H34O15 (598.1897614000001)


   

[(2r,3r)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

[(2r,3r)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl (2e)-3-(4-hydroxyphenyl)prop-2-enoate

C29H24O10 (532.1369404)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O14 (568.1791972)


   

1-[3-(2-hydroxy-3-methylbut-3-en-1-yl)-4-methoxyphenyl]-2-methoxyethanone

1-[3-(2-hydroxy-3-methylbut-3-en-1-yl)-4-methoxyphenyl]-2-methoxyethanone

C15H20O4 (264.13615200000004)


   

4-[2-hydroxy-5-(3-hydroxy-5,6-dimethoxy-4-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)phenyl]-2-methylbutyl acetate

4-[2-hydroxy-5-(3-hydroxy-5,6-dimethoxy-4-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)phenyl]-2-methylbutyl acetate

C30H36O14 (620.2104956000001)


   

methyl 4a,6,7-trihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 4a,6,7-trihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O12 (422.14241960000004)


   

5-[2-(furan-3-yl)ethyl]-3-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

5-[2-(furan-3-yl)ethyl]-3-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.19874880000003)


   
   

methyl 7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

methyl 7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

C11H11NO3 (205.0738896)


   

methyl 4a,7-dihydroxy-6-{[3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 4a,7-dihydroxy-6-{[3-(3-hydroxy-4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C27H34O15 (598.1897614000001)


   

[3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

[3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

C23H22O10 (458.1212912)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O13 (552.1842822)


   

methyl (7r)-7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

methyl (7r)-7-hydroxy-7-methylcyclopenta[c]pyridine-4-carboxylate

C11H11NO3 (205.0738896)


   

(4as,5r,6s,8r,8as)-5-[2-(furan-3-yl)ethyl]-8-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8r,8as)-5-[2-(furan-3-yl)ethyl]-8-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.19874880000003)


   

methyl 4a,7-dihydroxy-7-methyl-6-[(3-phenylprop-2-enoyl)oxy]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 4a,7-dihydroxy-7-methyl-6-[(3-phenylprop-2-enoyl)oxy]-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O13 (552.1842822)


   

3,7-dihydroxy-2-{4-hydroxy-3-[(3s)-4-hydroxy-3-methylbutyl]phenyl}-5,6-dimethoxychromen-4-one

3,7-dihydroxy-2-{4-hydroxy-3-[(3s)-4-hydroxy-3-methylbutyl]phenyl}-5,6-dimethoxychromen-4-one

C22H24O8 (416.1471104)


   

methyl (1s,4ar,6s,7r,7as)-6-{[(2e)-3-[4-(acetyloxy)phenyl]prop-2-enoyl]oxy}-4a,7-dihydroxy-7-methyl-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-6-{[(2e)-3-[4-(acetyloxy)phenyl]prop-2-enoyl]oxy}-4a,7-dihydroxy-7-methyl-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C36H42O19 (778.2320182000001)


   

5,7-dihydroxy-2-{3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-3,6-dimethoxychromen-4-one

5,7-dihydroxy-2-{3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-3,6-dimethoxychromen-4-one

C23H24O8 (428.1471104)


   

(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s)-3,4-dihydroxy-4-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s)-3,4-dihydroxy-4-({[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxolan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C58H94O27 (1222.5982174)


   

3,7-dihydroxy-2-[3-(2-hydroxy-3-methylbut-3-en-1-yl)-4-methoxyphenyl]-5,6-dimethoxychromen-4-one

3,7-dihydroxy-2-[3-(2-hydroxy-3-methylbut-3-en-1-yl)-4-methoxyphenyl]-5,6-dimethoxychromen-4-one

C23H24O8 (428.1471104)


   

[(2r,3r)-3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3,4-dihydroxybenzoate

[(2r,3r)-3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3,4-dihydroxybenzoate

C28H24O12 (552.1267703999999)


   

methyl 6-({3-[4-(acetyloxy)phenyl]prop-2-enoyl}oxy)-4a,7-dihydroxy-7-methyl-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 6-({3-[4-(acetyloxy)phenyl]prop-2-enoyl}oxy)-4a,7-dihydroxy-7-methyl-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C36H42O19 (778.2320182000001)


   

[(2r,3r)-3-(3,4-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

[(2r,3r)-3-(3,4-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

C23H22O9 (442.1263762)


   

(2s)-4-[2-hydroxy-5-(3-hydroxy-5,6-dimethoxy-4-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)phenyl]-2-methylbutyl acetate

(2s)-4-[2-hydroxy-5-(3-hydroxy-5,6-dimethoxy-4-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)phenyl]-2-methylbutyl acetate

C30H36O14 (620.2104956000001)


   

(2s)-8-[5-(3,7-dihydroxy-5,6-dimethoxy-4-oxochromen-2-yl)-2-hydroxyphenyl]-2-methyloctyl acetate

(2s)-8-[5-(3,7-dihydroxy-5,6-dimethoxy-4-oxochromen-2-yl)-2-hydroxyphenyl]-2-methyloctyl acetate

C28H34O9 (514.2202714)


   

methyl 7-(acetyloxy)-4a-hydroxy-7-methyl-6-[(3-phenylprop-2-enoyl)oxy]-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 7-(acetyloxy)-4a-hydroxy-7-methyl-6-[(3-phenylprop-2-enoyl)oxy]-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C36H42O18 (762.2371032000001)


   

[(2r,3r)-3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

[(2r,3r)-3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

C23H22O10 (458.1212912)


   

(2r,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2r,3r,4s,5s)-3-{[(2s,3r,4s,5s,6s)-4-{[(2s,3r,4r)-3,4-dihydroxy-4-(hydroxymethyl)oxolan-2-yl]oxy}-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3-hydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C63H102O31 (1354.6404742)


   

[3-(3,4-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

[3-(3,4-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

C23H22O9 (442.1263762)


   

3,7-dihydroxy-2-{3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-5,6-dimethoxychromen-4-one

3,7-dihydroxy-2-{3-[(2r)-2-hydroxy-3-methylbut-3-en-1-yl]-4-methoxyphenyl}-5,6-dimethoxychromen-4-one

C23H24O8 (428.1471104)


   

(2r)-4-[5-(3,5-dihydroxy-6-methoxy-4-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)-2-methoxyphenyl]-2-methylbutyl acetate

(2r)-4-[5-(3,5-dihydroxy-6-methoxy-4-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)-2-methoxyphenyl]-2-methylbutyl acetate

C30H36O14 (620.2104956000001)


   

3-{[5-({3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3-{[5-({3,5-dihydroxy-4-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]oxan-2-yl}oxy)-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C58H94O27 (1222.5982174)


   

(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

(2r,3r,4s,5s)-3-{[(2s,3r,4s,5r,6s)-5-{[(2s,3r,4s,5r)-3,5-dihydroxy-4-{[(2s,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-2-yl]oxy}-3,4-dihydroxy-6-methyloxan-2-yl]oxy}-4,5-dihydroxyoxan-2-yl (4ar,5r,6as,6br,8ar,9r,10r,11s,12ar,12br,14bs)-5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C58H94O27 (1222.5982174)


   

methyl (1s,4ar,6s,7r,7as)-4a,6,7-trihydroxy-7-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,6,7-trihydroxy-7-methyl-1-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C17H26O12 (422.14241960000004)


   

4-[5-(3,5-dihydroxy-6-methoxy-4-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)-2-methoxyphenyl]-2-methylbutyl acetate

4-[5-(3,5-dihydroxy-6-methoxy-4-oxo-7-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)-2-methoxyphenyl]-2-methylbutyl acetate

C30H36O14 (620.2104956000001)


   

3-({5-[(3,4-dihydroxy-4-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxolan-2-yl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

3-({5-[(3,4-dihydroxy-4-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxolan-2-yl)oxy]-3,4-dihydroxy-6-methyloxan-2-yl}oxy)-4,5-dihydroxyoxan-2-yl 5,11-dihydroxy-9-(hydroxymethyl)-2,2,6a,6b,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylate

C58H94O27 (1222.5982174)


   

[3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3,4-dihydroxybenzoate

[3-(4-hydroxy-3,5-dimethoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3,4-dihydroxybenzoate

C28H24O12 (552.1267703999999)


   

(4as,5r,6s,8as)-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.19874880000003)


   

[(2r,3r)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[(2r,3r)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl (2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C30H26O11 (562.1475046)


   

(1r,2r,5r,7r,10s,11s)-5-ethenyl-2,5,11-trimethyl-15-oxatetracyclo[9.3.2.0¹,¹⁰.0²,⁷]hexadecane-8,16-dione

(1r,2r,5r,7r,10s,11s)-5-ethenyl-2,5,11-trimethyl-15-oxatetracyclo[9.3.2.0¹,¹⁰.0²,⁷]hexadecane-8,16-dione

C20H28O3 (316.2038338)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C27H34O14 (582.1948464)


   

(4as,5r,6s,8r,8as)-8-hydroxy-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8r,8as)-8-hydroxy-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O5 (348.1936638)


   

(2s,3s)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

(2s,3s)-3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

C20H18O8 (386.10016279999996)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2z)-3-phenylprop-2-enoyl]oxy}-1-{[(2r,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2z)-3-phenylprop-2-enoyl]oxy}-1-{[(2r,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C34H40O17 (720.226539)


   

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

2-{[1-(5-ethyl-6-methylheptan-2-yl)-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-yl]oxy}-6-(hydroxymethyl)oxane-3,4,5-triol

C35H60O6 (576.4389659999999)


   

methyl (1s,4ar,6s,7r,7as)-6-{[(2e)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-4a,7-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-6-{[(2e)-3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-4a,7-dihydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C28H36O15 (612.2054106)


   

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3-(4-hydroxyphenyl)prop-2-enoate

C29H24O10 (532.1369404)


   

3,7-dihydroxy-2-[3-(4-hydroxy-3-methylbutyl)-4-methoxyphenyl]-5,6-dimethoxychromen-4-one

3,7-dihydroxy-2-[3-(4-hydroxy-3-methylbutyl)-4-methoxyphenyl]-5,6-dimethoxychromen-4-one

C23H26O8 (430.1627596)


   

methyl (1r,4as,6r,7s,7ar)-4a,7-dihydroxy-6-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1r,4as,6r,7s,7ar)-4a,7-dihydroxy-6-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O14 (568.1791972)


   

8-hydroxy-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

8-hydroxy-5,6,8a-trimethyl-5-[2-(2-oxo-5h-furan-3-yl)ethyl]-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O5 (348.1936638)


   

5-(5,6-dimethylhept-3-en-2-yl)-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadeca-8,18-dien-13-ol

5-(5,6-dimethylhept-3-en-2-yl)-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadeca-8,18-dien-13-ol

C28H42O3 (426.3133782)


   

(1r,2r,5r,7r,10s,11r)-5-ethenyl-2,5,11-trimethyl-15-oxatetracyclo[9.3.2.0¹,¹⁰.0²,⁷]hexadecane-8,16-dione

(1r,2r,5r,7r,10s,11r)-5-ethenyl-2,5,11-trimethyl-15-oxatetracyclo[9.3.2.0¹,¹⁰.0²,⁷]hexadecane-8,16-dione

C20H28O3 (316.2038338)


   

3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

3-(4-hydroxy-3-methoxyphenyl)-2-(hydroxymethyl)-5-methoxy-2h,3h-[1,4]dioxino[2,3-h]chromen-9-one

C20H18O8 (386.10016279999996)


   

methyl 4a,7-dihydroxy-6-{[3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 4a,7-dihydroxy-6-{[3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C27H34O14 (582.1948464)


   

8-[5-(3,7-dihydroxy-5,6-dimethoxy-4-oxochromen-2-yl)-2-hydroxyphenyl]-2-methyloctyl acetate

8-[5-(3,7-dihydroxy-5,6-dimethoxy-4-oxochromen-2-yl)-2-hydroxyphenyl]-2-methyloctyl acetate

C28H34O9 (514.2202714)


   

(1s,2r,5r,6r,10r,13s,15s)-5-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadeca-8,18-dien-13-ol

(1s,2r,5r,6r,10r,13s,15s)-5-[(2r,3e,5r)-5,6-dimethylhept-3-en-2-yl]-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadeca-8,18-dien-13-ol

C28H42O3 (426.3133782)


   

methyl 5,6-bis(acetyloxy)-7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 5,6-bis(acetyloxy)-7-hydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C21H30O14 (506.163548)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-7-methyl-6-{[(2e)-3-phenylprop-2-enoyl]oxy}-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C34H40O17 (720.226539)


   

(1r,2r,5s,7r,10s,11s)-5-ethenyl-2,5,11-trimethyl-15-oxatetracyclo[9.3.2.0¹,¹⁰.0²,⁷]hexadecane-8,16-dione

(1r,2r,5s,7r,10s,11s)-5-ethenyl-2,5,11-trimethyl-15-oxatetracyclo[9.3.2.0¹,¹⁰.0²,⁷]hexadecane-8,16-dione

C20H28O3 (316.2038338)


   

(2s)-4-[5-(3,5-dihydroxy-6-methoxy-4-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)-2-methoxyphenyl]-2-methylbutyl acetate

(2s)-4-[5-(3,5-dihydroxy-6-methoxy-4-oxo-7-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}chromen-2-yl)-2-methoxyphenyl]-2-methylbutyl acetate

C30H36O14 (620.2104956000001)


   

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(3r,4r,6r)-6-[2-(3,4-dihydroxyphenyl)ethoxy]-5-hydroxy-2-(hydroxymethyl)-4-{[(2s,3s,5r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}oxan-3-yl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H36O15 (624.2054106)


   

methyl 4a,7-dihydroxy-7-methyl-6-[(3-phenylprop-2-enoyl)oxy]-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 4a,7-dihydroxy-7-methyl-6-[(3-phenylprop-2-enoyl)oxy]-1-{[3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C34H40O17 (720.226539)


   

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3-(4-hydroxy-3-methoxyphenyl)prop-2-enoate

C30H26O11 (562.1475046)


   

aliarin 4'-methyl ether

aliarin 4'-methyl ether

C23H26O8 (430.1627596)


   

(3r,4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-3-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(3r,4ar,5s,6r,8ar)-5-[2-(furan-3-yl)ethyl]-3-hydroxy-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O4 (332.19874880000003)


   

5-(5,6-dimethylhept-3-en-2-yl)-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

5-(5,6-dimethylhept-3-en-2-yl)-6,10-dimethyl-16,17-dioxapentacyclo[13.2.2.0¹,⁹.0²,⁶.0¹⁰,¹⁵]nonadec-18-en-13-ol

C28H44O3 (428.3290274)


   

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl acetate

C22H20O9 (428.110727)


   

[(2r,3r)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

[(2r,3r)-3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H24O11 (548.1318554)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(4-methoxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5r,6r)-3,4,5-tris(acetyloxy)-6-[(acetyloxy)methyl]oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C35H42O18 (750.2371032000001)


   

(4as,5r,6s,8as)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

(4as,5r,6s,8as)-5-[2-(furan-3-yl)ethyl]-5,6,8a-trimethyl-3,4,4a,6,7,8-hexahydronaphthalene-1-carboxylic acid

C20H28O3 (316.2038338)


   

methyl 6-{[3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-4a,7-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl 6-{[3-(3,4-dimethoxyphenyl)prop-2-enoyl]oxy}-4a,7-dihydroxy-7-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C28H36O15 (612.2054106)


   

3,7-dihydroxy-2-[4-hydroxy-3-(4-hydroxy-3-methylbutyl)phenyl]-5,6-dimethoxychromen-4-one

3,7-dihydroxy-2-[4-hydroxy-3-(4-hydroxy-3-methylbutyl)phenyl]-5,6-dimethoxychromen-4-one

C22H24O8 (416.1471104)


   

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4ar,6s,7r,7as)-4a,7-dihydroxy-6-{[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C26H32O14 (568.1791972)


   

methyl (1s,4as,5s,6s,7r,7as)-5,6-bis(acetyloxy)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

methyl (1s,4as,5s,6s,7r,7as)-5,6-bis(acetyloxy)-7-hydroxy-7-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,7ah-cyclopenta[c]pyran-4-carboxylate

C21H30O14 (506.163548)


   

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

[3-(4-hydroxy-3-methoxyphenyl)-5-methoxy-9-oxo-2h,3h-[1,4]dioxino[2,3-h]chromen-2-yl]methyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C29H24O11 (548.1318554)


   

3,7-dihydroxy-2-{3-[(3s)-4-hydroxy-3-methylbutyl]-4-methoxyphenyl}-5,6-dimethoxychromen-4-one

3,7-dihydroxy-2-{3-[(3s)-4-hydroxy-3-methylbutyl]-4-methoxyphenyl}-5,6-dimethoxychromen-4-one

C23H26O8 (430.1627596)