NCBI Taxonomy: 59167
Morina (ncbi_taxid: 59167)
found 120 associated metabolites at genus taxonomy rank level.
Ancestor: Caprifoliaceae
Child Taxonomies: Morina coulteriana, Morina persica, Morina chinensis, Morina longifolia, Morina chlorantha, Morina nepalensis, Morina kokonorica, Morina polyphylla
Ursolic acid
Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
Pinoresinol
Epipinoresinol is an enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. It has a role as a plant metabolite and a marine metabolite. Epipinoresinol is a natural product found in Pandanus utilis, Abeliophyllum distichum, and other organisms with data available. An enantiomer of pinoresinol having (+)-(1R,3aR,4S,6aR)-configuration. (+)-pinoresinol is an enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. It has a role as a hypoglycemic agent, a plant metabolite and a phytoestrogen. Pinoresinol is a natural product found in Pandanus utilis, Zanthoxylum beecheyanum, and other organisms with data available. See also: Acai fruit pulp (part of). An enantiomer of pinoresinol having (+)-1S,3aR,4S,6aR-configuration. relative retention time with respect to 9-anthracene Carboxylic Acid is 0.907 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.905 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.897 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.895 Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
Palmitic acid
Palmitic acid, also known as palmitate or hexadecanoic acid, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, palmitic acid is considered to be a fatty acid lipid molecule. Palmitic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Palmitic acid can be found in a number of food items such as sacred lotus, spinach, shallot, and corn salad, which makes palmitic acid a potential biomarker for the consumption of these food products. Palmitic acid can be found primarily in most biofluids, including feces, sweat, cerebrospinal fluid (CSF), and urine, as well as throughout most human tissues. Palmitic acid exists in all living species, ranging from bacteria to humans. In humans, palmitic acid is involved in several metabolic pathways, some of which include alendronate action pathway, rosuvastatin action pathway, simvastatin action pathway, and cerivastatin action pathway. Palmitic acid is also involved in several metabolic disorders, some of which include hypercholesterolemia, familial lipoprotein lipase deficiency, ethylmalonic encephalopathy, and carnitine palmitoyl transferase deficiency (I). Moreover, palmitic acid is found to be associated with schizophrenia. Palmitic acid is a non-carcinogenic (not listed by IARC) potentially toxic compound. Palmitic acid, or hexadecanoic acid in IUPAC nomenclature, is the most common saturated fatty acid found in animals, plants and microorganisms. Its chemical formula is CH3(CH2)14COOH, and its C:D is 16:0. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Palmitic acid can also be found in meats, cheeses, butter, and dairy products. Palmitate is the salts and esters of palmitic acid. The palmitate anion is the observed form of palmitic acid at physiologic pH (7.4) . Palmitic acid is the first fatty acid produced during lipogenesis (fatty acid synthesis) and from which longer fatty acids can be produced. Palmitate negatively feeds back on acetyl-CoA carboxylase (ACC) which is responsible for converting acetyl-ACP to malonyl-ACP on the growing acyl chain, thus preventing further palmitate generation (DrugBank). Palmitic acid, or hexadecanoic acid, is one of the most common saturated fatty acids found in animals, plants, and microorganisms. As its name indicates, it is a major component of the oil from the fruit of oil palms (palm oil). Excess carbohydrates in the body are converted to palmitic acid. Palmitic acid is the first fatty acid produced during fatty acid synthesis and is the precursor to longer fatty acids. As a consequence, palmitic acid is a major body component of animals. In humans, one analysis found it to make up 21–30\\\% (molar) of human depot fat (PMID: 13756126), and it is a major, but highly variable, lipid component of human breast milk (PMID: 352132). Palmitic acid is used to produce soaps, cosmetics, and industrial mould release agents. These applications use sodium palmitate, which is commonly obtained by saponification of palm oil. To this end, palm oil, rendered from palm tree (species Elaeis guineensis), is treated with sodium hydroxide (in the form of caustic soda or lye), which causes hydrolysis of the ester groups, yielding glycerol and sodium palmitate. Aluminium salts of palmitic acid and naphthenic acid were combined during World War II to produce napalm. The word "napalm" is derived from the words naphthenic acid and palmitic acid (Wikipedia). Palmitic acid is also used in the determination of water hardness and is a surfactant of Levovist, an intravenous ultrasonic contrast agent. Hexadecanoic acid is a straight-chain, sixteen-carbon, saturated long-chain fatty acid. It has a role as an EC 1.1.1.189 (prostaglandin-E2 9-reductase) inhibitor, a plant metabolite, a Daphnia magna metabolite and an algal metabolite. It is a long-chain fatty acid and a straight-chain saturated fatty acid. It is a conjugate acid of a hexadecanoate. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. Palmitic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Palmitic Acid is a saturated long-chain fatty acid with a 16-carbon backbone. Palmitic acid is found naturally in palm oil and palm kernel oil, as well as in butter, cheese, milk and meat. Palmitic acid, or hexadecanoic acid is one of the most common saturated fatty acids found in animals and plants, a saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. It occurs in the form of esters (glycerides) in oils and fats of vegetable and animal origin and is usually obtained from palm oil, which is widely distributed in plants. Palmitic acid is used in determination of water hardness and is an active ingredient of *Levovist*TM, used in echo enhancement in sonographic Doppler B-mode imaging and as an ultrasound contrast medium. A common saturated fatty acid found in fats and waxes including olive oil, palm oil, and body lipids. A straight-chain, sixteen-carbon, saturated long-chain fatty acid. Palmitic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=57-10-3 (retrieved 2024-07-01) (CAS RN: 57-10-3). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
D-Citronellol
Citronellol is formally classified as alkylalcohol although it is biochemically a monoterpenoid as it is synthesized from isoprene units. Citronellol is a neutral compound. It is a naturally occurring organic compound found in cannabis plants (PMID:6991645 ). Citronellol occurs in many essential oils as either ‚Äì or + enantiomers. -Citronellol is found in the oils of rose (18-55\\\\\\%) and Pelargonium geraniums while + citronellol is found in citronella oils extracted from the leaves and stems of Cymbopogon nardus or citronella grass. Citronellol has a citrus, floral, and geranium taste with a floral¬†leathery¬†waxy¬†rose¬†citrus odor ( Ref:DOI ). It is used in perfumery to add scents to soaps and incense. It is an insect repellent that repels mosquitos at short distances (PMID:2862274 ). Citronellol is found in highest concentrations in gingers, sweet basils, and winter savories and in lower concentrations in highbush blueberries, bilberries, and cardamoms. Citronellol has also been detected in blackcurrants, fennels, evergreen blackberries, herbs and spices, and nutmegs making citronellol a potential biomarker for the consumption of these foods. Citronellol has promising pharmacological activities (PMID:30453001 ) against human lung cancer (PMID:31280209 ), against induced rat breast cancer (PMID:31313341 ), has antifungal activity against Candida species (PMID:32150884 ) and has anti-hypertensive properties (PMID:26872991 ). (R)-(+)-citronellol is a citronellol that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7 (the 3R-enantiomer). It is an enantiomer of a (S)-(-)-citronellol. D-Citronellol is a natural product found in Azadirachta indica, Saxifraga stolonifera, and other organisms with data available. See also: beta-CITRONELLOL, (R)-; GERANIOL (component of); beta-CITRONELLOL, (R)-; GERANIOL; LINALOOL, (+/-)- (component of) ... View More ... Constituent of black cumin (Nigella sativa) seeds. A common constituent of plant oils, especies in the Rutaceae. D-Citronellol is found in herbs and spices. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
alpha-Farnesene
alpha-Farnesene belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. (3E,6E)-alpha-Farnesene, also known as trans-alpha-Farnesene, is a sweet, bergamot, and citrus tasting flavouring ingredient. (3E,6E)-alpha-Farnesene is a constituent of the natural coating of apples and pears and other fruit. It has been identified in gingers, cottonseeds, common oregano, sweet oranges, spearmints, guava, pomes, and pears. This could make (3E,6E)-alpha-farnesene a potential biomarker for the consumption of these foods. Alpha-farnesene is a farnesene that is 1,3,6,10-tetraene substituted by methyl groups at positions 3, 7 and 11 respectively. alpha-Farnesene is a natural product found in Eupatorium cannabinum, Lonicera japonica, and other organisms with data available. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of). Constituent of the natural coating of apples and pears and other fruit. Flavouring ingredient. (3E,6E)-alpha-Farnesene is found in many foods, some of which are cottonseed, spearmint, ginger, and fruits.
Eugenol
Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.
3-(4-Methoxyphenyl)-2-propenal
Isolated from oil of tarragon (Artemisia dracunculus) and other oils. Flavouring ingredient. 3-(4-Methoxyphenyl)-2-propenal is found in many foods, some of which are tarragon, star anise, potato, and sweet basil. 3-(4-Methoxyphenyl)-2-propenal is found in potato. 3-(4-Methoxyphenyl)-2-propenal is isolated from oil of tarragon (Artemisia dracunculus) and other oils. 3-(4-Methoxyphenyl)-2-propenal is a flavouring ingredien 4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1]. 4-Methoxycinnamaldehyde (p-Methoxycinnamaldehyde), an active constituent of Agastache rugosa, exhibits cytoprotective activity against respiratory syncytial virus (RSV) in human larynx carcinoma cell line. 4-Methoxycinnamaldehyde effectively inhibits cytopathic effect of RSV with an estimated IC50 of 0.055 μg/mL[1].
alpha-Cadinol
alpha-Cadinol is found in cloves. alpha-Cadinol is a constituent of Juniperus communis (juniper)
(+)-lariciresinol
(+)-Lariciresinol belongs to the class of organic compounds known as 7,9-epoxylignans. These are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at positons 2, 3 and 4, respectively. (+)-Lariciresinol has been detected in several different foods, such as parsnips, white mustards, narrowleaf cattails, turnips, and common sages. This could make (+)-Lariciresinol a potential biomarker for the consumption of these foods. Lariciresinol is also found in sesame seeds, Brassica vegetables, in the bark and wood of white fir (Abies alba). (+)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (+)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (+)-lariciresinol can be found in a number of food items such as pili nut, lemon balm, root vegetables, and parsley, which makes (+)-lariciresinol a potential biomarker for the consumption of these food products.
alpha-Copaene
alpha-Copaene, also known as aglaiene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. alpha-Copaene is possibly neutral. alpha-Copaene is a spice and woody tasting compound that can be found in several food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savoury, which makes alpha-copaene a potential biomarker for the consumption of these food products. alpha-Copaene can be found in feces and saliva. Alpha-copaene, also known as copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-copaene is a spice and woody tasting compound and can be found in a number of food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savory, which makes alpha-copaene a potential biomarker for the consumption of these food products. Alpha-copaene can be found primarily in feces and saliva. 8-Isopropyl-1,3-dimethyltricyclo(4.4.0.02,7)dec-3-ene is a natural product found in Pinus sylvestris var. hamata, Asarum gusk, and other organisms with data available.
(+)-1(10),4-Cadinadiene
Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag
Hentriacontane
Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.
Pentadecane
Pentadecane, also known as ch3-[ch2]13-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentadecane is considered to be a hydrocarbon lipid molecule. Pentadecane is an alkane and waxy tasting compound and can be found in a number of food items such as dill, papaya, yellow bell pepper, and pepper (c. annuum), which makes pentadecane a potential biomarker for the consumption of these food products. Pentadecane can be found primarily in saliva. Pentadecane is a non-carcinogenic (not listed by IARC) potentially toxic compound. Pentadecane is an alkane hydrocarbon with the chemical formula C15H32 . Pentadecane belongs to the family of Acyclic Alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2
Methyleugenol
Methyleugenol, also known as 4-allylveratrole or eugenol methyl, belongs to the class of organic compounds known as dimethoxybenzenes. These are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. FDA noted the action was despite its continuing stance that this substance does not pose a risk to public health under the conditions of its intended use. Methyleugenol is a sweet, anise, and apricot tasting compound. Methyleugenol is found, on average, in the highest concentration within a few different foods, such as allspices, tarragons, and sweet bay and in a lower concentration in sweet basils, rosemaries, and hyssops. Methyleugenol has also been detected, but not quantified, in several different foods, such as soy beans, evergreen blackberries, muskmelons, citrus, and pomes. This could make methyleugenol a potential biomarker for the consumption of these foods. As of October 2018, the US FDA withdrew authorization for the use of methyl eugenol as a synthetic flavoring substance for use in food because petitioners provided data demonstrating that these additives induce cancer in laboratory animals. Methyleugenol is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Methyl eugenol (allylveratrol) is a natural chemical compound classified as a phenylpropene, a type of phenylpropanoid. It is the methyl ether of eugenol and is important to insect behavior and pollination. Their ability to attract insects, particularly Bactrocera fruit flies was first noticed in 1915 by F. M. Howlett. The compound may have evolved in response to pathogens, as methyl eugenol has some antifungal activity. Methyl eugenol is found in a number of plants (over 450 species from 80 families including both angiosperm and gymnosperm families) and has a role in attracting pollinators. About 350 plant species have them as a component of floral fragrance. Methyleugenol is a clear colorless to pale yellow liquid with a spicy earthy odor. Bitter burning taste. (NTP, 1992) O-methyleugenol is a phenylpropanoid. It is functionally related to a eugenol. Methyleugenol is a natural product found in Vitis rotundifolia, Elettaria cardamomum, and other organisms with data available. Methyleugenol is a yellowish, oily, naturally occurring liquid with a clove-like aroma and is present in many essential oils. Methyleugenol is used as a flavoring agent, as a fragrance and as an anesthetic in rodents. Methyleugenol is mutagenic in animals and is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in animals. (NCI05) Methyleugenol is found in allspice. Methyleugenol is present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberryMethyleugenol has been shown to exhibit anti-nociceptive function (A7914).Methyleugenol belongs to the family of Anisoles. These are organic compounds contaiing a methoxybenzene or a derivative thereof. Present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberry. Methyleugenol is found in many foods, some of which are wild carrot, sweet basil, citrus, and fruits. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].
Germacrene D
Germacrene d, also known as germacrene d, (s-(e,e))-isomer, is a member of the class of compounds known as germacrane sesquiterpenoids. Germacrane sesquiterpenoids are sesquiterpenoids having the germacrane skeleton, with a structure characterized by a cyclodecane ring substituted with an isopropyl and two methyl groups. Germacrene d can be found in a number of food items such as peppermint, roman camomile, hyssop, and common walnut, which makes germacrene d a potential biomarker for the consumption of these food products.
Tricosane
N-tricosane, also known as ch3-[ch2]21-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-tricosane is considered to be a hydrocarbon lipid molecule. N-tricosane is an alkane and waxy tasting compound and can be found in a number of food items such as kohlrabi, papaya, coconut, and ginkgo nuts, which makes N-tricosane a potential biomarker for the consumption of these food products. N-tricosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Tricosane belongs to the class of organic compounds known as acyclic alkanes. These are acyclic hydrocarbons consisting only of n carbon atoms and m hydrogen atoms where m=2*n + 2.
Bicyclogermacrene
Constituent of the peel oil of Citrus junos (yuzu). Bicyclogermacrene is found in many foods, some of which are common oregano, lemon balm, hyssop, and orange mint. Bicyclogermacrene is found in citrus. Bicyclogermacrene is a constituent of the peel oil of Citrus junos (yuzu).
Quercetin 3-galactoside
Quercetin 3-O-beta-D-galactopyranoside is a quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. It has a role as a hepatoprotective agent and a plant metabolite. It is a tetrahydroxyflavone, a monosaccharide derivative, a beta-D-galactoside and a quercetin O-glycoside. Hyperoside is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. See also: Bilberry (part of); Menyanthes trifoliata leaf (part of); Crataegus monogyna flowering top (part of). Quercetin 3-galactoside is found in alcoholic beverages. Quercetin 3-galactoside occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort).Hyperoside is the 3-O-galactoside of quercetin. It is a medicinally active compound that can be isolated from Drosera rotundifolia, from the Stachys plant, from Prunella vulgaris, from Rumex acetosella and from St Johns wort. (Wikipedia A quercetin O-glycoside that is quercetin with a beta-D-galactosyl residue attached at position 3. Isolated from Artemisia capillaris, it exhibits hepatoprotective activity. Occurs widely in plants, e.g. in apple peel and Hypericum perforatum (St Johns wort) Acquisition and generation of the data is financially supported in part by CREST/JST. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Stirrup
C26170 - Protective Agent > C275 - Antioxidant Acquisition and generation of the data is financially supported in part by CREST/JST. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Farnesol is a sesquiterpene alcohol that modulates cell-to-cell communication in Candida albicans, and has the activity in inhibiting bacteria. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].
Pinoresinol
4-[6-(4-Hydroxy-3-methoxyphenyl)-1,3,3a,4,6,6a-hexahydrofuro[3,4-c]furan-3-yl]-2-methoxyphenol is a natural product found in Zanthoxylum riedelianum, Forsythia suspensa, and other organisms with data available. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2]. Pinoresinol is a lignol of plant origin serving for defense in a caterpillar. Pinoresinol drastically sensitizes cancer cells against TNF-related apoptosis-inducing ligand (TRAIL) -induced apoptosis[1][2].
Apigenin 4'-O-glucoside
Apigenin 4-O-glucoside is also known as apigenin 4-O-beta-D-glucopyranoside. Apigenin 4-O-glucoside is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apigenin 4-O-glucoside is a constituent of many plant species [CCD]. Apigenin 4-O-glucoside is a glycoside and a member of flavonoids. Apigenin-4-glucoside is a natural product found in Chaerophyllum aureum, Gerbera jamesonii, and other organisms with data available.
Pentacosane
Constituent of many naturally occurring waxes. A colorless solid at ambient conditions. Pentacosane is an alkane consisting of an unbranched chain of 25 carbon atoms. It has a role as a semiochemical and a plant metabolite. Pentacosane is a natural product found in Cryptotermes brevis, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane consisting of an unbranched chain of 25 carbon atoms. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1]. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1].
Nonanal
Nonanal, also known as nonyl aldehyde or pelargonaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, nonanal is considered to be a fatty aldehyde lipid molecule. Nonanal acts synergistically with carbon dioxide in that regard. Nonanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Nonanal exists in all eukaryotes, ranging from yeast to humans. Nonanal is an aldehydic, citrus, and fat tasting compound. nonanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and gingers and in a lower concentration in sweet oranges, carrots, and limes. nonanal has also been detected, but not quantified, in several different foods, such as olives, cereals and cereal products, chinese cinnamons, common grapes, and oats. This could make nonanal a potential biomarker for the consumption of these foods. Nonanal has been identified as a compound that attracts Culex mosquitoes. Nonanal is a potentially toxic compound. Nonanal has been found to be associated with several diseases such as pervasive developmental disorder not otherwise specified, autism, crohns disease, and ulcerative colitis; also nonanal has been linked to the inborn metabolic disorders including celiac disease. Nonanal, also called nonanaldehyde, pelargonaldehyde or Aldehyde C-9, is an alkyl aldehyde. Although it occurs in several natural oils, it is produced commercially by hydroformylation of 1-octene. A colourless, oily liquid, nonanal is a component of perfumes. Nonanal is a clear brown liquid characterized by a rose-orange odor. Insoluble in water. Found in at least 20 essential oils, including rose and citrus oils and several species of pine oil. Nonanal is a saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. It has a role as a human metabolite and a plant metabolite. It is a saturated fatty aldehyde, a n-alkanal and a medium-chain fatty aldehyde. It is functionally related to a nonanoic acid. Nonanal is a natural product found in Teucrium montanum, Eupatorium cannabinum, and other organisms with data available. Nonanal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Nonanal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. Found in various plant sources including fresh fruits, citrus peels, cassava (Manihot esculenta), rice (Oryza sativa). Flavouring ingredient A saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1]. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1].
Docosane
N-docosane, also known as ch3-[ch2]20-ch3 or dokosan, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, N-docosane is considered to be a hydrocarbon lipid molecule. N-docosane is an alkane and waxy tasting compound and can be found in a number of food items such as lemon balm, linden, allspice, and sunflower, which makes N-docosane a potential biomarker for the consumption of these food products. N-docosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Docosane, also known as CH3-[CH2]20-CH3 or dokosan, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Docosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, docosane is considered to be a hydrocarbon lipid molecule. Docosane is an alkane and waxy tasting compound. Docosane is found, on average, in the highest concentration within lemon balms. Docosane has also been detected, but not quantified, in several different foods, such as allspices, lindens, papaya, and sunflowers. This could make docosane a potential biomarker for the consumption of these foods. A straight-chain alkane with 22 carbon atoms. N-docosane is a solid. Insoluble in water. Used in organic synthesis, calibration, and temperature sensing equipment. Docosane is a straight-chain alkane with 22 carbon atoms. It has a role as a plant metabolite. Docosane is a natural product found in Lonicera japonica, Erucaria microcarpa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). A straight-chain alkane with 22 carbon atoms. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].
Pentadecanol
Pentadecanol is a C-15 fatty alcohol. Very long chain fatty alcohols (VLCFA), obtained from plant waxes and beeswax have been reported to lower plasma cholesterol in humans. They can be found in unrefined cereal grains, beeswax, and many plant-derived foods. Reports suggest that 5–20 mg per day of mixed C24–C34 alcohols, including octacosanol and triacontanol, lower low-density lipoprotein (LDL) cholesterol by 21\\\\%–29\\\\% and raise high-density lipoprotein cholesterol by 8\\\\%–15\\\\%. Wax esters are hydrolyzed by a bile salt-dependent pancreatic carboxyl esterase, releasing long chain alcohols and fatty acids that are absorbed in the gastrointestinal tract. Studies of fatty alcohol metabolism in fibroblasts suggest that very long chain fatty alcohols, fatty aldehydes, and fatty acids are reversibly inter-converted in a fatty alcohol cycle. The metabolism of these compounds is impaired in several inherited human peroxisomal disorders, including adrenoleukodystrophy and Sjögren-Larsson syndrome. Pentadecanol is a colorless liquid with a faint odor of alcohol. Floats on water. (USCG, 1999) Pentadecan-1-ol is a long-chain fatty alcohol that is pentadecane in which one of the terminal methyl hydrogens is replaced by a hydroxy group It is a long-chain primary fatty alcohol and a pentadecanol. 1-Pentadecanol is a natural product found in Curcuma amada, Cichorium endivia, and other organisms with data available. A long-chain fatty alcohol that is pentadecane in which one of the terminal methyl hydrogens is replaced by a hydroxy group Pentadecanol is a C-15 fatty alcohol 1-Pentadecanol is a naturally occurring antiacne agent[1]. 1-Pentadecanol is a naturally occurring antiacne agent[1].
Heneicosane
Heneicosane, also known as CH3-[CH2]19-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heneicosane is an alkane and waxy tasting compound. Heneicosane is found, on average, in the highest concentration within a few different foods, such as black elderberries, common oregano, and lemon balms. Heneicosane has also been detected, but not quantified, in several different foods, such as sunflowers, kohlrabis, orange bell peppers, lindens, and pepper (c. annuum). This could make heneicosane a potential biomarker for the consumption of these foods. An alkane that has 21 carbons and a straight-chain structure. Heneicosane, also known as ch3-[ch2]19-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, heneicosane is considered to be a hydrocarbon lipid molecule. Heneicosane is an alkane and waxy tasting compound and can be found in a number of food items such as orange bell pepper, yellow bell pepper, lemon balm, and pepper (c. annuum), which makes heneicosane a potential biomarker for the consumption of these food products. Heneicosane can be found primarily in saliva. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . Crystals. (NTP, 1992) Henicosane is an alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. It has a role as a pheromone, a plant metabolite and a volatile oil component. Heneicosane is a natural product found in Erucaria microcarpa, Microcystis aeruginosa, and other organisms with data available. See also: Moringa oleifera leaf oil (part of). An alkane that has 21 carbons and a straight-chain structure. It has been isolated from plants like Periploca laevigata and Carthamus tinctorius. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].
beta-Bourbonene
beta-Bourbonene is found in cloves. beta-Bourbonene is a flavouring agent.
delta-Amorphene
1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]
Lignocerane
Lignocerane, also known as CH3-[CH2]22-CH3 or N-tetracosane, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Lignocerane is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, lignocerane is considered to be a hydrocarbon lipid molecule. Lignocerane has been detected, but not quantified, in several different foods, such as lindens, citrus, sunflowers, allspices, and papaya. Isolated from plant sources e.g. rose and orange oils
6,10,14-Trimethyl-5,9,13-pentadecatrien-2-one
Farnesylacetone is found in garden tomato. Farnesylacetone is present in tomatoe It is used as a food additive .
Lariciresinol
(-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as cassava, acorn, celeriac, and banana, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products.
1-Heptadecene
1-heptadecene is a member of the class of compounds known as unsaturated aliphatic hydrocarbons. Unsaturated aliphatic hydrocarbons are aliphatic Hydrocarbons that contains one or more unsaturated carbon atoms. These compounds contain one or more double or triple bonds. Thus, 1-heptadecene is considered to be a hydrocarbon lipid molecule. 1-heptadecene can be found in burdock and safflower, which makes 1-heptadecene a potential biomarker for the consumption of these food products.
N-Pentacosane
Pentacosane, also known as ch3-[ch2]23-ch3, is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentacosane is considered to be a hydrocarbon lipid molecule. Pentacosane can be found in a number of food items such as ginkgo nuts, papaya, black elderberry, and cardamom, which makes pentacosane a potential biomarker for the consumption of these food products. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions . n-Pentacosane, also known as CH3-[CH2]23-CH3, belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and consist entirely of hydrogen atoms and saturated carbon atoms. n-pentacosane is a hydrocarbon lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. n-Pentacosane has been detected in coconuts, avocado, ginkgo nuts, cardamoms, and lindens. This could make n-pentacosane a potential biomarker for the consumption of these foods. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1]. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1].
delta-Cadinol
Delta-cadinol, also known as delta-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products. Delta-cadinol, also known as δ-cadinol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Delta-cadinol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Delta-cadinol is a herbal tasting compound and can be found in a number of food items such as cloves, parsley, lemon balm, and common sage, which makes delta-cadinol a potential biomarker for the consumption of these food products.
6,10,14-Trimethylpentadecan-2-one
6,10,14-trimethylpentadecan-2-one, also known as hexahydrofarnesylacetone, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. 6,10,14-trimethylpentadecan-2-one is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). 6,10,14-trimethylpentadecan-2-one is a celery, fat, and herbal tasting compound and can be found in a number of food items such as sweet basil, common oregano, roselle, and wild celery, which makes 6,10,14-trimethylpentadecan-2-one a potential biomarker for the consumption of these food products. Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2]. Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2].
T-Muurolol
T-muurolol, also known as 10-epi-alpha-muurolol or alpha-epi-muurolol, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. T-muurolol is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). T-muurolol is a herbal, spicy, and weak spice tasting compound found in allspice, lemon balm, and white mustard, which makes T-muurolol a potential biomarker for the consumption of these food products.
Nerolidol
Nerolidol is a farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. It has a role as a flavouring agent, a cosmetic, a pheromone, a neuroprotective agent, an antifungal agent, an anti-inflammatory agent, an antihypertensive agent, an antioxidant, a volatile oil component, an insect attractant and a herbicide. It is a farnesane sesquiterpenoid, a tertiary allylic alcohol and a volatile organic compound. Nerolidol is a natural product found in Xylopia sericea, Rhododendron calostrotum, and other organisms with data available. Nerolidol is found in bitter gourd. Nerolidol is a component of many essential oils. The (S)-enantiomer is the commoner and occurs mostly as the (S)-(E)-isomer. Nerolidol is a flavouring agent. Nerolidol has been shown to exhibit anti-fungal function (A7933).Nerolidol belongs to the family of Sesquiterpenes. These are terpenes with three consecutive isoprene units. A nerolidol in which the double bond at position 6 adopts a trans-configuration. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].
Monepalin B
Ursolic Acid
Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
Perhydrofarnesyl acetone
Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2]. Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2].
Palmitic Acid
COVID info from WikiPathways D004791 - Enzyme Inhibitors Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS
hyperin
Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Germacrene D
(-)-germacrene D is a germacrene D. It is an enantiomer of a (+)-germacrene D. (-)-Germacrene D is a natural product found in Teucrium montanum, Stachys obliqua, and other organisms with data available. See also: Clary Sage Oil (part of).
bicyclogermacrene
A sesquiterpene derived from germacrane by dehydrogenation across the C(1)-C(10) and C(4)-C(5) bonds and cyclisation across the C(8)-C(9) bond.
alpha-Cadinol
A cadinane sesquiterpenoid that is cadin-4-ene carrying a hydroxy substituent at position 10.
Pentacosane
Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1]. Pentacosane is one of the major components in the acetone extract from Curcuma raktakanda and is also in the essential oil from the leaves of Malus domestica. Pentacosane exhibit anti-cancer activities[1].
Fitone
Hexahydrofarnesyl acetone is a ketone. 6,10,14-Trimethylpentadecan-2-one is a natural product found in Thymus zygioides, Tilia tomentosa, and other organisms with data available. Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2]. Hexahydrofarnesyl acetone (6,10,14-Trimethyl-2-pentadecanone), a sesquiterpene isolated from Impatiens parviflora, is the major constituents of the essential oil. Hexahydrofarnesyl acetone has antibacterial, anti-nociceptive and anti-inflammation activities[1][2].
Lariciresinol
(+)-lariciresinol is a lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). It has a role as an antifungal agent and a plant metabolite. It is a member of oxolanes, a member of phenols, a lignan, a primary alcohol and an aromatic ether. It is an enantiomer of a (-)-lariciresinol. Lariciresinol is a natural product found in Magnolia kachirachirai, Euterpe oleracea, and other organisms with data available. See also: Acai fruit pulp (part of). A lignan that is tetrahydrofuran substituted at positions 2, 3 and 4 by 4-hydroxy-3-methoxyphenyl, hydroxymethyl and 4-hydroxy-3-methoxybenzyl groups respectively (the 2S,3R,4R-diastereomer). (-)-lariciresinol is a member of the class of compounds known as 7,9-epoxylignans. 7,9-epoxylignans are lignans that contain the 7,9-epoxylignan skeleton, which consists of a tetrahydrofuran that carries a phenyl group, a methyl group, and a benzyl group at the 2-, 3-, 4-position, respectively (-)-lariciresinol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). (-)-lariciresinol can be found in a number of food items such as ostrich fern, pepper (c. frutescens), ohelo berry, and guava, which makes (-)-lariciresinol a potential biomarker for the consumption of these food products. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.823 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.820 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.818 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.812
Citronellol
Citronellol is a monoterpenoid that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7. It has a role as a plant metabolite. Citronellol is a natural product found in Xylopia aromatica, Eupatorium cannabinum, and other organisms with data available. 3,7-Dimethyl-6-octen-1-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Java citronella oil (part of). A monoterpenoid that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
Hyperoside
[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Eugenol
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.
beta-Bourbonene
Flavouring agent. beta-Bourbonene is found in many foods, some of which are rosemary, common oregano, sweet basil, and winter savory.
Jyperin
Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].
Cephrol
Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
Docosane
Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].
Heneicosane
Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].
Pentadecane
A straight-chain alkane with 15 carbon atoms. It is a component of volatile oils isolated from plants species like Scandix balansae.
nerolidol
A farnesane sesquiterpenoid that is dodeca-1,6,10-triene which carries methyl groups at positions 3, 7 and 11 and a hydroxy group at position 3. It is a natural product that is present in various flowers and plants with a floral odor. Chemically, it exists in two geometric isomers, trans and cis forms. It is widely used in cosmetics (e.g. shampoos and perfumes), in non-cosmetic products (e.g. detergents and cleansers) and also as a food flavoring agent. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. Nerolidol is a natural membrane-active sesquiterpene, with antitumor, antibacterial, antifungal and antiparasitic activity[1]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2]. trans-Nerolidol is a sesquiterpene alcohol. It can be isolated from f aerial parts of Warionia saharae ex Benth. trans-Nerolidol improves the anti-proliferative effect of Doxorubicin (HY-15142A) against intestinal cancer cells in vitro. trans-Nerolidol also has anti-fungal activity[1][2].
(+)-DELTA-CADINENE
A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (the 1S,8aR-enantiomer).
93-15-2
D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].
Engenol
C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.
Farnesene
Isol. (without stereochemical distinction) from oil of Cymbopogon nardus (citronella), Cananga odorata (ylang ylang) and others (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2]. (E)-β-Farnesene (trans-β-Farnesene) is a volatile sesquiterpene hydrocarbon which can be found in Phlomis aurea Decne essential oil. (E)-β-Farnesene can be used as a feeding stimulant for the sand fly Lutzomyia longipalpis[1][2].
Henicosane
Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3]. Heneicosane is an aroma component isolated from Streptomyces philanthi RL-1-178 or Serapias cordigera. Heneicosane is a pheromone and inhibits aflatoxin production[1][2][3].
Dokosan
Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2]. Docosane, a straight chain alkane, can be used to synthesize structural composites with thermal energy storage/release capability[1][2].
beta-Bourbonene
Bourbonene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Thus, bourbonene is considered to be an isoprenoid lipid molecule. Bourbonene can be found in orange mint, which makes bourbonene a potential biomarker for the consumption of this food product. beta-Bourbonene is found in cloves. beta-Bourbonene is a flavouring agent.
(1S,2E,10R)-3,7,11,11-tetramethylbicyclo[8.1.0]undeca-2,6-diene
delta-Cadinene
A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).