NCBI Taxonomy: 4289

Nyssaceae (ncbi_taxid: 4289)

found 212 associated metabolites at family taxonomy rank level.

Ancestor: Cornales

Child Taxonomies: Nyssa, Davidia, Mastixia, Diplopanax, Camptotheca

Loganin

(1S,4aS,6S,7R,7aS)-6-hydroxy-7-methyl-1-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-1,4a,5,6,7,7a-hexahydrocyclopenta[d]pyran-4-carboxylic acid methyl ester

C17H26O10 (390.1525896)


Loganin is an iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. It has a role as a plant metabolite, a neuroprotective agent, an EC 3.4.23.46 (memapsin 2) inhibitor, an EC 3.2.1.20 (alpha-glucosidase) inhibitor, an anti-inflammatory agent and an EC 3.1.1.7 (acetylcholinesterase) inhibitor. It is a cyclopentapyran, a beta-D-glucoside, an enoate ester, a monosaccharide derivative, an iridoid monoterpenoid, a methyl ester and a secondary alcohol. It is functionally related to a loganetin. Loganin is one of the best-known of the iridoid glycosides. It is named for the Loganiaceae, having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae),[1] a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America. Loganin is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. An iridoid monoterpenoid with formula C17H26O10 that is isolated from several plant species and exhibits neuroprotective and anti-inflammatory properties. Loganin, also known as loganoside, is a member of the class of compounds known as iridoid o-glycosides. Iridoid o-glycosides are iridoid monoterpenes containing a glycosyl (usually a pyranosyl) moiety linked to the iridoid skeleton. Thus, loganin is considered to be an isoprenoid lipid molecule. Loganin is soluble (in water) and a very weakly acidic compound (based on its pKa). Loganin can be found in a number of food items such as groundcherry, annual wild rice, muscadine grape, and broad bean, which makes loganin a potential biomarker for the consumption of these food products. Loganin is one of the best-known of the iridoid glycosides.It is named for the Loganiaceae,having first been isolated from the seeds of a member of that plant family, namely those of Strychnos nux-vomica. It also occurs in Alstonia boonei (Apocynaceae), a medicinal tree of West Africa and in the medicinal/entheogenic shrub Desfontainia spinosa (Columelliaceae) native to Central America and South America . Loganin is formed from loganic acid by the enzyme loganic acid O-methyltransferase (LAMT). Loganin then becomes a substrate for the enzyme secologanin synthase (SLS) to form secologanin, a secoiridoid monoterpene found as part of ipecac and terpene indole alkaloids. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects. Loganin is the main iridoid glycoside compound in Cornus officinalis and has anti-inflammatory and anti-shock effects.

   

Sweroside

(3S,4R,4aS)-4-ethenyl-3-[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy-4,4a,5,6-tetrahydro-3H-pyrano[3,4-c]pyran-8-one

C16H22O9 (358.1263762)


Sweroside is a glycoside. Sweroside is a natural product found in Strychnos axillaris, Lonicera japonica, and other organisms with data available. See also: Lonicera japonica flower (part of); Menyanthes trifoliata leaf (part of); Centaurium erythraea whole (part of). Sweroside, isolated from Lonicera japonica, exhibits cytoprotective, anti-osteoporotic, and hepatoprotective effect[1][2]. Sweroside, isolated from Lonicera japonica, exhibits cytoprotective, anti-osteoporotic, and hepatoprotective effect[1][2].

   

Camptothecin

(19S)-19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0^{2,11}.0^{4,9}.0^{15,20}]henicosa-1(21),2(11),3,5,7,9,15(20)-heptaene-14,18-dione

C20H16N2O4 (348.1110016)


Camptothecin is a pyranoindolizinoquinoline that is pyrano[3,4:6,7]indolizino[1,2-b]quinoline which is substituted by oxo groups at positions 3 and 14, and by an ethyl group and a hydroxy group at position 4 (the S enantiomer). It has a role as an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an antineoplastic agent, a genotoxin and a plant metabolite. It is a pyranoindolizinoquinoline, a tertiary alcohol, a delta-lactone and a quinoline alkaloid. Camptothecin is an alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA topoisomerase, type I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. Camptothecin is a natural product found in Archidendron lucidum, Merrilliodendron megacarpum, and other organisms with data available. Camptothecin is an alkaloid isolated from the Chinese tree Camptotheca acuminata, with antineoplastic activity. During the S phase of the cell cycle, camptothecin selectively stabilizes topoisomerase I-DNA covalent complexes, thereby inhibiting religation of topoisomerase I-mediated single-strand DNA breaks and producing potentially lethal double-strand DNA breaks when encountered by the DNA replication machinery. (NCI) An alkaloid isolated from the stem wood of the Chinese tree, Camptotheca acuminata. This compound selectively inhibits the nuclear enzyme DNA TOPOISOMERASES, TYPE I. Several semisynthetic analogs of camptothecin have demonstrated antitumor activity. A pyranoindolizinoquinoline that is pyrano[3,4:6,7]indolizino[1,2-b]quinoline which is substituted by oxo groups at positions 3 and 14, and by an ethyl group and a hydroxy group at position 4 (the S enantiomer). Camptothecin (CPT), a kind of alkaloid, is a DNA topoisomerase I (Topo I) inhibitor with an IC50 of 679 nM[1]. Camptothecin (CPT) exhibits powerful antineoplastic activity against colorectal, breast, lung and ovarian cancers, modulates hypoxia-inducible factor-1α (HIF-1α) activity by changing microRNAs (miRNA) expression patterns in human cancer cells[2][3]. Camptothecin (CPT), a kind of alkaloid, is a DNA topoisomerase I (Topo I) inhibitor with an IC50 of 679 nM[1]. Camptothecin (CPT) exhibits powerful antineoplastic activity against colorectal, breast, lung and ovarian cancers, modulates hypoxia-inducible factor-1α (HIF-1α) activity by changing microRNAs (miRNA) expression patterns in human cancer cells[2][3].

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Quercetin

2-(3,4-dihydroxyphenyl)-3,5,7-trihydroxy-4H-chromen-4-one

C15H10O7 (302.042651)


Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Betulinic acid

(1R,3aS,5aR,5bR,7aR,9S,11aR,11bR,13aR,13bR)-9-hydroxy-5a,5b,8,8,11a-pentamethyl-1-prop-1-en-2-yl-1,2,3,4,5,6,7,7a,9,10,11,11b,12,13,13a,13b-hexadecahydrocyclopenta[a]chrysene-3a-carboxylic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].

   

Glucose

(3R,4S,5S,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


Glucose, also known as D-glucose or dextrose, is a member of the class of compounds known as hexoses. Hexoses are monosaccharides in which the sugar unit is a is a six-carbon containing moiety. Glucose contains an aldehyde group and is therefore referred to as an aldohexose. The glucose molecule can exist in an open-chain (acyclic) and ring (cyclic) form, the latter being the result of an intramolecular reaction between the aldehyde C atom and the C-5 hydroxyl group to form an intramolecular hemiacetal. In aqueous solution, both forms are in equilibrium and at pH 7 the cyclic one is predominant. Glucose is a neutral, hydrophilic molecule that readily dissolves in water. It exists as a white crystalline powder. Glucose is the primary source of energy for almost all living organisms. As such, it is the most abundant monosaccharide and the most widely used aldohexose in living organisms. When not circulating freely in blood (in animals) or resin (in plants), glucose is stored as a polymer. In plants it is mainly stored as starch and amylopectin and in animals as glycogen. Glucose is produced by plants through the photosynthesis using sunlight, water and carbon dioxide where it is used as an energy and a carbon source Glucose is particularly abundant in fruits and other parts of plants in its free state. Foods that are particularly rich in glucose are honey, agave, molasses, apples (2g/100g), grapes (8g/100g), oranges (8.5g/100g), jackfruit, dried apricots, dates (32 g/100g), bananas (5.8 g/100g), grape juice, sweet corn, Glucose is about 75\\\\% as sweet as sucrose and about 50\\\\% as sweet as fructose. Sweetness is detected through the binding of sugars to the T1R3 and T1R2 proteins, to form a G-protein coupled receptor that is the sweetness receptor in mammals. Glucose was first isolated from raisins in 1747 by the German chemist Andreas Marggraf. It was discovered in grapes by Johann Tobias Lowitz in 1792 and recognized as different from cane sugar (sucrose). Industrially, glucose is mainly used for the production of fructose and in the production of glucose-containing foods. In foods, it is used as a sweetener, humectant, to increase the volume and to create a softer mouthfeel. Various sources of glucose, such as grape juice (for wine) or malt (for beer), are used for fermentation to ethanol during the production of alcoholic beverages. Glucose is found in many plants as glucosides. A glucoside is a glycoside that is derived from glucose. Glucosides are common in plants, but rare in animals. Glucose is produced when a glucoside is hydrolyzed by purely chemical means or decomposed by fermentation or enzymes. Glucose can be obtained by the hydrolysis of carbohydrates such as milk sugar (lactose), cane sugar (sucrose), maltose, cellulose, and glycogen. Glucose is a building block of the disaccharides lactose and sucrose (cane or beet sugar), of oligosaccharides such as raffinose and of polysaccharides such as starch and amylopectin, glycogen or cellulose. For most animals, while glucose is normally obtained from the diet, it can also be generated via gluconeogenesis. Gluconeogenesis is a metabolic pathway that results in the generation of glucose from certain non-carbohydrate carbon substrates. Gluconeogenesis is a ubiquitous process, present in plants, animals, fungi, bacteria, and other microorganisms. In vertebrates, gluconeogenesis takes place mainly in the liver and, to a lesser extent, in the cortex of the kidneys. In humans the main gluconeogenic precursors are lactate, glycerol (which is a part of the triacylglycerol molecule), alanine and glutamine. B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents CONFIDENCE standard compound; INTERNAL_ID 226 KEIO_ID G002 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-(((2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-O-beta-D-glucoside is a kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. It has a role as a trypanocidal drug and a plant metabolite. It is a kaempferol O-glucoside, a monosaccharide derivative, a trihydroxyflavone and a beta-D-glucoside. It is a conjugate acid of a kaempferol 3-O-beta-D-glucoside(1-). Astragalin is a natural product found in Xylopia aromatica, Ficus virens, and other organisms with data available. See also: Moringa oleifera leaf (has part). Astragalin is found in alcoholic beverages. Astragalin is present in red wine. It is isolated from many plant species.Astragalin is a 3-O-glucoside of kaempferol. Astragalin is a chemical compound. It can be isolated from Phytolacca americana (the American pokeweed). A kaempferol O-glucoside in which a glucosyl residue is attached at position 3 of kaempferol via a beta-glycosidic linkage. Present in red wine. Isolated from many plant subspecies Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 173 Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

pumiloside

pumiloside

C26H28N2O9 (512.1794718)


Annotation level-3

   

Glucose

(2S,3R,4S,5R,6R)-6-(hydroxymethyl)oxane-2,3,4,5-tetrol

C6H12O6 (180.0633852)


D-Galactose (CAS: 59-23-4) is an aldohexose that occurs naturally in the D-form in lactose, cerebrosides, gangliosides, and mucoproteins. D-Galactose is an energy-providing nutrient and also a necessary basic substrate for the biosynthesis of many macromolecules in the body. Metabolic pathways for D-galactose are important not only for the provision of these pathways but also for the prevention of D-galactose metabolite accumulation. The main source of D-galactose is lactose in the milk of mammals, but it can also be found in some fruits and vegetables. Utilization of D-galactose in all living cells is initiated by the phosphorylation of the hexose by the enzyme galactokinase (E.C. 2.7.1.6) (GALK) to form D-galactose-1-phosphate. In the presence of D-galactose-1-phosphate uridyltransferase (E.C. 2.7.7.12) (GALT) D-galactose-1-phosphate is exchanged with glucose-1-phosphate in UDP-glucose to form UDP-galactose. Glucose-1-phosphate will then enter the glycolytic pathway for energy production. Deficiency of the enzyme GALT in galactosemic patients leads to the accumulation of D-galactose-1-phosphate. Classic galactosemia, a term that denotes the presence of D-galactose in the blood, is the rare inborn error of D-galactose metabolism, diagnosed by the deficiency of the second enzyme of the D-galactose assimilation pathway, GALT, which, in turn, is caused by mutations at the GALT gene (PMID: 15256214, 11020650, 10408771). Galactose in the urine is a biomarker for the consumption of milk. Alpha-D-Pyranose-form of the compound Galactose [CCD]. alpha-D-Galactose is found in many foods, some of which are kelp, fig, spelt, and rape. Galactose. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=59-23-4 (retrieved 2024-07-16) (CAS RN: 59-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-((2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yloxy)-4H-chromen-4-one

C21H20O11 (448.100557)


Kaempferol 3-o-beta-d-galactopyranoside, also known as trifolin or trifolioside, is a member of the class of compounds known as flavonoid-3-o-glycosides. Flavonoid-3-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C3-position. Kaempferol 3-o-beta-d-galactopyranoside is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). Kaempferol 3-o-beta-d-galactopyranoside can be found in horseradish, which makes kaempferol 3-o-beta-d-galactopyranoside a potential biomarker for the consumption of this food product. Kaempferol 3-O-beta-D-galactoside is a beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position. It has a role as a plant metabolite and an antifungal agent. It is a beta-D-galactoside, a monosaccharide derivative, a glycosyloxyflavone and a trihydroxyflavone. It is functionally related to a kaempferol. It is a conjugate acid of a kaempferol 3-O-beta-D-galactoside(1-). Trifolin is a natural product found in Lotus ucrainicus, Saxifraga tricuspidata, and other organisms with data available. Isoastragalin is found in fats and oils. Isoastragalin is isolated from Gossypium hirsutum (cotton) and other plant species. A beta-D-galactoside compound with a 4,5,7-trihydroxychromen-3-yl group at the anomeric position.

   

10-Hydroxycamptothecin

19-ethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(11),3,5,7,9,15(20)-heptaene-14,18-dione

C20H16N2O5 (364.1059166)


   

7-Glucosyl-luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


   

Sweroside

5-ethenyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1H,3H,4H,4aH,5H,6H-pyrano[3,4-c]pyran-1-one

C16H22O9 (358.1263762)


   

Vincosamide

19-ethenyl-18-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaen-14-one

C26H30N2O8 (498.200206)


   

Astragalin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1]. Astragalin (Astragaline) a flavonoid with anti-inflammatory, antioxidant, anticancer, bacteriostatic activity. Astragalin inhibits cancer cells proliferation and migration, induces apoptosis. Astragalin is orally active and provides nerve and heart protection, and resistance against and osteoporosis[1].

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.36032579999994)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Quercetin

2- (3,4-Dihydroxyphenyl) -3,5,7-trihydroxy-4H-1-benzopyran-4-one

C15H10O7 (302.042651)


Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].

   

Trifolin

5,7-dihydroxy-2-(4-hydroxyphenyl)-3-[[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)-2-tetrahydropyranyl]oxy]-4-chromenone

C21H20O11 (448.100557)


Isolated from Gossypium hirsutum (cotton) and other plant subspecies Isoastragalin is found in fats and oils. Isolated from liquorice (Glycyrrhiza glabra). Acetylastragalin is found in herbs and spices. Widespread occurrence in plant world, e.g. Pinus sylvestris (Scotch pine) and fruits of Scolymus hispanicus (Spanish salsify). Kaempferol 3-galactoside is found in many foods, some of which are horseradish, almond, peach, and tea.

   

Glucose

alpha-D-Glucose

C6H12O6 (180.0633852)


B - Blood and blood forming organs > B05 - Blood substitutes and perfusion solutions > B05C - Irrigating solutions V - Various > V04 - Diagnostic agents > V04C - Other diagnostic agents > V04CA - Tests for diabetes V - Various > V06 - General nutrients > V06D - Other nutrients > V06DC - Carbohydrates COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS alpha-D-glucose is an endogenous metabolite. alpha-D-glucose is an endogenous metabolite.

   

Isoquercetin

3,3,4,5,7-Pentahydroxyflavone 3-β-glucoside

C21H20O12 (464.09547200000003)


COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercetin (Quercetin 3-glucoside) is a naturally occurring polyphenol that has antioxidant, anti-proliferative, and anti-inflammatory properties. Isoquercetin alleviates ethanol-induced hepatotoxicity, oxidative stress, and inflammatory responses via the Nrf2/ARE antioxidant signaling pathway[1]. Isoquercetin regulates the expression of nitric oxide synthase 2 (NO2) via modulating the nuclear factor-κB (NF-κB) transcription regulation system. Isoquercetin has high bioavailability and low toxicity, is a promising candidate agent to prevent birth defects in diabetic pregnancies[2]. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor. Isoquercitrin (Isoquercitroside) is an effective antioxidant and an eosinophilic inflammation suppressor.

   

betulinic acid

betulinic acid

C30H48O3 (456.36032579999994)


Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4].

   

Hyperoside

Quercetin 3-beta-D-galactopyranoside

C21H20O12 (464.09547200000003)


[Raw Data] CB050_Hyperoside_neg_50eV_000016.txt [Raw Data] CB050_Hyperoside_neg_40eV_000016.txt [Raw Data] CB050_Hyperoside_neg_30eV_000016.txt [Raw Data] CB050_Hyperoside_neg_20eV_000016.txt [Raw Data] CB050_Hyperoside_neg_10eV_000016.txt [Raw Data] CB050_Hyperoside_pos_50eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_40eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_30eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_20eV_CB000024.txt [Raw Data] CB050_Hyperoside_pos_10eV_CB000024.txt Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

10-Hydroxycamptothecin

10-Hydroxy camptothecin

C20H16N2O5 (364.1059166)


SubCategory_DNP: : Alkaloids derived from anthranilic acid, Quinoline alkaloids relative retention time with respect to 9-anthracene Carboxylic Acid is 0.944 D000970 - Antineoplastic Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.947 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.929 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.928 (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4]. (S)-10-Hydroxycamptothecin (10-HCPT;10-Hydroxycamptothecin) is a DNA topoisomerase I inhibitor of isolated from the Chinese plant Camptotheca accuminata. (S)-10-Hydroxycamptothecin exhibits a remarkable apoptosis-inducing effect. (S)-10-Hydroxycamptothecin has the potential for hepatoma, gastric carcinoma, colon cancer and leukaemia treatment[1][2][3][4].

   

Jyperin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5R,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4H-chromen-4-one

C21H20O12 (464.09547200000003)


Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2]. Hyperoside is a NF-κB inhibitor, found from Hypericum monogynum. Hyperoside shows anti-tumor, antifungal, anti-inflammatory, anti-viral, and anti-oxidative activities, and can induce apoptosis[1][2].

   

D(+)-Glucose

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

maltodextrin

(2R,3S,4R,5R)-2,3,4,5,6-pentahydroxyhexanal

C6H12O6 (180.0633852)


D000074385 - Food Ingredients > D005503 - Food Additives D010592 - Pharmaceutic Aids > D005421 - Flavoring Agents

   

7,8-dihydroxy-10-methyl-7,8,9,10-tetrahydrooxecin-2-one

7,8-dihydroxy-10-methyl-7,8,9,10-tetrahydrooxecin-2-one

C10H14O4 (198.0892044)


   

6,7,14-trimethoxy-13-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

6,7,14-trimethoxy-13-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

C23H22O13 (506.1060362)


   

(2r,3r,4r,5s)-2,3,4,5,7-pentahydroxy-6-oxoheptyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r,3r,4r,5s)-2,3,4,5,7-pentahydroxy-6-oxoheptyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C16H20O10 (372.105642)


   

7-(1,2-dihydroxypropyl)-8-methyl-11h-indolizino[1,2-b]quinolin-9-one

7-(1,2-dihydroxypropyl)-8-methyl-11h-indolizino[1,2-b]quinolin-9-one

C19H18N2O3 (322.1317358)


   

(19s)-19-ethyl-19-hydroxy-7-methoxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

(19s)-19-ethyl-19-hydroxy-7-methoxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C21H18N2O5 (378.1215658)


   

(s)-cyano(3-phenoxyphenyl)methyl (3r)-3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-1-carboxylate

(s)-cyano(3-phenoxyphenyl)methyl (3r)-3-(2,2-dibromoethenyl)-2,2-dimethylcyclopropane-1-carboxylate

C22H19Br2NO3 (502.9731584000001)


   

12-methoxy-13-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1(18),2(6),7,11(19),12,14-hexaene-9,16-dione

12-methoxy-13-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1(18),2(6),7,11(19),12,14-hexaene-9,16-dione

C22H18O13 (490.0747378)


   

14-oxo-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15,17,19-nonaene-19-carbaldehyde

14-oxo-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15,17,19-nonaene-19-carbaldehyde

C20H12N2O2 (312.0898732)


   

(19s)-19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl acetate

(19s)-19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl acetate

C23H20N2O6 (420.13213)


   

(19s)-19-(2-hydroxyethyl)-19-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

(19s)-19-(2-hydroxyethyl)-19-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C26H26N2O10 (526.1587376)


   

13,14-dihydroxy-12-methoxy-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1(18),2(6),7,11(19),12,14-hexaene-9,16-dione

13,14-dihydroxy-12-methoxy-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1(18),2(6),7,11(19),12,14-hexaene-9,16-dione

C16H8O9 (344.0168318)


   

19-ethyl-6,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

19-ethyl-6,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C20H16N2O5 (364.1059166)


   

(2r)-2-hydroxy-2-[(2r,3s,4s,5r)-3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]ethyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

(2r)-2-hydroxy-2-[(2r,3s,4s,5r)-3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]ethyl (2e)-3-(3,4-dihydroxyphenyl)prop-2-enoate

C16H20O10 (372.105642)


   

19-ethyl-19-hydroxy-7-methoxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

19-ethyl-19-hydroxy-7-methoxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C21H18N2O5 (378.1215658)


   

(1s,18s,19r,20s)-19-ethenyl-18-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-2(11),4,6,8,15-pentaene-10,14-dione

(1s,18s,19r,20s)-19-ethenyl-18-{[(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-2(11),4,6,8,15-pentaene-10,14-dione

C26H28N2O9 (512.1794718)


   

(1r,2s,19r,22r)-7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaene-4,17,25,38-tetrone

(1r,2s,19r,22r)-7,8,9,12,13,14,20,28,29,30,33,34,35-tridecahydroxy-3,18,21,24,39-pentaoxaheptacyclo[20.17.0.0²,¹⁹.0⁵,¹⁰.0¹¹,¹⁶.0²⁶,³¹.0³²,³⁷]nonatriaconta-5(10),6,8,11,13,15,26(31),27,29,32,34,36-dodecaene-4,17,25,38-tetrone

C34H24O22 (784.0759204)


   

(10r,11r,12r,13s,15r)-3,4,5,12,13,21,22,23-octahydroxy-8,18-dioxo-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

(10r,11r,12r,13s,15r)-3,4,5,12,13,21,22,23-octahydroxy-8,18-dioxo-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806112)


   

1-{3,4,5,11,17,18,19-heptahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-10-yl}-2-hydroxy-3-oxopropyl 3,4,5-trihydroxybenzoate

1-{3,4,5,11,17,18,19-heptahydroxy-8,14-dioxo-9,13-dioxatricyclo[13.4.0.0²,⁷]nonadeca-1(15),2,4,6,16,18-hexaen-10-yl}-2-hydroxy-3-oxopropyl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806112)


   

2-hydroxy-2-[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]ethyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

2-hydroxy-2-[3,4,5-trihydroxy-5-(hydroxymethyl)oxolan-2-yl]ethyl 3-(3,4-dihydroxyphenyl)prop-2-enoate

C16H20O10 (372.105642)


   

19-[(1s)-1-hydroxyethyl]-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

19-[(1s)-1-hydroxyethyl]-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

C20H17N3O2 (331.1320702)


   

19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),4,6,8,10,15(20)-hexaene-14,18-dione

19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),4,6,8,10,15(20)-hexaene-14,18-dione

C20H18N2O4 (350.1266508)


   

methyl 19-methyl-14-oxo-18-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15(20),16-heptaene-16-carboxylate

methyl 19-methyl-14-oxo-18-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15(20),16-heptaene-16-carboxylate

C21H18N2O4 (362.1266508)


   

(10r,11s,12r,15r)-3,4,5,21,22,23-hexahydroxy-8,18-dioxo-12,13-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

(10r,11s,12r,15r)-3,4,5,21,22,23-hexahydroxy-8,18-dioxo-12,13-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H30O26 (938.102528)


   

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[3,4,5,13,22,23-hexahydroxy-8,18-dioxo-11,12-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[3,4,5,13,22,23-hexahydroxy-8,18-dioxo-11,12-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

C68H50O44 (1570.1674899999998)


   

methyl (4e,6s,7r,9s)-6,7,9-trihydroxydec-4-enoate

methyl (4e,6s,7r,9s)-6,7,9-trihydroxydec-4-enoate

C11H20O5 (232.13106700000003)


   

5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

5-ethenyl-4-{1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl}-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H32N2O9 (516.2107702)


   

(19r)-19-ethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

(19r)-19-ethyl-7,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C20H16N2O5 (364.1059166)


   

19-ethyl-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

19-ethyl-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C20H16N2O3 (332.1160866)


   

19-(1-methoxyethyl)-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

19-(1-methoxyethyl)-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

C21H19N3O2 (345.1477194)


   

19-ethenyl-18-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-2(11),4,6,8,15-pentaene-10,14-dione

19-ethenyl-18-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-2(11),4,6,8,15-pentaene-10,14-dione

C26H28N2O9 (512.1794718)


   
   

19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

C27H28N2O6 (476.1947268)


   

18-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15(20)-hexaene-14,16-dione

18-methyl-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15(20)-hexaene-14,16-dione

C19H16N2O3 (320.1160866)


   

19-[(1r)-1-methoxyethyl]-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

19-[(1r)-1-methoxyethyl]-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

C21H19N3O2 (345.1477194)


   

19-ethyl-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

19-ethyl-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

C26H26N2O5 (446.18416260000004)


   

6,7,14-trimethoxy-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

6,7,14-trimethoxy-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

C23H22O13 (506.1060362)


   

12,13,14-trimethoxy-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1,6,8(18),11(19),12,14-hexaene-9,16-dione

12,13,14-trimethoxy-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1,6,8(18),11(19),12,14-hexaene-9,16-dione

C18H12O9 (372.0481302)


   

12-methoxy-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1(18),2(6),7,11(19),12,14-hexaene-9,16-dione

12-methoxy-13-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1(18),2(6),7,11(19),12,14-hexaene-9,16-dione

C22H18O13 (490.0747378)


   

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[3,4,5,12,13,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[3,4,5,12,13,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

C61H46O40 (1418.1565316)


   

(3s,4r,5r,6s,9e)-10-(3,4-dihydroxyphenyl)-1,3,4,5,6,7-hexahydroxydec-9-ene-2,8-dione

(3s,4r,5r,6s,9e)-10-(3,4-dihydroxyphenyl)-1,3,4,5,6,7-hexahydroxydec-9-ene-2,8-dione

C16H20O10 (372.105642)


   

19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl acetate

19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl acetate

C23H20N2O6 (420.13213)


   

(10r,11s,12r,13s,15r)-3,4,5,21,22,23-hexahydroxy-8,18-dioxo-12,13-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

(10r,11s,12r,13s,15r)-3,4,5,21,22,23-hexahydroxy-8,18-dioxo-12,13-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

C41H30O26 (938.102528)


   

19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,5,7,10,15(20)-hexaene-14,18-dione

19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,5,7,10,15(20)-hexaene-14,18-dione

C20H18N2O4 (350.1266508)


   

19-(2-hydroxyethyl)-19-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

19-(2-hydroxyethyl)-19-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C26H26N2O10 (526.1587376)


   

13-hydroxy-6,7,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

13-hydroxy-6,7,14-trimethoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4(16),5,7,11,13-hexaene-3,10-dione

C17H12O8 (344.0532152)


   

(4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

(4s,5r,6s)-5-ethenyl-4-[(1s)-1h,2h,3h,4h,9h-pyrido[3,4-b]indol-1-ylmethyl]-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylic acid

C26H32N2O9 (516.2107702)


   

19-(hydroxymethyl)-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15,17,19-nonaen-14-one

19-(hydroxymethyl)-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15,17,19-nonaen-14-one

C20H14N2O2 (314.1055224)


   

(1r,4r,6r,7r,8e,10r)-6,7-dihydroxy-4-methyl-3,11-dioxabicyclo[8.1.0]undec-8-en-2-one

(1r,4r,6r,7r,8e,10r)-6,7-dihydroxy-4-methyl-3,11-dioxabicyclo[8.1.0]undec-8-en-2-one

C10H14O5 (214.08411940000002)


   

methyl 6,7,9-trihydroxydec-4-enoate

methyl 6,7,9-trihydroxydec-4-enoate

C11H20O5 (232.13106700000003)


   

19-(1-hydroxyethyl)-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

19-(1-hydroxyethyl)-3,13,17-triazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaen-14-one

C20H17N3O2 (331.1320702)


   

6,7-dihydroxy-4-methyl-3,11-dioxabicyclo[8.1.0]undec-8-en-2-one

6,7-dihydroxy-4-methyl-3,11-dioxabicyclo[8.1.0]undec-8-en-2-one

C10H14O5 (214.08411940000002)


   

(10r,11s,12r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 3,4,5-trihydroxybenzoate

(10r,11s,12r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 3,4,5-trihydroxybenzoate

C34H26O22 (786.0915696)


   

(1r,18s,19r,20s)-19-ethenyl-18-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaen-14-one

(1r,18s,19r,20s)-19-ethenyl-18-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-2(10),4,6,8,15-pentaen-14-one

C26H30N2O8 (498.200206)


   

(1s,4s,6s,7s,10s)-7-hydroxy-4-methyl-2-oxo-3,11-dioxabicyclo[8.1.0]undec-8-en-6-yl acetate

(1s,4s,6s,7s,10s)-7-hydroxy-4-methyl-2-oxo-3,11-dioxabicyclo[8.1.0]undec-8-en-6-yl acetate

C12H16O6 (256.0946836)


   

(3z,5e,7r,8s,10s)-7,8-dihydroxy-10-methyl-7,8,9,10-tetrahydrooxecin-2-one

(3z,5e,7r,8s,10s)-7,8-dihydroxy-10-methyl-7,8,9,10-tetrahydrooxecin-2-one

C10H14O4 (198.0892044)


   

(2s,19s)-19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),4,6,8,10,15(20)-hexaene-14,18-dione

(2s,19s)-19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),4,6,8,10,15(20)-hexaene-14,18-dione

C20H18N2O4 (350.1266508)


   

7,12,13,14-tetramethoxy-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1,6,8(18),11(19),12,14-hexaene-9,16-dione

7,12,13,14-tetramethoxy-3,5,10,17-tetraoxapentacyclo[9.6.2.0²,⁶.0⁸,¹⁸.0¹⁵,¹⁹]nonadeca-1,6,8(18),11(19),12,14-hexaene-9,16-dione

C19H14O10 (402.05869440000004)


   

(19s)-19-ethyl-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

(19s)-19-ethyl-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

C26H26N2O5 (446.18416260000004)


   

(10r,11s,12r,13r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(19),2,4,6,20,22-hexaen-12-yl 3,4,5-trihydroxy-2-{[(10r,11s,12r,13s,15r)-3,4,5,22,23-pentahydroxy-8,18-dioxo-11,12,13-tris(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}benzoate

(10r,11s,12r,13r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(19),2,4,6,20,22-hexaen-12-yl 3,4,5-trihydroxy-2-{[(10r,11s,12r,13s,15r)-3,4,5,22,23-pentahydroxy-8,18-dioxo-11,12,13-tris(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}benzoate

C75H54O48 (1722.1784484)


   

(10r,11s,12r,13r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[(10r,11r,12r,13r,15r)-3,4,5,12,13,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(19),2(7),3,5,20,22-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

(10r,11s,12r,13r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[(10r,11r,12r,13r,15r)-3,4,5,12,13,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(19),2(7),3,5,20,22-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

C61H46O40 (1418.1565316)


   

3,4,5,12,13,21,22,23-octahydroxy-8,18-dioxo-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

3,4,5,12,13,21,22,23-octahydroxy-8,18-dioxo-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-11-yl 3,4,5-trihydroxybenzoate

C27H22O18 (634.0806112)


   

6,7,9-trihydroxydec-4-enoic acid

6,7,9-trihydroxydec-4-enoic acid

C10H18O5 (218.1154178)


   

(19s)-19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

(19s)-19-ethyl-7-methoxy-14,18-dioxo-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaen-19-yl hexanoate

C27H28N2O6 (476.1947268)


   

(10r,11s,12r,13r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[(10r,11s,12r,13r,15r)-3,4,5,13,22,23-hexahydroxy-8,18-dioxo-11,12-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(19),2(7),3,5,20,22-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

(10r,11s,12r,13r,15r)-3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 2-{[(10r,11s,12r,13r,15r)-3,4,5,13,22,23-hexahydroxy-8,18-dioxo-11,12-bis(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(19),2(7),3,5,20,22-hexaen-21-yl]oxy}-3,4,5-trihydroxybenzoate

C68H50O44 (1570.1674899999998)


   

(19r)-19-ethyl-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

(19r)-19-ethyl-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C20H16N2O3 (332.1160866)


   

(1s,4s,6s,7s,8e,10s)-7-hydroxy-4-methyl-2-oxo-3,11-dioxabicyclo[8.1.0]undec-8-en-6-yl acetate

(1s,4s,6s,7s,8e,10s)-7-hydroxy-4-methyl-2-oxo-3,11-dioxabicyclo[8.1.0]undec-8-en-6-yl acetate

C12H16O6 (256.0946836)


   

(4as,5r,6s)-5-ethenyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

(4as,5r,6s)-5-ethenyl-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-3h,4h,4ah,5h,6h-pyrano[3,4-c]pyran-1-one

C16H22O9 (358.1263762)


   

(4e,6s,7s,9s)-6,7,9-trihydroxydec-4-enoic acid

(4e,6s,7s,9s)-6,7,9-trihydroxydec-4-enoic acid

C10H18O5 (218.1154178)


   

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 3,4,5-trihydroxy-2-{[3,4,5,22,23-pentahydroxy-8,18-dioxo-11,12,13-tris(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}benzoate

3,4,5,13,21,22,23-heptahydroxy-8,18-dioxo-11-(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-12-yl 3,4,5-trihydroxy-2-{[3,4,5,22,23-pentahydroxy-8,18-dioxo-11,12,13-tris(3,4,5-trihydroxybenzoyloxy)-9,14,17-trioxatetracyclo[17.4.0.0²,⁷.0¹⁰,¹⁵]tricosa-1(23),2(7),3,5,19,21-hexaen-21-yl]oxy}benzoate

C75H54O48 (1722.1784484)


   

14-oxo-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaene-19-carbaldehyde

14-oxo-3,13-diazapentacyclo[11.8.0.0²,¹⁰.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2(10),4,6,8,15,17,19-octaene-19-carbaldehyde

C20H14N2O2 (314.1055224)


   

7-[(1s,2s)-1,2-dihydroxypropyl]-8-methyl-11h-indolizino[1,2-b]quinolin-9-one

7-[(1s,2s)-1,2-dihydroxypropyl]-8-methyl-11h-indolizino[1,2-b]quinolin-9-one

C19H18N2O3 (322.1317358)


   

(4s,9s,19s)-19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,5,7,10,15(20)-hexaene-14,18-dione

(4s,9s,19s)-19-ethyl-19-hydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,5,7,10,15(20)-hexaene-14,18-dione

C20H18N2O4 (350.1266508)


   

(19s)-19-ethyl-6,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

(19s)-19-ethyl-6,19-dihydroxy-17-oxa-3,13-diazapentacyclo[11.8.0.0²,¹¹.0⁴,⁹.0¹⁵,²⁰]henicosa-1(21),2,4,6,8,10,15(20)-heptaene-14,18-dione

C20H16N2O5 (364.1059166)