NCBI Taxonomy: 224744

Micromeria (ncbi_taxid: 224744)

found 23 associated metabolites at genus taxonomy rank level.

Ancestor: Mentheae

Child Taxonomies: Micromeria varia, Micromeria lepida, Micromeria graeca, Micromeria lanata, Micromeria tenuis, Micromeria nervosa, Micromeria biflora, Micromeria aybalae, Micromeria inodora, Micromeria juliana, Micromeria sinaica, Micromeria cristata, Micromeria forbesii, Micromeria croatica, Micromeria gilliesii, Micromeria glomerata, Micromeria benthamii, Micromeria imbricata, Micromeria pineolens, Micromeria leucantha, Micromeria gomerensis, Micromeria hierrensis, Micromeria maderensis, Micromeria mahanensis, Micromeria serbaliana, Micromeria myrtifolia, Micromeria densiflora, Micromeria fontanesii, Micromeria cymuligera, Micromeria teneriffae, Micromeria canariensis, Micromeria cremnophila, Micromeria lasiophylla, Micromeria flagellaris, Micromeria pedro-luisii, Micromeria acropolitana, unclassified Micromeria, Micromeria hyssopifolia, Micromeria lachnophylla, Micromeria hochreutineri, Micromeria sphaerophylla, Micromeria herpyllomorpha, Micromeria rivas-martinezii, Micromeria helianthemifolia, Micromeria cf. varia Heubl HI16, Micromeria cf. varia Heubl GOF10, Micromeria cf. varia Heubl GOF20, Micromeria cf. varia Heubl GOFT7, Micromeria cf. varia Heubl Ten23, Micromeria cf. varia Franke GOF13, Micromeria cf. tenuis Meimberg GC40B, Micromeria cf. benthamii Meimberg GC18, Micromeria cf. herpyllomorpha Heubl LP19, Micromeria cf. herpyllomorpha Heubl LP23, Micromeria lepida x Micromeria pedro-luisii, Micromeria cf. madagascariensis Morawetz 205

Luteolin

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-4H-chromen-4-one

C15H10O6 (286.047736)


Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   

Carotol

6,8a-dimethyl-3-(propan-2-yl)-1,2,3,3a,4,5,8,8a-octahydroazulen-3a-ol

C15H26O (222.1983546)


Carotol is found in carrot. Carotol is a constituent of Daucus carota (carrot) Carotol was first isolated by scientists Asahina and Tsukamoto in 1925. It is one of the primary components found in carrot seed oil comprising approximately 40\\% of this essential oil. This sesquiterpene alcohol is thought to be formed in carrot seeds (Daucus carota L., Umbelliferae) during the vegetation period. Additionally, studies have shown that carotol may be involved in allelopathic interactions expressing activity as a antifungal, herbicidal and insecticidal agent. It has been proposed that there is a direct cyclisation of farnesyl pyrophosphate (FPP) to the carotol (carotane backbone). This type of cyclisation is unconventional for the typical chemistry of sesquiterpenes. The only other proposed mechanism requires a complex ten-membered ring with a methyl migration. This later reaction, regardless of how plausible it may appear to be on paper, is energetically undesired and through the diligent work of M. Soucek and coworkers it was shown that the cyclization from FPP to carotol is the most probable biosynthesis route. Constituent of Daucus carota (carrot)

   

fenchone

(1R,4S)-(+)-fenchone;(1R,4S)-1,3,3-trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.12010859999998)


A carbobicyclic compound that is fenchane in which the hydrogens at position 2 are replaced by an oxo group. It is a component of essential oil from fennel (Foeniculum vulgare). Fenchone is a natural organic compound classified as a monoterpene and a ketone. It is a colorless oily liquid. It has a structure and an odor similar to camphor. Fenchone is a constituent of absinthe and the essential oil of fennel. Fenchone is used as a flavor in foods and in perfumery. Only 2 stereoisomers are possible: D-fenchone (enantiomer 1S,4R is dextrogyre (+)) and L-fenchone (enantiomer 1R,4S is levogyre (-)). Due to the small size of the cycle, the 2 other diastereoisomers (1S4S and 1R4R) are not possible. [Wikipedia]. Fenchone is found in many foods, some of which are ceylon cinnamon, sweet basil, saffron, and dill. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1]. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1]. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1]. (-)-Fenchone, a bicyclic monoterpene, is widely distributed in plants and found in essential oils from Foeniculum vulgare. (-)-Fenchone is oxidized to 6-endo-hydroxyfenchone, 6-exo-hydroxyfenchone and 10-hydroxyfenchone derivatives by CYP2A6 and CYP2B6 in human liver microsomes with CYP2A6 playing a more important role than CYP2B6[1].

   

Pinocarveol

6,6-Dimethyl-3-hydroxy-2-methylenebicyclo(3.1.1)heptane

C10H16O (152.12010859999998)


Flavouring ingredient. Pinocarveol is found in many foods, some of which are spearmint, wild celery, hyssop, and sweet bay. Pinocarveol is found in hyssop. Pinocarveol is a flavouring ingredien

   

(-)-cis-Carveol

2-Methyl-5-(1-methylethenyl)-(1R-cis)-2-cyclohexen-1-ol

C10H16O (152.12010859999998)


(-)-cis-Carveol is found in citrus. (-)-cis-Carveol is a constituent of Valencia orange oil (Citrus sinensis). (-)-cis-Carveol is a flavouring agent Constituent of Valencia orange oil (Citrus sinensis). Flavouring agent. (-)-cis-Carveol is found in citrus.

   

isosafrole

5-(prop-1-en-1-yl)-2H-1,3-benzodioxole

C10H10O2 (162.06807600000002)


   

D-Camphor

1,7,7-Trimethylbicyclo[2.2.1]heptan-2-one

C10H16O (152.12010859999998)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].

   

Luteolin

4H-1-Benzopyran-4-one, 2-(3,4-dihydroxyphenyl)-5,7-dihydroxy- (9CI)

C15H10O6 (286.047736)


Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].

   
   

g-Muurolene

7-methyl-4-methylidene-1-(propan-2-yl)-1,2,3,4,4a,5,6,8a-octahydronaphthalene

C15H24 (204.18779039999998)


   

3-METHYLHEPTAN-4-ONE

3-METHYLHEPTAN-4-ONE

C8H16O (128.1201086)


   

CHEBI:15385

(1S,8AR)-4,7-dimethyl-1-(propan-2-yl)-1,2,3,5,6,8a-hexahydronaphthalene

C15H24 (204.18779039999998)


   

D-CAMPHOR

(±)-Camphor

C10H16O (152.12010859999998)


(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative.

   

Pinocarveol

Bicyclo[3.1.1]heptan-3-ol,6,6-dimethyl-2-methylene-

C10H16O (152.12010859999998)


A pinane monoterpenoid that is a bicyclo[3.1.1]heptane substituted by two methyl groups at position 6, a methylidene group at position 2 and a hydroxy group at position 3.

   

2-(4-methylphenyl)propan-2-ol

2-(4-methylphenyl)propan-2-ol

C10H14O (150.1044594)


   

delta-Cadinene

delta-Cadinene

C15H24 (204.18779039999998)


A member of the cadinene family of sesquiterpenes in which the double bonds are located at the 4-4a and 7-8 positions, and in which the isopropyl group at position 1 is cis to the hydrogen at the adjacent bridgehead carbon (position 8a).

   

(1ar,4r,7r,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(1ar,4r,7r,7bs)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1983546)


   

3-ethenyl-3,7-dimethyloct-6-enoic acid

3-ethenyl-3,7-dimethyloct-6-enoic acid

C12H20O2 (196.14632200000003)


   

citronellol, (+-)-

citronellol, (+-)-

C10H20O (156.151407)


   

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

(7ar)-1,1,7-trimethyl-4-methylidene-octahydrocyclopropa[e]azulen-7-ol

C15H24O (220.18270539999997)


   

(4r,4as,7s,7as)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

(4r,4as,7s,7as)-1,1,4,7-tetramethyl-octahydro-1ah-cyclopropa[e]azulen-4-ol

C15H26O (222.1983546)


   

(1r,2r,3r,5s)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-ol

(1r,2r,3r,5s)-2,6,6-trimethylbicyclo[3.1.1]heptan-3-ol

C10H18O (154.1357578)