NCBI Taxonomy: 60057
Isertia (ncbi_taxid: 60057)
found 302 associated metabolites at genus taxonomy rank level.
Ancestor: Isertieae
Child Taxonomies: Isertia laevis, Isertia pittieri, Isertia hypoleuca, Isertia rosea, Isertia coccinea, Isertia haenkeana, Isertia parviflora, Isertia spiciformis, unclassified Isertia
Ursolic acid
Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
Oleanolic acid
Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
3,4-Di-O-caffeoylquinic acid
Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Taraxasterol
Constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants. Taraxasterol is found in many foods, some of which are soy bean, chicory, evening primrose, and common grape. Taraxasterol is found in alcoholic beverages. Taraxasterol is a constituent of dandelion roots (Taraxacum officinale), Roman chamomile flowers (Anthemis nobilis) and many other plants Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].
4,5-Di-O-caffeoylquinic acid
4,5-di-O-caffeoylquinic acid is a quinic acid. 4,5-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee, Brazilian propolis and maté. 4,5-Di-O-caffeoylquinic acid is found in many foods, some of which are carrot, robusta coffee, coffee, and coffee and coffee products. 4,5-Di-O-caffeoylquinic acid is found in arabica coffee. 4,5-Di-O-caffeoylquinic acid is isolated from coffee and Brazilian propoli 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 4,5-Dicaffeoylquinic acid (Isochlorogenic acid C) is an antioxidant, can be isolated from Gynura divaricata and Laggera alata. 4,5-Dicaffeoylquinic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice, and has obvious inhibitory activities against yeast α-glucosidase. 4,5-Dicaffeoylquinic acid inhibits prostate cancer cells through cell cycle arrest. 4,5-Dicaffeoylquinic acid also has anti-apoptotic, anti-injury and anti-hepatitis B virus effects[1][2][3]. 4,5-Dicaffeoylquinic acid (Isochlorogenic acid C) is an antioxidant, can be isolated from Gynura divaricata and Laggera alata. 4,5-Dicaffeoylquinic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice, and has obvious inhibitory activities against yeast α-glucosidase. 4,5-Dicaffeoylquinic acid inhibits prostate cancer cells through cell cycle arrest. 4,5-Dicaffeoylquinic acid also has anti-apoptotic, anti-injury and anti-hepatitis B virus effects[1][2][3].
1,3-Dicaffeoylquinic acid
1,3-Dicaffeoylquinic acid is a polyphenol compound found in foods of plant origin (PMID: 20428313) D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics 1,3-Dicaffeoylquinic acid is a caffeoylquinic acid derivative that exhibits antioxidant activity and radical scavenging activity. 1,3-Dicaffeoylquinic acid is a caffeoylquinic acid derivative that exhibits antioxidant activity and radical scavenging activity. 1,3-Dicaffeoylquinic acid is a caffeoylquinic acid derivative that exhibits antioxidant activity and radical scavenging activity. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities. Cynarin is an antichoke agent with a variety of biological activities including antioxidant, antihistamic and antiviral activities.
alpha-Amyrone
alpha-Amyrone is found in black elderberry. alpha-Amyrone is found in Sambucus nigra (elderberry). Found in Sambucus nigra (elderberry)
Carissic acid
Ustiloxin E is found in cereals and cereal products. Ustiloxin E is isolated from the false smut balls caused by Ustilaginoidea virens on rice. Constituent of Carissa carandas (karanda). Carissic acid is found in beverages and fruits.
alpha-Amyrin
Epi-alpha-amyrin, also known as epi-α-amyrin, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Epi-alpha-amyrin is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Epi-alpha-amyrin can be found in herbs and spices, pomes, and rosemary, which makes epi-alpha-amyrin a potential biomarker for the consumption of these food products.
Isochlorogenic acid b
4,5-Dicaffeoylquinic acid
Taraxasterol
Taraxasterol is a pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. It has a role as a metabolite and an anti-inflammatory agent. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of a taraxastane. Taraxasterol is a natural product found in Eupatorium altissimum, Eupatorium perfoliatum, and other organisms with data available. See also: Calendula Officinalis Flower (part of). A pentacyclic triterpenoid that is taraxastane with a beta-hydroxy group at position 3. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1]. Taraxasterol is a pentacyclic triterpenoid isolated from Taraxacum mongolicum. Taraxasterol has a role as a metabolite and an anti-inflammatory agent[1].
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
3,4-Di-O-caffeoylquinic acid
Isochlorogenic acid b is a quinic acid. 3,4-Dicaffeoylquinic acid is a natural product found in Centaurea bracteata, Strychnos axillaris, and other organisms with data available. See also: Lonicera japonica flower (part of); Stevia rebaudiuna Leaf (part of). Isolated from coffee and maté. 3,4-Dicaffeoylquinic acid is found in many foods, some of which are robusta coffee, arabica coffee, coffee, and coffee and coffee products. 3,4-Di-O-caffeoylquinic acid is found in arabica coffee. 3,4-Di-O-caffeoylquinic acid is isolated from coffe 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3].
Ursolic Acid
Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
4,5-DCQA
3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 3,4-Dicaffeoylquinic acid (3,4-Di-O-caffeoylquinic acid), naturally isolated from Laggera alata, has antioxidative, DNA protective, neuroprotective and hepatoprotective properties. 3,4-Dicaffeoylquinic acid exerts apoptosis-mediated cytotoxicity and α-glucosidase inhibitory effects. 3,4-Dicaffeoylquinic acid possesses a unique mechanism of anti-influenza viral activity, that is, enhancing viral clearance by increasing TRAIL[1][2][3]. 4,5-Dicaffeoylquinic acid (Isochlorogenic acid C) is an antioxidant, can be isolated from Gynura divaricata and Laggera alata. 4,5-Dicaffeoylquinic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice, and has obvious inhibitory activities against yeast α-glucosidase. 4,5-Dicaffeoylquinic acid inhibits prostate cancer cells through cell cycle arrest. 4,5-Dicaffeoylquinic acid also has anti-apoptotic, anti-injury and anti-hepatitis B virus effects[1][2][3]. 4,5-Dicaffeoylquinic acid (Isochlorogenic acid C) is an antioxidant, can be isolated from Gynura divaricata and Laggera alata. 4,5-Dicaffeoylquinic acid reduces islet cell apoptosis and improves pancreatic function in type 2 diabetic mice, and has obvious inhibitory activities against yeast α-glucosidase. 4,5-Dicaffeoylquinic acid inhibits prostate cancer cells through cell cycle arrest. 4,5-Dicaffeoylquinic acid also has anti-apoptotic, anti-injury and anti-hepatitis B virus effects[1][2][3].
Epi-a-amyrin
a-Amyrone
Carissic acid
Caryophyllin
Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
Urson
D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
(3as,8ar)-8a-[(2r,4r,5r)-5-ethyl-1-azabicyclo[2.2.2]octan-2-yl]-2h,3h,8h-furo[2,3-b]indol-3a-ol
methyl (1r,4as,6s,8s,8ar)-6-methoxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
(3s,4as,6ar,6bs,8ar,11r,12s,12as,14ar,14br)-4,4,6a,6b,8a,11,12,14b-octamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol
(4as,6br,8ar,10s,12ar,12br,14bs)-10-hydroxy-2,2,6b,9,9,12a-hexamethyl-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylic acid
2,2,6b,9,9,12a-hexamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-6a-carboxylic acid
methyl 1-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxycyclohexane-1-carboxylate
butyl (1s,3r,4s,5r)-1-{[(2z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxycyclohexane-1-carboxylate
methyl (1s,4as,6s,8s,8as)-6-hydroxy-8-methyl-1-{[(2s,3s,4r,5s,6r)-3,4,5-trihydroxy-6-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
(1s,2r,4as,6ar,6br,8as,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
methyl (1s,4as,6s,8s,8as)-6-methoxy-8-methyl-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
(2r,3s,4r,5r,6s)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6br,8ar,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2r,3s,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylate
methyl (1r,4as,6s,8s,8ar)-6-methoxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
(1r,3ar,3br,7s,9ar,9br,11ar)-1-[(2r,5r)-5-ethyl-6-methylheptan-2-yl]-9a,11a-dimethyl-1h,2h,3h,3ah,3bh,4h,6h,7h,8h,9h,9bh,10h,11h-cyclopenta[a]phenanthren-7-ol
(1s)-3,4-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylic acid
methyl 8-methyl-6-oxo-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)
methyl (1s,3r,4s,5r)-1-{[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxycyclohexane-1-carboxylate
methyl (1r,4as,6r,8s,8as)-6-hydroxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl 2,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylate
2,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid
(4as,6ar,6br,8as,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a,6a-dicarboxylic acid
(2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-2,6b,9,9,12a-pentamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-{[(2r,3r,4r,5r,6s)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
1,2,6b,9,9,12a-hexamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (4as,6br,8ar,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylate
2,6b,9,9,12a-pentamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
(1s,2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-1,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
methyl (1s,3r,4r,5r)-3-{[(2z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylate
8a-{5-ethyl-1-azabicyclo[2.2.2]octan-2-yl}-2h,3h,8h-furo[2,3-b]indol-3a-ol
methyl (1r,4as,6r,8s,8as)-6-hydroxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
10-[(3,4-dihydroxy-6-methyl-5-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl)oxy]-2,6b,9,9,12a-pentamethyl-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
butyl 1-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxycyclohexane-1-carboxylate
methyl (1r,4as,6r,8s,8as)-6-methoxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
methyl 6-methoxy-8-methyl-1-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
C18H28O11 (420.16315380000003)
methyl (1s,3r,4s,5r)-1-{[(2z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxycyclohexane-1-carboxylate
methyl (1r,4as,6s,8s,8as)-6-hydroxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
butyl (1s,3r,4s,5r)-1-{[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-3,4,5-trihydroxycyclohexane-1-carboxylate
methyl (1s,4as,6r,8s,8as)-6-methoxy-8-methyl-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
methyl (1r,4as,6s,8s,8ar)-6-hydroxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
methyl (1r,4as,6r,8s,8as)-6-methoxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
C18H28O11 (420.16315380000003)
methyl (4s,5s,6s)-5-[(1s)-1-hydroxyethyl]-4-(2-methoxy-2-oxoethyl)-6-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate
methyl (1s,4as,6r,8s,8as)-6-methoxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2e)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
methyl (1r,4as,6s,8s,8ar)-6-hydroxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
methyl 3-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylate
methyl 5-(1-hydroxyethyl)-4-(2-methoxy-2-oxoethyl)-6-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-5,6-dihydro-4h-pyran-3-carboxylate
butyl (1s,3r,4r,5r)-3,4-bis({[(2e)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylate
(2r,4as,6ar,6br,8ar,10s,12ar,12br,14bs)-10-{[(2r,3r,4s,5r,6s)-3,4-dihydroxy-6-methyl-5-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}oxan-2-yl]oxy}-2,6b,9,9,12a-pentamethyl-4a-({[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
methyl (1s,4as,6r,8r,8as)-6-hydroxy-8-methyl-1-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
methyl 9-methyl-2,4,10-trioxatricyclo[5.3.1.0³,⁸]undec-5-ene-6-carboxylate
1,2,6b,9,9,12a-hexamethyl-10-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-4a-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}carbonyl)-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-6a-carboxylic acid
butyl (1s,3r,4r,5r)-3-{[(2z)-3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylate
methyl 6-methoxy-8-methyl-1-{[3,4,5-trihydroxy-6-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl (4as,6br,8ar,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}methyl)oxan-2-yl]oxy}-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylate
3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl 2,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-{[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]methyl}oxan-2-yl)oxy]-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylate
methyl 6-hydroxy-8-methyl-1-{[3,4,5-trihydroxy-6-({[3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
methyl (1r,4as,6r,8s,8as)-6-hydroxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2z)-3-(4-hydroxyphenyl)prop-2-enoyl]oxy}methyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
butyl 3-{[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy}-1,4,5-trihydroxycyclohexane-1-carboxylate
(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl (4as,6br,8ar,10s,12ar,12br,14bs)-2,2,6b,9,9,12a-hexamethyl-10-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-methyloxan-2-yl]oxy}-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylate
methyl (1r,4as,6s,8s,8ar)-6-methoxy-8-methyl-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,6h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
C18H28O11 (420.16315380000003)
methyl (3r,8s)-9-methyl-2,4,10-trioxatricyclo[5.3.1.0³,⁸]undec-5-ene-6-carboxylate
3,4,5-trihydroxy-6-({[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl 2,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-3,4,5,6,7,8,8a,10,11,12,12b,13,14,14b-tetradecahydro-1h-picene-4a-carboxylate
1,2,6b,9,9,12a-hexamethyl-10-[(3,4,5-trihydroxy-6-methyloxan-2-yl)oxy]-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a,6a-dicarboxylic acid
methyl (7s,8s,9s)-9-methyl-2,4,10-trioxatricyclo[5.3.1.0³,⁸]undec-5-ene-6-carboxylate
butyl 3,4-bis({[3-(3,4-dihydroxyphenyl)prop-2-enoyl]oxy})-1,5-dihydroxycyclohexane-1-carboxylate
methyl (1s,4as,8s,8as)-8-methyl-6-oxo-1-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1h,4ah,5h,8h,8ah-pyrano[3,4-c]pyran-4-carboxylate
C17H24O11 (404.13185539999995)