NCBI Taxonomy: 155884

Callistemon lanceolatus (ncbi_taxid: 155884)

found 93 associated metabolites at species taxonomy rank level.

Ancestor: Callistemon

Child Taxonomies: none taxonomy data.

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Ellagic acid

6,7,13,14-tetrahydroxy-2,9-dioxatetracyclo[6.6.2.0^{4,16}.0^{11,15}]hexadeca-1(14),4(16),5,7,11(15),12-hexaene-3,10-dione

C14H6O8 (302.0062676)


Ellagic acid appears as cream-colored needles (from pyridine) or yellow powder. Odorless. (NTP, 1992) Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite, an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor and a geroprotector. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It is functionally related to a gallic acid. Ellagic acid is present in several fruits such as cranberries, strawberries, raspberries, and pomegranates. In pomegranates, there are several therapeutic compounds but ellagic acid is the most active and abundant. Ellagic acid is also present in vegetables. Ellagic acid is an investigational drug studied for treatment of Follicular Lymphoma (phase 2 trial), protection from brain injury of intrauterine growth restricted babies (phase 1 and 2 trial), improvement of cardiovascular function in adolescents who are obese (phase 2 trial), and topical treatment of solar lentigines. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative effects. Ellagic acid is a natural product found in Fragaria chiloensis, Metrosideros perforata, and other organisms with data available. Ellagic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A fused four ring compound occurring free or combined in galls. Isolated from the kino of Eucalyptus maculata Hook and E. Hemipholia F. Muell. Activates Factor XII of the blood clotting system which also causes kinin release; used in research and as a dye. Ellagic acid is an organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. It has a role as an antioxidant, a food additive, a plant metabolite, an EC 5.99.1.2 (DNA topoisomerase) inhibitor, an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an EC 1.14.18.1 (tyrosinase) inhibitor, an EC 2.3.1.5 (arylamine N-acetyltransferase) inhibitor, an EC 2.4.1.1 (glycogen phosphorylase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 2.7.1.127 (inositol-trisphosphate 3-kinase) inhibitor, an EC 2.7.1.151 (inositol-polyphosphate multikinase) inhibitor, an EC 2.7.4.6 (nucleoside-diphosphate kinase) inhibitor, a skin lightening agent, a fungal metabolite and an EC 2.7.7.7 (DNA-directed DNA polymerase) inhibitor. It is an organic heterotetracyclic compound, a cyclic ketone, a lactone, a member of catechols and a polyphenol. It derives from a gallic acid. Ellagic acid, also known as ellagate, belongs to the class of organic compounds known as hydrolyzable tannins. These are tannins with a structure characterized by either of the following models. In model 1, the structure contains galloyl units (in some cases, shikimic acid units) that are linked to diverse polyol carbohydrate-, catechin-, or triterpenoid units. In model 2, contains at least two galloyl units C-C coupled to each other, and do not contain a glycosidically linked catechin unit. The antiproliferative and antioxidant properties of ellagic acid have spurred preliminary research into the potential health benefits of ellagic acid consumption. Ellagic acids therapeutic action mostly involves antioxidant and anti-proliferative/anti-cancer effects. Ellagic acid is found, on average, in the highest concentration within a few different foods, such as chestnuts, common walnuts, and japanese walnuts and in a lower concentration in whiskies, arctic blackberries, and cloudberries. Ellagic acid has also been detected, but not quantified in several different foods, such as lowbush blueberries, bilberries, guava, strawberry guava, and bog bilberries. An organic heterotetracyclic compound resulting from the formal dimerisation of gallic acid by oxidative aromatic coupling with intramolecular lactonisation of both carboxylic acid groups of the resulting biaryl. It is found in many fruits and vegetables, including raspberries, strawberries, cranberries, and pomegranates. Widely distributed in higher plants especies dicotyledons. Intestinal astringent, dietary role disputed. Nutriceutical with anticancer and antioxidation props. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

Uvaol

(3S,4aR,6aR,6bS,8aS,11R,12S,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O2 (442.38106)


Uvaol is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Uvaol exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID:17292619). Uvaol is a triterpenoid. It has a role as a metabolite. Uvaol is a natural product found in Salacia chinensis, Debregeasia saeneb, and other organisms with data available. Constituent of olive oil and Osmanthus fragrans (sweet osmanthus) A natural product found in Rhododendron ferrugineum. Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1]. Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1].

   

Malabaricano

4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

C20H24O5 (344.1623654)


Fragransin A2 is found in herbs and spices. Fragransin A2 is isolated from arils of Myristica fragrans (nutmeg). Isolated from Myristica fragrans. Malabaricano is found in herbs and spices.

   

Acetylursolic acid

10-acetyloxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


Isolated from various plants, e.g. Leptospermum scoparium (red tea). Acetylursolic acid is found in many foods, some of which are common verbena, rosemary, tea, and japanese persimmon. Acetylursolic acid is found in common sage. Acetylursolic acid is isolated from various plants, e.g. Leptospermum scoparium (red tea Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1]. Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1].

   

5-Hydroxy-4',7-dimethoxy-6-methylflavone

5-Hydroxy-7-methoxy-2-(4-methoxyphenyl)-6-methyl-4H-1-benzopyran-4-one

C18H16O5 (312.0997686)


5-Hydroxy-4,7-dimethoxy-6-methylflavone is found in beverages. 5-Hydroxy-4,7-dimethoxy-6-methylflavone is isolated from Gaultheria procumbens (wintergreen). Isolated from Gaultheria procumbens (wintergreen). 5-Hydroxy-4,7-dimethoxy-6-methylflavone is found in tea, herbs and spices, and beverages.

   

4',5-Dihydroxy-7-methoxy-6-methylflavone

5-Hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6-methyl-4H-1-benzopyran-4-one

C17H14O5 (298.0841194)


4,5-Dihydroxy-7-methoxy-6-methylflavone is found in beverages. 4,5-Dihydroxy-7-methoxy-6-methylflavone is isolated from Gaultheria procumbens (wintergreen

   

Olean-12-en-28-oic acid

2,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O2 (440.36541079999995)


Olean-12-en-28-oic acid is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Olean-12-en-28-oic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Olean-12-en-28-oic acid can be found in common sage, which makes olean-12-en-28-oic acid a potential biomarker for the consumption of this food product.

   

Querciturone

QUERCETIN-3-O-GLUCURONIDE

C21H18O13 (478.0747378)


Acquisition and generation of the data is financially supported in part by CREST/JST. Miquelianin (Quercetin 3-O-glucuronide) is a metabolite of quercetin and a type of natural flavonoid. Miquelianin (Quercetin 3-O-glucuronide) is a metabolite of quercetin and a type of natural flavonoid.

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.36032579999994)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Sideroxylin

4H-1-Benzopyran-4-one, 5-hydroxy-2-(4-hydroxyphenyl)-7-methoxy-6,8-dimethyl-

C18H16O5 (312.0997686)


Sideroxylin is a monomethoxyflavone that is flavone substituted by a methoxy group at position 7, hydroxy groups at positions 5 and 4 and methyl groups at positions 6 and 8. It has been isolated from Hydrastis canadensis and Eucalyptus species. It has a role as a plant metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to a flavone. Sideroxylin is a natural product found in Myrtus communis, Hydrastis canadensis, and other organisms with data available. A monomethoxyflavone that is flavone substituted by a methoxy group at position 7, hydroxy groups at positions 5 and 4 and methyl groups at positions 6 and 8. It has been isolated from Hydrastis canadensis and Eucalyptus species.

   

Eucalyptin

5-Hydroxy-7-methoxy-2- (4-methoxyphenyl) -6,8-dimethyl-4H-1-benzopyran-4-one

C19H18O5 (326.1154178)


Eucalyptin is a natural product found in Myrcia citrifolia, Myrcia glabra, and other organisms with data available.

   

Sodium Salicylate

5-Hydroxy-7-methoxy-2- (4-methoxyphenyl) -6-methyl-4H-1-benzopyran-4-one

C18H16O5 (312.0997686)


   

8-Demethylsideroxylin

5-Hydroxy-2- (4-hydroxyphenyl) -7-methoxy-6-methyl-4H-1-benzopyran-4-one

C17H14O5 (298.0841194)


   

Uvaol

Uvaol

C30H50O2 (442.38106)


Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1]. Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1].

   

6,8-dimethylacacetin

6,8-dimethylacacetin

C18H16O5 (312.0997686)


   
   

Ellagic Acid

Ellagic Acid

C14H6O8 (302.0062676)


Origin: Plant, Ellagic acids, Benzopyranoids, Pyrans Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM. Ellagic acid is a natural antioxidant, and acts as a potent and ATP-competitive CK2 inhibitor, with an IC50 of 40 nM and a Ki of 20 nM.

   

4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

NCGC00347364-02!4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

C20H24O5 (344.1623654)


   

4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

C20H24O5 (344.1623654)


   

Calophyllin

4-[5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

C20H24O5 (344.1623654)


   

Acetylursolic acid

10-(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C32H50O4 (498.37089000000003)


Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1]. Ursolic acid acetate (Acetylursolic acid), isolated from the aerial roots of Ficus microcarpa, exhibits cytotoxicity against KB cells with IC50 of 8.4 μM[1].

   

Urson

(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O3 (456.36032579999994)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

(1s,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-11-hydroxy-10-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

(1s,2r,4as,6as,6br,8ar,10r,11r,12ar,12br,14bs)-11-hydroxy-10-{[(2e)-3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C40H56O7 (648.4025826)


   

11-hydroxy-10-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

11-hydroxy-10-{[3-(4-hydroxy-3-methoxyphenyl)prop-2-enoyl]oxy}-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picene-4a-carboxylic acid

C40H56O7 (648.4025826)


   

(4as,6as,6br,8as,12as,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

(4as,6as,6br,8as,12as,12br,14bs)-2,2,6a,6b,9,9,12a-heptamethyl-1,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydropicene-4a-carboxylic acid

C30H48O2 (440.36541079999995)


   

(2r,3r,4as,6ar,6bs,8as,11r,12s,12ar,14as,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

(2r,3r,4as,6ar,6bs,8as,11r,12s,12ar,14as,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

C30H50O3 (458.37597500000004)


   

(2e,7s)-3-methyltetradec-2-en-7-ol

(2e,7s)-3-methyltetradec-2-en-7-ol

C15H30O (226.22965299999998)


   

2-{[(1s,2s)-1-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]oxy}-5-(prop-1-en-1-yl)phenol

2-{[(1s,2s)-1-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]oxy}-5-(prop-1-en-1-yl)phenol

C19H22O5 (330.1467162)


   

8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O2 (442.38106)


   

2-{[(1s,2s)-1-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]oxy}-5-[(1e)-prop-1-en-1-yl]phenol

2-{[(1s,2s)-1-hydroxy-1-(4-hydroxy-3-methoxyphenyl)propan-2-yl]oxy}-5-[(1e)-prop-1-en-1-yl]phenol

C19H22O5 (330.1467162)


   

(2s,3r,4ar,6ar,6bs,8as,11s,12r,12ar,14as,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

(2s,3r,4ar,6ar,6bs,8as,11s,12r,12ar,14as,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

C30H50O3 (458.37597500000004)


   

[10,11-bis(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picen-4a-yl]methyl acetate

[10,11-bis(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picen-4a-yl]methyl acetate

C36H56O6 (584.4076676)


   

(3s,4as,6ar,6bs,8as,11r,12s,12ar,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

(3s,4as,6ar,6bs,8as,11r,12s,12ar,14ar,14br)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picen-3-ol

C30H50O2 (442.38106)


   

8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-2,3,4a,5,6,7,8,9,10,11,12,12a,14,14a-tetradecahydro-1h-picene-2,3-diol

C30H50O3 (458.37597500000004)


   

4-[(2s,3s,4r,5r)-5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

4-[(2s,3s,4r,5r)-5-(4-hydroxy-3-methoxyphenyl)-3,4-dimethyloxolan-2-yl]-2-methoxyphenol

C20H24O5 (344.1623654)


   

[(1r,2s,4as,6as,6br,8ar,10r,11s,12ar,12bs,14br)-10,11-bis(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picen-4a-yl]methyl acetate

[(1r,2s,4as,6as,6br,8ar,10r,11s,12ar,12bs,14br)-10,11-bis(acetyloxy)-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,7,8,8a,10,11,12,12b,13,14b-tetradecahydro-1h-picen-4a-yl]methyl acetate

C36H56O6 (584.4076676)


   

(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-7-ol

(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-5-[(1e)-prop-1-en-1-yl]-2,3-dihydro-1-benzofuran-7-ol

C19H20O4 (312.13615200000004)


   

6,7,13-trihydroxy-14-methoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

6,7,13-trihydroxy-14-methoxy-2,9-dioxatetracyclo[6.6.2.0⁴,¹⁶.0¹¹,¹⁵]hexadeca-1(15),4,6,8(16),11,13-hexaene-3,10-dione

C15H8O8 (316.0219168)


   

(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-7-ol

(2r,3r)-2-(4-hydroxy-3-methoxyphenyl)-3-methyl-5-(prop-1-en-1-yl)-2,3-dihydro-1-benzofuran-7-ol

C19H20O4 (312.13615200000004)


   

urs-12-ene-3β,28-diol

urs-12-ene-3β,28-diol

C30H50O2 (442.38106)