NCBI Taxonomy: 23207

Prunus serotina (ncbi_taxid: 23207)

found 34 associated metabolites at species taxonomy rank level.

Ancestor: Prunus

Child Taxonomies: Prunus serotina var. rufula, Prunus serotina var. virens, Prunus serotina var. serotina, Prunus serotina subsp. eximia, Prunus serotina subsp. capuli, Prunus serotina subsp. serotina, Prunus serotina var. salicifolia

4-Hydroxycinnamic acid

(E)-3-(4-hydroxyphenyl)prop-2-enoic acid

C9H8O3 (164.0473)


4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).

   

Ursolic acid

(1S,2R,4aS,6aS,6bR,8aR,10S,12aR,12bR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,12b,13,14b-icosahydropicene-4a-carboxylic acid

C30H48O3 (456.3603)


Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Amygdaloside

(R)-2-phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C20H27NO11 (457.1584)


Amygdalin is found in almond. Bitter glycoside of the Rosaceae, found especially in kernels of cherries, peaches and apricots. Amygdalin is present in cold pressed bitter almond oil from the above sources prior to enzymic hydolysis and steam distillation for food use Amygdalin , C20H27NO11, is a glycoside initially isolated from the seeds of the tree Prunus dulcis, also known as bitter almonds, by Pierre-Jean Robiquet and A. F. Boutron-Charlard in 1803, and subsequently investigated by Liebig and Wohler in 1830, and others. Several other related species in the genus of Prunus, including apricot (Prunus armeniaca) and black cherry (Prunus serotina), also contain amygdalin. It was promoted as a cancer cure by Ernst T. Krebs under the name "Vitamin B17", but studies have found it to be ineffective. Amygdalin is sometimes confounded with laevomandelonitrile, also called laetrile for short; however, amygdalin and laetrile are different chemical compounds (R)-amygdalin is an amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is functionally related to a (R)-mandelonitrile. D-Amygdalin is a natural product found in Prunus spinosa, Gerbera jamesonii, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. Amygdalin is a bitter glycoside of the Rosaceae, found in sources such as kernels of cherries, peaches and apricots. Present in cold pressed bitter almond oil from the these sources prior to enzymic hydolysis and steam distillation for food use. Amygdalin can also be found in passion fruit. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C29724 - Cyanoglycoside Agent D000970 - Antineoplastic Agents C1907 - Drug, Natural Product Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums.

   

Prunasin

(R)-2-Phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C14H17NO6 (295.1056)


(R)-prunasin is a prunasin. Prunasin is a natural product found in Polypodium californicum, Chaenorhinum minus, and other organisms with data available. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta) Prunasin belongs to the family of O-glycosyl Compounds. These are glycosides in which a sugar group is bonded through one carbon to another group via a O-glycosidic bond. Isolated from kernels of Prunus subspecies, immature fruits of Passiflora subspecies and leaves of perilla (Perilla frutescens variety acuta). Prunasin is found in many foods, some of which are almond, sour cherry, black elderberry, and herbs and spices. Prunasin is found in almond. Prunasin is isolated from kernels of Prunus species, immature fruits of Passiflora species and leaves of perilla (Perilla frutescens var. acuta D004791 - Enzyme Inhibitors

   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

[C21H21O11]+ (449.1084)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Acquisition and generation of the data is financially supported in part by CREST/JST. Found in many plants and fruits, e.g. cherries, olives and grapes

   

Hentriacontane

N-Hentriacontane

C31H64 (436.5008)


Hentriacontane is found in black elderberry. Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers Hentriacontane, also called untriacontane, is a solid, long-chain alkane hydrocarbon with the structural formula CH3(CH2)29CH3. It is found in a variety of plants, including peas (pisum sativum), gum arabic (acacia senegal) and others, and also comprises about 8-9\\% of beeswax. It has 10,660,307,791 constitutional isomers.

   

1-Hexacosanol

1-Hexacosanol, aluminum (1:3) salt

C26H54O (382.4174)


   

Sambunigrin

(2S)-2-phenyl-2-{[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile

C14H17NO6 (295.1056)


Isolated from leaves of elderberry (Sambucus nigra) and from other plants. Sambunigrin is found in passion fruit, fruits, and black elderberry. Sambunigrin is found in black elderberry. Sambunigrin is isolated from leaves of elderberry (Sambucus nigra) and from other plant

   

Uvaol

(3S,4aR,6aR,6bS,8aS,11R,12S,12aS,14aR,14bR)-8a-(hydroxymethyl)-4,4,6a,6b,11,12,14b-heptamethyl-1,2,3,4,4a,5,6,6a,6b,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol

C30H50O2 (442.3811)


Uvaol is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Uvaol exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. (PMID:17292619). Uvaol is a triterpenoid. It has a role as a metabolite. Uvaol is a natural product found in Salacia chinensis, Debregeasia saeneb, and other organisms with data available. Constituent of olive oil and Osmanthus fragrans (sweet osmanthus) A natural product found in Rhododendron ferrugineum. Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1]. Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1].

   

(S)-2-Hydroxy-2-phenylacetonitrile O-b-D-allopyranoside

2-phenyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile

C14H17NO6 (295.1056)


(S)-2-Hydroxy-2-phenylacetonitrile O-b-D-allopyranoside is found in fruits. (S)-2-Hydroxy-2-phenylacetonitrile O-b-D-allopyranoside is a constituent of the leaves and stems of passion fruit (Passiflora edulis). Constituent of the leaves and stems of passion fruit (Passiflora edulis). (S)-2-Hydroxy-2-phenylacetonitrile O-b-D-allopyranoside is found in fruits.

   

Pentatriacontane

n-Pentatriacontane

C35H72 (492.5634)


Pentatriacontane is a long-chain hydrocarbon containing 35 carbons. It belongs to the class of organic compounds known as alkanes. These are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2, and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentatriacontane is considered to be a hydrocarbon lipid molecule. Pentatriacontane is a very hydrophobic molecule, totally insoluble in water, and completely neutral. Pentatriacontane exists as a waxy solid. It is a naturally occurring compound that is found in parsley, several plant essential oils and in Candelilla wax. Candelilla wax is a wax derived from the leaves of the small Candelilla shrub native to northern Mexico and the southwestern United States. The Candelilla shrub is a member of the Euphorbia plant genus, from the family Euphorbiaceae. Candelilla wax is used as a food additive and a glazing agent. It also used in cosmetic industry, as a component of lip balms and lotion bars. One of its major uses is as a binder for chewing gums. Candelilla wax can be used as a substitute for carnauba wax and beeswax. It is also used for making varnish. Pentatriacontane is a member of the class of compounds known as alkanes. Alkanes are acyclic branched or unbranched hydrocarbons having the general formula CnH2n+2 , and therefore consisting entirely of hydrogen atoms and saturated carbon atoms. Thus, pentatriacontane is considered to be a hydrocarbon lipid molecule. Pentatriacontane can be found in parsley, which makes pentatriacontane a potential biomarker for the consumption of this food product. The term higher alkanes is sometimes used literally as "alkanes with a higher number of carbon atoms". One definition distinguishes the higher alkanes as the n-alkanes that are solid under natural conditions .

   

Ursolic Acid

3-Hydroxy-12-ursen-28-oic acid

C30H48O3 (456.3603)


Origin: Plant; SubCategory_DNP: Triterpenoids relative retention time with respect to 9-anthracene Carboxylic Acid is 1.636 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.640 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.638 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.642 Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

Uvaol

Uvaol

C30H50O2 (442.3811)


Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1]. Uvaol, a triterpene present in olives and virgin olive oil, possesses anti-inflammatory properties and antioxidant effects. Uvaol attenuates pleuritis and eosinophilic inflammation in ovalbumin-induced allergy in mice[1].

   

Pentatriacontane

n-Pentatriacontane

C35H72 (492.5634)


   
   

Amygdalin

(R)-2-phenyl-2-(((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-((((2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)tetrahydro-2H-pyran-2-yl)oxy)methyl)tetrahydro-2H-pyran-2-yl)oxy)acetonitrile

C20H27NO11 (457.1584)


D000970 - Antineoplastic Agents (R)-amygdalin is an amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. It has a role as a plant metabolite, an apoptosis inducer and an antineoplastic agent. It is functionally related to a (R)-mandelonitrile. D-Amygdalin is a natural product found in Prunus spinosa, Gerbera jamesonii, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. C274 - Antineoplastic Agent > C1931 - Antineoplastic Plant Product > C29724 - Cyanoglycoside Agent An amygdalin in which the stereocentre on the cyanohydrin function has R-configuration. C1907 - Drug, Natural Product Origin: Plant; Formula(Parent): C20H27NO11; Bottle Name:Amygdalin; PRIME Parent Name:Amygdalin; PRIME in-house No.:V0293, Glycosides, Nitriles Annotation level-1 Neoamygdalin is a natural product found in Prunus virginiana, Prunus serotina, and other organisms with data available. Amygdalin is a cyanogenic glucoside isolated from almonds and seeds of other plants of the family Rosaceae. Amygdalin is converted by plant emulsin (a combination of a glucosidase and a nitrilase) or hydrochloric acid into benzaldehyde, D-glucose, and hydrocyanic acid. (NCI04) A cyanogenic glycoside found in the seeds of Rosaceae. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Amygdalin is a plant glucoside isolated from the stones of rosaceous fruits, such as apricots, peaches, almond, cherries, and plums. Neoamygdalin is a compound identified in the different processed bitter almonds. Neoamygdalin has the potential for the research of cough and asthma[1].

   

Passiedulin

2-phenyl-2-{[3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}acetonitrile

C14H17NO6 (295.1056)


   

Cerotin

Hexacosyl alcohol

C26H54O (382.4174)


Hexacosan-1-ol, also known as 1-hexacosanol or hexacosyl alcohol, is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Thus, hexacosan-1-ol is considered to be a fatty alcohol lipid molecule. Hexacosan-1-ol is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Hexacosan-1-ol can be synthesized from hexacosane. Hexacosan-1-ol can also be synthesized into 24-methylhexacosan-1-ol. Hexacosan-1-ol can be found in a number of food items such as brussel sprouts, broccoli, lemon grass, and lettuce, which makes hexacosan-1-ol a potential biomarker for the consumption of these food products. Hexacosan-1-ol is a saturated primary fatty alcohol with a carbon chain length of 26 that is a white waxy solid at room temperature. It is freely soluble in chloroform and insoluble in water. It occurs naturally in the epicuticular wax and plant cuticle of many plant species .

   

HENTRIACONTANE

HENTRIACONTANE

C31H64 (436.5008)


   

Chrysanthemin

cyanidin 3-O-glucoside

C21H21O11 (449.1084)


   

Urson

(1S,2R,4aS,6aR,6aS,6bR,8aR,10S,12aR,14bS)-10-hydroxy-1,2,6a,6b,9,9,12a-heptamethyl-2,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydro-1H-picene-4a-carboxylic acid

C30H48O3 (456.3603)


D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.

   

630-07-9

Pentatriacontane (8CI)(9CI)

C35H72 (492.5634)


   

Hentriacontan

N-Hentriacontane

C31H64 (436.5008)


   

Cyanidin 3-glucoside

2-(3,4-dihydroxyphenyl)-5,7-dihydroxy-3-{[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1lambda4-chromen-1-ylium

C21H21O11+ (449.1084)


Cyanidin 3-glucoside, also known as chrysanthenin or cyanidin 3-glucoside chloride (CAS: 7084-24-4), belongs to the class of organic compounds known as pyranones and derivatives. Pyranones and derivatives are compounds containing a pyran ring which bears a ketone. Cyanidin 3-glucoside is an extremely weak basic (essentially neutral) compound (based on its pKa). Outside of the human body, cyanidin 3-glucoside is found, on average, in the highest concentration within a few different foods, such as black elderberries, rubus (blackberry, raspberry), and bilberries and in a lower concentration in redcurrants, strawberries, and sweet oranges. Cyanidin 3-glucoside has also been detected, but not quantified in, several different foods, such as common pea, peaches, Tartary buckwheats, soft-necked garlic, and fats and oils. This could make cyanidin 3-glucoside a potential biomarker for the consumption of these foods. Cyanidin (and its glycosides) is the most commonly occurring of the anthocyanins, a widespread group of pigments responsible for the red-blue colour of many fruits and vegetables (PMID: 14711454). BioTransformer predicts that cyanidin 3-​glucoside is a product of cyanidin 3-​sophoroside metabolism via a glycoside-hydrolysis reaction occurring in human gut microbiota and catalyzed by the EC.3.2.1.X enzyme (PMID: 30612223). Found in many plants and fruits, e.g. cherries, olives and grapes

   

Benzoyl-beta-D-glucoside

[(2S,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl] benzoate

C13H16O7 (284.0896)


   

Sambunigrin

(2S)-2-phenyl-2-[(2R,3R,4S,5S,6R)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxyacetonitrile

C14H17NO6 (295.1056)


   

Kuromanin

(2S,3R,4S,5S,6R)-2-[2-(3,4-dihydroxyphenyl)-5,7-dihydroxychromenylium-3-yl]oxy-6-(hydroxymethyl)oxane-3,4,5-triol

C21H21O11+ (449.1084)


   
   

hexacosan-1-ol

hexacosan-1-ol

C26H54O (382.4174)


A very long-chain primary fatty alcohol that is hexacosane in which a hydrogen attached to one of the terminal carbons is replaced by a hydroxy group.

   

(2r)-2-phenyl-2-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}acetonitrile

(2r)-2-phenyl-2-{[(2s,3s,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}acetonitrile

C20H27NO11 (457.1584)


   

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

5,7-dihydroxy-2-(4-hydroxy-3-oxidophenyl)-3-{[(2s,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}-1λ⁴-chromen-1-ylium

C21H20O11 (448.1006)


   

(2s)-2-phenyl-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}acetonitrile

(2s)-2-phenyl-2-{[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-({[(2r,3r,4s,5s,6r)-3,4,5-trihydroxy-6-(hydroxymethyl)oxan-2-yl]oxy}methyl)oxan-2-yl]oxy}acetonitrile

C20H27NO11 (457.1584)


   

benzoyl-β-d-glucoside

benzoyl-β-d-glucoside

C13H16O7 (284.0896)


   

urs-12-ene-3β,28-diol

urs-12-ene-3β,28-diol

C30H50O2 (442.3811)