NCBI Taxonomy: 39367
Salvia rosmarinus (ncbi_taxid: 39367)
found 500 associated metabolites at species taxonomy rank level.
Ancestor: Salvia subgen. Rosmarinus
Child Taxonomies: none taxonomy data.
Rosmarinic acid
Rosmarinic acid is an ester of caffeic acid and 3,4-dihydroxyphenyllactic acid. It is commonly found in species of the Boraginaceae and the subfamily Nepetoideae of the Lamiaceae. It is a red-orange powder that is slightly soluble in water, but well soluble is most organic solvents. Rosmarinic acid is one of the polyphenolic substances contained in culinary herbs such as perilla (Perilla frutescens L.), rosemary (Rosmarinus officinalis L.), sage (Salvia officinalis L.), mint (Mentha arvense L.), and basil (Ocimum basilicum L.). These herbs are commonly grown in the garden as kitchen herbs, and while used to add flavor in cooking, are also known to have several potent physiological effects (PMID: 12482446, 15120569). BioTransformer predicts that rosmarinic acid is a product of methylrosmarinic acid metabolism via a hydrolysis-of-carboxylic-acid-ester-pattern1 reaction occurring in humans and human gut microbiota and catalyzed by the liver carboxylesterase 1 (P23141) enzyme (PMID: 30612223). (R)-rosmarinic acid is a stereoisomer of rosmarinic acid having (R)-configuration. It has a role as a plant metabolite and a geroprotector. It is a conjugate acid of a (R)-rosmarinate. It is an enantiomer of a (S)-rosmarinic acid. Rosmarinic acid is a natural product found in Dimetia scandens, Scrophularia scorodonia, and other organisms with data available. See also: Rosemary Oil (part of); Comfrey Root (part of); Holy basil leaf (part of) ... View More ... D004791 - Enzyme Inhibitors > D011480 - Protease Inhibitors > D015842 - Serine Proteinase Inhibitors D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D006401 - Hematologic Agents > D010975 - Platelet Aggregation Inhibitors Isolated from rosemary, mint, sage, thyme, lemon balm and other plants D002491 - Central Nervous System Agents > D000700 - Analgesics A stereoisomer of rosmarinic acid having (R)-configuration. D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.
Catechin
Catechin, also known as cyanidanol or catechuic acid, belongs to the class of organic compounds known as catechins. Catechins are compounds containing a catechin moiety, which is a 3,4-dihydro-2-chromene-3,5.7-tiol. Catechin also belongs to the group of compounds known as flavan-3-ols (or simply flavanols), part of the chemical family of flavonoids. Catechin is one of the 4 catechin known diastereoisomers. Two of the isomers are in trans configuration and are called catechin and the other two are in cis configuration and are called epicatechin. The most common catechin isomer is the (+)-catechin. The other stereoisomer is (-)-catechin or ent-catechin. The most common epicatechin isomer is (-)-epicatechin. Catechin is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Catechin is a bitter tasting compound and is associated with the bitterness in tea. Catechin is a plant secondary metabolite. Secondary metabolites are metabolically or physiologically non-essential metabolites that may serve a role as defense or signalling molecules. In some cases they are simply molecules that arise from the incomplete metabolism of other secondary metabolites. Catechin is an antioxidant flavonoid, occurring especially in woody plants as both Catechin and (-)-Catechin (cis) forms. Outside of the human body, Catechin is found, on average, in the highest concentration in foods, such as blackcurrants (Ribes nigrum), evergreen blackberries (Rubus laciniatus), and blackberries (Rubus) and in a lower concentration in dills (Anethum graveolens), hot chocolates, and medlars (Mespilus germanica). Catechin has also been detected, but not quantified in, several different foods, such as rice (Oryza sativa), apple ciders, peanuts (Arachis hypogaea), fruit juices, and red teas. This could make catechin a potential biomarker for the consumption of these foods. Based on a literature review a significant number of articles have been published on Catechin. (+)-catechin is the (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. It has a role as an antioxidant and a plant metabolite. It is an enantiomer of a (-)-catechin. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. Cianidanol is a natural product found in Visnea mocanera, Salacia chinensis, and other organisms with data available. Catechin is a metabolite found in or produced by Saccharomyces cerevisiae. An antioxidant flavonoid, occurring especially in woody plants as both (+)-catechin and (-)-epicatechin (cis) forms. See also: Gallocatechin (related); Crofelemer (monomer of); Bilberry (part of) ... View More ... Present in red wine. Widespread in plants; found in a variety of foodstuffs especies apricots, broad beans, cherries, chocolate, grapes, nectarines, red wine, rhubarb, strawberries and tea The (+)-enantiomer of catechin and a polyphenolic antioxidant plant metabolite. Catechin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=154-23-4 (retrieved 2024-07-12) (CAS RN: 154-23-4). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. (±)-Catechin (rel-Cianidanol) is the racemate of Catechin. (±)-Catechin has two steric forms of (+)-Catechin and its enantiomer (-)-Catechin. (+)-Catechin inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Anticancer, anti-obesity, antidiabetic, anticardiovascular, anti-infectious, hepatoprotective, and neuroprotective effects[1]. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.
Carnosol
Carnosol is a naturally occurring phenolic diterpene found in rosemary (Rosemarinus officinalis, Labiatae). It has been known that an extract of rosemary leaves contains high antioxidative activity. Ninety percent of this antioxidative activity can be attributed to carnosol and carnosic acid. Carnosic acid is easily converted to carnosol by oxidation. Carnosol has multiple beneficial medicinal effects including anti-inflammatory, anti-microbial and anti-cancer activities in various disease models. Carnosol may possess important neuroprotective effects against rotenone-induced DA neuronal damage. Naturally occurring antioxidants reduce the risk of neurodegenerative diseases. In addition, carnosol and carnosic acid promoted the synthesis of nerve growth factor in glial cells. Carnosol-mediated neuroprotection in DA neurons is involved in the attenuation of caspase-3 activity, which was induced by rotenone. Furthermore, carnosol-mediated tyrosine hydroxylase (TH) increase, which is dependent on the Raf-mitogen-activated protein kinase (MEK)-extracellular signal-regulated kinase (ERK)1/2 signaling pathway, is responsible for the neuroprotection in SN4741 DA cells. (PMID: 17047462). Carnosol, a phenolic diterpene compound of the labiate herbs rosemary and sage, is an activator of the human peroxisome proliferator-activated receptor gamma (PPARgamma), a ligand activated transcription factor, belonging to the metazoan family of nuclear hormone receptors. Activation of PPARgamma increases the transcription of enzymes involved in primary metabolism, leading to lower blood levels of fatty acids and glucose. Hence, PPARgamma represents the major target for the glitazone type of drugs currently being used clinically for the treatment of type 2 diabetes. (PMID: 16858665). Bitter principle in Salvia carnosa, Salvia officinalis (sage), Salvia triloba (Greek sage) and Rosmarinus officinalis (rosemary). Nutriceutical with anticancer props. Carnosol is a diterpenoid. Carnosol is a natural product found in Podocarpus rumphii, Lepechinia salviae, and other organisms with data available.
Homoplantaginin
C22H22O11 (462.11620619999997)
Homoplantaginin is a glycoside and a member of flavonoids. Homoplantaginin is a natural product found in Scoparia dulcis, Eriocaulon buergerianum, and other organisms with data available. Homoplantaginin is a flavonoid from a traditional Chinese medicine Salvia plebeia with antiinflammatory and antioxidant properties. Homoplantaginin could inhibit TNF-α and IL-6 mRNA expression, IKKβ and NF-κB phosphorylation. Homoplantaginin is a flavonoid from a traditional Chinese medicine Salvia plebeia with antiinflammatory and antioxidant properties. Homoplantaginin could inhibit TNF-α and IL-6 mRNA expression, IKKβ and NF-κB phosphorylation.
Naringenin
Naringenin is a flavorless, colorless flavanone, a type of flavonoid. It is the predominant flavanone in grapefruit, and is found in a variety of fruits and herbs. Naringenin has the skeleton structure of a flavanone with three hydroxy groups at the 4, 5, and 7 carbons. It may be found both in the aglycol form, naringenin, or in its glycosidic form, naringin, which has the addition of the disaccharide neohesperidose attached via a glycosidic linkage at carbon 7. Naringenin (not to be confused with naringin) is a flavanone that is considered to have a bioactive effect on human health as antioxidant, free radical scavenger, antiinflammatory, carbohydrate metabolism promoter, immunity system modulater. This substance has also been shown to repair DNA. Scientists exposed cells to 80 micomoles of naringenin per liter, for 24 hours, and found that the amount of hydroxyl damage to the DNA was reduced by 24 percent in that very short period of time. Unfortunately, this bioflavonoid is difficult to absorb on oral ingestion. Only 15\\\\\\\% of ingested naringenin will get absorbed, in the human gastrointestinal tract, in the best case scenario. A full glass of orange juice will supply about enough naringenin to achieve a concentration of about 0.5 micromoles per liter. Naringenin is a biomarker for the consumption of citrus fruits. (S)-naringenin is the (S)-enantiomer of naringenin. It has a role as an expectorant and a plant metabolite. It is a naringenin and a (2S)-flavan-4-one. It is a conjugate acid of a (S)-naringenin(1-). It is an enantiomer of a (R)-naringenin. Naringenin is a natural product found in Elaeodendron croceum, Garcinia multiflora, and other organisms with data available. See also: Naringin (related). Most widely distributed flavanone. Citrus fruits (grapefruit, oranges and pummelos) are especially good sources. Glycosides also widely distributed The (S)-enantiomer of naringenin. [Raw Data] CB070_Naringenin_pos_20eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_10eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_40eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_30eV_CB000030.txt [Raw Data] CB070_Naringenin_pos_50eV_CB000030.txt [Raw Data] CB070_Naringenin_neg_10eV_000021.txt [Raw Data] CB070_Naringenin_neg_30eV_000021.txt [Raw Data] CB070_Naringenin_neg_50eV_000021.txt [Raw Data] CB070_Naringenin_neg_20eV_000021.txt [Raw Data] CB070_Naringenin_neg_40eV_000021.txt (±)-Naringenin. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=67604-48-2 (retrieved 2024-07-09) (CAS RN: 67604-48-2). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. (±)-Naringenin is a naturally-occurring flavonoid. (±)-Naringenin displays vasorelaxant effect on endothelium-denuded vessels via the activation of BKCa channels in myocytes[1]. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity. Naringenin is the predominant flavanone in Citrus reticulata Blanco; displays strong anti-inflammatory and antioxidant activities. Naringenin has anti-dengue virus (DENV) activity.
Vanillic acid
Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavouring and scent agent that produces a pleasant, creamy odour. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea, and vanilla-flavoured confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity (PMID: 16899266). Vanillic acid is a microbial metabolite found in Amycolatopsis, Delftia, and Pseudomonas (PMID: 11152072, 10543794, 11728709, 9579070). Vanillic acid is a phenolic acid found in some forms of vanilla and many other plant extracts. It is a flavoring and scent agent that produces a pleasant, creamy odor. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). Vanillic acid, which is a chlorogenic acid, is an oxidized form of vanillin. It is also an intermediate in the production of vanillin from ferulic acid. Vanillic acid is a metabolic byproduct of caffeic acid and is often found in the urine of humans who have consumed coffee, chocolate, tea and vanilla-flavored confectionary. Vanillic acid selectively and specifically inhibits 5nucleotidase activity. (PMID: 16899266). Vanillic acid is a monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. It has a role as a plant metabolite. It is a monohydroxybenzoic acid and a methoxybenzoic acid. It is a conjugate acid of a vanillate. Vanillic acid is a natural product found in Ficus septica, Haplophyllum cappadocicum, and other organisms with data available. Vanillic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A flavoring agent. It is the intermediate product in the two-step bioconversion of ferulic acid to vanillin. (J Biotechnol 1996;50(2-3):107-13). A monohydroxybenzoic acid that is 4-hydroxybenzoic acid substituted by a methoxy group at position 3. Vanillic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=121-34-6 (retrieved 2024-06-29) (CAS RN: 121-34-6). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1]. Vanillic acid is a flavoring agent found in edible plants and fruits, also found in Angelica sinensis. Vanillic acid inhibits NF-κB activation. Anti-inflammatory, antibacterial, and chemopreventive effects[1].
Naringin
Naringin, also known as naringoside or naringin hydrate, is a flavanone-7-O-glycoside between the flavanone naringenin and the disaccharide neohesperidose. Naringin belongs to the flavonoid family. Flavonoids consist of 15 carbon atoms in 3 rings, 2 of which must be benzene rings connected by a 3 carbon chain. Naringin contains the basic flavonoid structure along with one rhamnose and one glucose unit attached to its aglycone portion, called naringenin, at the 7-carbon position. The steric hindrance provided by the two sugar units makes naringin less potent than its aglycone counterpart, naringenin. Naringin is a bitter tasting compound. Naringin is found, on average, in the highest concentration within a few different foods, such as rosemaries, grapefruit/pummelo hybrids, and grapefruits and in a lower concentration in grape wines, pummelo, and beers. Naringin has also been detected, but not quantified in several different foods, such as citrus, limes, herbs and spices, common oregano, and mandarin orange (clementine, tangerine). Both naringin and hesperetin, which are the aglycones of naringin and hesperidin, occur naturally in citrus fruits. Naringin is the major flavonoid glycoside in grapefruit and gives grapefruit juice its bitter taste. Narinigin exerts a variety of pharmacological effects such as antioxidant activity, blood lipid-lowering, anticarcinogenic activity, and inhibition of selected cytochrome P450 enzymes including CYP3A4 and CYP1A2, which may result in several drug interactions in-vitro. Naringin is a disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a metabolite, an antineoplastic agent and an anti-inflammatory agent. It is a disaccharide derivative, a dihydroxyflavanone, a member of 4-hydroxyflavanones, a (2S)-flavan-4-one and a neohesperidoside. It is functionally related to a (S)-naringenin. Naringin is a natural product found in Podocarpus fasciculus, Citrus latipes, and other organisms with data available. See also: Naringenin (related); Drynaria fortunei root (part of). A disaccharide derivative that is (S)-naringenin substituted by a 2-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. obtained from citrus fruits, Clymenia polyandra (clymenia) and Origanum vulgare (oregano) IPB_RECORD: 401; CONFIDENCE confident structure Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities. Naringin is a major flavanone glycoside obtained from tomatoes, grapefruits, and many other citrus fruits. Naringin exhibits biological properties such as antioxidant, anti-inflammatory, and antiapoptotic activities.
Gallic acid
Gallic acid is an odorless white solid. Sinks in water. (USCG, 1999) Gallic acid is a trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. It has a role as an astringent, a cyclooxygenase 2 inhibitor, a plant metabolite, an antioxidant, an antineoplastic agent, a human xenobiotic metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an apoptosis inducer and a geroprotector. It is a conjugate acid of a gallate. Gallic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Gallic Acid is a natural product found in Visnea mocanera, Ardisia paniculata, and other organisms with data available. Gallic acid is a metabolite found in or produced by Saccharomyces cerevisiae. A colorless or slightly yellow crystalline compound obtained from nutgalls. It is used in photography, pharmaceuticals, and as an analytical reagent. See also: Gallic acid monohydrate (active moiety of); Paeonia lactiflora root (part of); Galium aparine whole (part of) ... View More ... Gallic acid is an organic acid, also known as 3,4,5-trihydroxybenzoic acid, found in gallnuts, sumac, witch hazel, tea leaves, oak bark, and other plants. The chemical formula is C6H2(OH)3CO2H. Gallic acid is widely distributed in plants and is found both free and as part of tannins. It is commonly used in the pharmaceutical industry. Gallic acid can also be used to synthesize the hallucinogenic alkaloid mescaline, also known as 3,4,5-trimethoxyphenethylamine. Salts and esters of gallic acid are termed gallates. Gallic acid has been found to be s metabolite of Aspergillus (PMID:24031294). A trihydroxybenzoic acid in which the hydroxy groups are at positions 3, 4, and 5. Present in red wine. Japan approved food antioxidant additive Gallic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=149-91-7 (retrieved 2024-07-01) (CAS RN: 149-91-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2]. Gallic acid (3,4,5-Trihydroxybenzoic acid) is a natural polyhydroxyphenolic compound and an free radical scavenger to inhibit cyclooxygenase-2 (COX-2)[1]. Gallic acid has various activities, such as antimicrobial, antioxidant, antimicrobial, anti-inflammatory, and anticance activities[2].
4-Hydroxycinnamic acid
4-Hydroxycinnamic acid, also known as p-Coumaric acid, is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. p-coumaric acid is an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers of coumaric acid: o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid exists in two forms trans-p-coumaric acid and cis-p-coumaric acid. It is a crystalline solid that is slightly soluble in water, but very soluble in ethanol and diethyl ether. 4-Hydroxycinnamic acid belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. 4-Hydroxycinnamic acid exists in all living species, ranging from bacteria to humans. Outside of the human body, 4-Hydroxycinnamic acid is found, on average, in the highest concentration within a few different foods, such as pepper (Capsicum frutescens), pineapples, and sunflowers and in a lower concentration in spinachs, kiwis, and sweet oranges. 4-Hydroxycinnamic acid has also been detected, but not quantified in several different foods, such as wild rices, soursops, garden onions, hyssops, and avocado. 4-coumaric acid is a coumaric acid in which the hydroxy substituent is located at C-4 of the phenyl ring. It has a role as a plant metabolite. It is a conjugate acid of a 4-coumarate. 4-Hydroxycinnamic acid is a natural product found in Ficus septica, Visnea mocanera, and other organisms with data available. trans-4-Coumaric acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Galium aparine whole (part of); Lycium barbarum fruit (part of) ... View More ... Coumaric acid is a hydroxycinnamic acid, an organic compound that is a hydroxy derivative of cinnamic acid. There are three isomers, o-coumaric acid, m-coumaric acid, and p-coumaric acid, that differ by the position of the hydroxy substitution of the phenyl group. p-Coumaric acid is the most abundant isomer of the three in nature. p-Coumaric acid is found in many foods, some of which are garden onion, turmeric, green bell pepper, and common thyme. D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents D000975 - Antioxidants > D016166 - Free Radical Scavengers D020011 - Protective Agents > D000975 - Antioxidants The trans-isomer of 4-coumaric acid. D000890 - Anti-Infective Agents Acquisition and generation of the data is financially supported in part by CREST/JST. CONFIDENCE standard compound; INTERNAL_ID 168 KEIO_ID C024 p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Coumaric acid is the abundant isomer of cinnamic acid which has antitumor and anti-mutagenic activities. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Hydroxycinnamic acid, a common dietary phenol, could inhibit platelet activity, with IC50s of 371 μM, 126 μM for thromboxane B2 production and lipopolysaccharide-induced prostaglandin E2 generation, respectively. p-Coumaric acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=7400-08-0 (retrieved 2024-09-04) (CAS RN: 7400-08-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
Gentisate
Gentisic acid, also known as gentisate or 2,5-dioxybenzoate, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. Gentisic acid is also classified as a dihydroxybenzoic acid. It is a derivative of benzoic acid and a minor (1\\\\\%) product of the metabolic break down of aspirin, which is excreted by the kidneys. Gentisic acid is found in essentially all organisms ranging from bacteria to fungi to plants to animals. Gentisic acid has been associated with a number of useful effects on human health and exhibits anti-inflammatory, antigenotoxic, hepatoprotective, neuroprotective, antimicrobial, and especially antioxidant activities (PMID: 31825145). It is widely distributed in plants as a secondary plant product such as Gentiana spp., Citrus spp., Vitis vinifera, Pterocarpus santalinus, Helianthus tuberosus, Hibiscus rosa-sinensis, Olea europaea, and Sesamum indicum and in fruits such as avocados, batoko plum, kiwi fruits, apple, bitter melon, black berries, pears, and some mushrooms (PMID: 31825145). Gentisic acid is found in higher concentrations in a number of foods such as tarragons, common thymes, and common sages and in a lower concentration in grape wines, rosemaries, and sweet marjorams. Gentisic acid has also been shown to act as a pathogen-inducible signal for the activation of plant defenses in tomato plants and cucumbers (PMID: 16321412; https://doi.org/10.1094/MPMI.1999.12.3.227). Gentisic acid is a dihydroxybenzoic acid. It is a crystalline powder that forms monoclinic prism in water solution. Gentisic acid is an active metabolite of salicylic acid degradation. There is an increasing amount of evidence indicating that gentisic acid has a broad spectrum of biological activity, such as anti-inflammatory, antirheumatic and antioxidant properties. Gentisic acid is also a byproduct of tyrosine and benzoate metabolism. [HMDB]. Gentisic acid is found in many foods, some of which are common sage, common grape, nutmeg, and dill. 2,5-dihydroxybenzoic acid is a dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. It has a role as a MALDI matrix material, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, a human metabolite, a fungal metabolite and a mouse metabolite. It is functionally related to a benzoic acid. It is a conjugate acid of a 2,5-dihydroxybenzoate. 2,5-Dihydroxybenzoic acid is a natural product found in Persicaria mitis, Tilia tomentosa, and other organisms with data available. D000893 - Anti-Inflammatory Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D012459 - Salicylates A dihydroxybenzoic acid having the two hydroxy groups at the 2- and 5-positions. 2,5-Dihydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=490-79-9 (retrieved 2024-07-01) (CAS RN: 490-79-9). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors. 2,5-Dihydroxybenzoic acid is a derivative of benzoic and a powerful inhibitor of fibroblast growth factors.
Camphor
Camphor appears as a colorless or white colored crystalline powder with a strong mothball-like odor. About the same density as water. Emits flammable vapors above 150 °F. Used to make moth proofings, pharmaceuticals, and flavorings. Camphor is a cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. It has a role as a plant metabolite. It is a bornane monoterpenoid and a cyclic monoterpene ketone. Camphor is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A bicyclic monoterpene ketone found widely in plants, especially CINNAMOMUM CAMPHORA. It is used topically as a skin antipruritic and as an anti-infective agent. A cyclic monoterpene ketone that is bornane bearing an oxo substituent at position 2. A naturally occurring monoterpenoid. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents relative retention time with respect to 9-anthracene Carboxylic Acid is 0.986 Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
Luteolin
Luteolin is a naturally occurring flavonoid. (PMID:17168665). The flavonoids are polyphenolic compounds found as integral components of the human diet. They are universally present as constituents of flowering plants, particularly of food plants. The flavonoids are phenyl substituted chromones (benzopyran derivatives) consisting of a 15-carbon basic skeleton (C6-C3-C6), composed of a chroman (C6-C3) nucleus (the benzo ring A and the heterocyclic ring C), also shared by the tocopherols, with a phenyl (the aromatic ring B) substitution usually at the 2-position. Different substitutions can typically occur in the rings, A and B. Several plants and spices containing flavonoid derivatives have found application as disease preventive and therapeutic agents in traditional medicine in Asia for thousands of years. The selection of a particular food plant, plant tissue or herb for its potential health benefits appears to mirror its flavonoid composition. The much lower risk of colon, prostate and breast cancers in Asians, who consume more vegetables, fruits and tea than populations in the Western hemisphere do, raises the question of whether flavonoid components mediate the protective effects of diets rich in these foodstuffs by acting as natural chemopreventive and anticancer agents. An impressive body of information exists on the antitumoral action of plant flavonoids. In vitro work has concentrated on the direct and indirect actions of flavonoids on tumor cells, and has found a variety of anticancer effects such as cell growth and kinase activity inhibition, apoptosis induction, suppression of the secretion of matrix metalloproteinases and of tumor invasive behavior. Furthermore, some studies have reported the impairment of in vivo angiogenesis by dietary flavonoids. Experimental animal studies indicate that certain dietary flavonoids possess antitumoral activity. The hydroxylation pattern of the B ring of the flavones and flavonols, such as luteolin seems to critically influence their activities, especially the inhibition of protein kinase activity and antiproliferation. The different mechanisms underlying the potential anticancer action of plant flavonoids await further elucidation. Certain dietary flavonols and flavones targeting cell surface signal transduction enzymes, such as protein tyrosine and focal adhesion kinases, and the processes of angiogenesis appear to be promising candidates as anticancer agents. Further in vivo studies of these bioactive constituents is deemed necessary in order to develop flavonoid-based anticancer strategies. In view of the increasing interest in the association between dietary flavonoids and cancer initiation and progression, this important field is likely to witness expanded effort and to attract and stimulate further vigorous investigations (PMID:16097445). Luteolin is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. It has a role as an EC 2.3.1.85 (fatty acid synthase) inhibitor, an antineoplastic agent, a vascular endothelial growth factor receptor antagonist, a plant metabolite, a nephroprotective agent, an angiogenesis inhibitor, a c-Jun N-terminal kinase inhibitor, an anti-inflammatory agent, an apoptosis inducer, a radical scavenger and an immunomodulator. It is a 3-hydroxyflavonoid and a tetrahydroxyflavone. It is a conjugate acid of a luteolin-7-olate. Luteolin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Luteolin is a naturally-occurring flavonoid, with potential anti-oxidant, anti-inflammatory, apoptosis-inducing and chemopreventive activities. Upon administration, luteolin scavenges free radicals, protects cells from reactive oxygen species (ROS)-induced damage and induces direct cell cycle arrest and apoptosis in tumor cells. This inhibits tumor cell proliferation and suppresses metastasis. 5,7,3,4-tetrahydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 4, 5 and 7. It is thought to play an important role in the human body as an antioxidant, a free radical scavenger, an anti-inflammatory agent and an immune system modulator as well as being active against several cancers. Flavone v. widespread in plant world; found especies in celery, peppermint, rosemary, thyme and Queen Annes Lace leaves (wild carrot). Potential nutriceutical. Luteolin is found in many foods, some of which are soy bean, ginger, abalone, and swiss chard. Acquisition and generation of the data is financially supported in part by CREST/JST. IPB_RECORD: 361; CONFIDENCE confident structure CONFIDENCE standard compound; INTERNAL_ID 48 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
Genkwanin
Genkwanin, also known as 5,4-dihydroxy-7-methoxyflavone or 7-methylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, genkwanin is considered to be a flavonoid lipid molecule. Genkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Genkwanin is a bitter tasting compound and can be found in a number of food items such as winter savory, sweet basil, rosemary, and common sage, which makes genkwanin a potential biomarker for the consumption of these food products. Genkwanin is an O-methylated flavone, a type of flavonoid. It can be found in the seeds of Alnus glutinosa, and the leaves of the ferns Notholaena bryopoda and Asplenium normale . Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.
Salicylic acid
Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. It is a colorless solid, it is a precursor to and a metabolite of aspirin (acetylsalicylic acid). It is a plant hormone. The name is from Latin salix for willow tree. It is an ingredient in some anti-acne products. Salts and esters of salicylic acid are known as salicylates. Salicylic acid modulates COX1 enzymatic activity to decrease the formation of pro-inflammatory prostaglandins. Salicylate may competitively inhibit prostaglandin formation. Salicylates antirheumatic (nonsteroidal anti-inflammatory) actions are a result of its analgesic and anti-inflammatory mechanisms. Salicylic acid works by causing the cells of the epidermis to slough off more readily, preventing pores from clogging up, and allowing room for new cell growth. Salicylic acid inhibits the oxidation of uridine-5-diphosphoglucose (UDPG) competitively with nicotinamide adenosine dinucleotide and noncompetitively with UDPG. It also competitively inhibits the transferring of glucuronyl group of uridine-5-phosphoglucuronic acid to the phenolic acceptor. The wound-healing retardation action of salicylates is probably due mainly to its inhibitory action on mucopolysaccharide synthesis. Salicylic acid is biosynthesized from the amino acid phenylalanine. In Arabidopsis thaliana, it can be synthesized via a phenylalanine-independent pathway. Salicylic acid is an odorless white to light tan solid. Sinks and mixes slowly with water. (USCG, 1999) Salicylic acid is a monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. It has a role as an antiinfective agent, an antifungal agent, a keratolytic drug, an EC 1.11.1.11 (L-ascorbate peroxidase) inhibitor, a plant metabolite, an algal metabolite and a plant hormone. It is a conjugate acid of a salicylate. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. Salicylic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Salicylic Acid is a beta hydroxy acid that occurs as a natural compound in plants. It has direct activity as an anti-inflammatory agent and acts as a topical antibacterial agent due to its ability to promote exfoliation. A compound obtained from the bark of the white willow and wintergreen leaves, and also prepared synthetically. It has bacteriostatic, fungicidal, and keratolytic actions. Its salts, the salicylates, are used as analgesics. A compound obtained from the bark of the white willow and wintergreen leaves. It has bacteriostatic, fungicidal, and keratolytic actions. See also: Benzoic Acid (has active moiety); Methyl Salicylate (active moiety of); Benzyl salicylate (is active moiety of) ... View More ... A monohydroxybenzoic acid that is benzoic acid with a hydroxy group at the ortho position. It is obtained from the bark of the white willow and wintergreen leaves. Salicylic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=69-72-7 (retrieved 2024-06-29) (CAS RN: 69-72-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1]. Salicylic acid (2-Hydroxybenzoic acid) inhibits cyclo-oxygenase-2 (COX-2) activity independently of transcription factor (NF-κB) activation[1].
Ursolic acid
Ursolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. Ursolic acid (UA), a pentacyclic triterpene acid, has been isolated from many kinds of medicinal plants, such as Eriobotrya japonica, Rosmarinns officinalis, Melaleuca leucadendron, Ocimum sanctum and Glechoma hederaceae. UA has been reported to produce antitumor activities and antioxidant activity, and is reported to have an antioxidant activity. UA may play an important role in regulating the apoptosis induced by high glucose presumably through scavenging of ROS (reactive oxygen species). It has been found recently that ursolic acid treatment affects growth and apoptosis in cancer cells. (PMID: 15994040, 17516235, 17213663). Ursolic acid is a pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite and a geroprotector. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of an ursane. Ursolic acid is a natural product found in Gladiolus italicus, Freziera, and other organisms with data available. Ursolic Acid is a pentacyclic triterpenoid found in various fruits, vegetables and medicinal herbs, with a variety of potential pharmacologic activities including anti-inflammatory, antioxidative, antiviral, serum lipid-lowering, and antineoplastic activities. Upon administration, ursolic acid may promote apoptosis and inhibit cancer cell proliferation through multiple mechanisms. This may include the regulation of mitochondrial function through various pathways including the ROCK/PTEN and p53 pathways, the suppression of the nuclear factor-kappa B (NF-kB) pathways, and the increase in caspase-3, caspase-8 and caspase-9 activities. See also: Holy basil leaf (part of); Jujube fruit (part of); Lagerstroemia speciosa leaf (part of). D018501 - Antirheumatic Agents > D000894 - Anti-Inflammatory Agents, Non-Steroidal > D016861 - Cyclooxygenase Inhibitors A pentacyclic triterpenoid that is urs-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. C274 - Antineoplastic Agent > C129839 - Apoptotic Pathway-targeting Antineoplastic Agent Found in wax of apples, pears and other fruits. V. widely distributed in plants D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D002491 - Central Nervous System Agents > D000700 - Analgesics C26170 - Protective Agent > C275 - Antioxidant D000893 - Anti-Inflammatory Agents D000890 - Anti-Infective Agents D000970 - Antineoplastic Agents D004791 - Enzyme Inhibitors 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. 3-Epiursolic Acid is a triterpenoid that can be isolated from Eriobotrya japonica, acts as a competitive inhibitor of cathepsin L (IC50, 6.5 μM; Ki, 19.5 μM), with no obvious effect on cathepsin B[1]. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy. Ursolic acid (Prunol) is a natural pentacyclic triterpenoid carboxylic acid, exerts anti-tumor effects and is an effective compound for cancer prevention and therapy.
Rutin
Rutin is a flavonoid known to have a variety of biological activities including antiallergic, anti-inflammatory, antiproliferative, and anticarcinogenic properties. A large number of flavonoids, mostly O-glycosides, are polyphenolic compounds of natural origin that are present in most fruits and vegetables. The average intake of the compounds by humans on a normal diet is more than 1 g per day. Although flavonoids are devoid of classical nutritional value, they are increasingly viewed as beneficial dietary components that act as potential protectors against human diseases such as coronary heart disease, cancers, and inflammatory bowel disease. Rutin acts as a quercetin deliverer to the large intestine; moreover, quercetin is extensively metabolized in the large intestine, which suggests that quercetin liberated from rutin and/or its colonic metabolites may play a role. Rutins anti-inflammatory actions are mediated through a molecular mechanism that underlies the quercetin-mediated therapeutic effects: quercetin-mediated inhibition of tumor necrosis factor-alpha (TNF-alpha)-induced nuclear factor kappa B (NFkB) activation. TNF-alpha-induced NFkB activity plays a central role in the production of pro-inflammatory mediators involved in progression of gut inflammation. (PMID:16132362). Rutin is a rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. It has a role as a metabolite and an antioxidant. It is a disaccharide derivative, a quercetin O-glucoside, a tetrahydroxyflavone and a rutinoside. A flavonol glycoside found in many plants, including buckwheat; tobacco; forsythia; hydrangea; viola, etc. It has been used therapeutically to decrease capillary fragility. Rutin is a natural product found in Ficus virens, Visnea mocanera, and other organisms with data available. A flavonol glycoside found in many plants, including BUCKWHEAT; TOBACCO; FORSYTHIA; HYDRANGEA; VIOLA, etc. It has been used therapeutically to decrease capillary fragility. See also: Quercetin (related); Ginkgo (part of); Chamomile (part of) ... View More ... First isolated from Ruta graveolens (rue). Bioflavanoid. Quercetin 3-rutinoside is found in many foods, some of which are tea, bilberry, common oregano, and lemon grass. A rutinoside that is quercetin with the hydroxy group at position C-3 substituted with glucose and rhamnose sugar groups. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids IPB_RECORD: 541; CONFIDENCE confident structure [Raw Data] CBA04_Rutin_neg_50eV.txt [Raw Data] CBA04_Rutin_pos_50eV.txt [Raw Data] CBA04_Rutin_neg_40eV.txt [Raw Data] CBA04_Rutin_pos_10eV.txt [Raw Data] CBA04_Rutin_neg_20eV.txt [Raw Data] CBA04_Rutin_neg_10eV.txt [Raw Data] CBA04_Rutin_neg_30eV.txt [Raw Data] CBA04_Rutin_pos_40eV.txt [Raw Data] CBA04_Rutin_pos_30eV.txt [Raw Data] CBA04_Rutin_pos_20eV.txt Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3]. Rutin (Rutoside) is a flavonoid found in many plants and shows a wide range of biological activities including anti-inflammatory, antidiabetic, antioxidant, neuroprotective, nephroprotective, hepatoprotective and reducing Aβ oligomer activities. Rutin can cross the blood brain barrier. Rutin attenuates vancomycin-induced renal tubular cell apoptosis via suppression of apoptosis, mitochondrial dysfunction, and oxidative stress[1][2][3].
Cosmosiin
Cosmosiin, also known as apigenin 7-O-glucoside or apigetrin, is a member of the class of compounds known as flavonoid-7-O-glycosides. Flavonoid-7-O-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Cosmosiin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cosmosiin can be found in a number of food items, such as common thyme, white lupine, common oregano, and orange mint. Cosmosiin can also be found in dandelion coffee and in Teucrium gnaphalodes (Wikipedia). Cosmosiin can also be found plants such as wild celery and anise. Cosmosiin has been shown to exhibit anti-platelet function (PMID: 21834233). Apigenin 7-O-beta-D-glucoside is a glycosyloxyflavone that is apigenin substituted by a beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a non-steroidal anti-inflammatory drug, a metabolite and an antibacterial agent. It is a beta-D-glucoside, a dihydroxyflavone, a glycosyloxyflavone and a monosaccharide derivative. It is functionally related to an apigenin. It is a conjugate acid of an apigenin 7-O-beta-D-glucoside(1-). It is an enantiomer of an apigenin 7-O-beta-L-glucoside. Cosmosiin is a natural product found in Galeopsis tetrahit, Carex fraseriana, and other organisms with data available. See also: Chamomile (part of). Apiumetrin, also known as 7-O-beta-D-glucosyl-5,7,4-trihydroxyflavone or cosmosiin, is a member of the class of compounds known as flavonoid-7-o-glycosides. Flavonoid-7-o-glycosides are phenolic compounds containing a flavonoid moiety which is O-glycosidically linked to carbohydrate moiety at the C7-position. Apiumetrin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Apiumetrin can be found in wild celery, which makes apiumetrin a potential biomarker for the consumption of this food product. Acquisition and generation of the data is financially supported in part by CREST/JST. Annotation level-1 Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2]. Apigenin-7-glucoside (Apigenin-7-O-β-D-glucopyranoside) exhibits significant anti-proliferative and antioxidant activity and scavenges reactive oxygen species (ROS)[1][2].
Chlorogenic acid
Chlorogenic acid is a cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. It has a role as a plant metabolite and a food component. It is a cinnamate ester and a tannin. It is functionally related to a (-)-quinic acid and a trans-caffeic acid. It is a conjugate acid of a chlorogenate. Chlorogenic Acid has been used in trials studying the treatment of Advanced Cancer and Impaired Glucose Tolerance. Chlorogenic Acid is a natural product found in Pavetta indica, Fragaria nipponica, and other organisms with data available. Chlorogenic Acid is a polyphenol and the ester of caffeic acid and quinic acid that is found in coffee and black tea, with potential antioxidant and chemopreventive activities. Chlorogenic acid scavenges free radicals, which inhibits DNA damage and may protect against the induction of carcinogenesis. In addition, this agent may upregulate the expression of genes involved in the activation of the immune system and enhances activation and proliferation of cytotoxic T-lymphocytes, macrophages, and natural killer cells. Chlorogenic acid also inhibits the activity of matrix metalloproteinases. A naturally occurring phenolic acid which is a carcinogenic inhibitor. It has also been shown to prevent paraquat-induced oxidative stress in rats. (From J Chromatogr A 1996;741(2):223-31; Biosci Biotechnol Biochem 1996;60(5):765-68). See also: Arctium lappa Root (part of); Cynara scolymus leaf (part of); Lonicera japonica flower (part of) ... View More ... Chlorogenic acid is an ester of caffeic acid and quinic acid. Chlorogenic acid is the major polyphenolic compound in coffee, isolated from the leaves and fruits of dicotyledonous plants. This compound, long known as an antioxidant, also slows the release of glucose into the bloodstream after a meal. Coffee is a complex mixture of chemicals that provides significant amounts of chlorogenic acid. The chlorogenic acid content of a 200 ml (7-oz) cup of coffee has been reported to range from 70-350 mg, which would provide about 35-175 mg of caffeic acid. The results of epidemiological research suggest that coffee consumption may help prevent several chronic diseases, including type 2 diabetes mellitus, Parkinsons disease and liver disease (cirrhosis and hepatocellular carcinoma). Most prospective cohort studies have not found coffee consumption to be associated with significantly increased cardiovascular disease risk. However, coffee consumption is associated with increases in several cardiovascular disease risk factors, including blood pressure and plasma homocysteine. At present, there is little evidence that coffee consumption increases the risk of cancer. (PMID:16507475, 17368041). A cinnamate ester obtained by formal condensation of the carboxy group of trans-caffeic acid with the 3-hydroxy group of quinic acid. It is an intermediate metabolite in the biosynthesis of lignin. [Raw Data] CBA08_Chlorogenic-aci_pos_10eV_1-1_01_209.txt [Raw Data] CBA08_Chlorogenic-aci_neg_30eV_1-1_01_218.txt [Raw Data] CBA08_Chlorogenic-aci_neg_20eV_1-1_01_217.txt [Raw Data] CBA08_Chlorogenic-aci_pos_30eV_1-1_01_211.txt [Raw Data] CBA08_Chlorogenic-aci_neg_40eV_1-1_01_219.txt [Raw Data] CBA08_Chlorogenic-aci_pos_20eV_1-1_01_210.txt [Raw Data] CBA08_Chlorogenic-aci_pos_50eV_1-1_01_213.txt [Raw Data] CBA08_Chlorogenic-aci_neg_50eV_1-1_01_220.txt [Raw Data] CBA08_Chlorogenic-aci_neg_10eV_1-1_01_216.txt [Raw Data] CBA08_Chlorogenic-aci_pos_40eV_1-1_01_212.txt Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb. It is an orally active antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension compound[1][2][3]. Chlorogenic acid is a major phenolic compound in Lonicera japonica Thunb.. It plays several important and therapeutic roles such as antioxidant activity, antibacterial, hepatoprotective, cardioprotective, anti-inflammatory, antipyretic, neuroprotective, anti-obesity, antiviral, anti-microbial, anti-hypertension.
Apigenin
Apigenin is a trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. It has a role as a metabolite and an antineoplastic agent. It is a conjugate acid of an apigenin-7-olate. Apigenin is a natural product found in Verbascum lychnitis, Carex fraseriana, and other organisms with data available. Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter and the increase in hINV promoter activity. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes. (A7924). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin. (A7925). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis. (A7926). 5,7,4-trihydroxy-flavone, one of the FLAVONES. See also: Chamomile (part of); Cannabis sativa subsp. indica top (part of); Fenugreek seed (part of). Apigenin is a plant-derived flavonoid that has significant promise as a skin cancer chemopreventive agent. Apigenin inhibits the expression of involucrin (hINV), a marker of keratinocyte differentiation, is increased by differentiating agents via a protein kinase Cdelta (PKCdelta), Ras, MEKK1, and MEK3 cascade that increases AP1 factor level and AP1 factor binding to DNA elements in the hINV promoter. Apigenin suppresses the 12-O-tetradeconylphorbol-13-acetate-dependent increase in AP1 factor expression and binding to the hINV promoter. Apigenin also inhibits the increase in promoter activity observed following overexpression of PKCdelta, constitutively active Ras, or MEKK1. The suppression of PKCdelta activity is associated with reduced phosphorylation of PKCdelta-Y311. Activation of hINV promoter activity by the green tea polyphenol, (-)-epigellocathecin-3-gallate, is also inhibited by apigenin, suggesting that the two chemopreventive agents can produce opposing actions in keratinocytes (PMID: 16982614). Apigenin, a flavone abundantly found in fruits and vegetables, exhibits antiproliferative, anti-inflammatory, and antimetastatic activities through poorly defined mechanisms. This flavonoid provides selective activity to promote caspase-dependent-apoptosis of leukemia cells and uncover an essential role of PKCdelta during the induction of apoptosis by apigenin (PMID: 16844095). Apigenin markedly induces the expression of death receptor 5 (DR5) and synergistically acts with exogenous soluble recombinant human tumor necrosis factor-related apoptosis-inducing ligand (TRAIL) to induce apoptosis in malignant tumor cells. On the other hand, apigenin-mediated induction of DR5 expression is not observed in normal human peripheral blood mononuclear cells. Moreover, apigenin does not sensitize normal human peripheral blood mononuclear cells to TRAIL-induced apoptosis (PMID: 16648565). Flavone found in a wide variety of foodstuffs; buckwheat, cabbage, celeriac, celery, lettuce, oregano, parsley, peppermint, perilla, pummelo juice, thyme, sweet potatoes, green tea and wild carrot [DFC] A trihydroxyflavone that is flavone substituted by hydroxy groups at positions 4, 5 and 7. It induces autophagy in leukaemia cells. CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8558; ORIGINAL_PRECURSOR_SCAN_NO 8556 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5097; ORIGINAL_PRECURSOR_SCAN_NO 5094 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5096; ORIGINAL_PRECURSOR_SCAN_NO 5093 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8561; ORIGINAL_PRECURSOR_SCAN_NO 8559 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5082; ORIGINAL_PRECURSOR_SCAN_NO 5079 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5104; ORIGINAL_PRECURSOR_SCAN_NO 5099 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8572; ORIGINAL_PRECURSOR_SCAN_NO 8570 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8556; ORIGINAL_PRECURSOR_SCAN_NO 8554 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5085; ORIGINAL_PRECURSOR_SCAN_NO 5082 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8554; ORIGINAL_PRECURSOR_SCAN_NO 8550 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 8540; ORIGINAL_PRECURSOR_SCAN_NO 8539 CONFIDENCE standard compound; INTERNAL_ID 771; DATASET 20200303_ENTACT_RP_MIX507; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5090; ORIGINAL_PRECURSOR_SCAN_NO 5089 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB002_Apigenin_pos_10eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_40eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_20eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_30eV_CB000005.txt [Raw Data] CB002_Apigenin_pos_50eV_CB000005.txt [Raw Data] CB002_Apigenin_neg_40eV_000005.txt [Raw Data] CB002_Apigenin_neg_20eV_000005.txt [Raw Data] CB002_Apigenin_neg_10eV_000005.txt [Raw Data] CB002_Apigenin_neg_50eV_000005.txt CONFIDENCE standard compound; INTERNAL_ID 151 [Raw Data] CB002_Apigenin_neg_30eV_000005.txt CONFIDENCE standard compound; ML_ID 26 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.
Caffeic acid
Caffeic acid is a hydroxycinnamic acid that is cinnamic acid in which the phenyl ring is substituted by hydroxy groups at positions 3 and 4. It exists in cis and trans forms; the latter is the more common. It has a role as a plant metabolite, an EC 1.13.11.33 (arachidonate 15-lipoxygenase) inhibitor, an EC 2.5.1.18 (glutathione transferase) inhibitor, an EC 1.13.11.34 (arachidonate 5-lipoxygenase) inhibitor, an antioxidant and an EC 3.5.1.98 (histone deacetylase) inhibitor. It is a hydroxycinnamic acid and a member of catechols. Caffeic Acid is a natural product found in Pavetta indica, Eupatorium cannabinum, and other organisms with data available. Caffeic Acid is an orally bioavailable, hydroxycinnamic acid derivative and polyphenol, with potential anti-oxidant, anti-inflammatory, and antineoplastic activities. Upon administration, caffeic acid acts as an antioxidant and prevents oxidative stress, thereby preventing DNA damage induced by free radicals. Caffeic acid targets and inhibits the histone demethylase (HDM) oncoprotein gene amplified in squamous cell carcinoma 1 (GASC1; JMJD2C; KDM4C) and inhibits cancer cell proliferation. GASC1, a member of the KDM4 subgroup of Jumonji (Jmj) domain-containing proteins, demethylates trimethylated lysine 9 and lysine 36 on histone H3 (H3K9 and H3K36), and plays a key role in tumor cell development. Caffeic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Black Cohosh (part of); Arctium lappa Root (part of); Comfrey Leaf (part of) ... View More ... 3,4-Dihydroxy-trans-cinnamate, also known as trans-Caffeate, is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). trans-Caffeic acid is found in many foods, some of which are flaxseed, cereal and cereal products, common grape, fruits, and common sage. It is also found in wine and coffee in free and conjugated forms. Caffeic acid (CAS: 331-39-5) is a polyphenol present in normal human urine positively correlated to coffee consumption and influenced by the dietary intake of diverse types of food (PMID:16870009). Caffeic acid has been found to be a microbial metabolite of Escherichia (PMID: 28396925). Caffeic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=331-39-5 (retrieved 2024-06-28) (CAS RN: 331-39-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Kaempferol
Kaempferol is a tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. It has a role as an antibacterial agent, a plant metabolite, a human xenobiotic metabolite, a human urinary metabolite, a human blood serum metabolite and a geroprotector. It is a member of flavonols, a 7-hydroxyflavonol and a tetrahydroxyflavone. It is a conjugate acid of a kaempferol oxoanion. Kaempferol is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Kaempferol is a natural flavonoid which has been isolated from Delphinium, Witch-hazel, grapefruit, and other plant sources. Kaempferol is a yellow crystalline solid with a melting point of 276-278 degree centigrade. It is slightly soluble in water, and well soluble in hot ethanol and diethyl ether. Kaempferol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cannabis sativa subsp. indica top (part of); Tussilago farfara flower (part of). Kaempferol, also known as rhamnolutein or c.i. 75640, belongs to the class of organic compounds known as flavonols. Flavonols are compounds that contain a flavone (2-phenyl-1-benzopyran-4-one) backbone carrying a hydroxyl group at the 3-position. Thus, kaempferol is considered to be a flavonoid molecule. A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Kaempferol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Kaempferol exists in all eukaryotes, ranging from yeast to humans. Kaempferol is a bitter tasting compound. Kaempferol is found, on average, in the highest concentration within a few different foods, such as saffrons, capers, and cumins and in a lower concentration in lovages, endives, and cloves. Kaempferol has also been detected, but not quantified, in several different foods, such as shallots, pine nuts, feijoa, kombus, and chicory leaves. This could make kaempferol a potential biomarker for the consumption of these foods. Kaempferol is a potentially toxic compound. Very widespread in the plant world, e.g. in Brassicaceae, Apocynaceae, Dilleniaceae, Ranunculaceae, Leguminosae, etc. Found especies in broccoli, capers, chives, kale, garden cress, fennel, lovage, dill weed and tarragon [CCD] A tetrahydroxyflavone in which the four hydroxy groups are located at positions 3, 5, 7 and 4. Acting as an antioxidant by reducing oxidative stress, it is currently under consideration as a possible cancer treatment. CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3906; ORIGINAL_PRECURSOR_SCAN_NO 3905 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3916; ORIGINAL_PRECURSOR_SCAN_NO 3915 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3928; ORIGINAL_PRECURSOR_SCAN_NO 3927 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX508; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4291; ORIGINAL_PRECURSOR_SCAN_NO 4290 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3918; ORIGINAL_PRECURSOR_SCAN_NO 3917 CONFIDENCE standard compound; INTERNAL_ID 898; DATASET 20200303_ENTACT_RP_MIX500; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 3915; ORIGINAL_PRECURSOR_SCAN_NO 3914 Acquisition and generation of the data is financially supported in part by CREST/JST. INTERNAL_ID 2358; CONFIDENCE Reference Standard (Level 1) CONFIDENCE Reference Standard (Level 1); INTERNAL_ID 2358 CONFIDENCE standard compound; INTERNAL_ID 47 CONFIDENCE standard compound; ML_ID 45 Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Eriocitrin
Eriocitrin is a disaccharide derivative that consists of eriodictyol substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a trihydroxyflavanone, a flavanone glycoside, a member of 4-hydroxyflavanones and a rutinoside. It is functionally related to an eriodictyol. Eriocitrin is a natural product found in Cyclopia subternata, Citrus latipes, and other organisms with data available. Eriocitrin is a flavonoid glycoside that can be found in plants like Citrus grandis, Citrus limon, Mentha longifolia, Mentha piperita, Thymus vulgaris. It shows important antioxidant activities. Isolated from Mentha piperita (peppermint) leaves and from Citrus subspecies Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1]. Eriocitrin is a flavonoid isolated from lemon, which is a strong antioxidant agent. Eriocitrin could inhibit the proliferation of hepatocellular carcinoma cell lines by arresting cell cycle in S phase through up-regulation of p53, cyclin A, cyclin D3 and CDK6. Eriocitrin triggers apoptosis by activating mitochondria-involved intrinsic signaling pathway[1].
Eriodictyol
Eriodictyol, also known as 3,4,5,7-tetrahydroxyflavanone or 2,3-dihydroluteolin, belongs to the class of organic compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Thus, eriodictyol is considered to be a flavonoid lipid molecule. Outside of the human body, eriodictyol has been detected, but not quantified in, several different foods, such as common oregano, common thymes, parsley, sweet basils, and tarragons. This could make eriodictyol a potential biomarker for the consumption of these foods. Eriodictyol is a compound isolated from Eriodictyon californicum and can be used in medicine as an expectorant. BioTransformer predicts that eriodictiol is a product of luteolin metabolism via a flavonoid-c-ring-reduction reaction catalyzed by an unspecified-gut microbiota enzyme (PMID: 30612223). Eriodictyol, also known as 5735-tetrahydroxyflavanone, is a member of the class of compounds known as flavanones. Flavanones are compounds containing a flavan-3-one moiety, with a structure characterized by a 2-phenyl-3,4-dihydro-2H-1-benzopyran bearing a ketone at the carbon C3. Eriodictyol is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Eriodictyol can be found in a number of food items such as rowal, grape, cardamom, and lemon balm, which makes eriodictyol a potential biomarker for the consumption of these food products. Eriodictyol is a bitter-masking flavanone, a flavonoid extracted from yerba santa (Eriodictyon californicum), a plant native to North America. Eriodictyol is one of the four flavanones identified in this plant as having taste-modifying properties, the other three being homoeriodictyol, its sodium salt, and sterubin . Eriodictyol is a tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. It is a tetrahydroxyflavanone and a member of 3-hydroxyflavanones. Eriodictyol is a natural product found in Eupatorium album, Eupatorium hyssopifolium, and other organisms with data available. A tetrahydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5, 7, 3 and 4 respectively. Acquisition and generation of the data is financially supported in part by CREST/JST. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.
Ferulic acid
trans-Ferulic acid is a highly abundant phenolic phytochemical which is present in plant cell walls. Ferulic acid is a phenolic acid that can be absorbed by the small intestine and excreted through the urine. It is one of the most abundant phenolic acids in plants, varying from 5 g/kg in wheat bran to 9 g/kg in sugar-beet pulp and 50 g/kg in corn kernel. It occurs primarily in seeds and leaves both in its free form (albeit rarely) and covalently linked to lignin and other biopolymers. It is usually found as ester cross-links with polysaccharides in the cell wall, such as arabinoxylans in grasses, pectin in spinach and sugar beet, and xyloglucans in bamboo. It also can cross-link with proteins. Due to its phenolic nucleus and an extended side chain conjugation (carbohydrates and proteins), it readily forms a resonance-stabilized phenoxy radical which accounts for its potent antioxidant potential. Food supplementation with curcumin and ferulic acid is considered a nutritional approach to reducing oxidative damage and amyloid pathology in Alzheimer disease (PMID:17127365, 1398220, 15453708, 9878519). Ferulic acid can be found in Pseudomonas and Saccharomyces (PMID:8395165). Ferulic acid is a ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. It has a role as an antioxidant, a MALDI matrix material, a plant metabolite, an anti-inflammatory agent, an apoptosis inhibitor and a cardioprotective agent. It is a conjugate acid of a ferulate. Ferulic acid is a natural product found in Haplophyllum griffithianum, Visnea mocanera, and other organisms with data available. Ferulic acid is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Angelica sinensis root (part of). Widely distributed in plants, first isolated from Ferula foetida (asafoetida). Antioxidant used to inhibit oxidn. of fats, pastry products, etc. Antifungal agent used to prevent fruit spoilage. trans-Ferulic acid is found in many foods, some of which are deerberry, peach, shea tree, and common bean. A ferulic acid consisting of trans-cinnamic acid bearing methoxy and hydroxy substituents at positions 3 and 4 respectively on the phenyl ring. D018373 - Peripheral Nervous System Agents > D018689 - Sensory System Agents D005765 - Gastrointestinal Agents > D002756 - Cholagogues and Choleretics D002317 - Cardiovascular Agents > D000959 - Antihypertensive Agents D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents D002491 - Central Nervous System Agents > D000700 - Analgesics D000975 - Antioxidants > D016166 - Free Radical Scavengers D006401 - Hematologic Agents > D000925 - Anticoagulants D020011 - Protective Agents > D000975 - Antioxidants D000893 - Anti-Inflammatory Agents D018501 - Antirheumatic Agents Acquisition and generation of the data is financially supported in part by CREST/JST. KEIO_ID H074 (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. (E)-Ferulic acid is a isomer of Ferulic acid which is an aromatic compound, abundant in plant cell walls. (E)-Ferulic acid causes the phosphorylation of β-catenin, resulting in proteasomal degradation of β-catenin and increases the expression of pro-apoptotic factor Bax and decreases the expression of pro-survival factor survivin. (E)-Ferulic acid shows a potent ability to remove reactive oxygen species (ROS) and inhibits lipid peroxidation. (E)-Ferulic acid exerts both anti-proliferation and anti-migration effects in the human lung cancer cell line H1299[1]. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively. Ferulic acid is a novel fibroblast growth factor receptor 1 (FGFR1) inhibitor with IC50s of 3.78 and 12.5 μM for FGFR1 and FGFR2, respectively.
Hesperidin
Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit. Hesperidin is an abundant and inexpensive by-product of Citrus cultivation and is the major flavonoid in sweet orange and lemon. In young immature oranges it can account for up to 14\\\\% of the fresh weight of the fruit due to vitamin C deficiency such as bruising due to capillary fragility were found in early studies to be relieved by crude vitamin C extract but not by purified vitamin C. The bioflavonoids, formerly called "vitamin P", were found to be the essential components in correcting this bruising tendency and improving the permeability and integrity of the capillary lining. These bioflavonoids include hesperidin, citrin, rutin, flavones, flavonols, catechin and quercetin. Of historical importance is the observation that "citrin", a mixture of two flavonoids, eriodictyol and hesperidin, was considered to possess a vitamin-like activity, as early as in 1949. Hesperidin deficiency has since been linked with abnormal capillary leakiness as well as pain in the extremities causing aches, weakness and night leg cramps. Supplemental hesperidin also helps in reducing oedema or excess swelling in the legs due to fluid accumulation. As with other bioflavonoids, hesperidin works best when administered concomitantly with vitamin C. No signs of toxicity have been observed with normal intake of hesperidin. Hesperidin was first discovered in 1827, by Lebreton, but not in a pure state and has been under continuous investigation since then (PMID:11746857). Hesperidin is a disaccharide derivative that consists of hesperetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as a mutagen. It is a disaccharide derivative, a member of 3-hydroxyflavanones, a dihydroxyflavanone, a monomethoxyflavanone, a flavanone glycoside, a member of 4-methoxyflavanones and a rutinoside. It is functionally related to a hesperetin. Hesperidin is a flavan-on glycoside found in citrus fruits. Hesperidin is a natural product found in Ficus erecta var. beecheyana, Citrus tankan, and other organisms with data available. A flavanone glycoside found in CITRUS fruit peels. See also: Tangerine peel (part of). Found in most citrus fruits and other members of the Rutaceae, also in Mentha longifolia Acquisition and generation of the data is financially supported in part by CREST/JST. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.770 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.767 [Raw Data] CB217_Hesperidin_pos_50eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_20eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_30eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_10eV_CB000076.txt [Raw Data] CB217_Hesperidin_pos_40eV_CB000076.txt [Raw Data] CB217_Hesperidin_neg_20eV_000038.txt [Raw Data] CB217_Hesperidin_neg_50eV_000038.txt [Raw Data] CB217_Hesperidin_neg_10eV_000038.txt [Raw Data] CB217_Hesperidin_neg_30eV_000038.txt [Raw Data] CB217_Hesperidin_neg_40eV_000038.txt Annotation level-1 Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2]. Hesperidin (Hesperetin 7-rutinoside), a flavanone glycoside, is isolated from citrus fruits. Hesperidin has numerous biological properties, such as decreasing inflammatory mediators and exerting significant antioxidant effects. Hesperidin also exhibits antitumor and antiallergic activities[1][2].
Hesperetin
Hesperetin, also known as prestwick_908 or YSO2, belongs to the class of organic compounds known as 4-o-methylated flavonoids. These are flavonoids with methoxy groups attached to the C4 atom of the flavonoid backbone. Thus, hesperetin is considered to be a flavonoid lipid molecule. Hesperetin also seems to upregulate the LDL receptor. Hesperetin, in the form of its glycoside , is the predominant flavonoid in lemons and oranges. Hesperetin is a drug which is used for lowering cholesterol and, possibly, otherwise favorably affecting lipids. In vitro research also suggests the possibility that hesperetin might have some anticancer effects and that it might have some anti-aromatase activity. Hesperetin is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Hesperetin is a bitter tasting compound. Hesperetin is found, on average, in the highest concentration within a few different foods, such as limes, persian limes, and sweet oranges and in a lower concentration in pummelo, welsh onions, and lemons. Hesperetin has also been detected, but not quantified, in several different foods, such as yellow bell peppers, carrots, rapinis, hazelnuts, and beers. Hesperetin is a biomarker for the consumption of citrus fruits. Hesperetin reduces or inhibits the activity of acyl-coenzyme A:cholesterol acyltransferase genes (ACAT1 and ACAT2) and it reduces microsomal triglyceride transfer protein (MTP) activity. Hesperetin is a trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. It has a role as an antioxidant, an antineoplastic agent and a plant metabolite. It is a monomethoxyflavanone, a trihydroxyflavanone, a member of 3-hydroxyflavanones and a member of 4-methoxyflavanones. It is a conjugate acid of a hesperetin(1-). Hesperetin belongs to the flavanone class of flavonoids. Hesperetin, in the form of its glycoside [hesperidin], is the predominant flavonoid in lemons and oranges. Hesperetin is a natural product found in Brassica oleracea var. sabauda, Dalbergia parviflora, and other organisms with data available. Isolated from Mentha (peppermint) and numerous Citrussubspecies, with lemons, tangerines and oranges being especially good sources. Nutriceutical with anti-cancer props. Glycosides also widely distributed A trihydroxyflavanone having the three hydroxy gropus located at the 3-, 5- and 7-positions and an additional methoxy substituent at the 4-position. Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB046_Hesperetin_pos_40eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_50eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_30eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_20eV_CB000021.txt [Raw Data] CB046_Hesperetin_pos_10eV_CB000021.txt [Raw Data] CB046_Hesperetin_neg_20eV_000014.txt [Raw Data] CB046_Hesperetin_neg_10eV_000014.txt [Raw Data] CB046_Hesperetin_neg_40eV_000014.txt [Raw Data] CB046_Hesperetin_neg_50eV_000014.txt [Raw Data] CB046_Hesperetin_neg_30eV_000014.txt Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis. Hesperetin is a natural flavanone, and acts as a potent and broad-spectrum inhibitor against human UGT activity. Hesperetin regulates apoptosis.
Diosmin
Isolated from parsley. Diosmetin 7-rutinoside is found in many foods, some of which are sweet orange, spearmint, rosemary, and peppermint. C - Cardiovascular system > C05 - Vasoprotectives > C05C - Capillary stabilizing agents > C05CA - Bioflavonoids Diosmin is found in green vegetables. Diosmin is isolated from parsle C26170 - Protective Agent > C275 - Antioxidant > C306 - Bioflavonoid Diosmin is a disaccharide derivative that consists of diosmetin substituted by a 6-O-(alpha-L-rhamnopyranosyl)-beta-D-glucopyranosyl moiety at position 7 via a glycosidic linkage. It has a role as an antioxidant and an anti-inflammatory agent. It is a glycosyloxyflavone, a rutinoside, a disaccharide derivative, a monomethoxyflavone and a dihydroxyflavanone. It is functionally related to a diosmetin. Chronic venous insufficiency is a common condition the western population. Compression and pharmacotherapy are frequently used to manage chronic venous insufficiency, improving circulation and symptoms of venous disease. Diosmin is a bioflavonoid isolated from various plants or synthesized from [hesperidin]. It is used for the improvement of capillary fragility or venous insufficiency, including chronic venous insufficiency (CVI) and hemorrhoids. Diosmin is widely available over-the-counter and demonstrates a favourable a favorable safety profile. Diosmin is a natural product found in Asyneuma argutum, Citrus hystrix, and other organisms with data available. A bioflavonoid that strengthens vascular walls. See also: Agathosma betulina leaf (part of). [Raw Data] CBA89_Diosmin_neg_50eV.txt [Raw Data] CBA89_Diosmin_pos_10eV.txt [Raw Data] CBA89_Diosmin_neg_20eV.txt [Raw Data] CBA89_Diosmin_pos_50eV.txt [Raw Data] CBA89_Diosmin_neg_30eV.txt [Raw Data] CBA89_Diosmin_neg_40eV.txt [Raw Data] CBA89_Diosmin_pos_30eV.txt [Raw Data] CBA89_Diosmin_neg_10eV.txt [Raw Data] CBA89_Diosmin_pos_20eV.txt [Raw Data] CBA89_Diosmin_pos_40eV.txt Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR). Diosmin is a flavonoid found in a variety of citrus fruits and also an agonist of the aryl hydrocarbon receptor (AhR).
Quercetin
Quercetin appears as yellow needles or yellow powder. Converts to anhydrous form at 203-207 °F. Alcoholic solutions taste very bitter. (NTP, 1992) Quercetin is a pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. It has a role as an antibacterial agent, an antioxidant, a protein kinase inhibitor, an antineoplastic agent, an EC 1.10.99.2 [ribosyldihydronicotinamide dehydrogenase (quinone)] inhibitor, a plant metabolite, a phytoestrogen, a radical scavenger, a chelator, an Aurora kinase inhibitor and a geroprotector. It is a pentahydroxyflavone and a 7-hydroxyflavonol. It is a conjugate acid of a quercetin-7-olate. Quercetin is a flavonol widely distributed in plants. It is an antioxidant, like many other phenolic heterocyclic compounds. Glycosylated forms include RUTIN and quercetrin. Quercetin is a metabolite found in or produced by Escherichia coli (strain K12, MG1655). Quercetin is a flavonoid found in many foods and herbs and is a regular component of a normal diet. Extracts of quercetin have been used to treat or prevent diverse conditions including cardiovascular disease, hypercholesterolemia, rheumatic diseases, infections and cancer but have not been shown to be effective in clinical trials for any medical condition. Quercetin as a nutritional supplement is well tolerated and has not been linked to serum enzyme elevations or to episodes of clinically apparent liver injury. Quercetin is a natural product found in Lotus ucrainicus, Visnea mocanera, and other organisms with data available. Quercetin is a polyphenolic flavonoid with potential chemopreventive activity. Quercetin, ubiquitous in plant food sources and a major bioflavonoid in the human diet, may produce antiproliferative effects resulting from the modulation of either EGFR or estrogen-receptor mediated signal transduction pathways. Although the mechanism of action of action is not fully known, the following effects have been described with this agent in vitro: decreased expression of mutant p53 protein and p21-ras oncogene, induction of cell cycle arrest at the G1 phase and inhibition of heat shock protein synthesis. This compound also demonstrates synergy and reversal of the multidrug resistance phenotype, when combined with chemotherapeutic drugs, in vitro. Quercetin also produces anti-inflammatory and anti-allergy effects mediated through the inhibition of the lipoxygenase and cyclooxygenase pathways, thereby preventing the production of pro-inflammatory mediators. Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercitin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adju... Quercetin is a flavonoid widely distributed in many plants and fruits including red grapes, citrus fruit, tomato, broccoli and other leafy green vegetables, and a number of berries, including raspberries and cranberries. Quercetin itself (aglycone quercetin), as opposed to quercetin glycosides, is not a normal dietary component. Quercetin glycosides are converted to phenolic acids as they pass through the gastrointestinal tract. Quercetin has neither been confirmed scientifically as a specific therapeutic for any condition nor been approved by any regulatory agency. The U.S. Food and Drug Administration has not approved any health claims for quercetin. Nevertheless, the interest in dietary flavonoids has grown after the publication of several epidemiological studies showing an inverse correlation between dietary consumption of flavonols and flavones and reduced incidence and mortality from cardiovascular disease and cancer. In recent years, a large amount of experimental and some clinical data have accumulated regarding the effects of flavonoids on the endothelium under physiological and pathological conditions. The meta-analysis of seven prospective cohort studies concluded that the individuals in the top third of dietary flavonol intake are associated with a reduced risk of mortality from coronary heart disease as compared with those in the bottom third, after adjustment for known risk factors and other dietary components. A limited number of intervention studies with flavonoids and flavonoid containing foods and extracts has been performed in several pathological conditions (PMID:17015250). Quercetin is isolated from many plants, especially fruits, such as Helichrysum, Euphorbia and Karwinskia spp. Present in the Solanaceae, Rhamnaceae, Passifloraceae and many other families. For example detected in almost all studied Umbelliferae. Nutriceutical with antiinflammatory props. and a positive influence on the blood lipid profile. Found in a wide variety of foods especially apples, bee pollen, blackcurrants, capers, cocoa, cranberries, dock leaves, elderberries, fennel, lovage, red onions, ancho peppers, dill weed and tarragon. A pentahydroxyflavone having the five hydroxy groups placed at the 3-, 3-, 4-, 5- and 7-positions. It is one of the most abundant flavonoids in edible vegetables, fruit and wine. COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4014; ORIGINAL_PRECURSOR_SCAN_NO 4012 INTERNAL_ID 298; CONFIDENCE standard compound; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4019; ORIGINAL_PRECURSOR_SCAN_NO 4018 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4017; ORIGINAL_PRECURSOR_SCAN_NO 4016 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4011; ORIGINAL_PRECURSOR_SCAN_NO 4010 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4096; ORIGINAL_PRECURSOR_SCAN_NO 4094 CONFIDENCE standard compound; INTERNAL_ID 298; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 4024; ORIGINAL_PRECURSOR_SCAN_NO 4023 Acquisition and generation of the data is financially supported in part by CREST/JST. [Raw Data] CB109_Quercetin_pos_30eV_CB000041.txt IPB_RECORD: 1761; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_pos_10eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_20eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_40eV_CB000041.txt [Raw Data] CB109_Quercetin_pos_50eV_CB000041.txt IPB_RECORD: 161; CONFIDENCE confident structure [Raw Data] CB109_Quercetin_neg_40eV_000027.txt [Raw Data] CB109_Quercetin_neg_50eV_000027.txt [Raw Data] CB109_Quercetin_neg_20eV_000027.txt [Raw Data] CB109_Quercetin_neg_30eV_000027.txt [Raw Data] CB109_Quercetin_neg_10eV_000027.txt CONFIDENCE standard compound; INTERNAL_ID 124 CONFIDENCE standard compound; ML_ID 54 Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Isosakuranetin
4-methoxy-5,7-dihydroxyflavanone is a dihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5 and 7 and a methoxy group at position 4 (the 2S stereoisomer). It has a role as a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a member of 4-methoxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Isosakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia.
3,7-Dimethyl-1,6-octadien-3-ol
3,7-Dimethyl-1,6-octadien-3-ol, also known simply as linalool is a naturally occurring terpene alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Linalool has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. There are two stereoisomers of Linalool ‚Äö√Ñ√¨ (S)-linalool and (R)-linalool. Linalool is used as a scent in 60\\\\\% to 80\\\\\% of perfumed hygiene products and cleaning agents including soaps, detergents, shampoos, and lotions. Linalool is also used by pest professionals as a flea, fruit fly, and cockroach insecticide. Linalool is found in more than 200 different species of plants, including many flowers and spice plants. (S)-linalool is found, for example, as a major constituent of the essential oils of coriander (Coriandrum sativum L.), cymbopogon (Cymbopogon martini var. martinii), and sweet orange (Citrus sinensis) flowers. (R)-linalool is present in lavender (Lavandula officinalis), bay laurel (Laurus nobilis), and sweet basil (Ocimum basilicum), among others. Linalool is also found in plants from the Lamiaceae family (mint and other herbs), Lauraceae (laurels, cinnamon, rosewood), Cinnamomum tamala, Solidago Meyen, Artemisia vulgaris (mugwort), Humulus lupulus. Linalool is also one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Like the majority of monoterpenes, linalool starts with the condensation of dimethylallyl diphosphate (DMAPP) and isopentenyl diphosphate (IPP) to form geranyl pyrophosphate (GPP) (PMID:7640522 ). Linalool is then synthesized with the aid of linalool synthase (LIS) (PMID:12572612 ). Linalool has a citrus, floral, rose, woody aroma and a citrus, orange, waxy taste. Linalool is found in a few different foods and spices, such as spearmints, corianders, common thymes, limes, grapes, lemons, grapefruit, oranges, pineapples, blackcurrants, basil, and common oregano. This could make, Linalool a potential biomarker for the consumption of these foods. Linalool is also synthesized, de novo, by yeast (C. cerevisiae) and may contribute to the floral tones found in some wines (PMID:15668008 ). Linalool is a monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. It has a role as a plant metabolite, a volatile oil component, an antimicrobial agent and a fragrance. It is a tertiary alcohol and a monoterpenoid. Linalool is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. 3,7-Dimethyl-1,6-octadien-3-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Cinnamon Leaf Oil (part of); Clary Sage Oil (part of); Cannabis sativa subsp. indica top (part of) ... View More ... A monoterpenoid that is octa-1,6-diene substituted by methyl groups at positions 3 and 7 and a hydroxy group at position 3. It has been isolated from plants like Ocimum canum. Flavouring agent. Widespread natural occurrence as the optically active and racemic forms in over 200 essential oilsand is) also present in numerous fruits. D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2]. Linalool is a natural monoterpene which is a competitive NMDA receptor antagonist. Linalool is orally active and crosses the blood-brain barrier. Linalool has anticancer, antibacterial, anti-inflammatory, neuroprotective, anxiolytic, antidepressant, anti-stress, cardioprotective, hepatoprotective, nephroprotective and pulmonary protective activities[1][2][3][4][5]. Linalool is natural monoterpene in essential olis of coriander, acts as a competitive antagonist of Nmethyl d-aspartate (NMDA) receptor, with anti-tumor, anti-cardiotoxicity activity[1].Linalool is a PPARα ligand that reduces plasma TG levels and rewires the hepatic transcriptome and plasma metabolome[2].
Carnosic_acid
Carnosic acid is an abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. It has a role as an antineoplastic agent, an antioxidant, a HIV protease inhibitor, an angiogenesis modulating agent, an apoptosis inducer, a plant metabolite, an anti-inflammatory agent and a food preservative. It is an abietane diterpenoid, a carbotricyclic compound, a member of catechols and a monocarboxylic acid. It is a conjugate acid of a carnosate. Carnosic acid is a natural product found in Salvia tomentosa, Illicium verum, and other organisms with data available. See also: Rosemary (part of). An abietane diterpenoid that is abieta-8,11,13-triene substituted by hydroxy groups at positions 11 and 12 and a carboxy group at position 20. It is isolated from rosemary (Rosmarinus officinalis) and common sage (Salvia officinalis) and exhibits anti-angiogenic, antineoplastic, antioxidant and anti-HIV activity. D020011 - Protective Agents > D000975 - Antioxidants D000890 - Anti-Infective Agents
Betulin
Betulin is found in black elderberry. Betulin is a constituent of Corylus avellana (filbert) and Vicia faba. Betulin (lup-20(29)-ene-3 ,28-diol) is an abundant naturally occurring triterpene. It is commonly isolated from the bark of birch trees and forms up to 30\\\\\% of the dry weight of the extractive. The purpose of the compound in the bark is not known. It can be converted to betulinic acid (the alcohol group replaced by a carboxylic acid group), which is biologically more active than betulin itself. Chemically, betulin is a triterpenoid of lupane structure. It has a pentacyclic ring structure, and hydroxyl groups in positions C3 and C28 Betulin is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. It has a role as a metabolite, an antiviral agent, an analgesic, an anti-inflammatory agent and an antineoplastic agent. It is a pentacyclic triterpenoid and a diol. It derives from a hydride of a lupane. Betulin is a natural product found in Diospyros morrisiana, Euonymus carnosus, and other organisms with data available. A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-hydroxymethyl substituents. Constituent of Corylus avellana (filbert) and Vicia faba Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line. Betulin (Trochol), is a sterol regulatory element-binding protein (SREBP) inhibitor with an IC50 of 14.5 μM in K562 cell line.
Betulinic acid
Betulinic acid is a pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. It has a role as an EC 5.99.1.3 [DNA topoisomerase (ATP-hydrolysing)] inhibitor, an anti-HIV agent, an antimalarial, an anti-inflammatory agent, an antineoplastic agent and a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It derives from a hydride of a lupane. Betulinic Acid has been used in trials studying the treatment of Dysplastic Nevus Syndrome. Betulinic acid is a natural product found in Ficus auriculata, Gladiolus italicus, and other organisms with data available. Betulinic Acid is a pentacyclic lupane-type triterpene derivative of betulin (isolated from the bark of Betula alba, the common white birch) with antiinflammatory, anti-HIV and antineoplastic activities. Betulinic acid induces apoptosis through induction of changes in mitochondrial membrane potential, production of reactive oxygen species, and opening of mitochondrial permeability transition pores, resulting in the release of mitochondrial apogenic factors, activation of caspases, and DNA fragmentation. Although originally thought to exhibit specific cytotoxicity against melanoma cells, this agent has been found to be cytotoxic against non-melanoma tumor cell types including neuroectodermal and brain tumor cells. A lupane-type triterpene derivative of betulin which was originally isolated from BETULA or birch tree. It has anti-inflammatory, anti-HIV and antineoplastic activities. See also: Jujube fruit (part of); Paeonia lactiflora root (part of). Betulinic acid is found in abiyuch. Betulinic acid is a naturally occurring pentacyclic triterpenoid which has anti-retroviral, anti-malarial, and anti-inflammatory properties, as well as a more recently discovered potential as an anticancer agent, by inhibition of topoisomerase. It is found in the bark of several species of plants, principally the white birch (Betula pubescens) from which it gets its name, but also the Ber tree (Ziziphus mauritiana), the tropical carnivorous plants Triphyophyllum peltatum and Ancistrocladus heyneanus, Diospyros leucomelas a member of the persimmon family, Tetracera boiviniana, the jambul (Syzygium formosanum), flowering quince (Chaenomeles sinensis), Rosemary, and Pulsatilla chinensis. Controversial is a role of p53 in betulinic acid-induced apoptosis. Fulda suggested p53-independent mechanism of the apoptosis, basing on fact of no accumulation of wild-type p53 detected upon treatment with the betulinic acid, whereas wild-type p53 protein strongly increased after treatment with doxorubicin. The suggestion is supported by study of Raisova. On the other hand Rieber suggested that betulinic acid exerts its inhibitory effect on human metastatic melanoma partly by increasing p53 A pentacyclic triterpenoid that is lupane having a double bond at position 20(29) as well as 3beta-hydroxy and 28-carboxy substituents. It is found in the bark and other plant parts of several species of plants including Syzygium claviflorum. It exhibits anti-HIV, antimalarial, antineoplastic and anti-inflammatory properties. C308 - Immunotherapeutic Agent > C2139 - Immunostimulant Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Betulinic acid is a natural pentacyclic triterpenoid, acts as a eukaryotic topoisomerase I inhibitor, with an IC50 of 5 μM, and possesses anti-HIV, anti-malarial, anti-inflammatory and anti-tumor properties[1][2][3][4]. Epibetulinic acid exhibits potent inhibitory effects on NO and prostaglandin E2 (PGE2) production in mouse macrophages (RAW 264.7) stimulated with bacterial endotoxin with IC50s of 0.7 and 0.6 μM, respectively. Anti-inflammatory activity[1].
Oleanolic acid
Oleanolic acid is a pentacyclic triterpene, found in the non-glyceride fraction of olive pomace oil (Olive pomace oil, also known as "orujo" olive oil, is a blend of refined-pomace oil and virgin olive oil, fit for human consumption). Pentacyclic triterpenes are natural compounds which are widely distributed in plants. These natural products have been demonstrated to possess anti-inflammatory properties. Triterpenoids have been reported to possess antioxidant properties, since they prevent lipid peroxidation and suppress superoxide anion generation. The triterpenes have a history of medicinal use in many Asian countries. Oleanolic acid exhibits both pro- and anti-inflammatory properties depending on chemical structure and dose and may be useful in modulating the immune response; further studies are required to confirm the immunomodulatory behaviour of this triterpenoid, and characterise the mechanisms underlying the biphasic nature of some aspects of the inflammatory response. Oleanolic acid is a ubiquitous triterpenoid in plant kingdom, medicinal herbs, and is an integral part of the human diet. During the last decade over 700 research articles have been published on triterpenoids research, reflecting tremendous interest and progress in our understanding of these compounds. This included the isolation and purification of these tritepernoids from various plants and herbs, the chemical modifications to make more effective and water soluble derivatives, the pharmacological research on their beneficial effects, the toxicity studies, and the clinical use of these triterpenoids in various diseases including anticancer chemotherapies. (PMID:17292619, 15522132, 15994040). Oleanolic acid is a pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. It has a role as a plant metabolite. It is a pentacyclic triterpenoid and a hydroxy monocarboxylic acid. It is a conjugate acid of an oleanolate. It derives from a hydride of an oleanane. Oleanolic acid is a natural product found in Ophiopogon japonicus, Freziera, and other organisms with data available. A pentacyclic triterpene that occurs widely in many PLANTS as the free acid or the aglycone for many SAPONINS. It is biosynthesized from lupane. It can rearrange to the isomer, ursolic acid, or be oxidized to taraxasterol and amyrin. See also: Holy basil leaf (part of); Jujube fruit (part of); Paeonia lactiflora root (part of) ... View More ... Occurs as glycosides in cloves (Syzygium aromaticum), sugar beet (Beta vulgaris), olive leaves, etc. Very widely distributed aglycone A pentacyclic triterpenoid that is olean-12-en-28-oic acid substituted by a beta-hydroxy group at position 3. [Raw Data] CBA90_Oleanolic-acid_neg_50eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_20eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_10eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_30eV.txt [Raw Data] CBA90_Oleanolic-acid_neg_40eV.txt Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities. Oleanolic acid (Caryophyllin) is a natural compound from plants with anti-tumor activities.
Acetyl oleanolic acid
3-O-Acetyloleanolic acid is a natural product found in Diospyros eriantha, Mussaenda macrophylla, and other organisms with data available.
beta-Elemene
(-)-beta-elemene is the (-)-enantiomer of beta-elemene that has (1S,2S,4R)-configuration. It has a role as an antineoplastic agent. beta-Elemene is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. Beta-elemene is one of the isomers of elemene, a lipid soluble sesquiterpene and the active component isolated from the Chinese medicinal herb Rhizoma zedoariae with potential antineoplastic and chemopreventive activities. Although the exact mechanism of action through which beta-elemene exerts its effect has yet to be fully elucidated, this agent appears to induce apoptosis through different mechanisms of action and induces cell cycle arrest at different stages based on the tumor cell type involved. Beta-elemene may sensitize cancer cells to other chemotherapeutic agents. See also: Cannabis sativa subsp. indica top (part of). Beta-elemene, also known as B-elemen or 2,4-diisopropenyl-1-methyl-1-vinylcyclohexane, is a member of the class of compounds known as elemane sesquiterpenoids. Elemane sesquiterpenoids are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. Beta-elemene is a fresh, herbal, and waxy tasting compound and can be found in a number of food items such as lovage, anise, spearmint, and orange mint, which makes beta-elemene a potential biomarker for the consumption of these food products. Beta-elemene can be found primarily in saliva. beta-Elemene belongs to the class of organic compounds known as elemane sesquiterpenoids. These are sesquiterpenoids with a structure based on the elemane skeleton. Elemane is a monocyclic compound consisting of a cyclohexane ring substituted with a methyl group, an ethyl group, and two 1-methylethyl groups at the 1-, 1-, 2-, and 4-position, respectively. beta-Elemene can be found in herbs, spices, and root vegetables, which makes beta-elemene a potential biomarker for the consumption of these food products. It is a constituent of sweet flag, juniper oils, and Mentha species. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis. β-Elemene ((-)-β-Elemene; Levo-β-elemene) is isolated from natural plant Curcuma aromatica with an antitumor activity. β-Elemene can induce cell apoptosis.
(-)-Sabinene
Sabinene (CAS: 3387-41-5) belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, sabinene is considered to be an isoprenoid lipid molecule. Sabinene is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. (-)-Sabinene is found in herbs and spices and is a constituent of Laurus nobilis (bay laurel). Constituent of Laurus nobilis (bay laurel) and some other plants. (-)-4(10)-Thujene is found in sweet bay and herbs and spices. Sabinene is a thujene that is a bicyclic monoterpene isolated from the essential oils of various plant species. It has a role as a plant metabolite. Black pepper allergenic extract is used in allergenic testing. Laurus nobilis allergenic extract is used in allergenic testing. Nutmeg allergenic extract is used in allergenic testing. Sabinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Carrot Seed Oil is the oil extracted from the seeds of Daucus carota. Carrot seed oil is primarily used in skin treatment preparations. Acquisition and generation of the data is financially supported in part by CREST/JST. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2]. Sabinene is an naturally occurring bicyclic monoterpene which can be used as flavorings, perfume additives, fine chemicals, and advanced biofuels. Sabinene is also an orally active compound to attenuates skeletal muscle atrophy and regulates ROS-mediated MAPK/MuRF-1 pathways[1][2].
(-)-3-Isothujone
(-)-3-Isothujone is found in alcoholic beverages. Ingredient of absinthe. Presence in food and beverages regulated by legislation.Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia (-)-alpha-thujone is the (1S,4R,5R)-stereoisomer of alpha-thujone. It is an enantiomer of a (+)-alpha-thujone. alpha-Thujone is a natural product found in Xylopia sericea, Rhododendron mucronulatum, and other organisms with data available. See also: Artemisia absinthium whole (part of). A thujane monoterpenoid that is thujane substituted by an oxo group at position 3. Ingredient of absinthe. Presence in food and beverages regulated by legislation α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
D-Citronellol
Citronellol is formally classified as alkylalcohol although it is biochemically a monoterpenoid as it is synthesized from isoprene units. Citronellol is a neutral compound. It is a naturally occurring organic compound found in cannabis plants (PMID:6991645 ). Citronellol occurs in many essential oils as either ‚Äì or + enantiomers. -Citronellol is found in the oils of rose (18-55\\\\\\%) and Pelargonium geraniums while + citronellol is found in citronella oils extracted from the leaves and stems of Cymbopogon nardus or citronella grass. Citronellol has a citrus, floral, and geranium taste with a floral¬†leathery¬†waxy¬†rose¬†citrus odor ( Ref:DOI ). It is used in perfumery to add scents to soaps and incense. It is an insect repellent that repels mosquitos at short distances (PMID:2862274 ). Citronellol is found in highest concentrations in gingers, sweet basils, and winter savories and in lower concentrations in highbush blueberries, bilberries, and cardamoms. Citronellol has also been detected in blackcurrants, fennels, evergreen blackberries, herbs and spices, and nutmegs making citronellol a potential biomarker for the consumption of these foods. Citronellol has promising pharmacological activities (PMID:30453001 ) against human lung cancer (PMID:31280209 ), against induced rat breast cancer (PMID:31313341 ), has antifungal activity against Candida species (PMID:32150884 ) and has anti-hypertensive properties (PMID:26872991 ). (R)-(+)-citronellol is a citronellol that is oct-6-ene substituted by a hydroxy group at position 1 and methyl groups at positions 3 and 7 (the 3R-enantiomer). It is an enantiomer of a (S)-(-)-citronellol. D-Citronellol is a natural product found in Azadirachta indica, Saxifraga stolonifera, and other organisms with data available. See also: beta-CITRONELLOL, (R)-; GERANIOL (component of); beta-CITRONELLOL, (R)-; GERANIOL; LINALOOL, (+/-)- (component of) ... View More ... Constituent of black cumin (Nigella sativa) seeds. A common constituent of plant oils, especies in the Rutaceae. D-Citronellol is found in herbs and spices. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. (R)-Citronellol (D-Citronellol) is an alcoholic monoterpene found in geranium essential oil. (R)-Citronellol inhibits degranulation of mast cells and does not affect caffeine bitterness perception. (R)-Citronellol can be used in decorative cosmetics, toiletries as well as in non-cosmetic products[1][2][3]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1]. Citronellol ((±)-Citronellol) is a monoterpene Pelargonium graveolens. Citronellol ((±)-Citronellol) induces necroptosis of cancer cell via up-regulating TNF-α, RIP1/RIP3 activities, down-regulating caspase-3/caspase-8 activities and increasing ROS (reactive oxygen species) accumulation[1].
Zingiberene
Zingiberene is 2-Methylcyclohexa-1,3-diene in which a hydrogen at the 5 position is substituted (R configuration) by a 6-methyl-hept-5-en-2-yl group (S configuration). It is a sesquiterpene found in the dried rhizomes of Indonesian ginger, Zingiber officinale. It is a sesquiterpene and a cyclohexadiene. It is an enantiomer of an ent-zingiberene. Zingiberene is a natural product found in Chaerophyllum azoricum, Helichrysum odoratissimum, and other organisms with data available. Constituent of ginger oiland is) also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria). Zingiberene is found in many foods, some of which are cloves, pepper (spice), ginger, and turmeric. Zingiberene is found in anise. Zingiberene is a constituent of ginger oil. Also from wild thyme (Thymus serpyllum), long pepper (Piper longum) and kua (Curcuma zedoaria)
Polylimonene
Dipentene appears as a colorless liquid with an odor of lemon. Flash point 113 °F. Density about 7.2 lb /gal and insoluble in water. Hence floats on water. Vapors heavier than air. Used as a solvent for rosin, waxes, rubber; as a dispersing agent for oils, resins, paints, lacquers, varnishes, and in floor waxes and furniture polishes. Limonene is a monoterpene that is cyclohex-1-ene substituted by a methyl group at position 1 and a prop-1-en-2-yl group at position 4 respectively. It has a role as a human metabolite. It is a cycloalkene and a p-menthadiene. Limonene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. Limonene, (+/-)- is a racemic mixture of limonene, a natural cyclic monoterpene and major component of the oil extracted from citrus rind with chemo-preventive and antitumor activities. The metabolites of DL-limonene, perillic acid, dihydroperillic acid, uroterpenol and limonene 1,2-diol are suggested to inhibit tumor growth through inhibition of p21-dependent signaling, induce apoptosis via the induction of the transforming growth factor beta-signaling pathway, inhibit post-translational modification of signal transduction proteins, result in G1 cell cycle arrest as well as cause differential expression of cell cycle- and apoptosis-related genes. Limonene is a metabolite found in or produced by Saccharomyces cerevisiae. A naturally-occurring class of MONOTERPENES which occur as a clear colorless liquid at room temperature. Limonene is the major component in the oil of oranges which has many uses, including as flavor and fragrance. It is recognized as safe in food by the Food and Drug Administration (FDA). See also: Cannabis sativa subsp. indica top (part of); Larrea tridentata whole (part of). Constituent of many essential oils. (±)-Limonene is found in many foods, some of which are common oregano, nutmeg, herbs and spices, and summer savory. Dipentene is found in carrot. Dipentene is a constituent of many essential oils
(-)-beta-Pinene
(-)-beta-pinene is the (1S,5S)-enantiomer of beta-pinene. It is an enantiomer of a (+)-beta-pinene. (-)-beta-Pinene is a natural product found in Curcuma amada, Molopospermum peloponnesiacum, and other organisms with data available. Flavouring ingredient. (-)-beta-Pinene is found in many foods, some of which are almond, hyssop, sweet bay, and common sage. (-)-beta-Pinene is found in almond. (-)-beta-Pinene is a flavouring ingredient. The (1S,5S)-enantiomer of beta-pinene. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2]. β-Pinene ((-)-β-Pinene), a major component of turpentine, inhibit infectious bronchitis virus (IBV) with an IC50 of 1.32 mM. β-Pinene presents antimicrobial activity[1][2].
alpha-Tocopherol
Alpha-tocopherol is a pale yellow, viscous liquid. (NTP, 1992) (R,R,R)-alpha-tocopherol is an alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. It has a role as an antioxidant, a nutraceutical, an antiatherogenic agent, an EC 2.7.11.13 (protein kinase C) inhibitor, an anticoagulant, an immunomodulator, an antiviral agent, a micronutrient, an algal metabolite and a plant metabolite. It is an enantiomer of a (S,S,S)-alpha-tocopherol. In 1922, vitamin E was demonstrated to be an essential nutrient. Vitamin E is a term used to describe 8 different fat soluble tocopherols and tocotrienols, alpha-tocopherol being the most biologically active. Vitamin E acts as an antioxidant, protecting cell membranes from oxidative damage. The antioxidant effects are currently being researched for use in the treatment of diseases causing bone loss, cardiovascular diseases, diabetes mellitus and associated comorbidities, eye diseases, inflammatory diseases (including skin conditions), lipid disorders, neurological diseases, and radiation damage. Though this research is so far inconclusive, vitamin E remains a popular supplement and is generally considered safe by the FDA. Vitamin E is a natural product found in Monteverdia ilicifolia, Calea jamaicensis, and other organisms with data available. Alpha-Tocopherol is the orally bioavailable alpha form of the naturally-occurring fat-soluble vitamin E, with potent antioxidant and cytoprotective activities. Upon administration, alpha-tocopherol neutralizes free radicals, thereby protecting tissues and organs from oxidative damage. Alpha-tocopherol gets incorporated into biological membranes, prevents protein oxidation and inhibits lipid peroxidation, thereby maintaining cell membrane integrity and protecting the cell against damage. In addition, alpha-tocopherol inhibits the activity of protein kinase C (PKC) and PKC-mediated pathways. Alpha-tocopherol also modulates the expression of various genes, plays a key role in neurological function, inhibits platelet aggregation and enhances vasodilation. Compared with other forms of tocopherol, alpha-tocopherol is the most biologically active form and is the form that is preferentially absorbed and retained in the body. A generic descriptor for all tocopherols and tocotrienols that exhibit alpha-tocopherol activity. By virtue of the phenolic hydrogen on the 2H-1-benzopyran-6-ol nucleus, these compounds exhibit varying degree of antioxidant activity, depending on the site and number of methyl groups and the type of isoprenoids. See also: Alpha-Tocopherol Acetate (is active moiety of); Tocopherol (related); Vitamin E (related) ... View More ... alpha-Tocopherol is traditionally recognized as the most active form of vitamin E in humans and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha-Tocopherol. Natural vitamin E exists in eight different forms or isomers: four tocopherols and four tocotrienols. In foods, the most abundant sources of vitamin E are vegetable oils such as palm oil, sunflower, corn, soybean, and olive oil. Nuts, sunflower seeds, and wheat germ are also good sources. Constituent of many vegetable oils such as soya and sunflower oils. Dietary supplement and nutrient. Nutriceutical with anticancer and antioxidant props. Added to fats and oils to prevent rancidity. The naturally-occurring tocopherol is a single stereoisomer; synthetic forms are a mixture of all eight possible isomers An alpha-tocopherol that has R,R,R configuration. The naturally occurring stereoisomer of alpha-tocopherol, it is found particularly in sunflower and olive oils. α-Tocopherol (alpha-tocopherol) is a type of vitamin E. Its E number is "E307". Vitamin E exists in eight different forms, four tocopherols and four tocotrienols. All feature a chromane ring, with a hydroxyl group that can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. Compared to the others, α-tocopherol is preferentially absorbed and accumulated in humans. Vitamin E is found in a variety of tissues, being lipid-soluble, and taken up by the body in a wide variety of ways. The most prevalent form, α-tocopherol, is involved in molecular, cellular, biochemical processes closely related to overall lipoprotein and lipid homeostasis. Ongoing research is believed to be "critical for manipulation of vitamin E homeostasis in a variety of oxidative stress-related disease conditions in humans."[2] One of these disease conditions is the α-tocopherol role in the use by malaria parasites to protect themselves from the highly oxidative environment in erythrocytes.[3] DL-α-Tocopherol. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=16826-11-2 (retrieved 2024-06-29) (CAS RN: 10191-41-0). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. DL-alpha-Tocopherol is a synthetic vitamin E, with antioxidation effect. DL-alpha-Tocopherol protects human skin fibroblasts against the cytotoxic effect of UVB[1]. rel-α-Vitamin E (rel-D-α-Tocopherol) is a vitamin with antioxidant properties and also a mixture[1]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2]. α-Vitamin E ((+)-α-Tocopherol), a naturally occurring vitamin E form, is a potent antioxidant[1][2].
5-Isopropyl-2-methylphenol
5-Isopropyl-2-methylphenol, also known as 2-hydroxy-p-cymene or 2-p-cymenol, belongs to the class of organic compounds known as aromatic monoterpenoids. These are monoterpenoids containing at least one aromatic ring. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. 5-Isopropyl-2-methylphenol is a very hydrophobic molecule, practically insoluble in water, but fairly soluble in organic solvents. Thus, 5-Isopropyl-2-methylphenol is considered to be an isoprenoid lipid molecule. Thymol is found in the essential oil of thyme and in the essential oils of several different plants. It can be extracted from Thymus vulgaris (common thyme), Ajwain and various other kinds of plants as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. Thymol also provides the distinctive, strong flavor of the culinary herb thyme, also produced from T. vulgaris. Thymol has also been identified as a volatile compound found in cannabis samples obtained from police seizures (PMID:26657499 ). Carvacrol is a phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). It has a role as a volatile oil component, a flavouring agent, an antimicrobial agent, an agrochemical and a TRPA1 channel agonist. It is a member of phenols, a p-menthane monoterpenoid and a botanical anti-fungal agent. It derives from a hydride of a p-cymene. Carvacrol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. Carvacrol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Oregano Leaf Oil (part of). A phenol that is a natural monoterpene derivative of cymene. An inhibitor of bacterial growth, it is used as a food additive. Potent activator of the human ion channels transient receptor potential V3 (TRPV3) and A1 (TRPA1). Constituent of many essential oils. Especies found in the Labiatae. Thyme oil (=70\\\\%) and Origanum oil (=80\\\\%) are rich sources. Flavouring ingredient COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1]. Carvacrol is a monoterpenoid phenol isolated from Thymus mongolicus Ronn., with antioxidant, anti-inflammatory and anticancer properties. Carvacrol causes cell cycle arrest in G0/G1, downregulates Notch-1, and Jagged-1, and induces apoptosis[1].
beta-Myrcene
7-Methyl-3-methylene-1,6-octadiene, also known as beta-Myrcene or myrcene is an acyclic monoterpene. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids. beta-Myrcene is a significant component of the essential oil of several plants, including allspice, bay, cannabis, hops, houttuynia, lemon grass, mango, myrcia, verbena, west indian bay tree, and cardamom. It is also the main component of wild thyme, the leaves of which contain up to 40\\\\% by weight of myrcene. Industrially, it is produced mainly semi-synthetically from myrcia, from which it gets its name. Myrcene has been detected as a volatile component in cannabis plant samples (PMID:26657499 ) and its essential oils (PMID:6991645 ). beta-Myrcene is the most abundant monoterpene in Cannabis and it has analgesic, anti-inflammatory, antibiotic, and antimutagenic activities. beta-Myrcene is a flavouring agent and it is used in the perfumery industry. It has a pleasant odor but is rarely used directly. It is a key intermediate in the production of several fragrances such as menthol, citral, citronellol, citronellal, geraniol, nerol, and linalool. Myrcene, [liquid] appears as a yellow oily liquid with a pleasant odor. Flash point below 200 °F. Insoluble in water and less dense than water. Beta-myrcene is a monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. It has a role as a plant metabolite, an anti-inflammatory agent, an anabolic agent, a fragrance, a flavouring agent and a volatile oil component. Myrcene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. 7-Methyl-3-methylene-1,6-octadiene is found in allspice. 7-Methyl-3-methylene-1,6-octadiene is found in many essential oils, e.g. hop oil. 7-Methyl-3-methylene-1,6-octadiene is a flavouring agent. Myrcene is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Caraway Oil (part of); Mandarin oil (part of); Juniper Berry Oil (part of) ... View More ... A monoterpene that is octa-1,6-diene bearing methylene and methyl substituents at positions 3 and 7 respectively. Found in many essential oils, e.g. hop oil. Flavouring agent Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2]. Myrcene (β-Myrcene), an aromatic volatile compound, suppresses TNFα-induced NF-κB activity. Myrcene has anti-invasive effect[1][2].
(2S,4R)-1,7,7-Trimethylbicyclo[2.2.1]heptan-2-ol
Borneol appears as a white colored lump-solid with a sharp camphor-like odor. Burns readily. Slightly denser than water and insoluble in water. Used to make perfumes. Borneol is a bornane monoterpenoid that is 1,7,7-trimethylbicyclo[2.2.1]heptane substituted by a hydroxy group at position 2. It has a role as a volatile oil component and a metabolite. Isoborneol is a natural product found in Xylopia sericea, Eupatorium capillifolium, and other organisms with data available. Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents. 2-Bornanol is found in turmeric. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].
Pulegone
A p-menthane monoterpenoid that is cyclohexan-1-one substituted by a methyl group at position 5 and a propan-2-ylidene group at position 2. Occurs in oils of Mentha subspecies, Hedeoma pulegioides and many other essential oils. Fragrance and flavour ingredient. (R)-p-Menth-4(8)-en-3-one is found in many foods, some of which are blackcurrant, pepper (c. frutescens), spearmint, and red bell pepper. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].
Amyrin
Beta-amyrin is a pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. It has a role as a plant metabolite and an Aspergillus metabolite. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an oleanane. beta-Amyrin is a natural product found in Ficus pertusa, Ficus septica, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Centaurium erythraea whole (part of). A pentacyclic triterpenoid that is oleanane substituted at the 3beta-position by a hydroxy group and containing a double bond between positions 12 and 13. It is one of the most commonly occurring triterpenoids in higher plants. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1]. β-Amyrin, an ingredient of Celastrus hindsii, blocks amyloid β (Aβ)-induced long-term potentiation (LTP) impairment. β-amyrin is a promising candidate of treatment for AD[1].
Caryophyllene alpha-oxide
Caryophyllene oxide is an epoxide. It has a role as a metabolite.
Caryophyllene oxide is a natural product found in Xylopia emarginata, Eupatorium altissimum, and other organisms with data available.
See also: Cannabis sativa subsp. indica top (part of).
Caryophyllene alpha-oxide is a minor produced of epoxidn. of
Ricinoleic acid
Ricinoleic acid is found in corn. Ricinoleic acid occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea) Ricinoleic acid (12-hydroxy-9-cis-octadecenoic acid) is an unsaturated omega-9 fatty acid that naturally occurs in mature Castor plant (Ricinus communis L., Euphorbiaceae) seeds or in sclerotium of ergot (Claviceps purpurea Tul., Clavicipitaceae). About 90\\% of the fatty acid content in castor oil is the triglyceride formed from ricinoleic acid. Ricinoleic acid is manufactured for industries by saponification or fractional distillation of hydrolyzed castor oil. The zinc salt is used in personal care products, such as deodorants Ricinoleic acid is a (9Z)-12-hydroxyoctadec-9-enoic acid in which the 12-hydroxy group has R-configuration.. It is a conjugate acid of a ricinoleate. Ricinoleic acid is a natural product found in Cephalocroton cordofanus, Crotalaria retusa, and other organisms with data available. See also: Polyglyceryl-6 polyricinoleate (monomer of); Polyglyceryl-4 polyricinoleate (monomer of); Polyglyceryl-5 polyricinoleate (monomer of) ... View More ... CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5632; ORIGINAL_PRECURSOR_SCAN_NO 5630 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5657; ORIGINAL_PRECURSOR_SCAN_NO 5655 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5730; ORIGINAL_PRECURSOR_SCAN_NO 5728 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5664 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5630; ORIGINAL_PRECURSOR_SCAN_NO 5629 CONFIDENCE standard compound; INTERNAL_ID 219; DATASET 20200303_ENTACT_RP_MIX505; DATA_PROCESSING MERGING RMBmix ver. 0.2.7; DATA_PROCESSING PRESCREENING Shinyscreen ver. 0.8.0; ORIGINAL_ACQUISITION_NO 5665; ORIGINAL_PRECURSOR_SCAN_NO 5662 Occurs in castor oil and other oils e.g. grape and ergot (Claviceps purpurea)
Cirsimaritin
Cirsimaritin, also known as 4,5-dihydroxy-6,7-dimethoxyflavone or scrophulein, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, cirsimaritin is considered to be a flavonoid lipid molecule. Cirsimaritin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Cirsimaritin can be found in a number of food items such as italian oregano, lemon verbena, winter savory, and rosemary, which makes cirsimaritin a potential biomarker for the consumption of these food products.
Verbinone
Verbenone, also known as verbenone, (1r)-isomer, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Verbenone is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Verbenone is a camphor, celery, and menthol tasting compound and can be found in a number of food items such as spearmint, cabbage, white cabbage, and rosemary, which makes verbenone a potential biomarker for the consumption of these food products. Verbenone is a natural organic compound classified as a terpene that is found naturally in a variety of plants. The chemical has a pleasant characteristic odor. Besides being a natural constituent of plants, it and its analogs are insect pheromones. In particular, verbenone when formulated in a long-lasting matrix has an important role in the control of bark beetles such as the mountain pine beetle and the Southern pine bark beetle . 4,6,6-trimethylbicyclo[3.1.1]hept-3-en-2-one is a carbobicyclic compound that is bicyclo[3.1.1]heptane which is substituted by an oxo group at position 2 and by methyl groups at positions 4, 6 and 6, and which contains a double bond between positions 3 and 4. It is a carbobicyclic compound, a cyclic ketone and an enone. Verbenone is a natural product found in Eucalyptus fasciculosa, Eucalyptus intertexta, and other organisms with data available. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2]. Verbenone ((-)-Verbenone) is a natural terpene in leaves of the tree, Verbena officinalis[1]. Verbenone has anti-aggregation pheromone and interrupts the attraction of bark beetles to their aggregation pheromones[2].
Thymol
Thymol is a phenol that is a natural monoterpene derivative of cymene. It has a role as a volatile oil component. It is a member of phenols and a monoterpenoid. It derives from a hydride of a p-cymene. A phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. (Dorland, 28th ed) Thymol is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. A phenol obtained from thyme oil or other volatile oils used as a stabilizer in pharmaceutical preparations, and as an antiseptic (antibacterial or antifungal) agent. See also: Paeonia lactiflora root (part of); Elymus repens root (part of); Eucalyptol; thymol (component of) ... View More ... Thymol is a phenol obtained from thyme oil or other volatile oils. It is used as a stabilizer in pharmaceutic preparations. It has been used for its antiseptic, antibacterial, and antifungal actions, and was formerly used as a vermifuge. Thymol is a monoterpene phenol derivative of cymene, C10H13OH, isomeric with carvacrol, found in oil of thyme, and extracted as a white crystalline substance of a pleasant aromatic odor and strong antiseptic properties. It is also called "hydroxy cymene". In a 1994 report released by five top cigarette companies, thymol is one of the 599 additives to cigarettes. Its use or purpose, however, is unknown, like most cigarette additives. Found in many essential oils. Especies found in the Labiatae. Rich sources are thyme oil, seed oil of Ptychotis ajowan and oils of horsemint (Monarda punctata) and Ocimum subspecies Flavouring ingredient C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents > D000935 - Antifungal Agents A phenol that is a natural monoterpene derivative of cymene. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1]. Thymol is the main monoterpene phenol occurring in essential oils isolated from plants belonging to the Lamiaceae family, and other plants such as those belonging to the Verbenaceae, Scrophulariaceae, Ranunculaceae and Apiaceae families. Thymol has antioxidant, anti-inflammatory, antibacterial and antifungal effects[1].
beta-Geraniol
Geraniol is a colorless to pale yellow oily liquid with a sweet rose odor. (NTP, 1992) Geraniol is a monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. It has a role as a fragrance, an allergen, a volatile oil component and a plant metabolite. It is a monoterpenoid, a primary alcohol and a 3,7-dimethylocta-2,6-dien-1-ol. Geraniol is a monoterpene that is found within many essential oils of fruits, vegetables, and herbs including rose oil, citronella, lemongrass, lavender, and other aromatic plants. It is emitted from the flowers of many species of plant and is commonly used by the food, fragrance, and cosmetic industry. Geraniol has demonstrated a wide spectrum of pharmacological activities including antimicrobial, anti-inflammatory, antioxidant, anti-cancer, and neuroprotective to name a few. Interestingly, geraniol has also been shown to sensitize tumour cells to commonly used chemotherapies including [DB00544] and [DB01248] and represents a promising cancer chemopreventive agent. Due to its anticancer effects, geraniol has been found to be effective against a broad range of cancers including breast, lung, colon, prostate, pancreatic, skin, liver, kidney and oral cancers. These pharmacologic effects are clinically important as geraniol is classified as generally-recognized-as-safe (GRAS) by the Flavor and Extract Manufacturers Association (FEMA) and the Food and Drug Administration (FDA) of the United States. Sensitivity to geraniol may be identified with a clinical patch test. Geraniol is a Standardized Chemical Allergen. The physiologic effect of geraniol is by means of Increased Histamine Release, and Cell-mediated Immunity. Geraniol is a natural product found in Xylopia sericea, Eupatorium cannabinum, and other organisms with data available. beta-Geraniol is found in almond. beta-Geraniol is found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. beta-Geraniol is a flavouring agent. Geraniol is a monoterpenoid and an alcohol. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type). It also occurs in small quantities in geranium, lemon, and many other essential oils. It has a rose-like odor and is commonly used in perfumes. It is used in flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. It is the isomer of nerol. (Wikipedia) beta-Geraniol belongs to the family of Monoterpenes. These are compounds contaning a chain of two isoprene units. Geraniol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Coriander Oil (part of); Java citronella oil (part of). beta-Geraniol, also known as (E)-nerol, the isomer of nerol (or geranyl alcohol, is a monoterpenoid alcohol. It belongs to the class of organic compounds known as acyclic monoterpenoids. These are monoterpenes that do not contain a cycle. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. beta-Geraniol is an isoprenoid lipid molecule that is very hydrophobic, practically insoluble in water, and relatively neutral. beta-Geraniol has a sweet, citrus, and floral taste. beta-Geraniol is found in highest concentrations in common grapes, black walnuts, and common thymes and in lower concentrations in cardamoms, common oregano, and gingers. beta-Geraniol has also been detected in lemon verbena, oval-leaf huckleberries, common pea, sweet cherries, and nopals. This could make beta-geraniol a potential biomarker for the consumption of these foods. It is found in as an alcohol and as its ester in many essential oils including geranium oil. It is the primary part of rose oil, palmarosa oil, and citronella oil (Java type) and occurs in small quantities in geranium, lemon, and many other essential oils. Geraniol is a monoterpenoid and an alcohol found in cannabis plants (PMID:6991645 ). Because it has a rose-like odor, it is commonly used in perfumes. It is used to create flavors such as peach, raspberry, grapefruit, red apple, plum, lime, orange, lemon, watermelon, pineapple, and blueberry. Geraniol is produced by the scent glands of honeybees to mark nectar-bearing flowers and locate the entrances to their hives (http//doi:10.1051/apido:19900403). Found in free state and as esters in many essential oils including geranium oil. Most prolific natural source is palmarosa oil. Flavouring agent A monoterpenoid consisting of two prenyl units linked head-to-tail and functionalised with a hydroxy group at its tail end. C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2]. Nerol is a constituent of neroli oil. Nerol Nerol triggers mitochondrial dysfunction and induces apoptosis via elevation of Ca2+ and ROS. Antifungal activity[1][2].
alpha-Humulene
alpha-Humulene, also known as alpha-caryophyllene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. Thus, alpha-humulene is considered to be an isoprenoid lipid molecule. alpha-Humulene is found in allspice. alpha-Humulene is a constituent of many essential oils including hops (Humulus lupulus) and cloves (Syzygium aromaticum). (1E,4E,8E)-alpha-humulene is the (1E,4E,8E)-isomer of alpha-humulene. Humulene is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. See also: Caryophyllene (related). α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1]. α-Humulene is a main constituent of Tanacetum vulgare L. (Asteraceae) essential oil with anti-inflammation (IC50=15±2 μg/mL). α-Humulene inhibits COX-2 and iNOS expression[1].
Epi-alpha-amyrin
Alpha-amyrin is a pentacyclic triterpenoid that is ursane which contains a double bond between positions 12 and 13 and in which the hydrogen at the 3beta position is substituted by a hydroxy group. It is a pentacyclic triterpenoid and a secondary alcohol. It derives from a hydride of an ursane. alpha-Amyrin is a natural product found in Ficus septica, Ficus virens, and other organisms with data available. See also: Calendula Officinalis Flower (part of); Viburnum opulus bark (part of); Eupatorium perfoliatum whole (part of) ... View More ... Carissol is found in beverages. Carissol is a constituent of Carissa carandas (karanda). Constituent of Carissa carandas (karanda). Carissol is found in beverages and fruits.
gamma-Cadinene
(-)-gamma-cadinene is a member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1R,4aS,8aS enantiomer). It has a role as a metabolite. It is a cadinene, a member of octahydronaphthalenes and a gamma-cadinene. It is an enantiomer of a (+)-gamma-cadinene. (-)-gamma-Cadinene is a natural product found in Xylopia sericea, Chromolaena odorata, and other organisms with data available. A member of the cadinene family of sesquiterpenes in which the isopropyl group is cis to the hydrogen at the adjacent bridgehead carbon (the 1R,4aS,8aS enantiomer). gamma-Cadinene is found in allspice. gamma-Cadinene is a constituent of citronella oil.
p-Menth-1-en-4-ol
p-Menth-1-en-4-ol, also known as terpinen-4-ol, 1-para-menthen-4-ol or p-Menth-1-en-4-ol or 4-carvomenthenol, is an isomer of terpineol. It belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. ±-Terpinene-4-ol is a hydrophobic, largely neutral molecule that is essentially insoluble in water. It has a peppery, spicy, musty, citrus odor and a cooling woody or spicy taste. ±-Terpinene-4-ol is widely used as a flavoring agent and as a masking agent in cosmetics. ±-Terpinene-4-ol is a natural product that can be found in a number of plants, such as allspice, anise, apple, basil, cardamom, cinnamon and Melaleuca alternifolia (also called tea tree) and is the main bioactive component of tea tree oil (PMID 22083482 ). ±-Terpinene-4-ol is also one of the monoterpenes found in cannabis plants (PMID:6991645 ). Terpinen-4-ol is a potent bactericidal agent that also possess antifungal properties. In particular, it has shown in vitro activity against Staphylococcus aureus and C. albicans (PMID:27275783 ). It has also been shown that combining this natural substance and conventional drugs may help treat resistant yeast and bacterial infections. Several studies have suggested that terpinen-4-ol induces antitumor effects by selectively causing necrotic cell death and cell-cycle arrest in melanoma cell lines, or by triggering caspase-dependent apoptosis in human melanoma cells (PMID:27275783 ). 4-terpineol is a terpineol that is 1-menthene carrying a hydroxy substituent at position 4. It has a role as a plant metabolite, an antibacterial agent, an antioxidant, an anti-inflammatory agent, an antiparasitic agent, an antineoplastic agent, an apoptosis inducer and a volatile oil component. It is a terpineol and a tertiary alcohol. Terpinen-4-ol is under investigation in clinical trial NCT01647217 (Demodex Blepharitis Treatment Study). 4-Carvomenthenol is a natural product found in Nepeta nepetella, Teucrium montanum, and other organisms with data available. Terpinen-4-ol is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Lavender Oil (part of); Juniper Berry Oil (part of); Peumus boldus leaf (part of). Flavouring ingredient. p-Menth-1-en-4-ol is found in many foods, some of which are star anise, spearmint, sweet basil, and black elderberry. A terpineol that is 1-menthene carrying a hydroxy substituent at position 4. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
alpha-Terpinene
Alpha-Terpinene is one of four isomers of terpinene (the other three being beta terpinene, gamma terpenine, and delta terpinine or terpimolene) that differ in the position of carbon-carbon double bonds. Alpha-Terpinene belongs to the class of organic compounds known as menthane monoterpenes. These are monoterpenes with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. alpha-Terpinene is a naturally occurring monoterpene found in allspice, cardamom, and marjoram. alpha-Terpinene is a constituent of many essential oils with oil from Litsea ceylanica being is a major source (20\\\\%) of it. alpha-Terpinene has been found in Citrus, Eucalyptus and Juniperus species, and cannabis plants (PMID:6991645 ). ±-Terpinene is a flavouring agent and is produced industrially by acid-catalyzed rearrangement of ±-pinene. It has perfume and flavoring properties but is mainly used to confer a pleasant odor to industrial fluids. Alpha-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. It has a role as a volatile oil component and a plant metabolite. It is a monoterpene and a cyclohexadiene. alpha-Terpinene is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. One of three isomeric monoterpenes differing in the positions of their two double bonds (beta- and gamma-terpinene being the others). In alpha-terpinene the double bonds are at the 1- and 3-positions of the p-menthane skeleton. Alpha-terpinene, also known as 1-isopropyl-4-methyl-1,3-cyclohexadiene or 1-methyl-4-(1-methylethyl)-1,3-cyclohexadiene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, alpha-terpinene is considered to be an isoprenoid lipid molecule. Alpha-terpinene is a camphoraceous, citrus, and herbal tasting compound and can be found in a number of food items such as summer savory, cabbage, pot marjoram, and wild celery, which makes alpha-terpinene a potential biomarker for the consumption of these food products. Alpha-terpinene can be found primarily in saliva. Alpha-terpinene exists in all eukaryotes, ranging from yeast to humans. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4]. α-Terpinene (Terpilene) is a monoterpene found in the essential oils of a large variety of foods and aromatic plants such as Mentha piperita. α-Terpinene is active against Trypanosoma evansi and has the potential for trypanosomosis treatment. α-Terpinene has antioxidant and antifungal properties[1][2][3][4].
gamma-Terpinene
Gamma-terpinene is one of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. It has a role as an antioxidant, a plant metabolite, a volatile oil component and a human xenobiotic metabolite. It is a monoterpene and a cyclohexadiene. gamma-Terpinene is a natural product found in Teucrium montanum, Xylopia aromatica, and other organisms with data available. The terpinenes are three isomeric hydrocarbons that are classified as terpenes. Gamma-terpinene is one these three isomeric hydrocarbons. It is natural and has been isolated from a variety of plant sources (Wikipedia). It is a major component of essential oils made from Citrus Fruits and has strong antioxidant activity. It has a lemon odor and widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). See also: Lemon oil, cold pressed (part of); Coriander Oil (part of); Mandarin oil (part of). Gamma-terpinene is one of four isomeric monoterpenes (the other three being alpha terpinene, beta terpinene and delta terpinene). It is a naturally occurring terpinene and has been isolated from a variety of plant sources. It has the highest boiling point of the four known terpinene isomers. It is a major component of essential oils made from citrus fruits and has a strong antioxidant activity. It has a lemon-like or lime-like odor and is widely used in food, flavours, soaps, cosmetics, pharmaceutical, tabacco, confectionery and perfume industries (http://www.gyanflavoursexport.com). The other isomers of gamma-terpinene, such as alpha-terpinene and delta-terpinene, have been isolated from cardamom and marjoram oils while beta terpinene appears to have no natural source. One of three isomeric monoterpenes differing in the positions of their two double bonds (alpha- and beta-terpinene being the others). In gamma-terpinene the double bonds are at the 1- and 4-positions of the p-menthane skeleton. Constituent of many essential oils e.g. Citrus, Eucalyptus, Mentha, Pinus subspecies Ajowan seed oil (Carum copticum) is a major source γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1]. γ-Terpinene, a monoterpene, is an orally active antioxidant compound which can scavenge radicals directly. γ-Terpinene has potent antinociception activity[1].
(+)-alpha-Pinene
alpha-Pinene (CAS: 80-56-8) is an organic compound of the terpene class and is one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature. 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil (Wikipedia). alpha-Pinene is an organic compound of the terpene class, one of two isomers of pinene. It is found in the oils of many species of many coniferous trees, notably the pine. It is also found in the essential oil of rosemary (Rosmarinus officinalis). Both enantiomers are known in nature; 1S,5S- or (-)-alpha-pinene is more common in European pines, whereas the 1R,5R- or (+)-alpha-isomer is more common in North America. The racemic mixture is present in some oils such as eucalyptus oil. (+)-alpha-pinene is the (+)-enantiomer of alpha-pinene. It has a role as a plant metabolite and a human metabolite. It is an enantiomer of a (-)-alpha-pinene. (+)-alpha-Pinene is a natural product found in Juniperus drupacea, Eucalyptus deglupta, and other organisms with data available. The (+)-enantiomer of alpha-pinene. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2]. (1R)-α-Pinene is a volatile monoterpene with antimicrobial activities. (1R)-α-Pinene reduces Bacillus cereus population growth, and exhibits repellent effects[1][2].
Isorhamnetin
Isorhamnetin is the methylated metabolite of quercetin. Quercetin is an important dietary flavonoid with in vitro antioxidant activity. However, it is found in human plasma as conjugates with glucuronic acid, sulfate or methyl groups, with no significant amounts of free quercetin present. Isorhamnetin prevents endothelial cell injuries from oxidized LDL via inhibition of lectin-like ox-LDL receptor-1 upregulation, interference of ox-LDL-mediated intracellular signaling pathway (p38MAPK activation, NF-kappaB nuclear translocation, eNOS expression) and the antioxidant activity of isorhamnetin. Isorhamnetin prevents endothelial dysfunction, superoxide production, and overexpression of p47phox induced by angiotensin II. Isorhamnetin appears to be a potent drug against esophageal cancer due to its in vitro potential to not only inhibit proliferation but also induce apoptosis of Eca-109 cells. (PMID: 15493462, 17368593, 17374653, 16963021). Isorhamnetin is a monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. It has a role as an EC 1.14.18.1 (tyrosinase) inhibitor, an anticoagulant and a metabolite. It is a 7-hydroxyflavonol, a tetrahydroxyflavone and a monomethoxyflavone. It is functionally related to a quercetin. It is a conjugate acid of an isorhamnetin(1-). Isorhamnetin is a natural product found in Lotus ucrainicus, Strychnos pseudoquina, and other organisms with data available. Isorhamnetin is a metabolite found in or produced by Saccharomyces cerevisiae. See also: Peumus boldus leaf (part of). Widespread flavonol found especially in bee pollen, chives, corn poppy leaves, garden cress, fennel, hartwort, red onions, pears, dillweed, parsley and tarragon. Isorhamnetin is found in many foods, some of which are italian sweet red pepper, carrot, yellow wax bean, and lemon balm. A monomethoxyflavone that is quercetin in which the hydroxy group at position 3 is replaced by a methoxy group. Acquisition and generation of the data is financially supported in part by CREST/JST. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
Syringic acid
Syringic acid, also known as syringate or cedar acid, belongs to the class of organic compounds known as gallic acid and derivatives. Gallic acid and derivatives are compounds containing a 3,4,5-trihydroxybenzoic acid moiety. Outside of the human body, Syringic acid is found, on average, in the highest concentration within a few different foods, such as common walnuts, swiss chards, and olives and in a lower concentration in apples, tarragons, and peanuts. Syringic acid has also been detected, but not quantified in several different foods, such as sweet marjorams, silver lindens, bulgurs, annual wild rices, and barley. This could make syringic acid a potential biomarker for the consumption of these foods. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Research suggests that phenolics from wine may play a positive role against oxidation of low-density lipoprotein (LDL), which is a key step in the development of atherosclerosis. Syringic acid is a phenol present in some distilled alcohol beverages. It is also a product of microbial (gut) metabolism of anthocyanins and other polyphenols that have been consumed (in fruits and alcoholic beverages - PMID:18767860). Syringic acid is also a microbial metabolite that can be found in Bifidobacterium (PMID:24958563). Syringic acid is a dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. It has a role as a plant metabolite. It is a member of benzoic acids, a dimethoxybenzene and a member of phenols. It is functionally related to a gallic acid. It is a conjugate acid of a syringate. Syringic acid is a natural product found in Visnea mocanera, Pittosporum illicioides, and other organisms with data available. Syringic acid is a metabolite found in or produced by Saccharomyces cerevisiae. Present in various plants free and combined, e.g. principal phenolic constituent of soyabean meal (Glycine max) A dimethoxybenzene that is 3,5-dimethyl ether derivative of gallic acid. D019995 - Laboratory Chemicals > D007202 - Indicators and Reagents KEIO_ID S018 Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation. Syringic acid is correlated with high antioxidant activity and inhibition of LDL oxidation.
16-Hydroxyhexadecanoic acid
16-Hydroxyhexadecanoic acid, also known as 16-hydroxypalmitic acid, is a hydroxylated fatty acid where the terminal (omega) carbon has been hydroxylated. In animal tissues, a family of enzymes termed cytochromes P450s are involved in fatty acid oxidation, hydroxylating with high specificity at the energetically unfavourable terminal (omega) or omega-1 carbons. Hydroxy fatty acids primarily come from the consumption of plant products (vegetables or fruits) or cow’s milk. Omega hydroxy fatty acids are found in the structure of suberin, a lipid polyester present in plant cell walls, and of cutin, a lipid polyester which is a component of the plant cuticle. These apoplastic structures are important plant-environment interfaces that act as barriers limiting water and nutrient loss and protecting plants from radiation and pathogens. 16-Hydroxyhexadecanoic acid and 18-hydroxystearic acid are particularly abundant in cutin in the plant cuticle. 16-Hydroxyhexadecanoic acid has been proposed as a biomarker of beer consumption. 16-hydroxy-hexadecanoic acid, also known as 16-hydroxypalmitic acid or 16-oh 16:0, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 16-hydroxy-hexadecanoic acid is considered to be a fatty acid lipid molecule. 16-hydroxy-hexadecanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 16-hydroxy-hexadecanoic acid can be synthesized from hexadecanoic acid. 16-hydroxy-hexadecanoic acid is also a parent compound for other transformation products, including but not limited to, (3R)-3,16-dihydroxypalmitic acid, oscr#28, and 16-hydroxyhexadecanoyl-CoA. 16-hydroxy-hexadecanoic acid can be found in a number of food items such as other cereal product, hyacinth bean, red rice, and elliotts blueberry, which makes 16-hydroxy-hexadecanoic acid a potential biomarker for the consumption of these food products.
Caprylic acid
Caprylic acid is the common name for the eight-carbon straight-chain fatty acid known by the systematic name octanoic acid. It is found naturally in coconuts and breast milk. It is an oily liquid with a slightly unpleasant rancid taste that is minimally soluble in water. Caprylic acid is used commercially in the production of esters used in perfumery and also in the manufacture of dyes (Wikipedia). Caprylic acid can be found in numerous foods such as Prunus (Cherry, Plum), pineapple sages, black raspberries, and shallots. Caprylic acid is found to be associated with medium-chain acyl-CoA dehydrogenase deficiency, which is an inborn error of metabolism. Widespread in plant oils, free and as glyceridesand is also present in apple, banana, orange juice and peel, pineapple, cognac, calamus, blue cheeses, cheddar cheese, Swiss cheese, feta cheese and other cheeses. Flavouring agent, defoamer, lubricant, binder and antimicrobial preservative in cheese wraps KEIO_ID C037 Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes. Octanoic acid (Caprylic acid) is an oily liquid with a slightly unpleasant rancid taste and used commercially in the production of esters used in perfumery and also in the manufacture of dyes.
Caproic acid
Caproic acid, also known as hexanoic acid or C6:0, is a medium-chain fatty acid. Medium-chain fatty acids (MCFA) are fatty acids with aliphatic tails of 6 to 12 carbons, which can form medium-chain triglycerides. Caproic acid is a colourless oily liquid that smells like cheese with an overlying waxy or barnyard odor like that of goats or other barnyard animals. Its name comes from the Latin word capra, meaning "goat". Two other fatty acids are named after goats: caprylic acid (C8) and capric acid (C10). Along with caproic acid, they account for 15\\% of the fat in goats milk. Caproic acid is a fatty acid found naturally in various animal fats and oils. While generally more abundant in animals, caproic acid is found in all organisms ranging from bacteria to plants to animals. Caproic acid is one of the chemicals that gives the decomposing fleshy seed coat of the ginkgo fruit its characteristic unpleasant odor. It is also one of the components of vanilla and cheese. Industrially, the primary use of caproic acid is in the manufacture of its esters for use as artificial flavors and in the manufacture of hexyl derivatives, such as hexylphenols. Caproic acid has been associated with medium chain acyl-CoA dehydrogenase deficiency, which is an inborn error of metabolism. As a relatively volatile organic compound, caproic acid has been identified as a fecal biomarker of Clostridium difficile infection (PMID: 30986230). Present in apple, wine grapes, butter, licorice and cheeses, e.g. blue cheeses, Cheddar cheese, Swiss cheese, feta cheese, gruyere de comte cheese, etcand is) also present in a few essential oils and fruital aromas. Secondary product of butyric acid fermentation. Flavouring ingredient KEIO_ID C035
(+)-Camphor
Camphor, also known as (+)-camphor or (+)-bornan-2-one, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Within the cell, camphor is primarily located in the membrane (predicted from logP). Camphor is a waxy, flammable, white or transparent solid with a strong aroma. It is a terpenoid with the chemical formula C10H16O. It is found in many plants, such as in the wood of the camphor laurel (Cinnamomum camphora), a large evergreen tree found in Asia (particularly in Sumatra and Borneo islands, Indonesia) and also of the unrelated Kapur tree, a tall timber tree from the same region. It also occurs in some other related trees in the laurel family, notably Ocotea usambarensis and in the oil in rosemary leaves (Rosmarinus officinalis). The mint family contains 10 to 20\\\\\\\\% camphor, while camphorweed (Heterotheca) only contains some 5\\\\\\\\%. Camphor can also be synthetically produced from oil of turpentine. It is used for its scent, as an ingredient in cooking (mainly in India), as an embalming fluid, for medicinal purposes, and in religious ceremonies. A major source of camphor in Asia is camphor basil (the parent of African blue basil) (Wikipedia). (R)-camphor is the (R)- enantiomer of camphor. It is an enantiomer of a (S)-camphor. Camphor is a bicyclic monoterpene ketone found widely in plants, especially Cinnamomum camphora. It is used topically as a skin antipruritic and as an anti-infective agent. When ingested, camphor has a rapid onset of toxic effects, and camphorated oil is the product most often responsible for its toxicity. The FDA ruled that camphorated oil could not be marketed in the United States and that no product could contain a concentration higher than 11\\\\\\\\%. It appears in the list of drug products withdrawn or removed from the market for safety or effectiveness. However, camphor can be found in several nonprescription medications at lower concentrations. D-Camphor is a natural product found in Chromolaena odorata, Curcuma amada, and other organisms with data available. See also: Coriander Oil (part of). C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent C - Cardiovascular system > C01 - Cardiac therapy The (R)- enantiomer of camphor. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. (+)-Camphor is a food additive used medicinally as a preservative. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
Eugenol
Eugenol appears as clear colorless pale yellow or amber-colored liquid. Odor of cloves. Spicy pungent taste. (NTP, 1992) Eugenol is a phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. It has a role as an allergen, a human blood serum metabolite, a sensitiser, a volatile oil component, a flavouring agent, an EC 1.4.3.4 (monoamine oxidase) inhibitor, a radical scavenger, an antibacterial agent, an antineoplastic agent, an apoptosis inducer, an anaesthetic, an analgesic, a voltage-gated sodium channel blocker, a NF-kappaB inhibitor and an anti-inflammatory agent. It is a phenylpropanoid, a monomethoxybenzene, a member of phenols and an alkenylbenzene. It is functionally related to a guaiacol. Eugenol is a naturally occurring phenolic molecule found in several plants such as cinnamon, clove, and bay leaves. It has been used as a topical antiseptic as a counter-irritant and in dental preparations with zinc oxide for root canal sealing and pain control. Although not currently available in any FDA-approved products (including OTC), eugenol has been found to have anti-inflammatory, neuroprotective, antipyretic, antioxidant, antifungal and analgesic properties. Its exact mechanism of action is unknown, however, it has been shown to interfere with action potential conduction. There are a number of unapproved OTC products available containing eugenol that advertise its use for the treatment of toothache. Eugenol is a Standardized Chemical Allergen. The physiologic effect of eugenol is by means of Increased Histamine Release, and Cell-mediated Immunity. Eugenol, also called clove oil, is an aromatic oil extracted from cloves that is used widely as a flavoring for foods and teas and as an herbal oil used topically to treat toothache and more rarely to be taken orally to treat gastrointestinal and respiratory complaints. Eugenol in therapeutic doses has not been implicated in causing serum enzyme elevations or clinically apparent liver injury, but ingestions of high doses, as with an overdose, can cause severe liver injury. Eugenol is a natural product found in Dahlia sherffii, Elettaria cardamomum, and other organisms with data available. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. Eugenol is a member of the allylbenzene class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like odor. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). 4-Allyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. A cinnamate derivative of the shikimate pathway found in CLOVE OIL and other PLANTS. See also: Cinnamon (part of); Clove Oil (part of); Cinnamon Leaf Oil (part of) ... View More ... Eugenol is an allyl chain-substituted guaiacol. Eugenol is a member of the phenylpropanoids class of chemical compounds. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. It is slightly soluble in water and soluble in organic solvents. It has a pleasant, spicy, clove-like aroma. Eugenol is an allyl chain-substituted guaiacol, i.e. 2-methoxy-4-(2-propenyl)phenol. It is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil, nutmeg, cinnamon, and bay leaf. Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anaesthetic. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from petrochemicals or from by-products of paper manufacture (Wikipedia). Eugenol is used in perfumeries, flavorings, essential oils and in medicine as a local antiseptic and anesthetic. It is a key ingredient in Indonesian kretek (clove) cigarettes. It was used in the production of isoeugenol for the manufacture of vanillin, though most vanillin is now produced from phenol or from lignin. It is one of many compounds that is attractive to males of various species of orchid bees, who apparently gather the chemical to synthesize pheromones; it is commonly used as bait to attract and collect these bees for study. Eugenol has a very widespread occurrence in essential oils. Major component of clove oil. Also found in citrus and thyme oils. It is found in foods such as apple, apricot, banana and cherry fruits. Eugenol or 4-allyl-2-methoxyphenol is classified as a phenylpropanoid, formally derived from guaiacol, with an allyl chain positioned para to the hydroxy group. It is soluble in water, alcohol, chloroform, ether and oils. Eugenol is a neutral compound. It is biosynthesized from tyrosine. Eugenol is widely distributed in plants. It is a clear to pale yellow oily liquid extracted from clove oil, nutmeg, cinnamon, basil and bay leaf. It has a pleasant, spicy, clove-like odor with a spicy pungent taste. Eugenol is found in highest concentrations in cloves, allspices, and carrots and in lower concentrations in walnuts, ceylon cinnamons, and wild carrots. Eugenol has also been detected in shea tree, passion fruits, winged beans, fireweeds, and gingers, making it a potential biomarker for the consumption of these foods. Eugenol is used in perfumeries, flavorings and essential oils. It was first used for the manufacture of vanillin (https://doi.org/10.1021/ed054p776), though most vanillin is now produced from petrochemicals or from by-products of paper manufacture. Eugenol is hepatotoxic, meaning it may cause damage to the liver, if consumed in high doses. Eugenol has local antiseptic and anaesthetic properties (PMID:15089054 ; PMID:935250 ) and acts as positive allosteric modulators of the GABA-A receptor. It has high antioxidant, anti-proliferative, and anti-inflammatory activities with potential roles in alleviating and preventing cancer and inflammatory reactions (PMID:27771920 ). A phenylpropanoid formally derived from guaiacol with an allyl chain substituted para to the hydroxy group. It is a major component of clove essential oil, and exhibits antibacterial, analgesic and antioxidant properties. It has been widely used in dentistry to treat toothache and pulpitis. C78272 - Agent Affecting Nervous System > C245 - Anesthetic Agent D000890 - Anti-Infective Agents D012997 - Solvents [Raw Data] CB226_Eugenol_pos_10eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_20eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_40eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_50eV_CB000079.txt [Raw Data] CB226_Eugenol_pos_30eV_CB000079.txt Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation. Eugenol is an essential oil found in cloves with antibacterial, anthelmintic and antioxidant activity. Eugenol is shown to inhibit lipid peroxidation.
dinatin
Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
17a-Ethynylestradiol
Ethinyl estradiol. A semisynthetic alkylated estradiol with a 17-alpha-ethinyl substitution. It has high estrogenic potency when administered orally, and is often used as the estrogenic component in oral contraceptives. -- Pubchem; estradiol (17-beta estradiol) (also oestradiol) is a sex hormone. Labelled the "female" hormone but also present in males it represents the major estrogen in humans. Critical for sexual functioning, estradiol also supports bone growth. -- Wikipedia; One of the fascinating twists to mammalian sexual differentiation is that estradiol is one of the two active metabolites of testosterone in males (the other being dihydrotestosterone). estradiol cannot be transferred readily from the circulation into the brain. Since fetuses of both sexes are exposed to similarly high levels of maternal estradiol, it can play little role in prenatal sexual differentiation. However, testosterone enters the central nervous system more freely and significant amounts are aromatized to estradiol within the brain of most male mammals, including humans. There is now much evidence that the programming of adult male sexual behavior in "lower mammals," (such as mounting rather than lordosis behavior), is largely dependent on estradiol produced in the central nervous system during prenatal life and early infancy from testosterone. We do not yet know whether this process plays a minimal or significant part in human sexual behaviors. -- Wikipedia; A synthetic form of estradiol, called ethinyl estradiol is a major component of hormonal contraceptive devices. Combined oral contraceptives contain ethinyl estradiol and a progestin, which both contribute to the inhibition of GnRH, LH, and FSH. The inhibition of these hormones accounts for the ability of combined oral contraceptives or birth control pills to prevent ovulation and thus prevent pregnancy. Other types of hormonal birth control contain only progestins and no ethinyl estradiol. -- Wikipedia. A synthetic form of estradiol, called ethinyl estradiol is a major component of hormonal contraceptive devices. 17alpha-ethynylestradiol is found in many foods, some of which are common walnut, ginkgo nuts, allspice, and papaya. G - Genito urinary system and sex hormones > G03 - Sex hormones and modulators of the genital system > G03C - Estrogens > G03CA - Natural and semisynthetic estrogens, plain L - Antineoplastic and immunomodulating agents > L02 - Endocrine therapy > L02A - Hormones and related agents > L02AA - Estrogens D006730 - Hormones, Hormone Substitutes, and Hormone Antagonists > D006728 - Hormones > D004967 - Estrogens C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C1636 - Therapeutic Steroid Hormone C147908 - Hormone Therapy Agent > C548 - Therapeutic Hormone > C483 - Therapeutic Estrogen D012102 - Reproductive Control Agents > D003270 - Contraceptive Agents COVID info from COVID-19 Disease Map Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS Ethinylestradiol (Ethynyl estradiol) is a biologically active estrogen. Ethinylestradiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups. Ethinylestradiol (Ethynyl estradiol) is a biologically active estrogen. Ethinylestradiol is a click chemistry reagent, itcontains an Alkyne group and can undergo copper-catalyzed azide-alkyne cycloaddition (CuAAc) with molecules containing Azide groups.
Delta-Tocopherol
Tocopherol, or Vitamin E, is a fat-soluble vitamin in eight forms that is an important antioxidant. Vitamin E is often used in skin creams and lotions because it is believed to play a role in encouraging skin healing and reducing scarring after injuries such as burns. -- Wikipedia; Natural vitamin E exists in eight different forms or isomers, four tocopherols and four tocotrienols. All isomers have a chromanol ring, with a hydroxyl group which can donate a hydrogen atom to reduce free radicals and a hydrophobic side chain which allows for penetration into biological membranes. There is an alpha, beta, gamma and delta form of both the tocopherols and tocotrienols, determined by the number of methyl groups on the chromanol ring. Each form has its own biological activity, the measure of potency or functional use in the body. -- Wikipedia; Alpha-tocopherol is traditionally recognized as the most active form of vitamin E in humans, and is a powerful biological antioxidant. The measurement of "vitamin E" activity in international units (IU) was based on fertility enhancement by the prevention of spontaneous abortions in pregnant rats relative to alpha tocopherol. It increases naturally to about 150\\\\\% of normal in the maternal circulation during human pregnancies. 1 IU of vitamin E is defined as the biological equivalent of 0.667 milligrams of d-alpha-tocopherol, or of 1 milligram of dl-alpha-tocopherol acetate. The other isomers are slowly being recognized as research begins to elucidate their additional roles in the human body. Many naturopathic and orthomolecular medicine advocates suggest that vitamin E supplements contain at least 20\\\\\% by weight of the other natural vitamin E isomers. Commercially available blends of natural vitamin E include "mixed tocopherols" and "high gamma tocopherol" formulas. Also selenium, Coenzyme Q10, and ample vitamin C have been shown to be essential cofactors of natural tocopherols. -- Wikipedia; Synthetic vitamin E, usually marked as d,l-tocopherol or d,l tocopheryl acetate, with 50\\\\\% d-alpha tocopherol moiety and 50\\\\\% l-alpha-tocopherol moiety, as synthesized by an earlier process is now actually manufactured as all-racemic alpha tocopherol, with only about one alpha tocopherol molecule in 8 molecules as actual d-alpha tocpherol. The synthetic form is not as active as the natural alpha tocopherol form. The 1950s thalidomide disaster with numerous severe birth defects is a common example of d- vs l- epimer forms type problem with synthesized racemic mixtures. Information on any side effects of the synthetic vitamin E epimers is not readily available. Naturopathic and orthomolecular medicine advocates have long considered the synthetic vitamin E forms to be with little or no merit for cancer, circulatory and heart diseases. -- Wikipedia; Abetalipoproteinemia is a rare inherited disorder of fat metabolism that results in poor absorption of dietary fat and vitamin E. The vitamin E deficiency associated with this disease causes problems such as poor transmission of nerve impulses, muscle weakness, and degeneration of the retina that can cause blindness. Individuals with abetalipoproteinemia may be prescribed special vitamin E supplements by a physician to treat this disorder. -- Wikipedia; Recent studies also show that vitamin E acts as an effective free radical scavenger and can lower the incidence of lung cancer in smokers. The effects are opposite to that of the clinical trials based on administering carotenoid to male smokers, that resulted in increased risk of lung cancer. Hence vitamin E is an effective antagonist to the oxidative stress that is imposed by high carotenoids in certain patients. -- Wikipedia; A cataract is a condition of clouding of the tissue of the lens of the eye. They increase the risk of disability and blindness in aging adults. Antioxidants are being studied to determine whether they can help prevent or delay cataract growth. Observational studies have found that lens clarity, wh... Delta-Tocopherol is an isomer of Vitamin E. Delta-Tocopherol is an isomer of Vitamin E.
2-Phenylethyl acetate
2-Phenylethyl acetate, also known as 2-phenethyl acetic acid or benzylcarbinyl acetate, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethyl acetate is a sweet, floral, and fruity tasting compound. 2-Phenylethyl acetate is found, on average, in the highest concentration within ceylon cinnamons and cloves. 2-Phenylethyl acetate has also been detected, but not quantified, in several different foods, such as butternuts, eggplants, turmerics, radish (var.), and pili nuts. This could make 2-phenylethyl acetate a potential biomarker for the consumption of these foods. The acetate ester of 2-phenylethanol. Flavouring ingredient. 2-Phenylethyl acetate is found in many foods, some of which are acerola, prickly pear, summer grape, and sweet orange.
(S)-3-Octanol
Present in Mentha subspecies oils, sage, soybeans, porcini (Boletus edulis), wines and other foodstuffs. Flavouring agent. 3-Octanol is found in many foods, some of which are mushrooms, soy bean, rosemary, and alcoholic beverages. 3-Octanol is found in alcoholic beverages. 3-Octanol is present in Mentha species oils, sage, soybeans, porcini (Boletus edulis), wines and other foodstuffs. 3-Octanol is a flavouring agent
Octanol
1-Octanol, also known as octan-1-ol, is the organic compound with the molecular formula CH3(CH2)7OH. It is a fatty alcohol. Many other isomers are also known generically as octanols. Octanol is mainly produced industrially by the oligomerization of ethylene using triethylaluminium followed by oxidation of the alkylaluminium products. This route is known as the Ziegler alcohol synthesis. Octanol also occurs naturally in the form of esters in some essential oils. Octanol and water are immiscible. The distribution of a compound between water and octanol is used to calculate the partition coefficient (logP) of that molecule. Water/octanol partitioning is a good approximation of the partitioning between the cytosol and lipid membranes of living systems. Octanol is a colorless, slightly viscous liquid used as a defoaming or wetting agent. It is also used as a solvent for protective coatings, waxes, and oils, and as a raw material for plasticizers. It is also one of many compounds derived from tobacco and tobacco smoke and shown to increase the permeability of the membranes of human lung fibroblasts (PMID 7466833). Occurs in the form of esters in some essential oils. Flavouring agent. 1-Octanol is found in many foods, some of which are common wheat, lime, tea, and corn. D012997 - Solvents 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2]. 1-Octanol (Octanol), a saturated fatty alcohol, is a T-type calcium channels (T-channels) inhibitor with an IC50 of 4 μM for native T-currents[1]. 1-Octanol is a highly attractive biofuel with diesel-like properties[2].
Miltirone
Constituent of roots of Salvia miltiorrhiza (Chinese sage)and is) also present in leaves of rosemary (Rosmarinus officinalis). Antioxidant. Miltirone is found in herbs and spices, rosemary, and common sage. Miltirone is found in common sage. Miltirone is a constituent of roots of Salvia miltiorrhiza (Chinese sage). Also present in leaves of rosemary (Rosmarinus officinalis). Antioxidant Miltirone is an abietane diterpenoid. Miltirone is a natural product found in Salvia, Salvia miltiorrhiza, and other organisms with data available. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1]. Miltirone is a natural compound present in the root of Salvia miltiorrhiza. Miltirone is a central benzodiazepine receptor partial agonist, with an IC50 of 0.3 μM[1].
Scutellarein
Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
alpha-Copaene
alpha-Copaene, also known as aglaiene, belongs to the class of organic compounds known as sesquiterpenoids. These are terpenes with three consecutive isoprene units. alpha-Copaene is possibly neutral. alpha-Copaene is a spice and woody tasting compound that can be found in several food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savoury, which makes alpha-copaene a potential biomarker for the consumption of these food products. alpha-Copaene can be found in feces and saliva. Alpha-copaene, also known as copaene, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Alpha-copaene is a spice and woody tasting compound and can be found in a number of food items such as lime, mandarin orange (clementine, tangerine), safflower, and summer savory, which makes alpha-copaene a potential biomarker for the consumption of these food products. Alpha-copaene can be found primarily in feces and saliva. 8-Isopropyl-1,3-dimethyltricyclo(4.4.0.02,7)dec-3-ene is a natural product found in Pinus sylvestris var. hamata, Asarum gusk, and other organisms with data available.
Beta-tocopherol
beta-Tocopherol is an antioxidant which is synthesized by photosynthetic organisms and plays an important role in human and animal nutrition. beta-Tocopherols can be oxidized in dry CH2Cl2 or CH3CN by one electron to form cation radicals that deprotonate to form the neutral phenoxyl radicals, which are then immediately further oxidized by one electron to the phenoxonium cations (an ECE electrochemical mechanism, where E signifies an electron transfer and C represents a chemical step, with the electrochemical mechanism having been determined by in situ spectroscopic analysis). The phenoxonium cation of beta-tocopherol is stable for several minutes (PMID: 16771430). beta-Tocopherol has been identified in the human placenta (PMID: 32033212). (rel)-β-Tocopherol is a relative configuration of β-Tocopherol.(±)-β-Tocopherol is a lipid-soluble form of vitamin E with antioxidant activity. β-Tocopherol can inhibit tyrosinase activity and melanin synthesis. β-Tocopherol also can prevent the inhibition of cell growth and of PKC activity caused by d-alpha-tocopherol[1].
Camphene
Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. Camphene is one of several monoterpenes that are found in cannabis plants (PMID:6991645 ). Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Camphene is a camphor, fir needle, and herbal tasting compound and can be found in a number of food items such as cardamom, yellow bell pepper, common thyme, and coriander, which makes camphene a potential biomarker for the consumption of these food products. Camphene can be found primarily in feces and saliva. Camphene exists in all eukaryotes, ranging from yeast to humans. Camphene is a bicyclic monoterpene. It is nearly insoluble in water, but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and as a food additive for flavoring. Its mid-19th century use as a fuel for lamps was limited by its explosiveness .
Heptanal
Heptanal, also known as enanthal or N-heptaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, heptanal is considered to be a fatty aldehyde lipid molecule. It is a colourless liquid with a strong fruity odor, which is used as precursor to components in perfumes and lubricants. Heptanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Heptanal exists in all eukaryotes, ranging from yeast to humans. Heptanal is an aldehydic, citrus, and fat tasting compound. heptanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and sweet oranges and in a lower concentration in lemons, wild carrots, and carrots. heptanal has also been detected, but not quantified, in several different foods, such as horned melons, common beets, dills, red bell peppers, and malus (crab apple). This could make heptanal a potential biomarker for the consumption of these foods. The formation of heptanal in the fractional distillation of castor oil was already described in 1878. The large-scale production is based on the pyrolytic cleavage of ricinoleic acid ester (Arkema method) and on the hydroformylation of 1-hexene with rhodium 2-ethylhexanoate as a catalyst upon addition of some 2-ethylhexanoic acid (Oxea method):Heptanal naturally occurs in the essential oils of ylang-ylang (Cananga odorata), clary sage (Salvia sclarea), lemon (Citrus x limon), bitter orange (Citrus x aurantium), rose (Rosa) and hyacinth (Hyacinthus). Heptanal is a potentially toxic compound. Heptanal has been found to be associated with several diseases such as ulcerative colitis, crohns disease, uremia, and nonalcoholic fatty liver disease; also heptanal has been linked to the inborn metabolic disorders including celiac disease. The compound has a flash point of 39.5 °C. The explosion range is between 1.1\\% by volume as the lower explosion limit (LEL) and 5.2\\% by volume as the upper explosion limit. Heptanal or heptanaldehyde is an alkyl aldehyde. Full hydrogenation provides the branched primary alcohol 2-pentylnonan-1-ol, also accessible from the Guerbet reaction from heptanol. A by-product of the given reaction is the unpleasant rancid smelling (Z)-2-pentyl-2-nonenal. Heptanal forms flammable vapor-air mixtures. Heptanal is a flammable, slightly volatile colorless liquid of pervasive fruity to oily-greasy odor, which is miscible with alcohols and practically insoluble in water. Heptanal reacts with benzaldehyde in a Knoevenagel reaction under basic catalysis with high yield and selectivity (> 90\\%) to alpha-pentylcinnamaldehyde (also called jasmine aldehyde because of the typical jasmine odor), which is mostly used in many fragrances as a cis/trans isomer mixture. Found in essential oils of ylang-ylang, clary sage, California orange, bitter orange and others. Flavouring agent
(R)-1-Octen-3-ol
Isolated from a number of essential oils, e.g. lavender, leek, mint and mushrooms. Food odorant responsible for typical mushroom odour. Flavouring ingredient. (R)-1-Octen-3-ol is found in mushrooms, onion-family vegetables, and herbs and spices. (R)-1-Octen-3-ol, also known as 1-vinylhexanol or 3-hydroxy-1-octene, belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2]. Oct-1-en-3-ol, a fatty acid fragrant, is a self-stimulating oxylipin messenger. Oct-1-en-3-ol serves as a signaling molecule in plant cellular responses, plant-herbivore interactions, and plant-plant interactions. Oct-1-en-3-ol causes dopamine neuron degeneration through disruption of dopamine handling[1][2].
1-Pentanol
1-Pentanol, also known as butylcarbinol or 1-pentyl alcohol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, 1-pentanol is considered to be a fatty alcohol lipid molecule. 1-Pentanol is an organic compound with the formula C5H12O. 1-Pentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. All eight isomers of 1-Pentanol are known:; It is a colourless liquid of density 0.8247 g/cm3 (0 oC), boiling at 131.6 oC, slightly soluble in water, easily soluble in organic solvents. 1-Pentanol exists in all eukaryotes, ranging from yeast to humans. 1-Pentanol is a sweet, balsamic, and fusel tasting compound. 1-Pentanol can be found in a few different foods, such as black walnuts, common thymes, and tea and in a lower concentration in safflowers, highbush blueberries, and kohlrabis. 1-Pentanol has also been detected, but not quantified, in several different foods, such as corns, garden tomato (var.), allspices, cherry tomato, and evergreen blackberries. It possesses a characteristic strong smell and a sharp burning taste. The other amyl alcohols may be obtained synthetically. It is a solid that melts at 48 to 50 °C and boils at 112.3 °C. On passing its vapour through a red-hot tube, it decomposes with production of acetylene, ethylene, propylene, and other compounds. Of these, tertiary 1-Pentanol has been the most difficult to obtain, its synthesis having first been reported in 1891, by L. Tissier (Comptes Rendus, 1891, 112, p. 1065) by the reduction of a mixture of trimethyl acetic acid and trimethylacetyl chloride with sodium amalgam. It is oxidized by chromic acid to isovaleraldehyde, and it forms crystalline addition compounds with calcium chloride and tin(IV) chloride. When pure, it is nontoxic, while the impure product is toxic. Widely distributed in plant sources, e.g. peppermint oil, tomatoes, tea, potatoes. Flavouring ingredient
(E,E)-2,4-Hexadienal
(E,E)-2,4-Hexadienal is found in fishes. (E,E)-2,4-Hexadienal is a flavouring ingredient. (E,E)-2,4-Hexadienal is present in olives, roasted peanuts, tomato, caviar, fish, and te (E,E)-2,4-Hexadienal is a flavouring ingredient. It is found in olives, roasted peanuts, tomato, caviar, fish, and tea.
2-Phenylethanol
2-Phenylethanol, also known as benzeneethanol or benzyl carbinol, belongs to the class of organic compounds known as benzene and substituted derivatives. These are aromatic compounds containing one monocyclic ring system consisting of benzene. 2-Phenylethanol exists in all living species, ranging from bacteria to humans. 2-Phenylethanol is a bitter, floral, and honey tasting compound. 2-Phenylethanol is found, on average, in the highest concentration within a few different foods, such as red wines, black walnuts, and white wines and in a lower concentration in grape wines, sweet basils, and peppermints. 2-Phenylethanol has also been detected, but not quantified, in several different foods, such as asparagus, allspices, fruits, horned melons, and lemons. 2-Phenylethanol, with regard to humans, has been found to be associated with several diseases such as ulcerative colitis, pervasive developmental disorder not otherwise specified, and autism. 2-phenylethanol has also been linked to the inborn metabolic disorder celiac disease. A primary alcohol that is ethanol substituted by a phenyl group at position 2. Flavouring ingredient. Component of ylang-ylang oil. 2-Phenylethanol is found in many foods, some of which are hickory nut, arrowhead, allspice, and nance. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents D010592 - Pharmaceutic Aids D004202 - Disinfectants 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions. 2-Phenylethanol (Phenethyl alcohol), extracted from rose, carnation, hyacinth, Aleppo pine, orange blossom and other organisms, is a colourless liquid. It has a pleasant floral odor and also an autoantibiotic produced by the fungus Candida albicans[1]. It is used as an additive in cigarettes and also used as a preservative in soaps due to its stability in basic conditions.
Isopentanol
Isopentanol, also known as isoamyl alcohol or 3-methylbutanol, belongs to the class of organic compounds known as primary alcohols. Primary alcohols are compounds comprising the primary alcohol functional group, with the general structure RCOH (R=alkyl, aryl). Thus, isopentanol is considered to be a fatty alcohol lipid molecule. Isopentanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Isopentanol exists in all eukaryotes, ranging from yeast to humans. Isopentanol is an alcoholic, banana, and burnt tasting compound. Isopentanol is found, on average, in the highest concentration within milk (cow). Isopentanol has also been detected, but not quantified, in several different foods, such as chinese cinnamons, grapefruits, walnuts, wild leeks, and spearmints. This could make isopentanol a potential biomarker for the consumption of these foods. Isopentanol is one of several isomers of amyl alcohol. Isopentanol is the major higher chain alcohol in alcoholic beverages and is present in cider, mead, beer, wine, and spirits to varying degrees, being obtained by the fermentation of starches. Isopentanol, with regard to humans, has been found to be associated with the diseases such as ulcerative colitis; isopentanol has also been linked to the inborn metabolic disorder celiac disease. Isopentanol is a metabolite found in Escherichia (PMID:18676713). Isopentyl alcohol is one of several isomers of amyl alcohol. It is a by-product of gut microbial fermentation (PMID: 17452087). It can be produced by 3-methylbutanal reductase (EC 1.1.1.265) from 3 methylbutanal. Isopentyl alcohol is the major higher chain alcohol in alcoholic beverages and is present in cider, mead, beer, wine, and spirits to varying degrees, being obtained by the fermentation of starches. Isopentanol has been shown to induce expression of CYP3A and CYP2E1 in human liver (PMID: 7574728). Isopentyl alcohol can also be found in many foods, some of which are chinese cabbage, white cabbage, elliotts blueberry, and pasta. It can be used as a flavouring agent.
Ethyl pentyl ketone
Ethyl pentyl ketone, also known as 3-oxooctane or eak, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. Ethyl pentyl ketone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Ethyl pentyl ketone is a sweet, butter, and fresh tasting compound and can be found in a number of food items such as rosemary, hyssop, spearmint, and rocket salad (sspecies), which makes ethyl pentyl ketone a potential biomarker for the consumption of these food products. Ethyl pentyl ketone can be found primarily in feces and saliva. Ethyl pentyl ketone exists in all eukaryotes, ranging from yeast to humans. Ethyl pentyl ketone, also known as 3-oxooctane or EAK, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, ethyl pentyl ketone is considered to be an oxygenated hydrocarbon lipid molecule. A dialkyl ketone that is octane in which the two methylene protons at position 3 have been replaced by an oxo group. Ethyl pentyl ketone is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Ethyl pentyl ketone has been detected, but not quantified, in cardamoms and lemons. This could make ethyl pentyl ketone a potential biomarker for the consumption of these foods. Ethyl pentyl ketone, with regard to humans, has been linked to the inborn metabolic disorder celiac disease.
Sulcatone
Sulcatone, also known as methylheptenone or fema 2707, belongs to the class of organic compounds known as ketones. These are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Sulcatone is a very hydrophobic methylketone, practically insoluble in water, and relatively neutral. It exists as a clear, colorless liquid. Sulcatone can be found in all eukaryotes, ranging from yeast to plants to humans. Sulcatone has a musty, apple green-bean, and pear-like taste. and a citrus-like lemongrass odor. It is a volatile oil component of citronella oil, lemon-grass oil and palmarosa oil. Sulcatone is naturally found in bay leaf, blackberry fruit, sour cherries, cloves, ginger and lavender. In insects and animals, it has a role as an alarm or attractant pheromone. In fact, sulcatone is one of a number of mosquito attractants, especially for those species such as Aedes aegypti with the odor receptor gene Or4 (PMID:25391959 ). Sulcatone is secreted by humans in their sweat and is a compound frequently found in human body odors (but in few other mammals). Sulcoatone is used as a pheromone by ferrets, european badgers, red foxes, treefrogs, bedbugs, wasps and butterflies. Sulcatone is one of several ketones found in Cannabis sativa (PMID:6991645 ). Sulcatone, also known as 6-methylhept-5-en-2-one, is a member of the class of compounds known as ketones. Ketones are organic compounds in which a carbonyl group is bonded to two carbon atoms R2C=O (neither R may be a hydrogen atom). Ketones that have one or more alpha-hydrogen atoms undergo keto-enol tautomerization, the tautomer being an enol. Thus, sulcatone is considered to be an oxygenated hydrocarbon lipid molecule. Sulcatone is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). Sulcatone is an apple, bitter, and citrus tasting compound and can be found in a number of food items such as oil palm, winter savory, european plum, and swamp cabbage, which makes sulcatone a potential biomarker for the consumption of these food products. Sulcatone can be found primarily in feces and saliva. Sulcatone exists in all eukaryotes, ranging from yeast to humans. Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.
Ethyl octanoate
Ethyl octanoate is a fatty acid ethyl ester resulting from the formal condensation of octanoic acid with ethanol. It has a role as a metabolite. It is a fatty acid ethyl ester and an octanoate ester. Ethyl octanoate is found in alcoholic beverages. Ethyl octanoate is used in many fruit flavourings. Ethyl octanoate is a constituent of plant oils. Also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. It is used in many fruit flavourings. Constituent of plant oilsand is) also present in Swiss cheese, Camembert cheese, wheat bread, port wine, plum brandy, sparkling wine, apple, apricot, banana, cherry, orange, grapefruit, plum and other fruits. Ethyl octanoate is found in many foods, some of which are milk and milk products, guava, cereals and cereal products, and pepper (c. frutescens).
p-Cymene
Cymene, or p-cymene also known as p-cymol or isopropyltoluene, is a naturally occurring aromatic organic compound. It is classified as a hydrocarbon related to a monoterpene. Its structure consists of a benzene ring para-substituted with a methyl group and an isopropyl group. It is insoluble in water, but miscible with ethanol and ether. Cymene is a constituent of a number of essential oils, most commonly the oil of cumin and thyme. There are two less common geometric isomers. o-Cymene, in which the alkyl groups are ortho-substituted, and m-cymene, in which they are meta-substituted. p-Cymene is the only natural isomer. Cymene is a common ligand for ruthenium. V. widely distributed in plant oils e.g. terpentine and citrus oils and many others. It is used in flavour industries. 1-Isopropyl-4-methylbenzene is found in many foods, some of which are green bell pepper, lemon balm, saffron, and sweet basil.
Terpinolene
Terpinolene (TPO), also known as alpha-terpinolene or isoterpinene, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, terpinolene is considered to be an isoprenoid lipid molecule. Terpinolene is a very hydrophobic monoterpenoid, practically insoluble in water, and relatively neutral. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes in plants is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in the plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Terpinolene is one of the constituents of turpentine and an isomer of terpinene. It appears colourless to pale yellow liquid. Alpha-terpinolene has been identified as an abundant monoterpene in the essential oil of Cannabis sativa plants (PMID:6991645 ). There are more than 140 known terpenes in cannabis and the combination of these terepenoids produces the skunky, fruity odor characteristic of C. savita. Although common in cannabis cultivars, terpinolene is typically found in relatively low amounts. On the other hand, the concentration of terpinolene can be has high as 30\\% of the essential oil. It is thought that terpinolene offers a mildly sedative effect and can reduce anxiety (PMID:28826544 ). In particular, terpinolene is a central nervous system depressant that has been shown to induce drowsiness (PMID:23339024 ). Terpinolene has been demonstrated to prevent LDL oxidation and is of potential interest in the treatment of atherogenesis and coronary artery disease (PMID:28826544 ). Terpinolene exhibits antifungal and larvicidal properties (PMID:28826544 ). Terpinolene is also an effective anti-microbial agent, particularly against E coli and Staphylococcus bacteria (PMID:16402540 ). Terpinolene is also employed as a fragrence ingredient in lotions, insect repellents (similar to other terpenes), perfumes, and soaps. Terpinolene is also a constituent of many other essential oils e. g. Citrus, Mentha, Juniperus, Myristica species. Parsnip oil (Pastinaca sativa) in particular, is a major source (40-70\\%). Terpinolene is a sweet, citrus, and fresh tasting compound. It produces a floral, woody or herbal aroma reminiscent of pine needles. In addition to being found in various plant essential oils, terpinolene is found in a few different foods and spices, such as allspice, apples, sage, rosemary, parsnips, nutmegs, and wild carrots and in a lower concentration in sweet bay, star anises, turmerics, apricots, cumins, evergreen blackberries, red bell peppers, and caraway. Constituent of many essential oils e.g. Citrus, Mentha, Juniperus, Myristica subspecies Parsnip oil (Pastinaca sativa) is a major source (40-70\\%). Flavouring ingredient. Terpinolene is found in many foods, some of which are coriander, ceylon cinnamon, pine nut, and caraway.
Ethanol
Ethanol is a clear, colorless liquid rapidly absorbed from the gastrointestinal tract and distributed throughout the body. It has bactericidal activity and is used often as a topical disinfectant. It is widely used as a solvent and preservative in pharmaceutical preparations as well as serving as the primary ingredient in alcoholic beverages. Indeed, ethanol has widespread use as a solvent of substances intended for human contact or consumption, including scents, flavorings, colorings, and medicines. Ethanol has a depressive effect on the central nervous system and because of its psychoactive effects, it is considered a drug. Ethanol has a complex mode of action and affects multiple systems in the brain, most notably it acts as an agonist to the GABA receptors. Death from ethanol consumption is possible when blood alcohol level reaches 0.4\\%. A blood level of 0.5\\% or more is commonly fatal. Levels of even less than 0.1\\% can cause intoxication, with unconsciousness often occurring at 0.3-0.4 \\%. Ethanol is metabolized by the body as an energy-providing carbohydrate nutrient, as it metabolizes into acetyl CoA, an intermediate common with glucose metabolism, that can be used for energy in the citric acid cycle or for biosynthesis. Ethanol within the human body is converted into acetaldehyde by alcohol dehydrogenase and then into acetic acid by acetaldehyde dehydrogenase. The product of the first step of this breakdown, acetaldehyde, is more toxic than ethanol. Acetaldehyde is linked to most of the clinical effects of alcohol. It has been shown to increase the risk of developing cirrhosis of the liver,[77] multiple forms of cancer, and alcoholism. Industrially, ethanol is produced both as a petrochemical, through the hydration of ethylene, and biologically, by fermenting sugars with yeast. Small amounts of ethanol are endogenously produced by gut microflora through anaerobic fermentation. However most ethanol detected in biofluids and tissues likely comes from consumption of alcoholic beverages. Absolute ethanol or anhydrous alcohol generally refers to purified ethanol, containing no more than one percent water. Absolute alcohol is not intended for human consumption. It often contains trace amounts of toxic benzene (used to remove water by azeotropic distillation). Consumption of this form of ethanol can be fatal over a short time period. Generally absolute or pure ethanol is used as a solvent for lab and industrial settings where water will disrupt a desired reaction. Pure ethanol is classed as 200 proof in the USA and Canada, equivalent to 175 degrees proof in the UK system. Ethanol is a general biomarker for the consumption of alcohol. Ethanol is also a metabolite of Hansenula and Saccharomyces (PMID: 14613880) (https://ac.els-cdn.com/S0079635206800470/1-s2.0-S0079635206800470-main.pdf?_tid=4d340044-3230-4141-88dd-deec4d2e35bd&acdnat=1550288012_0c4a20fe963843426147979d376cf624). Intoxicating constituent of all alcoholic beverages. It is used as a solvent and vehicle for food dressings and flavourings. Antimicrobial agent, e.g for pizza crusts prior to baking. extraction solvent for foodstuffs. Widely distributed in fruits and other foods V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AZ - Nerve depressants V - Various > V03 - All other therapeutic products > V03A - All other therapeutic products > V03AB - Antidotes D - Dermatologicals > D08 - Antiseptics and disinfectants > D08A - Antiseptics and disinfectants D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants C78272 - Agent Affecting Nervous System > C29756 - Sedative and Hypnotic D000890 - Anti-Infective Agents D012997 - Solvents
Piperitenone
Piperitenone is a flavouring agent. It is found in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oil. It is also found in rosemary, mentha (mint), cornmint, and other herbs and spices. Piperitenone is found in citrus. Piperitenone is a flavouring agent. Piperitenone is present in grapefruit juice lemon juice, orange juice, spearmint oil and peppermint oi
Fenchol
Fenchol is found in fennel. Fenchol is a flavouring ingredient with a bitter, lime-like flavour [DFC] (Yannai, Shmuel. (2004) Dictionary of food compounds with CD-ROM: Additives, flavors, and ingredients. Boca Raton: Chapman & Hall/CRC.). Fenchol is a natural product found in Kunzea salina, Hyptis goyazensis, and other organisms with data available. Flavouring ingredient with a bitter, lime-like flavour [DFC] Fenchyl alcohol is a monoterpene alcohol in the essential oils isolated from Douglas fir needles, acts as a fragrance. Fenchyl alcohol strongly inhibits the rumen microbial activity of both sheep and deer[1][2]. Fenchyl alcohol is a monoterpene alcohol in the essential oils isolated from Douglas fir needles, acts as a fragrance. Fenchyl alcohol strongly inhibits the rumen microbial activity of both sheep and deer[1][2].
Hexanal
Hexanal is an alkyl aldehyde found in human biofluids. Human milk samples collected from women contains hexanal. Among mediators of oxidative stress, highly reactive secondary aldehydic lipid peroxidation products can initiate the processes of spontaneous mutagenesis and carcinogenesis and can also act as a growth-regulating factors and signaling molecules. In specimens obtained from adult patients with brain astrocytomas, lower levels of n-hexanal are associated with poorer patient prognosis. Hexanal has also been identified as a uremic toxin according to the European Uremic Toxin Working Group (PMID:22626821). Hexanal is a volatile compound that has been associated with the development of undesirable flavours. The content of hexanal, which is a major breakdown product of linoleic acid (LA, n - 6 PUFA) oxidation, has been used to follow the course of lipid oxidation and off-flavour development in foods, and have been proposed as one potential marker of milk quality. A "cardboard-like" off-flavour is frequently associated with dehydrated milk products. This effect is highly correlated with the headspace concentration of hexanal. (Food Chemistry. Volume 107, Issue 1, 1 March 2008, Pages 558-569, PMID:17934948, 17487452). Constituent of many foodstuffs. A production of aerobic enzymatic transformations of plant constits. It is used in fruit flavours and in perfumery D000890 - Anti-Infective Agents > D000935 - Antifungal Agents D010575 - Pesticides > D007306 - Insecticides D016573 - Agrochemicals
cis-Sabinene hydrate
Cis-sabinene hydrate is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, cis-sabinene hydrate is considered to be an isoprenoid lipid molecule. Cis-sabinene hydrate is practically insoluble (in water) and an extremely weak acidic compound (based on its pKa). Cis-sabinene hydrate is a balsamic tasting compound and can be found in a number of food items such as sweet marjoram, spearmint, common sage, and pot marjoram, which makes cis-sabinene hydrate a potential biomarker for the consumption of these food products.
xi-10-Hydroxyoctadecanoic acid
xi-10-Hydroxyoctadecanoic acid is found in herbs and spices. xi-10-Hydroxyoctadecanoic acid is a constituent of leaf cutins of rosemary. Constituent of leaf cutins of rosemary. xi-10-Hydroxyoctadecanoic acid is found in herbs and spices.
(+)-1(10),4-Cadinadiene
Constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag. (+)-1(10),4-Cadinadiene is found in many foods, some of which are common pea, asparagus, sweet potato, and dill. (+)-1(10),4-Cadinadiene is found in allspice. (+)-1(10),4-Cadinadiene is a constituent of the essential oils of ylang-ylang, citronella, cubebs, and sweetflag
(S)-10,16-Dihydroxyhexadecanoic acid
10,16-dihydroxyhexadecanoic acid, also known as 10,16-dhha, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, 10,16-dihydroxyhexadecanoic acid is considered to be a fatty acid lipid molecule. 10,16-dihydroxyhexadecanoic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). 10,16-dihydroxyhexadecanoic acid can be found in garden tomato (variety) and gooseberry, which makes 10,16-dihydroxyhexadecanoic acid a potential biomarker for the consumption of these food products. (S)-10,16-Dihydroxyhexadecanoic acid is found in garden tomato. (S)-10,16-Dihydroxyhexadecanoic acid is a constituent of numerous plant cutins including apple and tomato.
beta-Caryophyllene
beta-Caryophyllene, also known as caryophyllene or (−)-β-caryophyllene, is a natural bicyclic sesquiterpene that is a constituent of many essential oils including that of Syzygium aromaticum (cloves), Cannabis sativa, rosemary, and hops. It is usually found as a mixture with isocaryophyllene (the cis double bond isomer) and α-humulene (obsolete name: α-caryophyllene), a ring-opened isomer. beta-Caryophyllene is notable for having both a cyclobutane ring and a trans-double bond in a nine-membered ring, both rarities in nature (Wikipedia). beta-Caryophyllene is a sweet and dry tasting compound that can be found in a number of food items such as allspice, fig, pot marjoram, and roman camomile, which makes beta-caryophyllene a potential biomarker for the consumption of these food products. beta-Caryophyllene can be found in feces and saliva. (-)-Caryophyllene. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=87-44-5 (retrieved 2024-08-07) (CAS RN: 87-44-5). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0). β-Caryophyllene is a CB2 receptor agonist. β-Caryophyllene is a CB2 receptor agonist.
alpha-Cubebene
alpha-Cubebene is found in cloves. alpha-Cubebene is a constituent of oil of cubeb pepper (Piper cubeba).
(-)-Bornyl acetate
(-)-Bornyl acetate is isolated from Blumea balsamifera, Jasonia sp., Salvia fruticosa, carrot, rosemary, sage and lavender oil. (-)-Bornyl acetate is a flavouring agent [CCD]. Isolated from Blumea balsamifera, Jasonia species, Salvia fruticosa, carrot, rosemary, sage and lavender oil. Flavouring agent [CCD] (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1]. (-)-Bornyl acetate (L-(-)-Bornyl acetate), isolated from hyssop oil, is a less active enantiomer of (+)-Bornyl acetate. (-)-Bornyl acetate possesses antifungal activity[1].
(+)-alpha-Carene
(+)-alpha-Carene is found in herbs and spices. (+)-alpha-Carene is widespread plant product, found especially in turpentine oils (from Pinus species) and oil of galbanu Isolated from root oil of Kaempferia galanga. (-)-alpha-Carene is found in many foods, some of which are pummelo, cumin, herbs and spices, and sweet orange.
trans-Ocimene
trans-Ocimene is found in allspice. trans-Ocimene is a constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga, and Labidus species (CCD). Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha-isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odour and it is used in perfumery. Constituent of the pheromones of Anastrepha suspensa, Euploea tulliolus koxinga and Labidus subspecies [CCD]
alpha-Terpineol
alpha-Terpineol (CAS: 98-55-5) is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers of terpineol, alpha-, beta-, and gamma-terpineol, with the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. Terpineol has a pleasant odour similar to lilac and is a common ingredient in perfumes, cosmetics, and flavours. alpha-Terpineol is occasionally found as a volatile component in urine. It is a water-soluble component of Melaleuca alternifolia Cheel, the tea tree oil (TTO). alpha-Terpineol is a likely mediator of the in vitro and in vivo activity of the TTO as an agent that could control C. albicans vaginal infections. Purified alpha-terpineol can suppress pro-inflammatory mediator production by activated human monocytes. alpha-Terpineol is able to impair the growth of human M14 melanoma cells and appear to be more effective on their resistant variants, which express high levels of P-glycoprotein in the plasma membrane, overcoming resistance to caspase-dependent apoptosis exerted by P-glycoprotein-positive tumour cells (PMID:5556886, 17083732, 11131302, 15009716). Terpineol is a naturally occurring monoterpene alcohol that has been isolated from a variety of sources such as cajuput oil, pine oil, and petitgrain oil. There are three isomers, alpha-, beta-, and gamma-terpineol, the last two differing only by the location of the double bond. Terpineol is usually a mixture of these isomers with alpha-terpineol as the major constituent. (R)-alpha-Terpineol is found in many foods, some of which are mentha (mint), sweet marjoram, lovage, and cardamom. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2]. α-Terpineol is isolated from Eucalyptus globulus Labill, exhibits strong antimicrobial activity against periodontopathic and cariogenic bacteria[1]. α-Terpineol possesses antifungal activity against T. mentagrophytes, and the activity might lead to irreversible cellular disruption[2].
Methyleugenol
Methyleugenol, also known as 4-allylveratrole or eugenol methyl, belongs to the class of organic compounds known as dimethoxybenzenes. These are organic aromatic compounds containing a monocyclic benzene moiety carrying exactly two methoxy groups. FDA noted the action was despite its continuing stance that this substance does not pose a risk to public health under the conditions of its intended use. Methyleugenol is a sweet, anise, and apricot tasting compound. Methyleugenol is found, on average, in the highest concentration within a few different foods, such as allspices, tarragons, and sweet bay and in a lower concentration in sweet basils, rosemaries, and hyssops. Methyleugenol has also been detected, but not quantified, in several different foods, such as soy beans, evergreen blackberries, muskmelons, citrus, and pomes. This could make methyleugenol a potential biomarker for the consumption of these foods. As of October 2018, the US FDA withdrew authorization for the use of methyl eugenol as a synthetic flavoring substance for use in food because petitioners provided data demonstrating that these additives induce cancer in laboratory animals. Methyleugenol is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Methyl eugenol (allylveratrol) is a natural chemical compound classified as a phenylpropene, a type of phenylpropanoid. It is the methyl ether of eugenol and is important to insect behavior and pollination. Their ability to attract insects, particularly Bactrocera fruit flies was first noticed in 1915 by F. M. Howlett. The compound may have evolved in response to pathogens, as methyl eugenol has some antifungal activity. Methyl eugenol is found in a number of plants (over 450 species from 80 families including both angiosperm and gymnosperm families) and has a role in attracting pollinators. About 350 plant species have them as a component of floral fragrance. Methyleugenol is a clear colorless to pale yellow liquid with a spicy earthy odor. Bitter burning taste. (NTP, 1992) O-methyleugenol is a phenylpropanoid. It is functionally related to a eugenol. Methyleugenol is a natural product found in Vitis rotundifolia, Elettaria cardamomum, and other organisms with data available. Methyleugenol is a yellowish, oily, naturally occurring liquid with a clove-like aroma and is present in many essential oils. Methyleugenol is used as a flavoring agent, as a fragrance and as an anesthetic in rodents. Methyleugenol is mutagenic in animals and is reasonably anticipated to be a human carcinogen based on evidence of carcinogenicity in animals. (NCI05) Methyleugenol is found in allspice. Methyleugenol is present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberryMethyleugenol has been shown to exhibit anti-nociceptive function (A7914).Methyleugenol belongs to the family of Anisoles. These are organic compounds contaiing a methoxybenzene or a derivative thereof. Present in many essential oils, e.g. nutmeg, mace and also many fruits, e.g. apple, banana, orange juice or peel, grapefruit, bilberry. Methyleugenol is found in many foods, some of which are wild carrot, sweet basil, citrus, and fruits. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D009676 - Noxae > D002273 - Carcinogens D009676 - Noxae > D009153 - Mutagens Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1]. Methyl Eugenol is a bait that has oral activity against oriental fruit fly (Hendel).Methyl Eugenol has anti-cancer and anti-inflammatory activities. Methyl Eugenol can induce Autophagy in cells. Methyl Eugenol can be used in the study of intestinal ischemia/reperfusion injury[1][2][3]. Methyl Eugenol, a phenylpropanoid chemical in leaves, fruits, stems, and/or roots, may be released when that corresponding part of a plant is damaged as a result of feeding by an herbivore. Methyl Eugenol is used for male annihilation of the oriental fruit fly[1].
Isoeugenol
Isoeugenol is a pale yellow oily liquid with a spice-clove odor. Freezes at 14 °F. Density 1.08 g / cm3. Occurs in ylang-ylang oil and other essential oils. Isoeugenol is a phenylpropanoid that is an isomer of eugenol in which the allyl substituent is replaced by a prop-1-enyl group. It has a role as an allergen and a sensitiser. It is a phenylpropanoid and an alkenylbenzene. It is functionally related to a guaiacol. Isoeugenol is a commonly used fragrance added to many commercially available products, and occurs naturally in the essential oils of plants such as ylang-ylang. It is also a significant dermatologic sensitizer and allergen, and as a result has been restricted to 200 p.p.m. since 1998 according to guidelines issued by the fragrance industry. Allergic reactivity to Isoeugenol may be identified with a patch test. Isoeugenol is a natural product found in Chaerophyllum macrospermum, Origanum sipyleum, and other organisms with data available. Isoeugenol is is a clear to pale yellow oily liquid extracted from certain essential oils especially from clove oil and cinnamon. It is very slightly soluble in water and soluble in organic solvents. It has a spicy odor and taste of clove. Isoeugenol is prepared from eugenol by heating. Eugenol is used in perfumeries, flavorings, essential oils and in medicine (local antiseptic and analgesic). It is used in the production of isoeugenol for the manufacture of vanillin. Eugenol derivatives or methoxyphenol derivatives in wider classification are used in perfumery and flavoring. They are used in formulating insect attractants and UV absorbers, analgesics, biocides and antiseptics. They are also used in manufacturing stabilizers and antioxidants for plastics and rubbers. Isoeugenol is used in manufacturing perfumeries, flavorings, essential oils (odor description: Clove, spicy, sweet, woody) and in medicine (local antiseptic and analgesic) as well as vanillin. (A7915). E-4-Propenyl-2-methoxyphenol is a metabolite found in or produced by Saccharomyces cerevisiae. Isoeugenol is an isomer of eugenol, wherein the double bond on the alkyl chain is shifted by one carbon. It also known as propenylgualacol, belongs to the class of organic compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety. Isoeugenol is also classified as a phenylpropene, a propenyl-substituted guaiacol. Isoeugenol may occur as either the cis (Z) or trans (E) isomer. Trans (E) isoeugenol is crystalline while cis (Z) isoeugenol is a pale, yellow liquid. Isoeugenol is very slightly soluble in water and soluble in organic solvents. It has a spicy, sweet, carnation-like odour and tastes of sweet spice and clove. Isoeugenol is a widely used food flavoring agent and a perfuming agent. As a food flavoring agent, it is responsible for the flavor of nutmeg (in pumpkin pies), As a fragrance, it is extensively used as a scent agent in consumer products such as soaps, shampoos, perfumes, detergents and bath tissues (often labeled as ‚ÄúFragrance‚Äù rather than isoeugenol). However, some individuals can develop allergies to isoeugenol as it appears to be a strong contact allergen (PMID:10554062 ). Isoeugenol can be prepared from eugenol by heating. In addition to its industrial production via eugenol, isoeugenol can also be extracted from certain essential oils especially from clove oil and cinnamon. It is found naturally in a wide number of foods, spices and plants including allspice, basil, blueberries, cinnamon, cloves, coffee, dill, ginber, nutmeg, thyme and turmeric. Isoeugenol is also a component of wood smoke and liquid smoke. It is one of several phenolic compounds responsible for the mold-inhibiting effect of smoke on meats and cheeses. Isoeugenol (specifically the acetate ester) has also been used in the production of vanillin. Isoeugenol is one of several non-cannabinoid phenols found in cannabis plants (PMID:6991645 ). (e)-isoeugenol, also known as 2-methoxy-4-propenylphenol or propenylgualacol, is a member of the class of compounds known as methoxyphenols. Methoxyphenols are compounds containing a methoxy group attached to the benzene ring of a phenol moiety (e)-isoeugenol is slightly soluble (in water) and a very weakly acidic compound (based on its pKa). (e)-isoeugenol is a sweet, carnation, and clove tasting compound and can be found in a number of food items such as corn salad, coconut, flaxseed, and winter squash, which makes (e)-isoeugenol a potential biomarker for the consumption of these food products (e)-isoeugenol can be found primarily in saliva (e)-isoeugenol exists in all eukaryotes, ranging from yeast to humans (e)-isoeugenol is a non-carcinogenic (not listed by IARC) potentially toxic compound. Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1]. Isoeugenol is an essential oil constituent of nutmeg, clove, and cinnamon. Isoeugenol inhibits growth of Escherichia coli and Listeria innocua with MICs of 0.6 mg/mL and 1 mg/mL, respectively[1].
2-Pinen-10-ol
2-Pinen-10-ol is found in citrus. 2-Pinen-10-ol is a flavouring ingredient. 2-Pinen-10-ol is present in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foodstuffs (±)-Myrtenol is a flavouring ingredient. It is found in mandarin peel oil, raspberry, blackberry, strawberry, ginger, hop oil, black tea, peppermint oil, pepper (Piper nigrum), myrtle leaf or berry, summer savoury (Satureja hortensis) and other foods.
Eucarvone
Eucarvone is a member of the class of compounds known as monocyclic monoterpenoids. Monocyclic monoterpenoids are monoterpenoids containing 1 ring in the isoprene chain. Eucarvone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Eucarvone can be found in blackcurrant, which makes eucarvone a potential biomarker for the consumption of this food product.
beta-Gurjunene
Beta-gurjunene is a member of the class of compounds known as 5,10-cycloaromadendrane sesquiterpenoids. 5,10-cycloaromadendrane sesquiterpenoids are aromadendrane sesquiterpenoids that arise from the C5-C10 cyclization of the aromadendrane skeleton. Beta-gurjunene can be found in rosemary and winter savory, which makes beta-gurjunene a potential biomarker for the consumption of these food products.
Floionolic acid
Floionolic acid, also known as 9,10,18-trihydroxy-octadecanoic acid or 9,10,18-trihydroxystearate, is a member of the class of compounds known as long-chain fatty acids. Long-chain fatty acids are fatty acids with an aliphatic tail that contains between 13 and 21 carbon atoms. Thus, floionolic acid is considered to be an octadecanoid lipid molecule. Floionolic acid is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Floionolic acid can be found in fruits, green vegetables, and pomes, which makes floionolic acid a potential biomarker for the consumption of these food products. Floionolic acid is found in fruits. Floionolic acid is a constituent of cork and other plants, e.g. olive (Olea europaea), apple wax, the famine food Agave americana and also cutins
(E)-2-octenal
Oct-2-en-1-al, also known as 2-octenal or oct-(E)-2-enal, is a member of the class of compounds known as medium-chain aldehydes. Medium-chain aldehydes are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Oct-2-en-1-al is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Oct-2-en-1-al can be found in black walnut and burdock, which makes oct-2-en-1-al a potential biomarker for the consumption of these food products. Oct-2-en-1-al can be found primarily in feces and urine. (E)-2-octenal is a flavoring ingredient for improving the aroma and flavor of cherries, dairy products, nuts, and meat. It is a colorless to slightly yellow liquid with fresh cucumber, fragrant herbs, banana leaf-like flavor. The boiling point of (E)-2-octenal (CAS 2548-87-0) is 84-86 degree Celcius, and when heated to decomposition it emits acrid smoke and irritating vapours.
beta-Thujene
A thujene that has a bicyclo[3.1.0]hex-2-ene skeleton which is substituted at positions 1 and 4 by isopropyl and methyl groups, respectively.
(+)-Limonene
(+)-Limonene, also known as d-limonene, is a naturally occurring monoterpene which is the major component in orange oil. Currently, (+)-limonene is widely used as a flavour and fragrance and is listed to be generally recognized as safe in food by the Food and Drug Administration (21 CFR 182.60 in the Code of Federal Regulations, U.S.A.). Recently, however, (+)-limonene has been shown to cause a male rat-specific kidney toxicity referred to as hyaline droplet nephropathy. Furthermore, chronic exposure to (+)-limonene causes a significant incidence of renal tubular tumours exclusively in male rats. Although (+)-limonene is not carcinogenic in female rats or male and female mice given much higher dosages, the male rat-specific nephrocarcinogenicity of (+)-limonene may raise some concern regarding the safety of (+)-limonene for human consumption. A considerable body of scientific data has indicated that the renal toxicity of (+)-limonene results from the accumulation of a protein, alpha 2u-globulin, in male rat kidney proximal tubule lysosomes. This protein is synthesized exclusively by adult male rats. Other species, including humans, synthesize proteins that share significant homology with alpha 2u-globulin. However, none of these proteins, including the mouse equivalent of alpha 2u-globulin, can produce this toxicity, indicating a unique specificity for alpha 2u-globulin. With chronic exposure to (+)-limonene, the hyaline droplet nephropathy progresses and the kidney shows tubular cell necrosis, granular cast formation at the corticomedullary junction, and compensatory cell proliferation. Both (+)-limonene and cis-d-limonene-1,2-oxide (the major metabolite involved in this toxicity) are negative in vitro mutagenicity screens. Therefore, the toxicity-related renal cell proliferation is believed to be integrally involved in the carcinogenicity of (+)-limonene as persistent elevations in renal cell proliferation may increase fixation of spontaneously altered DNA or serve to promote spontaneously initiated cells. The scientific data demonstrates that the tumorigenic activity of (+)-limonene in male rats is not relevant to humans. The three major lines of evidence supporting the human safety of (+)-limonene are (1) the male rat specificity of the nephrotoxicity and carcinogenicity; (2) the pivotal role that alpha 2u-globulin plays in the toxicity, as evidenced by the complete lack of toxicity in other species despite the presence of structurally similar proteins; and (3) the lack of genotoxicity of both (+)-limonene and d-limonene-1,2-oxide, supporting the concept of a nongenotoxic mechanism, namely, sustained renal cell proliferation (PMID:2024047). (4r)-limonene, also known as (+)-4-isopropenyl-1-methylcyclohexene or (R)-1-methyl-4-(1-methylethenyl)cyclohexene, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, (4r)-limonene is considered to be an isoprenoid lipid molecule (4r)-limonene can be found in sweet marjoram, which makes (4r)-limonene a potential biomarker for the consumption of this food product (4r)-limonene can be found primarily in saliva.
(S)-Carvone
Carvone, with R and S isomers, also known as carvol or limonen-6-one, belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. p-Menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m-menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Carvone is a neutral compound. Carvone is a naturally occurring organic compound found in many essential oils but is most abundant in the oils from caraway seeds (Carum carvi), spearmint (Mentha spicata), and dill (PMID:27427817). Carvone is occasionally found as a component of biological fluids in normal individuals. Both carvones (R, S) are used in the food and flavor industry (http//doi:10.1016/j.foodchem.2005.01.003). R-carvone is also used in air freshening products and in essential oils used in aromatherapy and alternative medicine. Caraway was used for medicinal purposes by the ancient Romans, but carvone was probably not isolated as a pure compound until Varrentrapp obtained it in 1841 (PMID:5556886 , 2477620 ). Carvone may help in the management of diseases (PMID:30374904) and had been considered as an adjuvant for treatment of cancer patients (PMID:30087792) and patients with epilepsy (PMID:31239862). It also has been successfully used as a biopesticide (PMID:30250476). D-carvone appears as pale yellow or colorless liquid. (NTP, 1992) (+)-carvone is a carvone having (S) configuration. It is an enantiomer of a (-)-carvone. d-Carvone is a natural product found in Xylopia aromatica, Xylopia sericea, and other organisms with data available. See also: Caraway Oil (part of). A carvone having (S) configuration.
(+)-3-Thujone
Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (+)-3-Thujone is found in many foods, some of which are peppermint, common sage, winter savory, and ginger. (+)-3-Thujone is found in common sage. Thujone is a ketone and a monoterpene that occurs naturally in two diastereomeric forms: (-)-alpha-thujone and (+)-beta-thujone. It has a menthol odor. In addition to (-)-alpha-thujone and (+)-beta-thujone, there are their enantiomeric forms, (+)-alpha-thujone and (-)-beta-thujone. (Wikipedia
(+)-Camphene
Camphene, also known as 2,2-dimethyl-3-methylenebicyclo[2.2.1]heptane or 2,2-dimethyl-3-methylenenorbornane, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-eritritol-phosphate (MEP) pathway in plastids (PMID: 7640522). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Camphene is nearly insoluble in water but very soluble in common organic solvents. It volatilizes readily at room temperature and has a pungent smell. It exists as a flammable, white solid that has a minty, citrus, eucalyptus odor. It is produced industrially by catalytic isomerization of the more common alpha-pinene. Camphene is used in the preparation of fragrances and in food additives for flavouring. In the mid-19th century it was used as a fuel for lamps, but this was limited by its explosiveness. Camphene exists in all eukaryotes, ranging from yeast to plants to humans. Camphene can be found in a number of food items such as dill, carrots, caraway, hyssop, lemon, orange, nutmeg seed, parsley, sage, thyme, turmeric and fennel, which makes camphene a potential biomarker for the consumption of these food products. It is a minor constituent of many essential oils such as turpentine, cypress oil, camphor oil, citronella oil, neroli, ginger oil, and valerian. (+)-camphene is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphene is considered to be an isoprenoid lipid molecule (+)-camphene is a camphor, fir, and fresh tasting compound found in common sage and turmeric, which makes (+)-camphene a potential biomarker for the consumption of these food products.
Pinene
Pinene (is a bicyclic monoterpene chemical compound. There are two structural isomers of pinene found in nature: alpha-pinene and beta-pinene. As the name suggests, both forms are important constituents of pine resin; they are also found in the resins of many other conifers, as well as in non-coniferous plants. Both isomers are used by many insects in their chemical communication system.
Epimuurolene
Gamma-cadinene, also known as D-G-cadinene or gamma-cadinene, (+)-isomer, is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units. Gamma-cadinene is a wood tasting compound and can be found in a number of food items such as hyssop, lemon balm, sweet orange, and common sage, which makes gamma-cadinene a potential biomarker for the consumption of these food products. Gamma-cadinene can be found primarily in saliva. Chemically, the cadinenes are bicyclic sesquiterpenes. The term cadinene has sometimes also been used in a broad sense to refer to any sesquiterpene with the so-called cadalane (4-isopropyl-1,6-dimethyldecahydronaphthalene) carbon skeleton. Because of the large number of known double-bond and stereochemical isomers, this class of compounds has been subdivided into four subclasses based on the relative stereochemistry at the isopropyl group and the two bridgehead carbon atoms. The name cadinene is now properly used only for the first subclass below, which includes the compounds originally isolated from cade oil. Only one enantiomer of each subclass is depicted, with the understanding that the other enantiomer bears the same subclass name .
β-Pinene
An isomer of pinene with an exocyclic double bond. It is a component of essential oils from many plants.
Widely distributed in plants, usually associated with a-Pinene
alpha-Bisabolol
alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2]. alpha-Bisabolol is a nontoxic sesquiterpene alcohol present in natural essential oil, with anticancer activity. alpha-Bisabolol exerts selective anticancer effect on A549 NSCLC cells (IC50=15 μM) via induction of cell cycle arrest, mitochondrial apoptosis and inhibition of PI3K/Akt signalling pathways. alpha-Bisabolol also strongly induces apoptosis in glioma cells[1][2].
alpha-Muurolene
(+)-alpha-muurolene is a member of the class of compounds known as sesquiterpenoids. Sesquiterpenoids are terpenes with three consecutive isoprene units (+)-alpha-muurolene can be found primarily in saliva. Within the cell, (+)-alpha-muurolene is primarily located in the membrane (predicted from logP).
Rosmarinic acid
The (S)-stereoisomer of rosmarinic acid. The 1-carboxy-2-(2,4-dihydroxyphenyl)ethyl ester of trans-caffeic acid. Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.731 Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively. Rosmarinic acid is a widespread phenolic ester compound in the plants. Rosmarinic acid inhibits MAO-A, MAO-B and COMT enzymes with IC50s of 50.1, 184.6 and 26.7 μM, respectively.
Genkwanin
Genkwanin is a monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. It has a role as a metabolite. It is a dihydroxyflavone and a monomethoxyflavone. It is functionally related to an apigenin. It is a conjugate acid of a genkwanin(1-). Genkwanin is a natural product found in Odontites viscosus, Eupatorium capillifolium, and other organisms with data available. A monomethoxyflavone that is apigenin in which the hydroxy group at position 7 is methylated. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.
Methylrosmarinic acid
Methyl rosmarinate is a hydroxycinnamic acid. Methyl rosmarinate is a natural product found in Dimetia scandens, Bourreria pulchra, and other organisms with data available. Methylrosmarinic acid is found in herbs and spices. Methylrosmarinic acid is isolated from Salvia (sage) species. Isolated from Salvia (sage) subspecies Methyl rosmarinate is found in herbs and spices. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1]. Methyl rosmarinate is a noncompetitive tyrosinase inhibitor which is isolated from Rabdosia serra, with an IC50 of 0.28 mM for mushroom tyrosinase, and also inhibits a-glucosidase[1].
Nepitrin
Nepitrin is a member of flavonoids and a glycoside. Nepitrin is a natural product found in Centaurea bracteata, Arnica longifolia, and other organisms with data available. Nepitrin is found in herbs and spices. Nepitrin is a constituent of rosemary (Rosmarinus officinalis) Constituent of rosemary (Rosmarinus officinalis). Nepitrin is found in herbs and spices and rosemary. Nepitrin, isolated from Scrophularia striata, possess significant anti-inflammatory and anti-arthritic activity[1][2]. Nepitrin, isolated from Scrophularia striata, possess significant anti-inflammatory and anti-arthritic activity[1][2].
7-Methylrosmanol
7-Methylrosmanol is a diterpene lactone. 7-Methylrosmanol is a natural product found in Salvia officinalis and Salvia canariensis with data available. From aerial parts of rosemary (Rosmarinus officinalis). 7-Methylrosmanol is found in herbs and spices, rosemary, and common sage. 7-Methylrosmanol is found in common sage. 7-Methylrosmanol is from aerial parts of rosemary (Rosmarinus officinalis 7-Methoxyrosmanol (7-O-Methoxyrosmanol), a phenolic diterpene isolated from rosemary, suppresses the cAMP responsiveness of PEPCK and G6Pase promoters[1]. 7-Methoxyrosmanol (7-O-Methoxyrosmanol), a phenolic diterpene isolated from rosemary, suppresses the cAMP responsiveness of PEPCK and G6Pase promoters[1].
Pulegone
Pulegone belongs to the class of organic compounds known as menthane monoterpenoids. These are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. It is formally classified as a cyclic ketone although it is biochemically a monoterpenoid as it is synthesized via isoprene units. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-erythritol-phosphate (MEP) pathway in plant cell plastids (PMID:7640522 ). Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclization reactions to yield a diverse number of cyclic arrangements. Pulegone is a hydrophobic, neutral compound that is insoluble in water. It exists as a clear, colorless oil. There are two isomers of Pulegone (the R and the S isomer), with the R isomer being more common. It is used industrially as a food additive and a perfuming agent. Pulegone has a fresh, minty or peppermint odor and a minty, fruity or green taste. It is found naturally in the essential oils of a variety of plants such as Nepeta cataria (catnip), Hedeoma pulegioides (pennyroyal), and Mentha species. It is also found in a number of plant foods and spices such as blackberryies, black currants, bell peppers, cornmint, rosemary, black tea, thyme, orange mint, peppermint, and spearmint, which makes it a potential biomarker for the consumption of these food products. Pulegone is also one of more than 140 terpenes that are found in cannabis plants (PMID:6991645 ). Pulegone, also known as (+)-(R)-pulegone or (1r)-(+)-P-menth-4(8)-en-3-one, is a member of the class of compounds known as menthane monoterpenoids. Menthane monoterpenoids are monoterpenoids with a structure based on the o-, m-, or p-menthane backbone. P-menthane consists of the cyclohexane ring with a methyl group and a (2-methyl)-propyl group at the 1 and 4 ring position, respectively. The o- and m- menthanes are much rarer, and presumably arise by alkyl migration of p-menthanes. Thus, pulegone is considered to be an isoprenoid lipid molecule. Pulegone is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Pulegone can be found in a number of food items such as globe artichoke, sacred lotus, garden onion, and rubus (blackberry, raspberry), which makes pulegone a potential biomarker for the consumption of these food products. Pulegone can be found primarily in saliva. Pulegone is a naturally occurring organic compound obtained from the essential oils of a variety of plants such as Nepeta cataria (catnip), Mentha piperita, and pennyroyal. It is classified as a monoterpene . (+)-pulegone is the (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone is a natural product found in Hedeoma multiflora, Clinopodium dalmaticum, and other organisms with data available. See also: Agathosma betulina leaf (part of). The (5R)-enantiomer of p-menth-4(8)-en-3-one. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2]. Pulegone, the major chemical constituent of Nepeta catariaessential oil which is an aromatic herb, is one of avian repellents[1]. The molecular target for the repellent action of Pulegone in avian species is nociceptive TRP ankyrin 1 (TRPA1). Pulegone stimulates both TRPM8 and TRPA1 channel in chicken sensory neurons and suppresses the former but not the latter at high concentrations[2].
skrofulein
Cirsimaritin is a dimethoxyflavone that is flavone substituted by methoxy groups at positions 6 and 7 and hydroxy groups at positions 5 and 4 respectively. It is a dimethoxyflavone and a dihydroxyflavone. It is functionally related to a flavone. Cirsimaritin is a natural product found in Achillea santolina, Schoenia cassiniana, and other organisms with data available. See also: Tangerine peel (part of).
alpha-Carene
Carene is a colorless liquid with a sweet, turpentine-like odor. Floats on water. (USCG, 1999) Car-3-ene is a monoterpene. It derives from a hydride of a carane. 3-Carene is a natural product found in Nepeta nepetella, Xylopia aromatica, and other organisms with data available. See also: Cannabis sativa subsp. indica top (part of). alpha-Carene is found in allspice. alpha-Carene is a flavouring ingredient.Carene, or delta-3-carene, is a bicyclic monoterpene which occurs naturally as a constituent of turpentine, with a content as high as 42\\% depending on the source. Carene has a sweet and pungent odor. It is not soluble in water, but miscible with fats and oils Flavouring ingredient
2-Pentylfuran
2-pentylfuran is a member of the class of compounds known as heteroaromatic compounds. Heteroaromatic compounds are compounds containing an aromatic ring where a carbon atom is linked to an hetero atom. 2-pentylfuran is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). 2-pentylfuran is a beany, butter, and earthy tasting compound and can be found in a number of food items such as yellow bell pepper, pepper (c. annuum), nuts, and watermelon, which makes 2-pentylfuran a potential biomarker for the consumption of these food products. 2-pentylfuran can be found primarily in feces, saliva, and urine. 2-pentylfuran exists in all eukaryotes, ranging from yeast to humans. 2-pentylfuran is a colourless to light yellow liquid that is not known to be produced by mammalian metabolism. It is present in many foods including alcoholic beverages, coffee, potatoes, tomatoes, roasted filberts, and soybean oil, and it is also a component of the aroma of these foods. 2-pentylfuran is a flavouring ingredient. 2-pentylfuran belongs to the furan family which is characterized by a furan ring (a five-member aromatic ring with one oxygen atom and four carbon atoms). A study showed that 2-pentylfuran is found in the breath of patients with Aspergillus fumigatus infections (PMID:19301177). 2-pentylfuran is a member of the class of furans that is furan in which the hydrogen at position 2 is replaced by a pentyl group. It is found in many heat-processed foods and drinks. It has a role as an Aspergillus metabolite, a human urinary metabolite, a volatile oil component, an insect repellent, a flavouring agent, a plant growth stimulator and a bacterial metabolite. 2-Pentylfuran is a natural product found in Vitis rotundifolia, Astragalus mongholicus, and other organisms with data available. 2-pentylfuran is a metabolite found in or produced by Saccharomyces cerevisiae. A member of the class of furans that is furan in which the hydrogen at position 2 is replaced by a pentyl group. It is found in many heat-processed foods and drinks. 2-Pentylfuran is the compound isolated from steam volatile oils obtained from potatoes at atmospheric pressure[1]. 2-Pentylfuran is the compound isolated from steam volatile oils obtained from potatoes at atmospheric pressure[1].
Nonanal
Nonanal, also known as nonyl aldehyde or pelargonaldehyde, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, nonanal is considered to be a fatty aldehyde lipid molecule. Nonanal acts synergistically with carbon dioxide in that regard. Nonanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Nonanal exists in all eukaryotes, ranging from yeast to humans. Nonanal is an aldehydic, citrus, and fat tasting compound. nonanal is found, on average, in the highest concentration in a few different foods, such as corns, tea, and gingers and in a lower concentration in sweet oranges, carrots, and limes. nonanal has also been detected, but not quantified, in several different foods, such as olives, cereals and cereal products, chinese cinnamons, common grapes, and oats. This could make nonanal a potential biomarker for the consumption of these foods. Nonanal has been identified as a compound that attracts Culex mosquitoes. Nonanal is a potentially toxic compound. Nonanal has been found to be associated with several diseases such as pervasive developmental disorder not otherwise specified, autism, crohns disease, and ulcerative colitis; also nonanal has been linked to the inborn metabolic disorders including celiac disease. Nonanal, also called nonanaldehyde, pelargonaldehyde or Aldehyde C-9, is an alkyl aldehyde. Although it occurs in several natural oils, it is produced commercially by hydroformylation of 1-octene. A colourless, oily liquid, nonanal is a component of perfumes. Nonanal is a clear brown liquid characterized by a rose-orange odor. Insoluble in water. Found in at least 20 essential oils, including rose and citrus oils and several species of pine oil. Nonanal is a saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. It has a role as a human metabolite and a plant metabolite. It is a saturated fatty aldehyde, a n-alkanal and a medium-chain fatty aldehyde. It is functionally related to a nonanoic acid. Nonanal is a natural product found in Teucrium montanum, Eupatorium cannabinum, and other organisms with data available. Nonanal is a uremic toxin. Uremic toxins can be subdivided into three major groups based upon their chemical and physical characteristics: 1) small, water-soluble, non-protein-bound compounds, such as urea; 2) small, lipid-soluble and/or protein-bound compounds, such as the phenols and 3) larger so-called middle-molecules, such as beta2-microglobulin. Chronic exposure of uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease.Nonanal belongs to the family of Medium-chain Aldehydes. These are An aldehyde with a chain length containing between 6 and 12 carbon atoms. Found in various plant sources including fresh fruits, citrus peels, cassava (Manihot esculenta), rice (Oryza sativa). Flavouring ingredient A saturated fatty aldehyde formally arising from reduction of the carboxy group of nonanoic acid. Metabolite observed in cancer metabolism. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1]. Nonanal is a saturated fatty aldehyde with antidiarrhoeal activity[1].
Piperitone
Piperitone is found in ceylan cinnamon. Piperitone is a flavouring ingredient.Piperitone is a natural monoterpene ketone which is a component of some essential oils. Both stereoisomers, the D-form and the L-form, are known. The D-form has a peppermint-like aroma and has been isolated from the oils of plants from the genera Cymbopogon, Andropogon, and Mentha. The L-form has been isolated from Sitka spruce. (Wikipedia Piperitone is a p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. It has a role as a volatile oil component and a plant metabolite. It is a p-menthane monoterpenoid and a cyclic terpene ketone. Piperitone is a natural product found in Clinopodium dalmaticum, Eucalyptus fasciculosa, and other organisms with data available. A p-menthane monoterpenoid that is cyclohex-2-en-1-one substituted by a methyl group at position 3 and an isopropyl group at position 6. Flavouring ingredient Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1]. Piperitone is as a powerful repellent and antiappetent agent. Piperitone is very toxic to Cymbopogon schoenanthus (C. schoenanthus) adults, newly laid eggs and to neonate larvae. Insecticidal activity[1].
(±)-2-Heptanol
2-heptanol appears as a clear colorless alcohol with a mild alcohol odor. Insoluble in water. Floats on water. Soluble in most organic liquids. Moderately toxic. Used as a solvent for various resins and as a flotation agent for ore processing. Heptan-2-ol is a secondary alcohol that is heptane substituted by a hydroxy group at position 2. It has a role as a bacterial metabolite and a plant metabolite. It is a heptanol and a secondary alcohol. 2-Heptanol is a natural product found in Vitis rotundifolia, Coffea arabica, and other organisms with data available. 2-Heptanol is a metabolite found in or produced by Saccharomyces cerevisiae. (±)-2-Heptanol belongs to the class of organic compounds known as fatty alcohols. These are aliphatic alcohols consisting of a chain of a least six carbon atoms. (±)-2-Heptanol is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (±)-2-heptanol is considered to be a fatty alcohol lipid molecule A secondary alcohol that is heptane substituted by a hydroxy group at position 2. Flavouring ingredient 2-Heptanol is one of chemical constituents identified in the essential oil of rhizome of Curcuma angustifolia and Curcuma zedoaria. Rhizome essential oil exhibited good antimicrobial and antioxidant activity[1]. 2-Heptanol is one of chemical constituents identified in the essential oil of rhizome of Curcuma angustifolia and Curcuma zedoaria. Rhizome essential oil exhibited good antimicrobial and antioxidant activity[1].
Ethyl decanoate
Present in sweet and sour cherry, pineapple, blackberry, plum, quince, cape gooseberry, pawpaw, crispbread, wines, spirits, cerimon (Monstera deliciosa) and roasted filbert. Flavouring agent. Ethyl decanoate is found in many foods, some of which are fruits, german camomile, nuts, and sweet marjoram. Ethyl decanoate, also known as ethyl caprate or ethyl capric acid, belongs to the class of organic compounds known as fatty acid esters. These are carboxylic ester derivatives of a fatty acid. Ethyl decanoate is a very hydrophobic molecule, practically insoluble in water, and relatively neutral.
Cryptotanshinone
Cryptotanshinone is found in herbs and spices. Cryptotanshinone is isolated from Rosmarinus officinalis (rosemary Isolated from Rosmarinus officinalis (rosemary). Cryptotanshinone is found in herbs and spices. Cryptotanshinone is a natural compound extracted from the root of Salvia miltiorrhiza Bunge that shows antitumor activities. Cryptotanshinone inhibits STAT3 with an IC50 of 4.6 μM. Cryptotanshinone is a natural compound extracted from the root of Salvia miltiorrhiza Bunge that shows antitumor activities. Cryptotanshinone inhibits STAT3 with an IC50 of 4.6 μM.
Carnosic acid
Carnosic acid is the major rosemary polyphenol. Carnosic acid appears to enhance the anti-cancer activity of vitamin D(3) and its analogs. Carnosic acid enhances monocytic differentiation of HL60 cells when combined not only with 1alpha,25-dihydroxyvitamin D3 (1,25D3) or 12-O-tetradecanoyl phorbol 13-acetate (TPA) but also with the classic granulocytic inducer all-trans retinoic acid (ATRA). Carnosic acid alone increases the expression of vitamin D receptor (VDR) and retinoid X receptor (RXR) alpha, which was greatly enhanced in the presence of 1alpha,25-dihydroxyvitamin D3 and all-trans retinoic acid. (PMID: 15265684). Isolated from Salvia officinalis (sage) and Rosamarinus officinalis (rosemary). Carnosic acid is found in many foods, some of which are ginger, nutmeg, star anise, and caraway.
Isorosmanol
Constituent of Rosmarinus officinalis (rosemary). Isorosmanol is found in herbs and spices, rosemary, and common sage. Isorosmanol is found in common sage. Isorosmanol is a constituent of Rosmarinus officinalis (rosemary)
1-O-Feruloylglucose
1-O-Feruloylglucose is found in green vegetables. 1-O-Feruloylglucose is present in Solanum, Raphanus, etc. species.
(2E)-2-Heptenal
(2E)-2-Heptenal, also known as 3-butylacrolein or 2-trans-heptenal, belongs to the class of organic compounds known as medium-chain aldehydes. These are an aldehyde with a chain length containing between 6 and 12 carbon atoms. (2E)-2-Heptenal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Thus, (2E)-2-heptenal is considered to be a fatty aldehyde lipid molecule. Uremic toxins such as 2-Heptenal are actively transported into the kidneys via organic ion transporters (especially OAT3). (2E)-2-Heptenal is an almond, and fatty tasting compound. (2E)-2-Heptenal is found, on average, in the highest concentration within safflowers. (2E)-2-Heptenal has also been detected, but not quantified, in several different foods, such as roselles, common grapes, cucumbers, garden tomato, and evergreen blackberries. (2E)-2-Heptenal is a potentially toxic compound. Uremic toxins tend to accumulate in the blood either through dietary excess or through poor filtration by the kidneys. As a uremic toxin, this compound can cause uremic syndrome. Chronic exposure to uremic toxins can lead to a number of conditions including renal damage, chronic kidney disease and cardiovascular disease. This seems to be mediated by the direct binding or inhibition by uremic toxins of the enzyme NADPH oxidase (especially NOX4 which is abundant in the kidneys and heart) (A7868). Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. (2e)-2-heptenal, also known as 3-butylacrolein or alpha-heptenal, is a member of the class of compounds known as medium-chain aldehydes. Medium-chain aldehydes are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, (2e)-2-heptenal is considered to be a fatty aldehyde lipid molecule (2e)-2-heptenal is slightly soluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (2e)-2-heptenal is an almond, fat, and fatty tasting compound and can be found in a number of food items such as watermelon, safflower, oat, and common grape, which makes (2e)-2-heptenal a potential biomarker for the consumption of these food products (2e)-2-heptenal can be found primarily in blood and saliva (2e)-2-heptenal is a non-carcinogenic (not listed by IARC) potentially toxic compound. As a uremic toxin, this compound can cause uremic syndrome. Uremic syndrome may affect any part of the body and can cause nausea, vomiting, loss of appetite, and weight loss. It can also cause changes in mental status, such as confusion, reduced awareness, agitation, psychosis, seizures, and coma. Abnormal bleeding, such as bleeding spontaneously or profusely from a very minor injury can also occur. Heart problems, such as an irregular heartbeat, inflammation in the sac that surrounds the heart (pericarditis), and increased pressure on the heart can be seen in patients with uremic syndrome. Shortness of breath from fluid buildup in the space between the lungs and the chest wall (pleural effusion) can also be present (T3DB).
1-Hexanol
1-Hexanol is an organic alcohol with a six carbon chain and a condensed structural formula of CH3(CH2)5OH. This colorless liquid is slightly soluble in water, but miscible with ether and ethanol. Two additional straight chain isomers of 1-hexanol exist, 2-hexanol and 3-hexanol, both of which differ by the location of the hydroxyl group. Many isomeric alcohols have the formula C6H13OH. 1-hexanol is believed to be a component of the odour of freshly mowed grass. It is used in the perfume industry and as a flavouring agent. 1-Hexanol is found in many foods, some of which are lemon, tea, yellow bell pepper, and hyssop. 1-Hexanol is a common constituent of essential oils (e.g. orange peel oil). 1-Hexanol is an organic alcohol with a six carbon chain and a condensed structural formula of CH3(CH2)5OH. This colorless liquid is slightly soluble in water, but miscible with ether and ethanol. Two additional straight chain isomers of 1-hexanol exist, 2-hexanol and 3-hexanol, both of which differ by the location of the hydroxyl group. Many isomeric alcohols have the formula C6H13OH. 1-hexanol is believed to be a component of the odour of freshly mown grass. It is used in the perfume industry. D002491 - Central Nervous System Agents > D002492 - Central Nervous System Depressants > D000777 - Anesthetics D018377 - Neurotransmitter Agents > D018678 - Cholinergic Agents > D018680 - Cholinergic Antagonists
2-Nonanone
2-Nonanone is found in alcoholic beverages. 2-Nonanone is present in banana, ginger, Brazil nut, attar of rose, clove oil, coconut oil, passionflower, sorghum, asparagus, tomato, corn, wine, cheese, beer, blackcurrant buds, melon, and strawberry jam. 2-Nonanone is a flavor and fragrance agent. It is a clear slightly yellow liquid. Ketones, such as 2-Nonanone, are reactive with many acids and bases liberating heat and flammable gases (e.g., H2). The amount of heat may be sufficient to start a fire in the unreacted portion of the ketone. Ketones react with reducing agents such as hydrides, alkali metals, and nitrides to produce flammable gas (H2) and heat. Present in banana, ginger, Brazil nut, attar of rose, clove oil, coconut oil, passionflower, sorghum, asparagus, tomato, corn, wine, cheese, beer, blackcurrant buds, melon, strawberry jam etc. Flavouring ingredient. 2-Nonanone is found in many foods, some of which are green vegetables, cereals and cereal products, watermelon, and cloves.
2-Butanol
2-Butanol, or sec-butanol, is a chemical compound with formula C4H10O. This secondary alcohol is a flammable, colorless liquid that is soluble in 12 parts water and completely miscible with polar organic solvent such as ethers and other alcohols. Diluent in colour additive mixtures for marking food
2-Pentanol
2-Pentanol, also known as 1-methylbutanol or 2-hydroxypentane, belongs to the class of organic compounds known as secondary alcohols. A secondary alcohol that is pentane substituted at position 2 by a hydroxy group. Secondary alcohols are compounds containing a secondary alcohol functional group, with the general structure HOC(R)(R) (R,R=alkyl, aryl). 2-Pentanol has been detected, but not quantified, in a few different foods, such as alcoholic beverages, fruits, and milk and milk products. Present in many foodstuffs, e.g. fruits, alcoholic beverages and cheeses. xi-2-Pentanol is found in alcoholic beverages, milk and milk products, and fruits.
Pentanal
Pentanal, also known as N-valeraldehyde or amyl aldehyde, belongs to the class of organic compounds known as alpha-hydro gen aldehydes. These are aldehydes with the general formula HC(H)(R)C(=O)H, where R is an organyl group. Pentanal is a saturated fatty aldehyde composed from five carbons in a straight chain. Thus, pentanal is considered to be a fatty aldehyde lipid molecule. Pentanal is a very hydrophobic molecule, practically insoluble in water, and relatively neutral. Pentanal is an almond, berry, and bready tasting compound. Pentanal is found, on average, in the highest concentration within a few different foods, such as black walnuts, milk (cow), and carrots and in a lower concentration in corns, tortilla, and safflowers. Pentanal has also been detected, but not quantified, in several different foods, such as crustaceans, garden tomato, herbs and spices, and guava. This could make pentanal a potential biomarker for the consumption of these foods. Found in olive oil and several essential oilsand is also present in Bantu beer, plum brandy, cardamom, coriander leaf, rice, Bourbon vanilla, clary sage, cooked shrimps, scallops, apple, banana, sweet cherry, blackcurrant and other foods.
gamma-Muurolene
gamma-Muurolene is found in carrot. gamma-Muurolene is a constituent of Pinus sylvestris (Scotch pine).
(-)-Borneol
(-)-Borneol is found in common thyme and in turmeric. (-)-Borneol is a constituent of Blumea balsamifera (sambong). Both Borneol and Isoborneol and their acetates and formates are used as flavouring agents Constituent of Blumea balsamifera (sambong). (-)-Borneol is found in many foods, some of which are tea, coriander, common thyme, and cornmint. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2]. Isoborneol ((±)-Isoborneol) is a monoterpenoid alcohol present in the essential oils of numerous medicinal plants and has antioxidant and antiviral properties. Isoborneol is a potent inhibitor of herpes simplex virus type 1 (HSV-1)[1][2].
(1R,4S,5R)-4-Thujanol
(1R,4S,5R)-4-Thujanol is found in herbs and spices. (1R,4S,5R)-4-Thujanol is a constituent of the essential oil of American peppermint and other Mentha species (1R,4S,5R)-4-Thujanol is a flavouring agent Constituent of the essential oil of American peppermint and other Mentha subspecies Flavouring agent. (1R,4S,5R)-4-Thujanol is found in herbs and spices.
delta-Amorphene
1(10),4-Cadinadiene is a cadinene (FDB009046) of the delta-serie [FooDB]. A cadinene (FDB009046) of the delta-serie [FooDB]
cis-Ocimene
Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. cis-beta-Ocimene is found in many foods, some of which are cornmint, sweet orange, sweet basil, and common sage. cis-Ocimene is found in allspice. Ocimene refers to several isomeric hydrocarbons. The ocimenes are monoterpenes found within a variety of plants and fruits. alpha-Ocimene and the two beta-ocimenes differ in the position of the isolated double bond: it is terminal in the alpha isomer. alpha-Ocimene is 3,7-dimethyl-1,3,7-octatriene. beta-Ocimene is 3,7-dimethyl-1,3,6-octatriene. beta-Ocimene exists in two stereoisomeric forms, cis and trans, with respect to the central double bond. The ocimenes are often found naturally as mixtures of the various forms. The mixture (as well as the pure compounds) is an oil with a pleasant odor. It is used in perfumery. (Wikipedia
(S)-p-Menth-1-en-4-ol
(S)-p-Menth-1-en-4-ol occurs in many essential oils, e.g. lavende Occurs in many essential oils, e.g. lavender Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3]. Terpinen-4-ol (4-Carvomenthenol), a naturally occurring monoterpene, is the main bioactive component of tea-tree oil. Terpinen-4-ol suppresses inflammatory mediator production by activated human monocytes. Terpinen-4-ol significantly enhances the effect of several chemotherapeutic and biological agents[1][2][3].
Luteolin 3'-(3'-acetylglucuronide)
Luteolin 3-(3-acetylglucuronide) is found in herbs and spices. Luteolin 3-(3-acetylglucuronide) is isolated from Rosmarinus officinalis (rosemary). Isolated from Rosmarinus officinalis (rosemary). Luteolin 3-(3-acetylglucuronide) is found in herbs and spices and rosemary.
1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester
1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is found in fruits. 1alpha,3beta,22R-Trihydroxyergosta-5,24E-dien-26-oic acid 3-O-b-D-glucoside 26-O-[b-D-glucosyl-(1->2)-6-acetyl-b-D-glucosyl] ester is a constituent of Physalis peruviana (Cape gooseberry).
Epirosmanol
From rosemary leaves (Rosmarinus officinalis). Epirosmanol is found in many foods, some of which are cloves, pepper (spice), sweet bay, and caraway. Rosmanol is found in common sage. Rosmanol is isolated from rosemary leaves (Rosmarinus officinalis Epirosmanol is a nature diterpene lactone from S. officinalis. Epirosmanol shows anti-cancer activity and inhibits melanin biosynthesis against melanoma cells. Epirosmanol also exhibits DPPH radical scavenging activity[1][2].
Rosmadial
Constituent of Rosmarinus officinalis (rosemary). Rosmadial is found in many foods, some of which are herbs and spices, cloves, nutmeg, and common sage. Rosmadial is found in caraway. Rosmadial is a constituent of Rosmarinus officinalis (rosemary).
Micromeric acid
Micromeric acid is a constituent of lavender. Constituent of lavender
(Z)-3-Octen-1-ol
(Z)-3-Octen-1-ol is found in fruits. (Z)-3-Octen-1-ol is a flavouring ingredient present in banana, passionfruit and green peas. Flavouring ingredient present in banana, passionfruit and green peas. (Z)-3-Octen-1-ol is found in pulses and fruits.
11,12,14-Trihydroxy-7-methoxy-8,11,13-abietatrien-20,6-olide
11,12,14-Trihydroxy-7-methoxy-8,11,13-abietatrien-20,6-olide is found in herbs and spices. 11,12,14-Trihydroxy-7-methoxy-8,11,13-abietatrien-20,6-olide is a constituent of leaves of rosemary (Rosmarinus officinalis) Constituent of leaves of rosemary (Rosmarinus officinalis). 14-Hydroxy-7-methylrosmanol is found in herbs and spices.
11,12-Dihydroxy-7,14-dimethoxy-8,11,13-abietatrien-20,6-olide
11,12-Dihydroxy-7,14-dimethoxy-8,11,13-abietatrien-20,6-olide is found in herbs and spices. 11,12-Dihydroxy-7,14-dimethoxy-8,11,13-abietatrien-20,6-olide is a constituent of leaves of rosemary (Rosmarinus officinalis) Constituent of leaves of rosemary (Rosmarinus officinalis). 14-Methoxy-7-methylrosmanol is found in herbs and spices.
1-Octen-3-one
1-Octen-3-one is found in fruits. Mushroom flavour component (shiitake, matsutake). Also present in cranberry, melon, cape gooseberry, peas, potato, mustards, wheat bread, other breads, coriander seed, dill basil varieties and soybean. Contributes to aroma of cooked artichokes (Cynara scolymus) and many other foods Oct-1-en-3-one (CH2=CHC(=O)(CH2)4CH3), also known as 1-octen-3-one, is the odorant that is responsible for the typical metallic smell of metals and blood coming into contact with skin. Oct-1-en-3-one has a strong metallic mushroom-like odor with an odor detection threshold of 0.03 - 1.12 µg/m and it is the main compound responsible for the "smell of metal", followed by decanal (smell: orange skin, flowery) and nonanal (smell: tallowy, fruity). Oct-1-en-3-one is the degradative reduction product of the chemical reaction of skin lipid peroxides and Fe2+. Skin lipid peroxides are formed from skin lipid by oxidation, either enzymatically by lipoxygenases or by air oxygen. Oct-1-en-3-one is a ketone analog of the alkene 1-octene Mushroom flavour component (shiitake, matsutake)and is also present in cranberry, melon, cape gooseberry, peas, potato, mustards, wheat bread, other breads, coriander seed, dill basil varieties and soybean. Contributes to aroma of cooked artichokes (Cynara scolymus) and many other foods
p-Mentha-1,3,5,8-tetraene
Occurs in Chamaecyparis, Citrus, Eucalyptus, Juniperus and Ribes subspecies oils and juices. Flavouring ingredient. p-Mentha-1,3,5,8-tetraene is found in many foods, some of which are lemon, parsley, spearmint, and roman camomile. p-Mentha-1,3,5,8-tetraene is found in citrus. p-Mentha-1,3,5,8-tetraene occurs in Chamaecyparis, Citrus, Eucalyptus, Juniperus and Ribes species oils and juices. p-Mentha-1,3,5,8-tetraene is a flavouring ingredien
Luteolin 3'-(4'-acetylglucuronide)
Luteolin 3-(4-acetylglucuronide) is found in herbs and spices. Luteolin 3-(4-acetylglucuronide) is a constituent of the leaves of Rosmarinus officinalis (rosemary). Constituent of the leaves of Rosmarinus officinalis (rosemary). Luteolin 3-(4-acetylglucuronide) is found in herbs and spices and rosemary.
2-(4-Methylphenyl)-2-propanol
2-(4-Methylphenyl)-2-propanol is found in allspice. 2-(4-Methylphenyl)-2-propanol occurs in essential oils, e.g. Citrus reticulata and various fresh fruits. 2-(4-Methylphenyl)-2-propanol is a flavouring ingredien Occurs in essential oils, e.g. Citrus reticulata and various fresh fruits. Flavouring ingredient. 2-(4-Methylphenyl)-2-propanol is found in many foods, some of which are nutmeg, dill, fruits, and sweet marjoram.
1-Isopropyl-2-methylbenzene
1-Isopropyl-2-methylbenzene is found in citrus. 1-Isopropyl-2-methylbenzene is isolated from Citrus aurantium (Seville orange). Isolated from Citrus aurantium (Seville orange). 1-Isopropyl-2-methylbenzene is found in citrus.
beta-Terpinene
beta-Terpinene is found in cumin. beta-Terpinene is a constituent of Juniper and Myrica gale (bog myrtle) oils.The terpinenes are three isomeric hydrocarbons that are classified as terpenes. They each have the same molecular formula and carbon framework, but they differ in the position of carbon-carbon double bonds. alpha-Terpinene has been isolated from cardamom and marjoram oils, and from other natural sources. beta-Terpinene has no known natural source, but has been prepared synthetically from sabinene. gamma-Terpinene is natural and has been isolated from a variety of plant sources. (Wikipedia). Constituent of Juniper and Myrica gale (bog myrtle) oils
cis-Caffeic acid
Caffeic acid, also known as caffeate, belongs to the class of organic compounds known as hydroxycinnamic acids. Hydroxycinnamic acids are compounds containing an cinnamic acid where the benzene ring is hydroxylated. Caffeic acid exists in all living species, ranging from bacteria to humans. It is the precursor to ferulic acid, coniferyl alcohol, and sinapyl alcohol, all of which are significant building blocks in lignin. Outside of the human body, caffeic acid has been detected, but not quantified in fats and oils and nuts. Caffeic acid is formally rated as a possible carcinogen (by IARC 2B) and is also a potentially toxic compound. Caffeic acid has a variety of potential pharmacological effects in in vitro studies and in animal models, and the inhibitory effect of caffeic acid on cancer cell proliferation by an oxidative mechanism in the human HT-1080 fibrosarcoma cell line has recently been established. It occurs at high levels in black chokeberry (141 mg per 100 g) and in fairly high level in lingonberry (6 mg per 100 g). D020011 - Protective Agents > D000975 - Antioxidants Found in olive oil, peanuts and other plant sources Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO). Caffeic acid is an inhibitor of both TRPV1 ion channel and 5-Lipoxygenase (5-LO).
Darwinol
Darwinol is found in herbs and spices. Darwinol is isolated from oil of myrtle (Myrtus communis Isolated from oil of myrtle (Myrtus communis). (+)-Myrtenol is found in herbs and spices.
(E)-3-Octen-1-ol
Oct-3-en-1-ol is a member of the class of compounds known as fatty alcohols. Fatty alcohols are aliphatic alcohols consisting of a chain of a least six carbon atoms. Oct-3-en-1-ol is slightly soluble (in water) and an extremely weak acidic compound (based on its pKa). (E)-3-Octen-1-ol is found in fruits. (E)-3-Octen-1-ol is found in ripe banana
alpha-Phellandrene
Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. Phellandrene is found in many foods, some of which are ceylon cinnamon, peppermint, anise, and dill. alpha-Phellandrene is found in allspice. Phellandrene is the name for a pair of organic compounds that have a similar molecular structure and similar chemical properties. alpha-Phellandrene and beta-phellandrene are cyclic monoterpenes and are double-bond isomers. The phellandrenes are used in fragrances because of their pleasing aromas. (Wikipedia
(-)-Isopulegol
Isolated from Mentha pulegium (European pennyroyal) and other essential oils. (-)-Isopulegol is found in many foods, some of which are lemon balm, lemon grass, rosemary, and fats and oils. (-)-Isopulegol is found in cornmint. (-)-Isopulegol is isolated from Mentha pulegium (European pennyroyal) and other essential oil
Rosmaridiphenol
Rosmaridiphenol is found in herbs and spices. Rosmaridiphenol is a constituent of the leaves of Rosmarinus officinalis (rosemary). Constituent of the leaves of Rosmarinus officinalis (rosemary). Rosmaridiphenol is found in herbs and spices and rosemary.
Oleanolic acid 3-acetate
Oleanolic acid 3-acetate, also known as 3-O-acetyloleanolic acid, is a member of the class of compounds known as triterpenoids. Triterpenoids are terpene molecules containing six isoprene units. Oleanolic acid 3-acetate is practically insoluble (in water) and a weakly acidic compound (based on its pKa). Oleanolic acid 3-acetate can be found in black-eyed pea and rosemary, which makes oleanolic acid 3-acetate a potential biomarker for the consumption of these food products.
beta-Thujene
Beta-thujene, also known as beta-thujene, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Beta-thujene can be found in rosemary, which makes beta-thujene a potential biomarker for the consumption of this food product. Beta-thujene, also known as β-thujene, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Beta-thujene can be found in rosemary, which makes beta-thujene a potential biomarker for the consumption of this food product.
trans-Octen-2-al
Trans-octen-2-al, also known as (E)-2-octenal or 2-octenal, (E)-isomer, is a member of the class of compounds known as medium-chain aldehydes. Medium-chain aldehydes are an aldehyde with a chain length containing between 6 and 12 carbon atoms. Thus, trans-octen-2-al is considered to be a fatty aldehyde lipid molecule. Trans-octen-2-al is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). Trans-octen-2-al can be found in ginger and potato, which makes trans-octen-2-al a potential biomarker for the consumption of these food products.
D-Camphor
(+)-camphor, also known as formosa camphor or 2-bornanone, is a member of the class of compounds known as bicyclic monoterpenoids. Bicyclic monoterpenoids are monoterpenoids containing exactly 2 rings, which are fused to each other. Thus, (+)-camphor is considered to be an isoprenoid lipid molecule (+)-camphor is practically insoluble (in water) and an extremely weak basic (essentially neutral) compound (based on its pKa). (+)-camphor is a bitter, camphor, and herbal tasting compound and can be found in a number of food items such as sugar apple, sunflower, fennel, and cardamom, which makes (+)-camphor a potential biomarker for the consumption of these food products. C254 - Anti-Infective Agent > C28394 - Topical Anti-Infective Agent D000890 - Anti-Infective Agents Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2]. Camphor ((±)-Camphor) is a topical anti-infective and anti-pruritic and internally as a stimulant and carminative. However, Camphor is poisonous when ingested. Antiviral, antitussive, and anticancer activities[1]. Camphor is a TRPV3 agonist[2].
alpha-fenchyl alcoholalpha-1,3,3-trimethyl-norbornan-2-ol
Fenchol or 1,3,3-Trimethylbicyclo[2.2.1]heptan-2-ol, belongs to the class of organic compounds known as bicyclic monoterpenoids. These are monoterpenoids containing exactly 2 rings, which are fused to each other. Fenchol is a naturally occurring bicyclic monoterpenoid and an isomer of Borneol. Monoterpenoids are terpenes that contain 10 carbon atoms and are comprised of two isoprene units. The biosynthesis of monoterpenes is known to occur mainly through the methyl-eritritol-phosphate (MEP) pathway in the plastids. Geranyl diphosphate (GPP) is a key intermediate in the biosynthesis of cyclic monoterpenes. GPP undergoes several cyclation reactions to yield a diverse number of cyclic arrangements. Fenchol is an extremely weak basic (essentially neutral) compound (based on its pKa). It is a colorless or white solid with a characteristic scent found in basil and Aster. Fenchol is used extensively in perfumery. Flavouring compound [Flavornet]
Scutellarein
Scutellarein is flavone substituted with hydroxy groups at C-4, -5, -6 and -7. It has a role as a metabolite. It is functionally related to an apigenin. It is a conjugate acid of a scutellarein(1-). Scutellarein is a natural product found in Scoparia dulcis, Artemisia douglasiana, and other organisms with data available. Flavone substituted with hydroxy groups at C-4, -5, -6 and -7. Scutellarein, also known as 6-hydroxyapigenin or 4,5,6,7-tetrahydroxyflavanone, is a member of the class of compounds known as flavones. Flavones are flavonoids with a structure based on the backbone of 2-phenylchromen-4-one (2-phenyl-1-benzopyran-4-one). Thus, scutellarein is considered to be a flavonoid lipid molecule. Scutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). Scutellarein can be synthesized from apigenin. Scutellarein is also a parent compound for other transformation products, including but not limited to, scutellarin, 4,6-dihydroxy-5,7-dimethoxyflavone, and 6-hydroxy-4,5,7-trimethoxyflavone. Scutellarein is a bitter tasting compound found in mexican oregano and sweet orange, which makes scutellarein a potential biomarker for the consumption of these food products. Scutellarein is a flavone that can be found in Scutellaria lateriflora and other members of the genus Scutellaria, as well as the fern Asplenium belangeri . Scutellarein is a natural flavonoid compound with anti-inflammatory effects. Scutellarein is a natural flavonoid compound with anti-inflammatory effects.
Apigenin 7,4'-dimethyl ether
Apigenin 7,4-dimethyl ether, also known as apigenin dimethylether or 4,7-dimethylapigenin, belongs to the class of organic compounds known as 7-O-methylated flavonoids. These are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, apigenin 7,4-dimethyl ether is considered to be a flavonoid lipid molecule. Apigenin 7,4-dimethyl ether is a very hydrophobic molecule, practically insoluble (in water), and relatively neutral. Outside of the human body, apigenin 7,4-dimethyl ether has been detected, but not quantified in, common sages and sweet basils. This could make apigenin 7,4-dimethyl ether a potential biomarker for the consumption of these foods. BioTransformer predicts that apigenin 7,4-dimethyl ether is a product of 4,5,7-trimethoxyflavone metabolism via an O-dealkylation reaction and catalyzed by CYP2C9 and CYP2C19 enzymes (PMID: 30612223). 4-methylgenkwanin, also known as apigenin dimethylether or 4,7-dimethylapigenin, is a member of the class of compounds known as 7-o-methylated flavonoids. 7-o-methylated flavonoids are flavonoids with methoxy groups attached to the C7 atom of the flavonoid backbone. Thus, 4-methylgenkwanin is considered to be a flavonoid lipid molecule. 4-methylgenkwanin is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 4-methylgenkwanin can be found in common sage and sweet basil, which makes 4-methylgenkwanin a potential biomarker for the consumption of these food products. Apigenin 7,4-dimethyl ether is a dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. It has a role as a plant metabolite. It is a dimethoxyflavone and a monohydroxyflavone. It is functionally related to an apigenin. Apigenin 7,4-dimethyl ether is a natural product found in Teucrium polium, Calea jamaicensis, and other organisms with data available. A dimethoxyflavone that is the 7,4-dimethyl ether derivative of apigenin. The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1] The compound 7,4'-Di-O-methylapigenin may be partly responsible for the reported antifungal activity of C. zeyheri, and may serve as a potential source of lead compounds that can be developed as antifungal phytomedicines.And it also showed inhibition of the drug efflux pumps (with IC50 = 51.64 μg/ml). IC50:51.64 μg/ml(Candida albicans drug efflux pumps)[2] In vitro: The isolated 7,4'-Di-O-methylapigenin was further investigated for its inhibitory activity on ABC drug efflux pumps in C. albicans by monitoring an increase in ciprofloxacin, assessing the level of its accumulation, in response to reserpine. There was a higher accumulation of ciprofloxacin in Candida cells in the presence of 7,4'-Di-O-methylapigenin than with reserpine. The compound 7,4'-Di-O-methylapigenine demonstrated the activity in a dose-dependent manner with IC50 value of 51.64 μg/ml. These results support those obtained from synergism assays where by the underlying synergistic antifungal mechanisms could be due to blockage of ABC efflux pumps and increasing the susceptibility of Candida to miconazole.[2] In vivo: In searching for natural products as potential anti-inflammatory agents, 7,4'-Di-O-methylapigenin wasn't evaluated in vivo for its ability to inhibit acute inflammation.[1]
Hispidulin
Hispidulin is a monomethoxyflavone that is scutellarein methylated at position 6. It has a role as an apoptosis inducer, an anti-inflammatory agent, an antioxidant, an anticonvulsant, an antineoplastic agent and a plant metabolite. It is a trihydroxyflavone and a monomethoxyflavone. It is functionally related to a scutellarein. Hispidulin (4,5,7-trihydroxy-6-methoxyflavone) is a potent benzodiazepine (BZD) receptor ligand with positive allosteric properties. Hispidulin is a natural product found in Eupatorium cannabinum, Eupatorium perfoliatum, and other organisms with data available. See also: Arnica montana Flower (part of). A monomethoxyflavone that is scutellarein methylated at position 6. 6-methylscutellarein, also known as 4,5,7-trihydroxy-6-methoxyflavone or dinatin, is a member of the class of compounds known as 6-o-methylated flavonoids. 6-o-methylated flavonoids are flavonoids with methoxy groups attached to the C6 atom of the flavonoid backbone. Thus, 6-methylscutellarein is considered to be a flavonoid lipid molecule. 6-methylscutellarein is practically insoluble (in water) and a very weakly acidic compound (based on its pKa). 6-methylscutellarein can be found in a number of food items such as italian oregano, common sage, sunflower, and common thyme, which makes 6-methylscutellarein a potential biomarker for the consumption of these food products. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
Isorosmanol
Isorosmanol is a diterpene lactone. Isorosmanol is a natural product found in Salvia pachyphylla, Salvia, and other organisms with data available.
Carnosic acid methyl ester
Methyl camosate is a diterpene isolated from Salvia officinalis or Rosmarinus officinalis. Methyl camosate has potent antioxidant and anti-bacterial activity[1][2].
16-hydroxypalmitic acid
An omega-hydroxy-long-chain fatty acid that is hexadecanoic acid (also known as palmitic acid) which is substituted at position 16 by a hydroxy group. It is a key monomer of cutin in the plant cuticle. 16-Hydroxy hexadecanoic acid is a hydroxylated fatty acid where the terminal (omega) carbon has been hydroxylated. In animal tissues, a family of enzymes termed cytochromes P450s are involved in fatty acid oxidation, hydroxylating with high specificity at the energetically unfavorable terminal (omega) or omega-1 carbons. Hydroxy fatty acids primarily come from consumption of plant products (vegetables or fruits) or from cows milk. Omega hydroxy fatty acids are found in the structure of suberin, a lipid polyester present in plant cell walls, and of cutin, a lipid polyester which is a component of the plant cuticle. These apoplastic structures are important plant-environment interfaces which act as barriers limiting water and nutrient loss and protecting plants from radiation and pathogens. [HMDB] Acquisition and generation of the data is financially supported in part by CREST/JST.
Isosakuranetin
4-methoxy-5,7-dihydroxyflavanone is a dihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5 and 7 and a methoxy group at position 4 (the 2S stereoisomer). It has a role as a plant metabolite. It is a dihydroxyflavanone, a monomethoxyflavanone, a member of 4-methoxyflavanones and a (2S)-flavan-4-one. It is functionally related to a (S)-naringenin. Isosakuranetin is a natural product found in Ageratina altissima, Chromolaena odorata, and other organisms with data available. A dihydroxyflavanone that is flavanone substituted by hydroxy groups at positions 5 and 7 and a methoxy group at position 4 (the 2S stereoisomer). Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia. Isosakuranetin is a flavanone flavonoid which can be found in the fruit of Citrus bergamia.
6-METHYL-5-HEPTEN-2-ONE
Sulcatone is an endogenous metabolite. Sulcatone is an endogenous metabolite.
11,12,14-Trihydroxy-7-methoxy-8,11,13-abietatrien-20,6-olide
Apigenin
Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.061 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.062 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.058 relative retention time with respect to 9-anthracene Carboxylic Acid is 1.059 Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM. Apigenin (4',5,7-Trihydroxyflavone) is a competitive CYP2C9 inhibitor with a Ki of 2 μM.
Luteolin
Annotation level-1 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.976 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.975 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.968 relative retention time with respect to 9-anthracene Carboxylic Acid is 0.971 Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3]. Luteolin (Luteoline), a flavanoid compound, is a potent Nrf2 inhibitor. Luteolin has anti-inflammatory, anti-cancer properties, including the induction of apoptosis and cell cycle arrest, and the inhibition of metastasis and angiogenesis, in several cancer cell lines, including human non-small lung cancer cells[1][2][3].
dinatin
Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM. Hispidulin is a natural flavone with a broad spectrum of biological activities. Hispidulin is a Pim-1 inhibitor with an IC50 of 2.71 μM.
Eriodictyol
Constituent of the leaves and branches of Phyllanthus emblica (emblic). Eriodictyol 7-(6-coumaroylglucoside) is found in fruits. Annotation level-1 Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM. Eriodictyol is a flavonoid isolated from the Chinese herb, with antioxidant and anti-inflammatory activity. Eriodictyol induces Nrf2 signaling pathway. Eriodictyol is also a potent influenza RNA-dependent RNA polymerase inhibitor with an IC50 of 18 nM.
Genkwanin
Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities. Genkwanin is a major non-glycosylated flavonoid with anti-flammatory activities.
Nepitrin
Nepitrin, isolated from Scrophularia striata, possess significant anti-inflammatory and anti-arthritic activity[1][2]. Nepitrin, isolated from Scrophularia striata, possess significant anti-inflammatory and anti-arthritic activity[1][2].
Swartziol
Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4]. Kaempferol (Kempferol), a flavonoid found in many edible plants, inhibits estrogen receptor α expression in breast cancer cells and induces apoptosis in glioblastoma cells and lung cancer cells by activation of MEK-MAPK. Kaempferol can be uesd for the research of breast cancer[1][2][3][4].
Quercetin
Annotation level-1 COVID info from clinicaltrial, clinicaltrials, clinical trial, clinical trials relative retention time with respect to 9-anthracene Carboxylic Acid is 0.898 D020011 - Protective Agents > D000975 - Antioxidants Corona-virus Coronavirus SARS-CoV-2 COVID-19 SARS-CoV COVID19 SARS2 SARS relative retention time with respect to 9-anthracene Carboxylic Acid is 0.902 Acquisition and generation of the data is financially supported by the Max-Planck-Society IPB_RECORD: 1981; CONFIDENCE confident structure IPB_RECORD: 3301; CONFIDENCE confident structure IPB_RECORD: 3283; CONFIDENCE confident structure Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1]. Quercetin, a natural flavonoid, is a stimulator of recombinant SIRT1 and also a PI3K inhibitor with IC50 of 2.4 μM, 3.0 μM and 5.4 μM for PI3K γ, PI3K δ and PI3K β, respectively[1].
Isorhamnetin
Glucoside present in the leaves of Peumus boldus (boldo). Isorhamnetin 3-dirhamnoside is found in fruits. Annotation level-1 Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K. Isorhamnetin is a flavonoid compound extracted from the Chinese herb Hippophae rhamnoides L.. Isorhamnetin suppresses skin cancer through direct inhibition of MEK1 and PI3K.
Catechin
Annotation level-1 Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM. Catechin ((+)-Catechin) inhibits cyclooxygenase-1 (COX-1) with an IC50 of 1.4 μM.
citrol
C26170 - Protective Agent > C275 - Antioxidant Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1]. Geraniol, an olefinic terpene, was found to inhibit growth of Candida albicans and Saccharomyces cerevisiae strains[1].
Thujone
α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3]. α-Thujone is a monoterpene isolated from Thuja occidentalis essential oil with potent anti-tumor activities. α-Thujone is a reversible modulator of the GABA type A receptor and the IC50 for α-Thujone is 21 μM in suppressing the GABA-induced currents. α-Thujone induces ROS accumulation-dependent cytotoxicity, also induces cell apoptosis and autophagy. α-Thujone has antinociceptive, insecticidal, and anthelmintic activity, and easily penetrates the blood-brain barrier[1][2][3].
α-phellandrene
One of a pair of phellandrene cyclic monoterpene double-bond isomers in which both double bonds are endocyclic (cf. alpha-phellandrene, where one of them is exocyclic).