4-Hydroxybenzoic acid (BioDeep_00000000344)
Secondary id: BioDeep_00000228882, BioDeep_00000400084, BioDeep_00000400256, BioDeep_00000403138
natural product human metabolite PANOMIX_OTCML-2023 Endogenous blood metabolite BioNovoGene_Lab2019
代谢物信息卡片
化学式: C7H6O3 (138.03169259999999)
中文名称: 对羟基苯甲酸, 4-羟基苯甲酸
谱图信息:
最多检出来源 Homo sapiens(blood) 0.04%
Last reviewed on 2024-07-01.
Cite this Page
4-Hydroxybenzoic acid. BioDeep Database v3. PANOMIX ltd, a top metabolomics service provider from China.
https://query.biodeep.cn/s/4-hydroxybenzoic_acid (retrieved
2024-11-08) (BioDeep RN: BioDeep_00000000344). Licensed
under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
分子结构信息
SMILES: C1=CC(=CC=C1C(=O)O)O
InChI: InChI=1S/C7H6O3/c8-6-3-1-5(2-4-6)7(9)10/h1-4,8H,(H,9,10)
描述信息
4-Hydroxybenzoic acid, also known as p-hydroxybenzoate or 4-carboxyphenol, belongs to the class of organic compounds known as hydroxybenzoic acid derivatives. Hydroxybenzoic acid derivatives are compounds containing a hydroxybenzoic acid (or a derivative), which is a benzene ring bearing a carboxyl and a hydroxyl groups. 4-Hydroxybenzoic acid is a white crystalline solid that is slightly soluble in water and chloroform but more soluble in polar organic solvents such as alcohols and acetone. It is a nutty and phenolic tasting compound. 4-Hydroxybenzoic acid exists in all living species, ranging from bacteria to plants to humans. 4-Hydroxybenzoic acid can be found naturally in coconut. It is one of the main catechins metabolites found in humans after consumption of green tea infusions. It is also found in wine, in vanilla, in Açaí oil, obtained from the fruit of the açaí palm (Euterpe oleracea), at relatively high concetrations (892±52 mg/kg). It is also found in cloudy olive oil and in the edible mushroom Russula virescens. It has been detected in red huckleberries, rabbiteye blueberries, and corianders and in a lower concentration in olives, red raspberries, and almonds. In humans, 4-hydroxybenzoic acid is involved in ubiquinone biosynthesis. In particular, the enzyme 4-hydroxybenzoate polyprenyltransferase uses a polyprenyl diphosphate and 4-hydroxybenzoate to produce diphosphate and 4-hydroxy-3-polyprenylbenzoate. This enzyme participates in ubiquinone biosynthesis. 4-Hydroxybenzoic acid can be biosynthesized by the enzyme Chorismate lyase. Chorismate lyase is an enzyme that transforms chorismate into 4-hydroxybenzoate and pyruvate. This enzyme catalyses the first step in ubiquinone biosynthesis in Escherichia coli and other Gram-negative bacteria. 4-Hydroxybenzoate is an intermediate in many enzyme-mediated reactions in microbes. For instance, the enzyme 4-hydroxybenzaldehyde dehydrogenase uses 4-hydroxybenzaldehyde, NAD+ and H2O to produce 4-hydroxybenzoate, NADH and H+. This enzyme participates in toluene and xylene degradation in bacteria such as Pseudomonas mendocina. 4-hydroxybenzaldehyde dehydrogenase is also found in carrots. The enzyme 4-hydroxybenzoate 1-hydroxylase transforms 4-hydroxybenzoate, NAD(P)H, 2 H+ and O2 into hydroquinone, NAD(P)+, H2O and CO2. This enzyme participates in 2,4-dichlorobenzoate degradation and is found in Candida parapsilosis. The enzyme 4-hydroxybenzoate 3-monooxygenase transforms 4-hydroxybenzoate, NADPH, H+ and O2 into protocatechuate, NADP+ and H2O. This enzyme participates in benzoate degradation via hydroxylation and 2,4-dichlorobenzoate degradation and is found in Pseudomonas putida and Pseudomonas fluorescens. 4-Hydroxybenzoic acid is a popular antioxidant in part because of its low toxicity. 4-Hydroxybenzoic acid has estrogenic activity both in vitro and in vivo (PMID 9417843).
Isolated from many plants, free and combined. Alkyl esters of 4-hydroxybenzoic acid (see below) are used as food and cosmetic preservatives, mainly in their Na salt form, which makes them more water soluble. They are active at low concentrations and more pH-independent than the commonly used Benzoic acid
4-hydroxybenzoic acid is a monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring. It has a role as a plant metabolite and an algal metabolite. It is a conjugate acid of a 4-hydroxybenzoate.
4-Hydroxybenzoic acid is a metabolite found in or produced by Escherichia coli (strain K12, MG1655).
See also: Vaccinium myrtillus Leaf (part of); Galium aparine whole (part of); Menyanthes trifoliata leaf (part of) ... View More ...
A monohydroxybenzoic acid that is benzoic acid carrying a hydroxy substituent at C-4 of the benzene ring.
4-Hydroxybenzoic acid. CAS Common Chemistry. CAS, a division of the American Chemical Society, n.d. https://commonchemistry.cas.org/detail?cas_rn=99-96-7 (retrieved 2024-07-01) (CAS RN: 99-96-7). Licensed under the Attribution-Noncommercial 4.0 International License (CC BY-NC 4.0).
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
4-Hydroxybenzoic acid, a phenolic derivative of benzoic acid, could inhibit most gram-positive and some gram-negative bacteria, with an IC50 of 160 μg/mL.
同义名列表
93 个代谢物同义名
4-Hydroxybenzoic acid, Pharmaceutical Secondary Standard; Certified Reference Material; 4-Hydroxybenzoic acid, certified reference material, TraceCERT(R); InChI=1/C7H6O3/c8-6-3-1-5(2-4-6)7(9)10/h1-4,8H,(H,9,10; 4-Hydroxybenzoic acid, Vetec(TM) reagent grade, 99\\%; 4-hydroxybenzoic acid, monosodium salt, 11C-labeled; METHYL PARAHYDROXYBENZOATE IMPURITY A [EP IMPURITY]; METHYL PARAHYDROXYBENZOATE IMPURITY A (EP IMPURITY); PROPYL HYDROXYBENZOATE IMPURITY A [EP IMPURITY]; PROPYL HYDROXYBENZOATE IMPURITY A (EP IMPURITY); ACETYLSALICYLIC ACID IMPURITY A (EP IMPURITY); ACETYLSALICYLIC ACID IMPURITY A [EP IMPURITY]; 4-Hydroxybenzoic acid, ReagentPlus(R), >=99\\%; 4-Hydroxybenzoic acid, puriss., >=99.0\\% (T); 4-Hydroxybenzoic acid, ReagentPlus(R), 99\\%; 4-hydroxybenzoic acid, copper(2+)(1:1) salt; 4-hydroxybenzoic acid, monopotassium salt; 4-hydroxybenzoic acid, dipotassium salt; SALICYLIC ACID IMPURITY A [EP IMPURITY]; SALICYLIC ACID IMPURITY A (EP IMPURITY); 4-hydroxybenzoic acid, monosodium salt; 4-hydroxybenzoic acid, dilithium salt; sodium p-hydroxybenzoate tetrahydrate; 4-hydroxybenzoic acid, disodium salt; 46DD083D-BFD3-4CE1-B2D9-6C6D5FEFD3D9; 4-hydroxybenzoic acid, calcium salt; Kyselina 4-hydroxybenzoova [Czech]; 4-Hydroxybenzoic acid, >=99\\%, FG; Acido p-idrossibenzoico [Italian]; 4-Hydroxybenzene carboxylic acid; 4-Hydroxybenzoic-2,3,5,6-d4 acid; 4-Hydroxybenzenecarboxylic acid; p-Hydroxybenzoic Acid, Reagent; Hydroxybenzenecarboxylic acid; 4-HYDROXYBENZOIC ACID [INCI]; 4-HYDROXYBENZOIC ACID [FHFI]; 4-HYDROXYBENZOIC ACID [HSDB]; Kyselina 4-hydroxybenzoova; P-HYDROXYBENZOIC ACID [MI]; p-Oxybenzoesaure [German]; Hydroxybenzenecarboxylate; para-hydroxy benzoic acid; HYDROXYBENZOIC ACID, PARA; Benzoic acid, 4-hydroxy-; Benzoic acid, p-hydroxy-; para-hydroxybenzoic acid; Acido p-idrossibenzoico; 4-hydroxyl benzoic acid; parahydroxybenzoic acid; p-Hydroxyl benzoic acid; Benzoic acid, 4-hydroxy; Benzoic acid, p-hydroxy; 4-hydroxylbenzoic acid; 4-Hydroxybenzoate, III; 4-Hydroxy-benzoesaeure; 4-hydroxybenzoi c acid; p-hydroxy benzoic acid; 4-hydroxy-benzoic acid; 4-hydroxy benzoic acid; p-hydroxy-Benzoic acid; p-Hydroxybenzoic acid; 4-Hydroxybenzoic acid; 4-Hydroxybenzoesaeure; phenol derivative, 8; 4-hyroxybenzoic acid; 4-hydoxybenzoic acid; 4-Hydroxybenzoicacid; Hydroxybenzoic acid; 4-hydroxy-benzoate; p-hydroxy-Benzoate; 4-hydroxybenzoate; p-hydroxybenzoate; 4-Hydroxybenzoic; p-Oxybenzoesaure; p-Salicylic acid; 4-Carboxyphenol; UNII-JG8Z55Y12H; Hydroxybenzoate; p-carboxyphenol; Tox21_303301; p-Salicylate; Paraben-acid; Tox21_202342; WLN: QVR DQ; CAS-99-96-7; JG8Z55Y12H; AI3-01003; 4-HBA; PHBA; 3pcc; 3pch; PHB; Sodium 4-hydroxy-benzoate; 4-Hydroxybenzoic acid
数据库引用编号
49 个数据库交叉引用编号
- ChEBI: CHEBI:30763
- KEGG: C00156
- KEGGdrug: D86505
- PubChem: 135
- HMDB: HMDB0000500
- Metlin: METLIN3263
- DrugBank: DB04242
- ChEMBL: CHEMBL441343
- Wikipedia: 4-Hydroxybenzoic_acid
- MeSH: 4-hydroxybenzoic acid
- ChemIDplus: 0000099967
- MetaCyc: 4-hydroxybenzoate
- MetaCyc: |4-hydroxybenzoate|
- KNApSAcK: C00000856
- foodb: FDB010508
- chemspider: 132
- CAS: 99-96-7
- MoNA: PS032108
- MoNA: KO000967
- MoNA: KO000966
- MoNA: ML001751
- MoNA: PS104008
- MoNA: LU084852
- MoNA: PR100417
- MoNA: KO000964
- MoNA: PS032107
- MoNA: PR100187
- MoNA: LU084851
- MoNA: KO000965
- MoNA: LU084853
- MoNA: LU084856
- MoNA: KO000963
- MoNA: LU084854
- MoNA: RP011903
- MoNA: LU084855
- MoNA: PS104007
- MoNA: RP011901
- MoNA: RP011902
- MoNA: PR100596
- PMhub: MS000000131
- MetaboLights: MTBLC30763
- ChEBI: CHEBI:17879
- PDB-CCD: PHB
- 3DMET: B00045
- NIKKAJI: J43.201F
- RefMet: 4-Hydroxybenzoic acid
- RefMet: Hydroxybenzoic acid
- medchemexpress: HY-Y0264
- BioNovoGene_Lab2019: BioNovoGene_Lab2019-380
分类词条
相关代谢途径
Reactome(4)
BioCyc(20)
- 4-hydroxyacetophenone degradation
- superpathway of chorismate metabolism
- ubiquinone (coenzyme Q) biosynthesis
- ubiquinol-10 biosynthesis
- ubiquinol-10 biosynthesis (eukaryotic)
- ubiquinol-10 biosynthesis (prokaryotic)
- ubiquinone-10 biosynthesis (eukaryotic)
- phenolphthiocerol biosynthesis
- p-HBAD biosynthesis
- ubiquinone-9 biosynthesis (eukaryotic)
- 4-hydroxymandelate degradation
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate
- superpathway of aromatic compound degradation via 3-oxoadipate
- ubiquinol-8 biosynthesis (prokaryotic)
- superpathway of ubiquinol-8 biosynthesis (prokaryotic)
- violdelphin biosynthesis
- bisphenol A degradation
- polybrominated dihydroxylated diphenyl ethers biosynthesis
- spongiadioxin C biosynthesis
- toluene degradation to protocatechuate (via p-cresol)
PlantCyc(3)
代谢反应
527 个相关的代谢反应过程信息。
Reactome(72)
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
6x(PCCA:PCCB) + ATP + Btn ⟶ 6x(Btn-PCCA:PCCB) + AMP + PPi
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
3alpha,7alpha,12alpha-trihydroxy-5beta-cholest-24-one-CoA + CoA-SH ⟶ choloyl-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
MHDB ⟶ DMPhOH + carbon dioxide
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
2MACA-CoA + CoA ⟶ Ac-CoA + PROP-CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
CAR + propionyl CoA ⟶ CoA-SH + Propionylcarnitine
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
GAA + SAM ⟶ CRET + H+ + SAH
- Metabolism of vitamins and cofactors:
4x(PC:Mn2+) + ATP + Btn ⟶ 4x(Btn-PC:Mn2+) + AMP + PPi
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
ATP + PROP-CoA + carbon dioxide ⟶ ADP + MEMA-CoA + Pi
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
H+ + TPNH + sepiapterin ⟶ TPN + dihydrobiopterin
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
ISCIT + TPN ⟶ 2OG + H+ + TPNH + carbon dioxide
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
- Metabolism:
1-3-oxo-THA-CoA + CoA-SH ⟶ DHA-CoA + propionyl CoA
- Metabolism of vitamins and cofactors:
H2O + Oxygen + PXL ⟶ H2O2 + PDXate
- Metabolism of cofactors:
dihydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH4 ⟶ Tetrahydrobiopterin + p-S1177-eNOS:CaM:HSP90:p-AKT1:BH2
- Ubiquinol biosynthesis:
PHB + all-E-10PrP2 ⟶ DHB + PPi
BioCyc(120)
- ubiquinone (coenzyme Q) biosynthesis:
L-tyrosine ⟶ ammonia + p-hydroxyphenylpyruvate
- bisphenol A degradation:
NAD+ + S-1-(4-hydroxyphenyl)-ethanol ⟶ 4-hydroxyacetophenone + H+ + NADH
- ubiquinone-9 biosynthesis:
3-nonaprenyl-4-hydroxybenzoate ⟶ 2-nonaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 4-coumarate degradation (aerobic):
4-hydroxybenzaldehyde + H2O + NAD(P)+ ⟶ 4-hydroxybenzoate + H+ + NAD(P)H
- 4-hydroxybenzoate biosynthesis IV (plants):
4-hydroxybenzaldehyde + H2O + NAD+ ⟶ 4-hydroxybenzoate + H+ + NADH
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzaldehyde + H2O + NAD+ ⟶ 4-hydroxybenzoate + H+ + NADH
- 4-hydroxymandelate degradation:
2-(4-hydroxyphenyl)-2-oxoacetate + H+ ⟶ 4-hydroxybenzaldehyde + CO2
- superpathway of aromatic compound degradation via 2-hydroxypentadienoate:
O2 + catechol ⟶ H+ + HMS
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + catechol ⟶ H+ + HMS
- toluene degradation III (aerobic) (via p-cresol):
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- 4-methylphenol degradation to protocatechuate:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- superpathway of aerobic toluene degradation:
4-methylphenol + H2O + an oxidized azurin ⟶ 4-hydroxybenzyl alcohol + H+ + a reduced azurin
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- superpathway of aromatic compound degradation via 3-oxoadipate:
O2 + trp ⟶ N-formylkynurenine
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- 4-hydroxymandelate degradation:
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- p-HBAD biosynthesis:
dTDP-β-L-rhamnose + p-HBAD-I ⟶ O-methyl-4-O-[α-L-rhamnopyranosyl-(1→3)-2-O-methyl-α-L-rhamnopyranosyl]-hydroxybenzoate + H+ + dTDP
- p-HBAD biosynthesis:
dTDP-β-L-rhamnose + p-HBAD-I ⟶ O-methyl-4-O-[α-L-rhamnopyranosyl-(1→3)-2-O-methyl-α-L-rhamnopyranosyl]-hydroxybenzoate + H+ + dTDP
- polybrominated phenols biosynthesis:
2,4-dibromophenol + H+ + NADPH + O2 + bromide ⟶ 2,4,6-tribromophenol + H2O + NADP+
- superpathway of polybrominated aromatic compound biosynthesis:
2,4-dibromophenol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 2-bromo-4-(2,4-dibromophenoxy)phenol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- 4-hydroxymandelate degradation:
4-hydroxybenzaldehyde + H2O + NADP+ ⟶ 4-hydroxybenzoate + H+ + NADPH
- toluene degradation to protocatechuate (via p-cresol):
4-hydroxybenzoate + H+ + NADPH + O2 ⟶ H2O + NADP+ + protocatechuate
- 4-hydroxybenzoate biosynthesis:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glu
- ubiquinol-10 biosynthesis:
3-methoxy-4-hydroxy-5-all-trans-decaprenylbenzoate + H+ ⟶ 6-(all-trans-decaprenyl)-2-methoxy-phenol + CO2
- phenolphthiocerol biosynthesis:
19-(4-hydroxyphenyl)nonadecanoyl adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a 19-(4-hydroxyphenyl)-nonadecanoyl-[(phenol)carboxyphthiodiolenone synthase]
- shikonin biosynthesis:
A + H2O + deoxyshikonin ⟶ A(H2) + shikonin
- 4-hydroxybenzoate biosynthesis III (plants):
3S-(4-hydroxyphenyl)-3-hydroxy-propanoyl-CoA + NAD+ ⟶ 4-hydroxybenzoyl-acetyl-CoA + H+ + NADH
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- 4-chlorobenzoate degradation:
4-chlorobenzoyl-coA + H2O ⟶ 4-hydroxybenzoyl-CoA + H+ + chloride
- tetrahydromethanopterin biosynthesis:
7,8-dihydroneopterin ⟶ 6-(hydroxymethyl)-7,8-dihydropterin + glycolaldehyde
- polybrominated dihydroxylated diphenyl ethers biosynthesis:
3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 3-bromo-5-(3,5-dibromo-2-hydroxyphenoxy)benzene-1,2-diol + H2O + an oxidized ferredoxin [iron-sulfur] cluster + bromide
- spongiadioxin C biosynthesis:
2,4-dibromophenol + 3,5-dibromocatechol + H+ + O2 + a reduced ferredoxin [iron-sulfur] cluster ⟶ 6,6'-oxybis(2,4-dibromophenol) + H2O + an oxidized ferredoxin [iron-sulfur] cluster
- superpathway of ubiquinol-6 biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-hexaprenylbenzoate + H+ ⟶ 2-hexaprenyl-6-methoxyphenol + CO2
- plastoquinol-9 biosynthesis II:
2-methyl-6-all-trans-nonaprenyl-1,4-benzoquinol + SAM ⟶ H+ + SAH + plastoquinol-9
- superpathway of chorismate metabolism:
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-6 biosynthesis from 4-hydroxybenzoate (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-hexaprenylbenzoate + H+ ⟶ 2-hexaprenyl-6-methoxyphenol + CO2
- ubiquinol-10 biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-decaprenylbenzoate + H+ ⟶ 6-(all-trans-decaprenyl)-2-methoxy-phenol + CO2
- ubiquinol-10 biosynthesis (prokaryotic):
6-(all-trans-decaprenyl)-2-methoxy-phenol + H+ + NADPH + O2 ⟶ all trans-decaprenyl-2-methoxy-6-1,4-benzoquinol + H2O + NADP+
- ubiquinol-7 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-heptaprenyl diphosphate ⟶ 3-heptaprenyl-4-hydroxybenzoate + diphosphate
- ubiquinol-8 biosynthesis (eukaryotic):
3-methoxy-4-hydroxy-5-all-trans-octaprenylbenzoate + H+ ⟶ 2-methoxy-6-(all-trans-octaprenyl)phenol + CO2
- ubiquinol-7 biosynthesis (prokaryotic):
4-hydroxybenzoate + all-trans-heptaprenyl diphosphate ⟶ 3-heptaprenyl-4-hydroxybenzoate + diphosphate
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-9 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- ubiquinol-9 biosynthesis (prokaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + phe ⟶ 3-phenyl-2-oxopropanoate + glu
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-9 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvoyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- superpathway of chorismate:
glt + phenylpyruvate ⟶ 2-oxoglutarate + phe
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- phenolphthiocerol biosynthesis:
19-(4-hydroxyphenyl)nonadecanoyl adenylate + holo-(phenol)carboxyphthiodiolenone synthase ⟶ AMP + H+ + a 19-(4-hydroxyphenyl)-nonadecanoyl-[(phenol)carboxyphthiodiolenone synthase]
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenyl-6-methoxyphenol + H+ + NADPH + O2 ⟶ 2-octaprenyl-6-methoxyquinol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-9 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-nonaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-nonaprenyl-1,4-benzoquinol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (eukaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- ubiquinol-6 biosynthesis (eukaryotic):
3-hexaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-hexaprenylbenzoate + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- ubiquinone-8 biosynthesis (eukaryotic):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinone-9 biosynthesis (eukaryotic):
3-nonaprenyl-4-hydroxy-5-methoxybenzoate + H+ ⟶ 2-nonaprenyl-6-methoxyphenol + CO2
- 4-hydroxybenzoate biosynthesis I (animals):
4-coumarate + ATP + coenzyme A ⟶ 4-coumaroyl-CoA + AMP + H+ + diphosphate
- ubiquinone-7 biosynthesis (eukaryotic):
3-heptaprenyl-4-hydroxy-5-methoxybenzoate + H+ ⟶ 2-heptaprenyl-6-methoxyphenol + CO2
- ubiquinone-10 biosynthesis (eukaryotic):
3-decaprenyl-4-hydroxy-5-methoxybenzoate + H+ ⟶ 2-decaprenyl-6-methoxyphenol + CO2
- ubiquinone-6 biosynthesis (eukaryotic):
3-hexaprenyl-4-hydroxy-5-methoxybenzoate + H+ ⟶ 2-hexaprenyl-6-methoxyphenol + CO2
- plastoquinol-9 biosynthesis II:
2-nonaprenylphenol + H+ + NADPH + O2 ⟶ 2-(all-trans-nonaprenyl)benzene-1,4-diol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + H+ + isochorismate ⟶ 2-succinyl-5-enolpyruvyl-6-hydroxy-3-cyclohexene-1-carboxylate + CO2
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of chorismate metabolism:
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + glt
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinone-10 biosynthesis (prokaryotic):
3-decaprenyl-4-hydroxybenzoate + H+ ⟶ 2-decaprenylphenol + CO2
- ubiquinone-8 biosynthesis (prokaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ ⟶ 2-octaprenylphenol + CO2
- ubiquinone-9 biosynthesis (prokaryotic):
H+ + nonaprenyl-4-hydroxybenzoate ⟶ 2-nonaprenylphenol + CO2
- ubiquinone-7 biosynthesis (prokaryotic):
3-heptaprenyl-4-hydroxybenzoate + H+ ⟶ 2-heptaprenylphenol + CO2
- ubiquinol-9 biosynthesis (prokaryotic):
2-nonaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-nonaprenyl)benzene-1,2-diol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- 4-hydroxybenzoate biosynthesis II (bacteria and fungi):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- ubiquinol-9 biosynthesis (eukaryotic):
H+ + NADPH + O2 + nonaprenyl-4-hydroxybenzoate ⟶ 3,4-dihydroxy-5-all-trans-nonaprenylbenzoate + H2O + NADP+
- ubiquinol-6 biosynthesis (eukaryotic):
3-hexaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-hexaprenylbenzoate + H2O + NADP+
- 4-hydroxybenzoate biosynthesis V:
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- ubiquinol-8 biosynthesis (eukaryotic):
3-octaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-octaprenylbenzoate + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-octaprenylphenol + H+ + NADPH + O2 ⟶ 3-(all-trans-octaprenyl)benzene-1,2-diol + H2O + NADP+
- ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- superpathway of ubiquinol-8 biosynthesis (prokaryotic):
2-methoxy-6-(all-trans-octaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-octaprenyl-2-methoxy-1,4-benzoquinol + H2O + NADP+
- 4-coumarate degradation:
4-hydroxybenzoyl-acetyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + acetyl-CoA
- tetrahydromethanopterin biosynthesis:
4-(β-D-ribofuranosyl)-N-succinylaminobenzene 5'-phosphate ⟶ 4-(β-D-ribofuranosyl)aminobenzene-5'-phosphate + fumarate
- 4-hydroxybenzoate biosynthesis II (microbes):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
WikiPathways(2)
- Farnesyl to CoQ10 metabolism:
4OH-Cinnamate ⟶ 4OH-benzoate
- Flavan-3-ol metabolic pathway:
(-)-Epicatechin ⟶ (-)-Epicatechin-3'-sulfate
Plant Reactome(0)
INOH(0)
PlantCyc(322)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-glucoside ⟶ D-glucopyranose + delphinidin 3-O-rutinoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-glucoside ⟶ D-glucopyranose + delphinidin 3-O-rutinoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-glucoside ⟶ D-glucopyranose + delphinidin 3-O-rutinoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-glucoside ⟶ D-glucopyranose + delphinidin 3-O-rutinoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- violdelphin biosynthesis:
UDP-β-L-rhamnose + delphinidin-3-O-β-D-glucoside ⟶ UDP + delphinidin 3-O-rutinoside
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-glucoside ⟶ D-glucopyranose + delphinidin 3-O-rutinoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-glucoside ⟶ D-glucopyranose + delphinidin 3-O-rutinoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + violdelphin
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-coumarate + H2O ⟶ 4-hydroxybenzaldehyde + acetate
- 4-hydroxybenzoate biosynthesis IV (plants):
4-coumarate + H2O ⟶ 4-hydroxybenzaldehyde + acetate
- 4-hydroxybenzoate biosynthesis IV (plants):
4-coumarate + H2O ⟶ 4-hydroxybenzaldehyde + acetate
- 4-hydroxybenzoate biosynthesis III (plants):
4-hydroxybenzoyl-CoA + acetyl-CoA ⟶ 3-(4-hydroxyphenyl)-3-oxo-propanoyl-CoA + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- ubiquinol-9 biosynthesis (eukaryotic):
2-methoxy-6-(all-trans-nonaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-nonaprenyl-1,4-benzoquinol + H2O + NADP+
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-9 biosynthesis (eukaryotic):
2-methoxy-6-(all-trans-nonaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-nonaprenyl-1,4-benzoquinol + H2O + NADP+
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- ubiquinol-9 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- ubiquinol-9 biosynthesis (eukaryotic):
2-methoxy-6-(all-trans-nonaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-nonaprenyl-1,4-benzoquinol + H2O + NADP+
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- ubiquinol-9 biosynthesis (eukaryotic):
2-methoxy-6-(all-trans-nonaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-nonaprenyl-1,4-benzoquinol + H2O + NADP+
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
2-oxoglutarate + tyr ⟶ 4-hydroxyphenylpyruvate + Glu
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis II (bacteria):
chorismate ⟶ 4-hydroxybenzoate + pyruvate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
6-(all-trans-decaprenyl)-2-methoxy-phenol + H+ + NADPH + O2 ⟶ all trans-decaprenyl-2-methoxy-6-1,4-benzoquinol + H2O + NADP+
- violdelphin biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + delphinidin 3-O-rutinoside-7-O-glucoside ⟶ D-glucopyranose + delphinidin 3-O-rutinoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- ubiquinol-9 biosynthesis (eukaryotic):
3-nonaprenyl-4-hydroxybenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-nonaprenylbenzoate + H2O + NADP+
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-9 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
1-O-feruloyl-β-D-glucose + cyanidin-3-O-β-D-glucoside ⟶ cyanidin 3,7-di-O-β-D-glucoside + ferulate
- ubiquinol-10 biosynthesis (eukaryotic):
6-(all-trans-decaprenyl)-2-methoxy-phenol + H+ + NADPH + O2 ⟶ all trans-decaprenyl-2-methoxy-6-1,4-benzoquinol + H2O + NADP+
- shikonin biosynthesis:
3''-hydroxy-geranylhydroquinone ⟶ deoxyshikonin
- ubiquinol-9 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- ubiquinol-9 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- 4-hydroxybenzoate biosynthesis I (eukaryotes):
4-hydroxybenzoyl-CoA + H2O ⟶ 4-hydroxybenzoate + H+ + coenzyme A
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanin ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-9 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-nonaprenyl diphosphate ⟶ 3-nonaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
H2O + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + H+ + cyanidin-3-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3,7-di-O-β-D-glucoside ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside) ⟶ D-glucopyranose + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(6-O-(p-hydroxybenzoyl)-glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-10 biosynthesis (eukaryotic):
4-hydroxybenzoate + all-trans-decaprenyl diphosphate ⟶ 3-decaprenyl-4-hydroxybenzoate + diphosphate
- ubiquinol-9 biosynthesis (late decarboxylation):
4-hydroxy-3-nonaprenylbenzoate + H+ + NADPH + O2 ⟶ 3,4-dihydroxy-5-all-trans-nonaprenylbenzoate + H2O + NADP+
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside) ⟶ 4-hydroxybenzoate + H+ + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside)
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin-3-O-β-D-glucoside ⟶ 4-hydroxybenzoate + cyanidin 3,7-di-O-β-D-glucoside
- ubiquinol-9 biosynthesis (late decarboxylation):
2-methoxy-6-(all-trans-nonaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-nonaprenyl-1,4-benzoquinol + H2O + NADP+
- cyanidin diglucoside biosynthesis (acyl-glucose dependent):
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin-3-O-β-D-glucoside ⟶ 4-hydroxybenzoate + cyanidin 3,7-di-O-β-D-glucoside
- cyanidin 3,7-diglucoside polyacylation biosynthesis:
1-O-4-hydroxybenzoyl-β-D-glucose + cyanidin 3-O-glucoside-7-O-(6-O-(p-hydroxybenzoyl)-glucoside) ⟶ 4-hydroxybenzoate + H+ + cyanidin 3-O-glucoside-7-O-(6-O-(4-O-(glucosyl)-oxybenzoyl)-glucoside)
- ubiquinol-9 biosynthesis (late decarboxylation):
2-methoxy-6-(all-trans-nonaprenyl)phenol + H+ + NADPH + O2 ⟶ 2-methoxy-6-all trans-nonaprenyl-1,4-benzoquinol + H2O + NADP+
COVID-19 Disease Map(0)
PathBank(11)
- Secondary Metabolites: Ubiquinol Biosynthesis:
2-Octaprenylphenol + Hydrogen Ion + NADPH + Oxygen ⟶ 2-Octaprenyl-6-hydroxyphenol + NADP + Water
- Secondary Metabolites: Ubiquinol Biosynthesis 2:
2-Octaprenylphenol + Hydrogen Ion + NADPH + Oxygen ⟶ 2-Octaprenyl-6-hydroxyphenol + NADP + Water
- Secondary Metabolites: Ubiquinol Biosynthesis:
Chorismate ⟶ 4-Hydroxybenzoic acid + Pyruvic acid
- Secondary Metabolites: Ubiquinol Biosynthesis 2:
Chorismate ⟶ 4-Hydroxybenzoic acid + Pyruvic acid
- Ubiquinone Biosynthesis:
3-Hexaprenyl-4,5-Dihydroxybenzoic acid + S-Adenosylmethionine ⟶ 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid + S-Adenosylhomocysteine
- Ubiquinone Biosynthesis:
3-Hexaprenyl-4,5-Dihydroxybenzoic acid + S-Adenosylmethionine ⟶ 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid + S-Adenosylhomocysteine
- Ubiquinone Biosynthesis:
3-Hexaprenyl-4,5-Dihydroxybenzoic acid + S-Adenosylmethionine ⟶ 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid + S-Adenosylhomocysteine
- Ubiquinone Biosynthesis:
3-Hexaprenyl-4,5-Dihydroxybenzoic acid + S-Adenosylmethionine ⟶ 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid + S-Adenosylhomocysteine
- Ubiquinone Biosynthesis:
3-Hexaprenyl-4,5-Dihydroxybenzoic acid + S-Adenosylmethionine ⟶ 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid + S-Adenosylhomocysteine
- Ubiquinone Biosynthesis:
3-Hexaprenyl-4,5-Dihydroxybenzoic acid + S-Adenosylmethionine ⟶ 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid + S-Adenosylhomocysteine
- Ubiquinone Biosynthesis:
3-Hexaprenyl-4,5-Dihydroxybenzoic acid + S-Adenosylmethionine ⟶ 3-Hexaprenyl-4-hydroxy-5-methoxybenzoic acid + S-Adenosylhomocysteine
PharmGKB(0)
14 个相关的物种来源信息
- 78707 - Bletilla Striata (Thunb.Ex A.Murray)Rchb.F.: -
- 41496 - Calendula Officinalis: -
- 36622 - Chaenomeles Sinensis (Thouin) Koehne: -
- 5326 - Coriolus: -
- 53719 - Eclipta prostrata L.: -
- 244311 - Erigeron Breviscapus: -
- 9606 - Homo sapiens: -
- 3015 - Sargassum: -
- 4112 - Solanum Nigrum Linn.: -
- 78479 - Trollius Chinensis: -
- 354528 - Zanthoxylum Nitidum: -
- 33090 - 白及: -
- 33090 - 肿节风: -
- 569774 - 金线莲: -
在这里通过桑基图来展示出与当前的这个代谢物在我们的BioDeep知识库中具有相关联信息的其他代谢物。在这里进行关联的信息来源主要有:
- PubMed: 来源于PubMed文献库中的文献信息,我们通过自然语言数据挖掘得到的在同一篇文献中被同时提及的相关代谢物列表,这个列表按照代谢物同时出现的文献数量降序排序,取前10个代谢物作为相关研究中关联性很高的代谢物集合展示在桑基图中。
- NCBI Taxonomy: 通过文献数据挖掘,得到的代谢物物种来源信息关联。这个关联信息同样按照出现的次数降序排序,取前10个代谢物作为高关联度的代谢物集合展示在桑吉图上。
- Chemical Taxonomy: 在物质分类上处于同一个分类集合中的其他代谢物
- Chemical Reaction: 在化学反应过程中,存在为当前代谢物相关联的生化反应过程中的反应底物或者反应产物的关联代谢物信息。
点击图上的相关代谢物的名称,可以跳转到相关代谢物的信息页面。
文献列表
- Xue Gao, Di Xin, Ye Zhao, Junru Li, Yangfan Cao, Shuyong Zhang, Jing Guo. Potential molecular mechanism of photosynthesis regulation by PeMPK7 in poplar under para-hydroxybenzoic acid stress.
Ecotoxicology and environmental safety.
2024 May; 276(?):116329. doi:
10.1016/j.ecoenv.2024.116329
. [PMID: 38626604] - Nozomi Katsuki, Shunsuke Masuo, Noriyuki Nukui, Hajime Minakawa, Naoki Takaya. Gallic acid fermentation by metabolically engineered Escherichia coli producing p-hydroxybenzoate hydroxylase from Hylemonella gracilis NS1.
The Journal of general and applied microbiology.
2023 Aug; ?(?):. doi:
10.2323/jgam.2023.08.004
. [PMID: 37648467] - Michael T Penrose, George P Cobb. Influences of Wastewater Treatment on the Occurrence of Parabens, p-Hydroxybenzoic Acid and Their Chlorinated and Hydroxylated Transformation Products in the Brazos River (Texas, USA).
Archives of environmental contamination and toxicology.
2023 Aug; ?(?):. doi:
10.1007/s00244-023-01025-x
. [PMID: 37558810] - Bitong Zhu, Yuanping Li, Christopher Rensing, Jianghua Ye, Jialin Qiu, Qinji Li, Lekang Wu, Qianxi Lu, Yv Lin, Xiaoli Jia. Improvement of phenolic acid autotoxicity in tea plantations by Pseudomonas fluorescens ZL22.
Journal of hazardous materials.
2023 Jun; 458(?):131957. doi:
10.1016/j.jhazmat.2023.131957
. [PMID: 37399720] - Ke-Na Feng, Yue Zhang, Mingfang Zhang, Yan-Long Yang, Ji-Kai Liu, Lifeng Pan, Ying Zeng. A flavin-monooxygenase catalyzing oxepinone formation and the complete biosynthesis of vibralactone.
Nature communications.
2023 06; 14(1):3436. doi:
10.1038/s41467-023-39108-x
. [PMID: 37301868] - Xiao-Pan Ning, Qian Yao, Zhong-Xiang Xu, Yao Yin, Han Liu, Xiao-Yan Zhang, Tao Ding, Yong Zhang, Yu Hou, Meng-Ru Wang, Li-Na Wu, Qi-Ting Tang. [Determination of seven paraben preservatives in aquatic seasoning using solid-phase extraction coupled with high performance liquid chromatography].
Se pu = Chinese journal of chromatography.
2023 Jun; 41(6):513-519. doi:
10.3724/sp.j.1123.2022.10004
. [PMID: 37259876] - Yi-Xi Li, Wei Lin, Yong-He Han, Yao-Qiang Wang, Tao Wang, Hong Zhang, Yong Zhang, Shan-Shan Wang. Biodegradation of p-hydroxybenzoic acid in Herbaspirillum aquaticum KLS-1 isolated from tailing soil: Characterization and molecular mechanism.
Journal of hazardous materials.
2023 May; 456(?):131669. doi:
10.1016/j.jhazmat.2023.131669
. [PMID: 37236108] - Mohamad Fawzi Mahomoodally, Gokhan Zengin, Seebaluck-Sandoram Roumita, Giovanni Caprioli, Ahmed M Mustafa, Diletta Piatti, Evren Yıldıztugay, Gunes Ak, Ayşe Esra Karadağ, Asaad Khalid, Ashraf N Abdalla, Abdullahi Ibrahim Uba, Fatih Demirci. Chemical Characterization and Multidirectional Biological Effects of Different Solvent Extracts of Arum elongatum: in Vitro and in Silico Approaches.
Chemistry & biodiversity.
2023 Mar; ?(?):e202201181. doi:
10.1002/cbdv.202201181
. [PMID: 36891864] - Yaseen Mottiar, Steven D Karlen, Robyn E Goacher, John Ralph, Shawn D Mansfield. Metabolic engineering of p-hydroxybenzoate in poplar lignin.
Plant biotechnology journal.
2023 01; 21(1):176-188. doi:
10.1111/pbi.13935
. [PMID: 36161690] - Yongxi Lin, Dong Li, Chunran Zhou, Yangliu Wu, Peijuan Miao, Qinyong Dong, Shusheng Zhu, Canping Pan. Application of insecticides on peppermint (Mentha × piperita L.) induces lignin accumulation in leaves by consuming phenolic acids and thus potentially deteriorates quality.
Journal of plant physiology.
2022 Dec; 279(?):153836. doi:
10.1016/j.jplph.2022.153836
. [PMID: 36244262] - Wendoline Rosiles-Alanis, Alejandro Zamilpa, Rebeca García-Macedo, Miguel A Zavala-Sánchez, Sergio Hidalgo-Figueroa, Beatriz Mora-Ramiro, Rubén Román-Ramos, Samuel E Estrada-Soto, Julio C Almanza-Perez. 4-Hydroxybenzoic Acid and β-Sitosterol from Cucurbita ficifolia Act as Insulin Secretagogues, Peroxisome Proliferator-Activated Receptor-Gamma Agonists, and Liver Glycogen Storage Promoters: In Vivo, In Vitro, and In Silico Studies.
Journal of medicinal food.
2022 Jun; 25(6):588-596. doi:
10.1089/jmf.2021.0071
. [PMID: 35708636] - Joel B Johnson, Daniel J Skylas, Janice S Mani, Jinle Xiang, Kerry B Walsh, Mani Naiker. Phenolic Profiles of Ten Australian Faba Bean Varieties.
Molecules (Basel, Switzerland).
2021 Jul; 26(15):. doi:
10.3390/molecules26154642
. [PMID: 34361795] - Y Wang, W Zhang, Z Zhang, W Wang, S Xu, X He. Isolation, identification and characterization of phenolic acid-degrading bacteria from soil.
Journal of applied microbiology.
2021 Jul; 131(1):208-220. doi:
10.1111/jam.14956
. [PMID: 33270328] - Anthi Parla, Eirini Zormpa, Nikolaos Paloumpis, Abuzar Kabir, Kenneth G Furton, Željka Roje, Victoria Samanidou, Ivana Vinković Vrček, Irene Panderi. Determination of Intact Parabens in the Human Plasma of Cancer and Non-Cancer Patients Using a Validated Fabric Phase Sorptive Extraction Reversed-Phase Liquid Chromatography Method with UV Detection.
Molecules (Basel, Switzerland).
2021 Mar; 26(6):. doi:
10.3390/molecules26061526
. [PMID: 33799523] - Yaling Lu, Xiangping Wu, Lei Yuan, Yingdi Li, Penghui Wang, Jianna Yu, Pingfang Tian, Wenjie Liu. A rapid liquid chromatography-electrospray ionization-ion mobility spectrometry method for monitoring nine representative metabolites in the seedlings of cucumber and wheat.
Journal of separation science.
2021 Feb; 44(3):709-716. doi:
10.1002/jssc.202000811
. [PMID: 33245598] - Kyle P Robinson, Adam Jochem, Sheila E Johnson, Thiruchelvi R Reddy, Jason D Russell, Joshua J Coon, David J Pagliarini. Defining intermediates and redundancies in coenzyme Q precursor biosynthesis.
The Journal of biological chemistry.
2021 Jan; 296(?):100643. doi:
10.1016/j.jbc.2021.100643
. [PMID: 33862086] - Bo Chen, Rui-Fang Li, Lian Zhou, Jia-Hui Qiu, Kai Song, Ji-Liang Tang, Ya-Wen He. The phytopathogen Xanthomonas campestris utilizes the divergently transcribed pobA/pobR locus for 4-hydroxybenzoic acid recognition and degradation to promote virulence.
Molecular microbiology.
2020 11; 114(5):870-886. doi:
10.1111/mmi.14585
. [PMID: 32757400] - Qiang Tong, Qinghu Wang, Bilegetu Pa, Wenqiang Bao, Junsheng Hao. Two new compounds from Artemisia ordosica Krasch.
Natural product research.
2020 Nov; 34(21):3061-3065. doi:
10.1080/14786419.2019.1607857
. [PMID: 31084212] - Young Hye Seo, Tuy An Trinh, Seung Mok Ryu, Hyo Seon Kim, Goya Choi, Byeong Cheol Moon, Sang Hee Shim, Dae Sik Jang, Dongho Lee, Ki Sung Kang, Jun Lee. Chemical Constituents from the Aerial Parts of Elsholtzia ciliata and Their Protective Activities on Glutamate-Induced HT22 Cell Death.
Journal of natural products.
2020 10; 83(10):3149-3155. doi:
10.1021/acs.jnatprod.0c00756
. [PMID: 32991171] - Naoki Kitaoka, Taiji Nomura, Shinjiro Ogita, Yasuo Kato. Bioproduction of glucose conjugates of 4-hydroxybenzoic and vanillic acids using bamboo cells transformed to express bacterial 4-hydroxycinnamoyl-CoA hydratase/lyase.
Journal of bioscience and bioengineering.
2020 Jul; 130(1):89-97. doi:
10.1016/j.jbiosc.2020.02.010
. [PMID: 32192841] - Shanshan Li, Yintang Zhang, Shuai Mu, Minrui Ma, Xiaoyan Liu, Haixia Zhang. Magnetic organic porous polymer as a solid-phase extraction adsorbent for enrichment and quantitation of gastric cancer biomarkers (P-cresol and 4-hydroxybenzoic acid) in urine samples by UPLC.
Mikrochimica acta.
2020 06; 187(7):388. doi:
10.1007/s00604-020-04362-z
. [PMID: 32542460] - Yazhen Chen, Hetong Lin, Mengshi Lin, Yongzhan Zheng, Jicheng Chen. Effect of roasting and in vitro digestion on phenolic profiles and antioxidant activity of water-soluble extracts from sesame.
Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.
2020 May; 139(?):111239. doi:
10.1016/j.fct.2020.111239
. [PMID: 32145351] - Mostafa Alilou, Dya Fita Dibwe, Stefan Schwaiger, Mojtaba Khodami, Jakob Troppmair, Suresh Awale, Hermann Stuppner. Antiausterity Activity of Secondary Metabolites from the Roots of Ferula hezarlalehzarica against the PANC-1 Human Pancreatic Cancer Cell Line.
Journal of natural products.
2020 04; 83(4):1099-1106. doi:
10.1021/acs.jnatprod.9b01109
. [PMID: 32163286] - Xue-Qiang Cao, Xing-Yu Ouyang, Bo Chen, Kai Song, Lian Zhou, Bo-Le Jiang, Ji-Liang Tang, Guanghai Ji, Alan R Poplawsky, Ya-Wen He. Genetic Interference Analysis Reveals that Both 3-Hydroxybenzoic Acid and 4-Hydroxybenzoic Acid Are Involved in Xanthomonadin Biosynthesis in the Phytopathogen Xanthomonas campestris pv. campestris.
Phytopathology.
2020 Feb; 110(2):278-286. doi:
10.1094/phyto-08-19-0299-r
. [PMID: 31613175] - Lian Xu, Hui Zhang, Ya-Ting Xing, Ning Li, Shuai Wang, Ji-Quan Sun. Complete Genome Sequence of Sphingobacterium psychroaquaticum Strain SJ-25, an Aerobic Bacterium Capable of Suppressing Fungal Pathogens.
Current microbiology.
2020 Jan; 77(1):115-122. doi:
10.1007/s00284-019-01789-3
. [PMID: 31646352] - Natalia Janaina Lago Maia, Jessica Audrey Feijó Corrêa, Rachel Tereza Rigotti, Anisio Antonio da Silva Junior, Fernando Bittencourt Luciano. Combination of natural antimicrobials for contamination control in ethanol production.
World journal of microbiology & biotechnology.
2019 Oct; 35(10):158. doi:
10.1007/s11274-019-2734-6
. [PMID: 31595344] - Mindong Liang, Zilong Li, Weishan Wang, Jiakun Liu, Leshi Liu, Guoliang Zhu, Loganathan Karthik, Man Wang, Ke-Feng Wang, Zhong Wang, Jing Yu, Yuting Shuai, Jiaming Yu, Lu Zhang, Zhiheng Yang, Chuan Li, Qian Zhang, Tong Shi, Liming Zhou, Feng Xie, Huanqin Dai, Xueting Liu, Jingyu Zhang, Guang Liu, Ying Zhuo, Buchang Zhang, Chenli Liu, Shanshan Li, Xuekui Xia, Yaojun Tong, Yanwen Liu, Gil Alterovitz, Gao-Yi Tan, Li-Xin Zhang. A CRISPR-Cas12a-derived biosensing platform for the highly sensitive detection of diverse small molecules.
Nature communications.
2019 08; 10(1):3672. doi:
10.1038/s41467-019-11648-1
. [PMID: 31413315] - Eugene Fletcher, Kai Gao, Kevin Mercurio, Mariam Ali, Kristin Baetz. Yeast chemogenomic screen identifies distinct metabolic pathways required to tolerate exposure to phenolic fermentation inhibitors ferulic acid, 4-hydroxybenzoic acid and coniferyl aldehyde.
Metabolic engineering.
2019 03; 52(?):98-109. doi:
10.1016/j.ymben.2018.11.010
. [PMID: 30471359] - Takuya Hasegawa, Yusuke Kato, Atsushi Okabe, Chie Itoi, Atsushi Ooshiro, Hiroshi Kawaide, Masahiro Natsume. Effect of Secondary Metabolites of Tomato ( Solanum lycopersicum) on Chemotaxis of Ralstonia solanacearum, Pathogen of Bacterial Wilt Disease.
Journal of agricultural and food chemistry.
2019 Feb; 67(7):1807-1813. doi:
10.1021/acs.jafc.8b06245
. [PMID: 30734556] - Jillian M Hagel, Xue Chen, Peter J Facchini. Production of methylparaben in Escherichia coli.
Journal of industrial microbiology & biotechnology.
2019 Jan; 46(1):91-99. doi:
10.1007/s10295-018-2102-9
. [PMID: 30392093] - Yi Shi, Jingyi Zhang, Jia He, Donghao Liu, Xiaoyan Meng, Tao Huang, Hua He. A method of detecting two tumor markers (p-hydroxybenzoic acid and p-cresol) in human urine using a porous magnetic
-cyclodextrine polymer as solid phase extractant, an alternative for early gastric cancer diagnosis . Talanta. 2019 Jan; 191(?):133-140. doi:10.1016/j.talanta.2018.08.036
. [PMID: 30262042] - Eric Soubeyrand, Timothy S Johnson, Scott Latimer, Anna Block, Jeongim Kim, Thomas A Colquhoun, Eugenio Butelli, Cathie Martin, Mark A Wilson, Gilles J Basset. The Peroxidative Cleavage of Kaempferol Contributes to the Biosynthesis of the Benzenoid Moiety of Ubiquinone in Plants.
The Plant cell.
2018 12; 30(12):2910-2921. doi:
10.1105/tpc.18.00688
. [PMID: 30429224] - Songwei Wang, Cong Fu, Muhammad Bilal, Hongbo Hu, Wei Wang, Xuehong Zhang. Enhanced biosynthesis of arbutin by engineering shikimate pathway in Pseudomonas chlororaphis P3.
Microbial cell factories.
2018 Nov; 17(1):174. doi:
10.1186/s12934-018-1022-8
. [PMID: 30414616] - Jiaqian Cao, Yongpeng Yao, Keqiang Fan, Gaoyi Tan, Wensheng Xiang, Xuekui Xia, Shanshan Li, Weishan Wang, Lixin Zhang. Harnessing a previously unidentified capability of bacterial allosteric transcription factors for sensing diverse small molecules in vitro.
Science advances.
2018 11; 4(11):eaau4602. doi:
10.1126/sciadv.aau4602
. [PMID: 30498782] - Agape M Awad, Michelle C Bradley, Lucía Fernández-Del-Río, Anish Nag, Hui S Tsui, Catherine F Clarke. Coenzyme Q10 deficiencies: pathways in yeast and humans.
Essays in biochemistry.
2018 07; 62(3):361-376. doi:
10.1042/ebc20170106
. [PMID: 29980630] - Steven D Karlen, Heather C A Free, Dharshana Padmakshan, Bronwen G Smith, John Ralph, Philip J Harris. Commelinid Monocotyledon Lignins Are Acylated by p-Coumarate.
Plant physiology.
2018 06; 177(2):513-521. doi:
10.1104/pp.18.00298
. [PMID: 29724771] - Safa M Shams Eldin, Mohamed M Radwan, Amira S Wanas, Abdel-Azim M Habib, Fahima F Kassem, Hala M Hammoda, Shabana I Khan, Michael L Klein, Khaled M Elokely, Mahmoud A ElSohly. Bioactivity-Guided Isolation of Potential Antidiabetic and Antihyperlipidemic Compounds from Trigonella stellata.
Journal of natural products.
2018 05; 81(5):1154-1161. doi:
10.1021/acs.jnatprod.7b00707
. [PMID: 29676912] - Qian Wang, Yali Song, Lina Choi, Hongyu Liu, Gejiao Wang, Mingshun Li. Deinococcus rufus sp. nov., isolated from soil near an iron factory.
International journal of systematic and evolutionary microbiology.
2018 May; 68(5):1622-1626. doi:
10.1099/ijsem.0.002724
. [PMID: 29561256] - Godwin U Ebiloma, Teresa Díaz Ayuga, Emmanuel O Balogun, Lucía Abad Gil, Anne Donachie, Marcel Kaiser, Tomás Herraiz, Daniel K Inaoka, Tomoo Shiba, Shigeharu Harada, Kiyoshi Kita, Harry P de Koning, Christophe Dardonville. Inhibition of trypanosome alternative oxidase without its N-terminal mitochondrial targeting signal (ΔMTS-TAO) by cationic and non-cationic 4-hydroxybenzoate and 4-alkoxybenzaldehyde derivatives active against T. brucei and T. congolense.
European journal of medicinal chemistry.
2018 Apr; 150(?):385-402. doi:
10.1016/j.ejmech.2018.02.075
. [PMID: 29544150] - Zhenhe Su, Sen Han, Zheng Qing Fu, Guoliang Qian, Fengquan Liu. Heat-Stable Antifungal Factor (HSAF) Biosynthesis in Lysobacter enzymogenes Is Controlled by the Interplay of Two Transcription Factors and a Diffusible Molecule.
Applied and environmental microbiology.
2018 02; 84(3):. doi:
10.1128/aem.01754-17
. [PMID: 29101199] - Wei-Ming Chai, Qian Huang, Mei-Zhen Lin, Chong Ou-Yang, Wen-Yang Huang, Ying-Xia Wang, Kai-Li Xu, Hui-Ling Feng. Condensed Tannins from Longan Bark as Inhibitor of Tyrosinase: Structure, Activity, and Mechanism.
Journal of agricultural and food chemistry.
2018 Jan; 66(4):908-917. doi:
10.1021/acs.jafc.7b05481
. [PMID: 29313327] - Hyo Hee Yang, Kyung-Eon Oh, Yang Hee Jo, Jong Hoon Ahn, Qing Liu, Ayman Turk, Jae Young Jang, Bang Yeon Hwang, Ki Yong Lee, Mi Kyeong Lee. Characterization of tyrosinase inhibitory constituents from the aerial parts of Humulus japonicus using LC-MS/MS coupled online assay.
Bioorganic & medicinal chemistry.
2018 01; 26(2):509-515. doi:
10.1016/j.bmc.2017.12.011
. [PMID: 29254897] - Reza Farhoosh. A Kinetic Approach to Evaluate the Structure-Based Performance of Antioxidants During Lipid Oxidation.
Journal of food science.
2018 Jan; 83(1):101-107. doi:
10.1111/1750-3841.13993
. [PMID: 29210460] - Mai T T Nguyen, Tho H Le, Hai X Nguyen, Phu H Dang, Truong N V Do, Manabu Abe, Ryukichi Takagi, Nhan T Nguyen. Artocarmins G-M, Prenylated 4-Chromenones from the Stems of Artocarpus rigida and Their Tyrosinase Inhibitory Activities.
Journal of natural products.
2017 12; 80(12):3172-3178. doi:
10.1021/acs.jnatprod.7b00453
. [PMID: 29227656] - Sae-Rom Yoo, Soo-Jin Jeong, Na-Ri Lee, Hyeun-Kyoo Shin, Chang-Seob Seo. Simultaneous determination and anti-inflammatory effects of four phenolic compounds in Dendrobii Herba.
Natural product research.
2017 Dec; 31(24):2923-2926. doi:
10.1080/14786419.2017.1300798
. [PMID: 28281361] - Sheng Wang, Ruishan Wang, Tan Liu, Zhilai Zhan, Liping Kang, Yanan Wang, Chaogeng Lv, Daniele Werck-Reichhart, Lanping Guo, Luqi Huang. Production of 3-geranyl-4-hydroxybenzoate acid in yeast, an important intermediate of shikonin biosynthesis pathway.
FEMS yeast research.
2017 11; 17(7):. doi:
10.1093/femsyr/fox065
. [PMID: 28934417] - Yan Song, Lan Pan, Wenjie Li, Yingying Si, Di Zhou, Chengjian Zheng, Xiaofang Hao, Xinyue Jia, Yuemei Jia, Minghui Shi, Xiaoguang Jia, Ning Li, Yue Hou. Natural neuro-inflammatory inhibitors from Caragana turfanensis.
Bioorganic & medicinal chemistry letters.
2017 10; 27(20):4765-4769. doi:
10.1016/j.bmcl.2017.08.047
. [PMID: 28911817] - Przemysław Sitarek, Ewa Skała, Monika Toma, Marzena Wielanek, Janusz Szemraj, Tomasz Skorski, Adam J Białas, Tomasz Sakowicz, Tomasz Kowalczyk, Maciej Radek, Halina Wysokińska, Tomasz Śliwiński. Transformed Root Extract of Leonurus sibiricus Induces Apoptosis through Intrinsic and Extrinsic Pathways in Various Grades of Human Glioma Cells.
Pathology oncology research : POR.
2017 Jul; 23(3):679-687. doi:
10.1007/s12253-016-0170-6
. [PMID: 28032310] - Keith McIntosh, David E Reed, Theresa Schneider, Frances Dang, Ammar H Keshteli, Giada De Palma, Karen Madsen, Premysl Bercik, Stephen Vanner. FODMAPs alter symptoms and the metabolome of patients with IBS: a randomised controlled trial.
Gut.
2017 07; 66(7):1241-1251. doi:
10.1136/gutjnl-2015-311339
. [PMID: 26976734] - Sonia Losada-Barreiro, Carlos Bravo-Díaz. Free radicals and polyphenols: The redox chemistry of neurodegenerative diseases.
European journal of medicinal chemistry.
2017 Jun; 133(?):379-402. doi:
10.1016/j.ejmech.2017.03.061
. [PMID: 28415050] - Zhenhe Su, Hongfu Chen, Ping Wang, Simon Tombosa, Liangcheng Du, Yong Han, Yuemao Shen, Guoliang Qian, Fengquan Liu. 4-Hydroxybenzoic acid is a diffusible factor that connects metabolic shikimate pathway to the biosynthesis of a unique antifungal metabolite in Lysobacter enzymogenes.
Molecular microbiology.
2017 04; 104(1):163-178. doi:
10.1111/mmi.13619
. [PMID: 28105648] - Marzanna Hęś, Artur Szwengiel, Krzysztof Dziedzic, Joanna Le Thanh-Blicharz, Dominik Kmiecik, Danuta Górecka. The Effect of Buckwheat Hull Extract on Lipid Oxidation in Frozen-Stored Meat Products.
Journal of food science.
2017 Apr; 82(4):882-889. doi:
10.1111/1750-3841.13682
. [PMID: 28272837] - Nicolai Kallscheuer, Michael Vogt, Jan Marienhagen. A Novel Synthetic Pathway Enables Microbial Production of Polyphenols Independent from the Endogenous Aromatic Amino Acid Metabolism.
ACS synthetic biology.
2017 03; 6(3):410-415. doi:
10.1021/acssynbio.6b00291
. [PMID: 27936616] - Alessio Cimmino, Tamara Cinelli, Marco Masi, Pierluigi Reveglia, Marcondes Araujo da Silva, Laura Mugnai, Sami J Michereff, Giuseppe Surico, Antonio Evidente. Phytotoxic Lipophilic Metabolites Produced by Grapevine Strains of Lasiodiplodia Species in Brazil.
Journal of agricultural and food chemistry.
2017 Feb; 65(6):1102-1107. doi:
10.1021/acs.jafc.6b04906
. [PMID: 28110532] - Di Zhou, Hongyan Wei, Zhe Jiang, Xuezheng Li, Kun Jiao, Xiaoguang Jia, Yue Hou, Ning Li. Natural potential neuroinflammatory inhibitors from Alhagi sparsifolia Shap.
Bioorganic & medicinal chemistry letters.
2017 02; 27(4):973-978. doi:
10.1016/j.bmcl.2016.12.075
. [PMID: 28073678] - Xingping Dai, Dongsheng Wang, Hui Li, Yanyi Chen, Zhicheng Gong, Haiyan Xiang, Shuyun Shi, Xiaoqing Chen. Hollow porous ionic liquids composite polymers based solid phase extraction coupled online with high performance liquid chromatography for selective analysis of hydrophilic hydroxybenzoic acids from complex samples.
Journal of chromatography. A.
2017 Feb; 1484(?):7-13. doi:
10.1016/j.chroma.2017.01.022
. [PMID: 28088360] - Sudhanshu Shekhar, Surbhi Sood, Sadiya Showkat, Christy Lite, Anjalakshi Chandrasekhar, Mariappanadar Vairamani, S Barathi, Winkins Santosh. Detection of phenolic endocrine disrupting chemicals (EDCs) from maternal blood plasma and amniotic fluid in Indian population.
General and comparative endocrinology.
2017 01; 241(?):100-107. doi:
10.1016/j.ygcen.2016.05.025
. [PMID: 27235644] - Sławomir Dresler, Ewelina Rutkowska, Wiesław Bednarek, Grzegorz Stanisławski, Tomasz Kubrak, Anna Bogucka-Kocka, Małgorzata Wójcik. Selected secondary metabolites in Echium vulgare L. populations from nonmetalliferous and metalliferous areas.
Phytochemistry.
2017 Jan; 133(?):4-14. doi:
10.1016/j.phytochem.2016.11.001
. [PMID: 27855956] - Rebecca K Moos, Jürgen Angerer, Georg Dierkes, Thomas Brüning, Holger M Koch. Metabolism and elimination of methyl, iso- and n-butyl paraben in human urine after single oral dosage.
Archives of toxicology.
2016 Nov; 90(11):2699-2709. doi:
10.1007/s00204-015-1636-0
. [PMID: 26608183] - Laurie-Anne Payet, Mélanie Leroux, John C Willison, Akio Kihara, Ludovic Pelosi, Fabien Pierrel. Mechanistic Details of Early Steps in Coenzyme Q Biosynthesis Pathway in Yeast.
Cell chemical biology.
2016 Oct; 23(10):1241-1250. doi:
10.1016/j.chembiol.2016.08.008
. [PMID: 27693056] - Bo Yuan, Ling-Wei Xue, Qiu-Yue Zhang, Wan-Wan Kong, Jun Peng, Meng Kou, Ji-Hong Jiang. Essential Oil from Sweet Potato Vines, a Potential New Natural Preservative, and an Antioxidant on Sweet Potato Tubers: Assessment of the Activity and the Constitution.
Journal of agricultural and food chemistry.
2016 Oct; 64(40):7481-7491. doi:
10.1021/acs.jafc.6b03175
. [PMID: 27624288] - Yanna C F Teles, Jaime Ribeiro-Filho, Patrícia T Bozza, Maria de Fátima Agra, Weam Siheri, John O Igoli, Alexander I Gray, Maria de Fátima V de Souza. Phenolic constituents from Wissadula periplocifolia (L.) C. Presl. and anti-inflammatory activity of 7,4'-di-O-methylisoscutellarein.
Natural product research.
2016 Aug; 30(16):1880-4. doi:
10.1080/14786419.2015.1081196
. [PMID: 27498833] - Xiao-mei Fu, de-hong Liu, Yan-chao Sun, Jing Liu, Jian-guo Pei, Zhi-gui Wu. [Chemical Constituents from Xanthium mongolicum].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2016 Jun; 39(6):1308-10. doi:
"
. [PMID: 30156804] - Michael Plioukas, Chrysi Gabrieli, Diamanto Lazari, Eugene Kokkalou. Phytochemical analysis with the antioxidant and aldose reductase inhibitory capacities of Tephrosia humilis aerial parts' extracts.
Natural product research.
2016 Jun; 30(12):1366-72. doi:
10.1080/14786419.2015.1057729
. [PMID: 26209262] - Hengye Chen, Muhammad Safiullah Virk, Fusheng Chen. Phenolic acids inhibit the formation of advanced glycation end products in food simulation systems depending on their reducing powers and structures.
International journal of food sciences and nutrition.
2016 Jun; 67(4):400-11. doi:
10.3109/09637486.2016.1166187
. [PMID: 27102241] - Wei-Min Zhang, Wei Wang, Jing-Jing Zhang, Zhi-Rong Wang, Yu Wang, Wang-Jun Hao, Wu-Yang Huang. Antibacterial Constituents of Hainan Morinda citrifolia (Noni) Leaves.
Journal of food science.
2016 May; 81(5):M1192-6. doi:
10.1111/1750-3841.13302
. [PMID: 27074391] - Yan-Long Yang, Hui Zhou, Gang Du, Ke-Na Feng, Tao Feng, Xiao-Li Fu, Ji-Kai Liu, Ying Zeng. A Monooxygenase from Boreostereum vibrans Catalyzes Oxidative Decarboxylation in a Divergent Vibralactone Biosynthesis Pathway.
Angewandte Chemie (International ed. in English).
2016 04; 55(18):5463-6. doi:
10.1002/anie.201510928
. [PMID: 27007916] - Qing Kai Li, Ping Liu, Zhao Hui Tang, Hai Jun Zhao, Jiang Tao Wang, Xiao Zong Song, Li Yang, Shu Bo Wan. [Effects of two phenolic acids on root zone soil nutrients, soil enzyme activities and pod yield of peanut].
Ying yong sheng tai xue bao = The journal of applied ecology.
2016 Apr; 27(4):1189-1195. doi:
10.13287/j.1001-9332.201604.039
. [PMID: 29732775] - Tan Liu, Chao-Geng Lv, Sheng Wang, Wan-Zhen Yang, Lan-Ping Guo. [Transcriptome-based gene mining and bioinformatics analysis of p-hydroxybenzoate geranyltransferase genes in Arnebia euchroma].
Zhongguo Zhong yao za zhi = Zhongguo zhongyao zazhi = China journal of Chinese materia medica.
2016 Apr; 41(8):1422-1429. doi:
10.4268/cjcmm20160809
. [PMID: 28884533] - Jessica LaRocca, Alexandra M Binder, Thomas F McElrath, Karin B Michels. First-Trimester Urine Concentrations of Phthalate Metabolites and Phenols and Placenta miRNA Expression in a Cohort of U.S. Women.
Environmental health perspectives.
2016 Mar; 124(3):380-7. doi:
10.1289/ehp.1408409
. [PMID: 26090578] - Vanessa Vieira, Lillian Barros, Anabela Martins, Isabel C F R Ferreira. Nutritional and Biochemical Profiling of Leucopaxillus candidus (Bres.) Singer Wild Mushroom.
Molecules (Basel, Switzerland).
2016 Jan; 21(1):99. doi:
10.3390/molecules21010099
. [PMID: 26784162] - Wuen Yew Teoh, Hooi Poay Tan, Sui Kiong Ling, Norhanom Abdul Wahab, Kae Shin Sim. Phytochemical investigation of Gynura bicolor leaves and cytotoxicity evaluation of the chemical constituents against HCT 116 cells.
Natural product research.
2016; 30(4):448-51. doi:
10.1080/14786419.2015.1017726
. [PMID: 25738869] - Feng-Ping Zhang, Qiu-Yun Yang, Shi-Bao Zhang. Dual Effect of Phenolic Nectar on Three Floral Visitors of Elsholtzia rugulosa (Lamiaceae) in SW China.
PloS one.
2016; 11(4):e0154381. doi:
10.1371/journal.pone.0154381
. [PMID: 27105024] - Petra Hedbavna, Stephen A Rolfe, Wei E Huang, Steven F Thornton. Biodegradation of phenolic compounds and their metabolites in contaminated groundwater using microbial fuel cells.
Bioresource technology.
2016 Jan; 200(?):426-34. doi:
10.1016/j.biortech.2015.09.092
. [PMID: 26512868] - Wenhui Li, Yali Shi, Lihong Gao, Jiemin Liu, Yaqi Cai. Occurrence, fate and risk assessment of parabens and their chlorinated derivatives in an advanced wastewater treatment plant.
Journal of hazardous materials.
2015 Dec; 300(?):29-38. doi:
10.1016/j.jhazmat.2015.06.060
. [PMID: 26151382] - Jia-Yuan Wang, Lian Zhou, Bo Chen, Shuang Sun, Wei Zhang, Ming Li, Hongzhi Tang, Bo-Le Jiang, Ji-Liang Tang, Ya-Wen He. A functional 4-hydroxybenzoate degradation pathway in the phytopathogen Xanthomonas campestris is required for full pathogenicity.
Scientific reports.
2015 Dec; 5(?):18456. doi:
10.1038/srep18456
. [PMID: 26672484] - Lei Wang, Tianzhen Liu, Fang Liu, Junjie Zhang, Yinghong Wu, Hongwen Sun. Occurrence and Profile Characteristics of the Pesticide Imidacloprid, Preservative Parabens, and Their Metabolites in Human Urine from Rural and Urban China.
Environmental science & technology.
2015 Dec; 49(24):14633-40. doi:
10.1021/acs.est.5b04037
. [PMID: 26571198] - Lucie Zemanova, Jakub Hofman, Eva Novotna, Kamil Musilek, Tereza Lundova, Jana Havrankova, Anna Hostalkova, Jakub Chlebek, Lucie Cahlikova, Vladimír Wsol. Flavones Inhibit the Activity of AKR1B10, a Promising Therapeutic Target for Cancer Treatment.
Journal of natural products.
2015 Nov; 78(11):2666-74. doi:
10.1021/acs.jnatprod.5b00616
. [PMID: 26529431] - Elizabeth L Cordonier, Riem Adjam, Daniel Camara Teixeira, Simone Onur, Richard Zbasnik, Paul E Read, Frank Döring, Vicki L Schlegel, Janos Zempleni. Resveratrol compounds inhibit human holocarboxylase synthetase and cause a lean phenotype in Drosophila melanogaster.
The Journal of nutritional biochemistry.
2015 Nov; 26(11):1379-84. doi:
10.1016/j.jnutbio.2015.07.004
. [PMID: 26303405] - Cara L Fiore, Krista Longnecker, Melissa C Kido Soule, Elizabeth B Kujawinski. Release of ecologically relevant metabolites by the cyanobacterium Synechococcus elongates CCMP 1631.
Environmental microbiology.
2015 Oct; 17(10):3949-63. doi:
10.1111/1462-2920.12899
. [PMID: 25970745] - Douglas B Rasher, E Paige Stout, Sebastian Engel, Tonya L Shearer, Julia Kubanek, Mark E Hay. Marine and terrestrial herbivores display convergent chemical ecology despite 400 million years of independent evolution.
Proceedings of the National Academy of Sciences of the United States of America.
2015 Sep; 112(39):12110-5. doi:
10.1073/pnas.1508133112
. [PMID: 26324909] - Annelies Breynaert, Douwina Bosscher, Ariane Kahnt, Magda Claeys, Paul Cos, Luc Pieters, Nina Hermans. Development and Validation of an in vitro Experimental GastroIntestinal Dialysis Model with Colon Phase to Study the Availability and Colonic Metabolisation of Polyphenolic Compounds.
Planta medica.
2015 Aug; 81(12-13):1075-83. doi:
10.1055/s-0035-1546154
. [PMID: 26166134] - Jian-you Huang, Wen-jie Lu, Xiao Tan, Guo-shou Lu, Zhou-feng Huang. [Chemical Constituents from Macaranga denticulata Root].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Aug; 38(8):1671-3. doi:
. [PMID: 26983243]
- Ertan Ermis, Christian Hertel, Christin Schneider, Reinhold Carle, Florian Stintzing, Herbert Schmidt. Characterization of in vitro antifungal activities of small and American cranberry (Vaccinium oxycoccos L. and V. macrocarpon Aiton) and lingonberry (Vaccinium vitis-idaea L.) concentrates in sugar reduced fruit spreads.
International journal of food microbiology.
2015 Jul; 204(?):111-7. doi:
10.1016/j.ijfoodmicro.2015.03.017
. [PMID: 25868124] - Danilo Pérez-Pantoja, Pablo Leiva-Novoa, Raúl A Donoso, Cedric Little, Margarita Godoy, Dietmar H Pieper, Bernardo González. Hierarchy of Carbon Source Utilization in Soil Bacteria: Hegemonic Preference for Benzoate in Complex Aromatic Compound Mixtures Degraded by Cupriavidus pinatubonensis Strain JMP134.
Applied and environmental microbiology.
2015 Jun; 81(12):3914-24. doi:
10.1128/aem.04207-14
. [PMID: 25795675] - Didier Froissard, Sylvie Rapior, Jean-Marie Bessière, Bruno Buatois, Alain Fruchier, Vincent Sol, Françoise Fons. Asplenioideae Species as a Reservoir of Volatile Organic Compounds with Potential Therapeutic Properties.
Natural product communications.
2015 Jun; 10(6):1079-83. doi:
. [PMID: 26197556]
- Bao Zhang, Xuan-zhen Li, Fa-jie Feng, Li Gu, Jun-yi Zhang, Liu-ji Zhang, Zhong-yi Zhang. [Correlation of Allelopathy of Rehmannia glutinosa Root Exudates and Their Phenolic Acids Contents].
Zhong yao cai = Zhongyaocai = Journal of Chinese medicinal materials.
2015 Apr; 38(4):659-63. doi:
"
. [PMID: 26672327] - Hye Mi Kim, Su Jung Kim, Ha-Yeong Kim, Byeol Ryu, Hokwang Kwak, Jonghyun Hur, Jung-Hye Choi, Dae Sik Jang. Constituents of the stem barks of Ailanthus altissima and their potential to inhibit LPS-induced nitric oxide production.
Bioorganic & medicinal chemistry letters.
2015 Mar; 25(5):1017-20. doi:
10.1016/j.bmcl.2015.01.034
. [PMID: 25666824] - Li Zhu, Chaoyan Xu, Jingjing Li, Jun Tian, Zhaozhong Feng, Xue Peng. [Recent advances in biosynthesis of 4-hydroxybenzaote].
Sheng wu gong cheng xue bao = Chinese journal of biotechnology.
2015 Mar; 31(3):328-37. doi:
"
. [PMID: 26204754] - Jing Xu, Lian Zhou, Vittorio Venturi, Ya-Wen He, Mikiko Kojima, Hitoshi Sakakibari, Monica Höfte, David De Vleesschauwer. Phytohormone-mediated interkingdom signaling shapes the outcome of rice-Xanthomonas oryzae pv. oryzae interactions.
BMC plant biology.
2015 Jan; 15(?):10. doi:
10.1186/s12870-014-0411-3
. [PMID: 25605284] - Zehra Can, Barbaros Dincer, Huseyin Sahin, Nimet Baltas, Oktay Yildiz, Sevgi Kolayli. Polyphenol oxidase activity and antioxidant properties of Yomra apple (Malus communis L.) from Turkey.
Journal of enzyme inhibition and medicinal chemistry.
2014 Dec; 29(6):829-35. doi:
10.3109/14756366.2013.858144
. [PMID: 24246090] - Yanlong Guan, Huaming Lin, Lan Ma, Yongping Yang, Xiangyang Hu. Nitric oxide and hydrogen peroxide are important signals mediating the allelopathic response of Arabidopsis to p-hydroxybenzoic acid.
Physiologia plantarum.
2014 Oct; 152(2):275-85. doi:
10.1111/ppl.12164
. [PMID: 24502504] - Prabhu Durai, Arulvasu Chinnasamy, Babu Gajendran, Manikandan Ramar, Srinivasan Pappu, Govindaraju Kasivelu, Ashokkumar Thirunavukkarasu. Synthesis and characterization of silver nanoparticles using crystal compound of sodium para-hydroxybenzoate tetrahydrate isolated from Vitex negundo. L leaves and its apoptotic effect on human colon cancer cell lines.
European journal of medicinal chemistry.
2014 Sep; 84(?):90-9. doi:
10.1016/j.ejmech.2014.07.012
. [PMID: 25016231] - María Boto-Ordóñez, Mireia Urpi-Sarda, María Isabel Queipo-Ortuño, Sara Tulipani, Francisco J Tinahones, Cristina Andres-Lacueva. High levels of Bifidobacteria are associated with increased levels of anthocyanin microbial metabolites: a randomized clinical trial.
Food & function.
2014 Aug; 5(8):1932-8. doi:
10.1039/c4fo00029c
. [PMID: 24958563] - Yong Zhao, Chang-An Geng, Chang-Li Sun, Yun-Bao Ma, Xiao-Yan Huang, Tuan-Wu Cao, Kang He, Hao Wang, Xue-Mei Zhang, Ji-Jun Chen. Polyacetylenes and anti-hepatitis B virus active constituents from Artemisia capillaris.
Fitoterapia.
2014 Jun; 95(?):187-93. doi:
10.1016/j.fitote.2014.03.017
. [PMID: 24685503] - Myeong Hyeon Park, In Sook Kim, Sun-A Kim, Chun-Soo Na, Cheol Yi Hong, Mi-Sook Dong, Hye Hyun Yoo. Inhibitory effect of Rhus verniciflua Stokes extract on human aromatase activity; butin is its major bioactive component.
Bioorganic & medicinal chemistry letters.
2014 Apr; 24(7):1730-3. doi:
10.1016/j.bmcl.2014.02.039
. [PMID: 24630560] - Christian Pfaff, Niels Glindemann, Jens Gruber, Margrit Frentzen, Radin Sadre. Chorismate pyruvate-lyase and 4-hydroxy-3-solanesylbenzoate decarboxylase are required for plastoquinone biosynthesis in the cyanobacterium Synechocystis sp. PCC6803.
The Journal of biological chemistry.
2014 Jan; 289(5):2675-86. doi:
10.1074/jbc.m113.511709
. [PMID: 24337576] - Stanislav A Pshenichnyuk, Alberto Modelli. Resonance electron attachment to plant hormones and its likely connection with biochemical processes.
The Journal of chemical physics.
2014 Jan; 140(3):034313. doi:
10.1063/1.4861497
. [PMID: 25669385] - Lian Zhou, Tin-Wei Huang, Jia-Yuan Wang, Shuang Sun, Gongyou Chen, Alan Poplawsky, Ya-Wen He. The rice bacterial pathogen Xanthomonas oryzae pv. oryzae produces 3-hydroxybenzoic acid and 4-hydroxybenzoic acid via XanB2 for use in xanthomonadin, ubiquinone, and exopolysaccharide biosynthesis.
Molecular plant-microbe interactions : MPMI.
2013 Oct; 26(10):1239-48. doi:
10.1094/mpmi-04-13-0112-r
. [PMID: 23718125]